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ABSTRACT 

Woolley, Ryan Cliff (Ph.D. Aerospace Engineering Sciences) 

Endgame Strategies for Planetary Moon Orbiters 

Directed by Daniel Scheeres, Professor, Department of Aerospace Engineering 

Sciences, University of Colorado at Boulder 

 

Delivering an orbiter to a planetary moon such as Titan or Europa requires an 

exorbitant amount of fuel if the trajectory is not carefully and cleverly planned.  V-

infinity leveraging maneuvers are an effective means to reduce total Delta-V 

requirements to achieve orbit about a planetary satellite.  This work seeks to 

characterize optimal trajectories making use of flybys, leveraging maneuvers, and 

capture orbits in order to minimize fuel requirements. With the aid of customized 

tools to construct, map, and analyze sequences of resonances and maneuvers, we 

derive heuristics of global optima and formulate a theoretical minimum.  The 

theoretical minimum, which is found using an infinite series of flybys and leveraging 

maneuvers, results in a Delta-V savings of over 70% when compared to a direct 

insertion during flyby.  We then generate numerical results, which show that the 

optimal location for performing V-infinity reduction maneuvers is not necessarily at 

apoapsis, due to targeting constraints.  By plotting total Delta-V vs. time-of-flight for 

tens of thousands of generated sequences, a Pareto front is created of the most 
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efficient sequences for each given flight time.  This Pareto front shows that while 

infinite missions are not possible, it is feasible to reduce the total Delta-V by 50% 

with only a modest increase in flight time. Increasing the mission duration further 

does not result in significant reductions. 

It is shown that periodic orbits exist in the restricted three-body problem 

whose Jacobi constants correspond to a positive V-infinity in the two-body problem.  

This indicates that these orbits are classically hyperbolic and yet are gravitationally 

bound to the vicinity of the target body.  This dissertation explores the limits and 

usefulness of these hyperbolic periodic orbits and their application to the endgame 

problem.  Families of orbits are generated using a single shooting method and 

integrated into the final phase of V-infinity leveraging sequences.  Using a hyperbolic 

periodic orbit to capture to the vicinity of a target moon following an optimized 

sequence of leveraging maneuvers and flybys yields significant fuel savings (60-70%) 

over direct trajectories. 
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1 Introduction  

The Cassini-Huygens spacecraft entered orbit about Saturn on July 1, 2004.  

On Christmas day of that year, the Huygens probe was released and made its way 

towards the surface of Titan.  The data sent back from Huygens and Cassini about this 

amazing moon were nothing short of astounding.  They revealed an icy world with 

methane seas and a thick organic haze, with rugged shorefronts and winding canyons.  

Scientific interest in Titan exploded and the community called for plans to send a 

dedicated orbiter. 

Missions being studied by the National Aeronautics and Space Administration 

(NASA) at the time (e.g. Titan Explorer) required the use of aerocapture, an unproven 

technology, to enable a spacecraft to enter orbit about Titan.  Studies had shown that 

aerocapture would allow 2.4 times as much mass to be delivered when compared to 

an all-propulsive trajectory (Edwards, 2005).  However, in 2007, it was decided that 

aerocapture was too great of a risk, both technologically and in cost, to be included in 

baseline architectures.  The problem of how to minimize the fuel requirements of a 

chemical trajectory to a Titan orbit in order to enable a mission without aerocapture 

became the impetus for this research. 
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1.1 Motivation 

In situ exploration of the outer planets and their moons over the past 40 years 

has given us spectacular imagery of alien worlds and has revolutionized our scientific 

understanding.  In 1973, Pioneer 10 was the first spacecraft to make direct 

observations of Jupiter as it flew by on its way out of the solar system.  Later, the 

Voyager spacecrafts were launched in 1977 in order to take advantage of the Grand 

Tour possibility of the outer planets.  They were launched two weeks apart (Voyager 

2 first) and both flew by the Jovian and Saturnian systems.  Because Pioneer 11 had 

detected a thick, gaseous atmosphere over Titan one year earlier, the Voyager space 

probes' controllers at the Jet Propulsion Laboratory elected for Voyager 1 to make a 

close approach of Titan and of necessity, end its Grand Tour there.  Voyager 2 

continued the tour to Uranus and Neptune.  Figure 1.1 is an artist rendering of the 

spacecrafts that were the first to fly by and to orbit Jupiter and Saturn. 
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Figure 1.1. Past Missions to the outer planets.  Pioneer (1973) and Voyager (1979) 
were the first to fly by Jupiter and Saturn, respectively.  Galileo orbited Jupiter from 
1995 to 2003 and returned wonderful data on the whole system.  Cassini-Huygens 
was launched in 2004 and continues to send invaluable data on the Saturnian system, 
including Titan. 

In 1989, the nearly 3 ton interplanetary probe Galileo was sent to study the 

Jovian system. Galileo arrived in 1995, and despite the failure of its high-gain 

antenna, it continued to send groundbreaking images and information until it was 

plunged into Jupiter in 2003.  The next NASA flagship mission, Cassini-Huygens, 

was a joint effort with the European Space Agency.   Launched to Saturn in 1997, 

Cassini continues to orbit Saturn today.  Recently the mission was extended until 

2017, enabling another 155 revolutions around the planet -  54 flybys of Titan and 11 

flybys of Enceladus. 

NASA has sanctioned dozens of studies for over a decade to determine the 

next flagship mission (> $1B) to follow Galileo and Cassini. Some examples include 
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Europa Orbiter, JIMO, and the Titan Explorer.  The Outer Planets Assessment Group 

(OPAG) was established by NASA in late 2004 to identify scientific priorities and 

pathways for exploration in the outer solar system.  The group consists of a 15-person 

steering committee, which actively solicits input from the scientific community and 

reports its findings to NASA Headquarters.  OPAG has held numerous meetings to 

determine scientific benefits and technological feasibility for dedicated missions to 

most of the outer planets. 

In 2007-2008 NASA and ESA put forth various concepts for missions to 

Saturn and Jupiter.  In February 2009, NASA and ESA officials selected the Europa 

Jupiter System Mission (EJSM) as the next Outer Planet Flagship Mission, but it was 

also decided to continue pursuing another potential mission to the Saturnian system. 

Both missions require the delivery of large payloads to useful scientific orbits about 

planetary moons, a task that can require an excessive amount of fuel if the trajectory 

and implementation are not carefully and cleverly planned. 

This dissertation makes extensive use of normalized quantities and 

generalizing assumptions so as to make the results applicable to any three-body 

system and not just the Saturn-Titan System.  The hope is that the principles and 

concepts set forth in this research will aide in the global effort to explore the many 

interesting moons of the solar system. 

1.2 Problem Characterization 

The final phase of a trajectory to a science orbit is known as the “endgame.” 

This phase is very challenging and often tedious for mission designers (Sweetser et 
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al., 1997). Typical science orbits require close proximity to the surface and high 

inclinations to provide global coverage for mapping purposes. These orbits are very 

costly (fuel-wise) to achieve via direct insertion. Furthermore, since delivering the 

desired scientific payloads requires large amounts of fuel, missions are limited by 

launch vehicle capabilities. There are a variety of techniques and tools available to 

aide in the reduction of the total required ∆V
1.  Recently much work has been done to 

determine how to optimally apply these techniques to meet mission requirements and 

to minimize manual effort (Sims et al., 1997; Ross and Grover, 2007a; Brinckerhoff 

and Russell, 2009; Campagnola and Russell, 2010a; Ross and Scheeres, 2007; 

Casalino et al., 1998).  

In practice, missions to planetary moons such as Europa and Titan employ the 

use of extensive tours with multiple gravity-assists in order to reduce hyperbolic 

excess velocity2 (hereafter referred to as V∞) at the final moon encounter, enabling a 

feasible orbit insertion.  Figure 1.2 shows the trajectory of the Europa Explorer 

(Clark, et al., 2007).  The mission begins with a flyby of Venus and two at Earth en 

route to Jupiter. Upon arrival, a flyby of Callisto is used to lower the fuel needed for 

the large Jupiter orbit insertion (JOI) burn.  Following capture in the Jovian system, 

the spacecraft begins a tour of highly elliptical orbits using flybys of the massive 

moons to remove orbital energy and to set up the final insertion at Europa.  The 

                                                 

1 The cost of impulsive maneuvers can be expressed in terms of mass, but this measure is dependent on 
the dry mass of the spacecraft and the efficiency (Isp) of the engine. Instead, it is more common to 
express the effects of impulsive maneuvers in terms of the magnitude of the change in velocity they 

produce, known as ∆V, which can be used as a surrogate for fuel usage. 
_ 
2 See Appendix A: Nomenclature at the end of this dissertation for a description of symbols used 
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energy-reducing tour and final capture (steps 3 and 4 in Figure 1.2) make up the 

“endgame”. 

 
1) ∆∆∆∆VEEGA Trajectory 2) JOI 3) Moon Tour 4) Science Orbit

 

Figure 1.2. Typical mission sequence to Europa.  Following a lengthy interplanetary 
tour (1) and large JOI burn (2), the endgame is comprised of an energy-reducing tour 
(3) and orbital capture at Europa (4). 

These tours also serve as opportunities to study the planetary environment and 

to target fly-bys of other moons. However, gravity-assists alone do not change the V∞ 

magnitude.  V∞ at the target moon is only reduced via ∆V maneuvers and gravity-

assists at other moons.  In this research we simplify the problem by ignoring the 

existence of other moons and characterize the optimal use of ∆V maneuvers to enable 

orbital capture. 

One particular technique that has proven useful in planetary tour design is the 

V∞ leveraging maneuver (Boutonnet et al., 2008; Johannesen and D’Amario, 1999). 

This approach makes use of small, deep-space maneuvers near apoapsis to alter the 

V∞ magnitude at the next fly-by. The change in V∞ can be 5-10 times or more the size 

of the deep-space burn. One aim of this research is to aid in the understanding of the 

dynamics governing V∞ leveraging maneuvers and their use in planetary endgame 

tours. Sims and Longuski (1994, 1997) laid much of the groundwork on these 

maneuvers in the 90’s.  Their work has been followed with renewed interest in the 
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past few years as evidenced by the papers of Campagnola (2010a, 2010b) and 

Brinkerhoff (2009).  This dissertation will focus on same-body transfers (as opposed 

to multi-moon tours) where only one body is used during the endgame.  We will also 

confirm some of the findings of the research mentioned above.  The results are 

presented with the mission designer in mind who wishes to quickly evaluate the 

possibilities and trade space before moving to a more detailed trajectory.  

In order to better visualize the optimization of the endgame design process, 

we propose the use of a three-dimensional “V∞ Sphere” as a guide map.  This map is 

based on the “V∞ Globe”3 as proposed by Strange and Russell (2007). As spacecraft 

maneuvers are performed the magnitude of the V∞ vector, which will later be shown 

to be analogous to the Jacobi constant, is modified. Strategically placed maneuvers 

will reduce the size of the V∞ Globe at the next encounter, which can be thought of as 

the next layer of the V∞ Sphere.  The contours delineating post fly-by orbit parameters 

on the surface of the V∞ Globe trace out three-dimensional surfaces as the size of the 

sphere shrinks. Getting to the center of this sphere using the minimal amount of fuel 

is the ultimate goal of the endgame design process.  

Traditional planetary capture methods require that this V∞ Sphere be reduced 

to zero, which is not possible using fly-bys alone.  With the additional use of V∞ 

leveraging maneuvers, it is possible to greatly reduce the amount of fuel required to 

bring down the V∞ magnitude and ultimately capture into an orbit about the body.  

With the V∞ Sphere providing a map for potential orbit sequences, the problem 

                                                 

3 We will use the term “globe” to denote a surface, whereas “sphere” is used to denote the entire 3-

dimensional object. 
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becomes how to optimally shrink the sphere.  V∞ leveraging maneuvers are typically 

performed at the spacecraft's apoapsis and tangent to the orbit. Sweetser (1993) 

showed that this maximizes the change in Jacobi constant. However, our numerical 

investigations have shown that this is slightly suboptimal due to the targeting 

restraints when solving Lambert's problem. 

In the 2-body problem (2BP), V∞ at the target moon is a constant in the 

absence of perturbations or leveraging maneuvers, much like the Jacobi constant in 

the 3-body problem (3BP).  Since gravity assists and the transition to gravitational 

capture are essentially expressions of third body effects, it makes more sense to 

analyze them using three-body techniques.  In the patched 2BP, V∞ = 0 corresponds to 

a parabolic orbit or the limit of gravitational capture.  Relationships between the 

Jacobi and V∞ yield the possibility of bound, periodic, or quasi-periodic orbits with a 

positive V∞.  If such orbits exist, then they would amount to hyperbolic orbits in the 

2-body sense yet be bound to the vicinity of the secondary.  Targeting a “hyperbolic 

periodic” orbit during the final phase of a leveraging maneuver sequence would result 

in a lower required insertion ∆V. 

1.3 Historical Roots 

The purpose of this section is to provide a brief history of previous work in 

astrodynamics that has lead to modern day mission design and to show the 

background leading up to this dissertation. 
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1.3.1 A Brief History of Two-Body Problem 

Great minds throughout the ages have been interested in the celestial motions 

they observed in the night sky.  In 1601, Johannes Kepler became the director of the 

Prague Observatory following the death of Tycho Brahe.  Using Brahe’s meticulously 

collected data, Kepler formulated his famous three laws of planetary motion: 

1) Every planet moves in an elliptical orbit, with the sun at one focus. 

2) The radius vector sweeps out equal areas in equal times. 

3) The square of the period is proportional to the cube of the semimajor axis. 

Later that century, Newton (1687) would go on to devise his three laws of motion and 

put forth his theory of gravitation: 

 
2

21

r

mGm
F =  (1.1) 

where G is the universal gravitational constant and r is the distance between mass 1 

(m1) and mass 2 (m2). Armed with his newly invented calculus and laws of 

gravitation, Newton set out to explain Kepler’s laws.  He succeeded in 

mathematically and geometrically describing the laws that govern planetary motion 

and derived many of the equations that are used today.   

 In 1744, Leonhard Euler went on to find the full analytical solution to the two-

body equations.  He was also one of the first to derive the equations defining the 

change in osculating elements with time, giving rise to the analytic theory of 

perturbed motions (Euler, 1744).  In works published in 1761 and 1771, Johann 

Lambert used a geometrical approach to generalize Euler’s formulas to include 

elliptical and hyperbolic orbits.  Therefore, solving for the orbit between two known 

position vectors is usually known as Lambert’s problem (see 2.1.3).  General 



 10 

understanding of orbit determination in the 2BP was further enhanced by the works of 

Lagrange (1778), Laplace (1880), and Gauss (1802). 

One of the most well known transfers in the two-body problem is the 

Hohmann transfer. Hohmann (1925) proposed a theory which suggests that the 

minimum cost transfer between two circular orbits, in terms of fuel expenditure, can 

be achieved by employing two burns: the first maneuver is tangential to the initial 

orbit, and the second maneuver is tangential to the final orbit. The Hohmann transfer 

represents the minimum change in velocity between most coplanar orbits. 

1.3.2 A Brief History of the Three-Body Problem 

The 3BP is a classic problem of celestial mechanics, wherein we are interested 

in the motion of a third particle in the presence of two massive bodies.  One of the 

earliest contributors to the 3BP was Sir Isaac Newton (1687), in the years after he 

published his theory of gravitation.  The problem of ocean navigation required an 

understanding of the motion of the Moon, which is strongly affected by both the 

Earth and the Sun and, hence, beyond the scope of the basic 2BP. This problem was 

of great interest throughout the eighteenth century and was approached in basically 

two ways: by an infinite series expansion to describe the solution (Clairaut, 1752) or 

by variation of parameters (Euler, 1744).  It was Euler who first used rotating 

coordinates to frame the problem.  However, it was not until 1772 that Lagrange 

(1867-1892) demonstrated a reduction of the problem from its original form, with 18 

unknowns, to a problem of order 7 in the rotating frame.  Lagrange proposed the 

assumptions that lead to the “restricted” model, allowing closed form solutions and 

more detailed analyses of celestial motions (Barrow-Green, 1997). 
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It was also Lagrange who first identified the five equilibrium points in the 

circularly restricted three-body problem (CR3BP): the three collinear points (which 

were also described by Euler in 1772) and two equilateral points.  This is why they 

are usually denoted the Lagrange points. 

The next significant contribution to the 3BP did not appear until Carl Jacobi in 

1836. He discovered the only integral of the motion in the CR3BP, which bears his 

name as the Jacobi Constant. Jacobi's work was further extended by Hill (1878) who 

used this lone integral to define curves of zero velocity that limit the motion of the 

third particle. Hill's investigations focused on the Moon and, thus, constrained the 

Moon's motion to certain regions of space around the two main bodies (the Sun and 

the Earth).   

Another significant step in understanding the three-body problem came about 

due to a mathematical competition to honor the 60th birthday King Oscar II of 

Sweden and Norway in 1889. Henri Poincaré was awarded the prize for his study of 

the CR3BP. What set his work apart was that he shifted from a quantitative aspect to 

a more qualitative assessment. While Poincaré (1890) was interested in finding 

solutions to the three-body problem, his approach differed from all previous 

developments, since he was more interested in the nature of the solutions than in the 

actual solutions themselves. His mathematical work showed that an infinite number 

of periodic orbits exist in the 3BP.  Poincaré also introduced an innovative method, 

the Poincaré section (or stroboscopic map) to study the behavior of solutions as time 

tends to infinity (Barrow-Green, 1997).  Poincaré is considered by many to be the 

father of dynamical systems theory.  



 12 

Around the turn of the century, there was much work being done in the field 

of dynamical systems theory. Tisserand (1896) used it to study and identify comets 

and their orbits. Lyapunov (1892) and Levi-Civita (1901), were interested in a more 

general theory of the stability of motion, and in the case of Levi-Civita, its application 

to the CR3BP. Their work laid the foundation for modern efforts to compute the 

invariant manifolds associated with periodic orbits in the 3BP.  Other notable 

researchers in the areas of periodic orbits and general solutions include Darwin (1897, 

1911), Sundman (1912), and Strömgren (1935). 

Continuing advancements in the determination of periodic orbits and the 

advent of modern computers and technology led to the launch of the ISEE-3 

spacecraft in 1978 (Farquhar, 1998). It was the first spacecraft to be inserted into a 

halo orbit in the vicinity of the L1 Sun-Earth libration point.  Since then many 

spacecraft have benefited from orbits determined by dynamical systems theory, 

including SOHO, ACE, and Genesis. Other researchers that have contributed 

significantly to the understanding of periodic orbits include Hénon (1965-1970), 

Szebehely (1967), and Broucke (1968). 

1.3.3 Recent Related Work 

In the past few decades, many new techniques have been developed in support 

of missions to the outer planets and their moons.  In the late 1990’s and early 2000’s, 

a multitude of papers were published concerning mission designs to Europa and other 

moons of Jupiter.  Most of these were in support of the Europa Orbiter or Jupiter Icy 

Moons Orbiter (JIMO) missions.  In 1997, Ted Sweetser and others spelled out “a 

plethora of astrodynamic challenges” facing trajectory design for a Europa Orbiter.  
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Mission designers and theorists alike set to work tackling these problems incumbent 

upon sending an orbiter to a small planetary moon. 

The first challenge facing designers was the daunting task of finding a tour 

design that reduced the Jovicentric energy while simultaneously meeting all the other 

mission criteria.  In 1999, Johannesen and D’Amario of JPL published the reference 

trajectory of the Europa Orbiter, which was the baseline for most studies of the day.  

However, this was only a point design4 and inflexible to schedule or requirement 

changes.  Heaton and others at Purdue set to work on an automated process that took 

in constraints on total time of flight and radiation dosage (Heaton, et al., 2000).  They 

found an enormous number of possible sequences and documented the most 

promising.   

The dynamics of the multi-moon environment lends itself well to optimization 

techniques and the application of dynamical systems theory.  A number of researchers 

tackled this problem including Ross and Grover (2007b), who looked at low thrust 

and multiple gravity-assists to navigate the unstable manifolds on near-ballistic 

trajectories, with the aid of Keplerian maps.   Papers by Strange and Longuski (2002) 

and Strange, Russell, and Buffington (2007) also put forth graphical methods for the 

design of tours with gravity-assists, including the V∞ Globe (see Section 3.4). 

Another problem identified early on was the stability of suitable science 

orbits.  Scheeres, Guman, and Villac (2000, 2001) studied orbital stability using 

numerical and analytical techniques.  They found that impact orbits only occur within 

~45° of a polar orbit, but with certain initial conditions, impact can be delayed for a 

                                                 

4 The launch date for Europa Orbiter was set for 2003. 
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considerable length of time. Gomez, Lara, and Russell (2006) took a dynamical 

systems approach to find orbits that were stable and met mission criteria by using 

averaged manifolds of unstable frozen orbits.  Achieving these low orbits directly 

using an insertion maneuver is often very costly, fuel-wise.  That is why Russell and 

Lam (2005, 2006) looked in to the use of unstable, periodic orbits as an intermediate 

capture mechanism.  This idea of using quasi-periodic orbits for orbital capture was 

also studied by Nakamiya, et al. (2007), with applications to periodic orbits about 

libration points. 

Most recently, the well established technique of V∞ leveraging has been 

applied to the planetary moon tour problem (Brinkerhoff and Russell, 2009).  Used in 

conjunction with resonant gravity-assists, it becomes a pathfinding problem to find 

optimal tour sequences.  Campagnola and Russell (2010a, 2010b) developed 

Tisserand leveraging graphs and phase-free formulae in order to analyze the endgame 

to the multi-body gravity-assist problem.  Their results help find the minimum ∆V 

transfers between two moons and have been applied to enable an Enceladus5 orbiter 

(Strange et al, 2009a; Campagnola et al., 2010c). 

1.4 Contributions of This Dissertation 

As shown by the previous section, much work has been done that is applicable 

to mission design of planetary moon orbiters.  However, some techniques are 

developed as solutions to very specific, mathematically interesting problems.  These 

theoretical discoveries can be quite clever, but fail to be implemented in the practical 

                                                 

5 Enceladus is difficult to orbit in that it is very small and close to Saturn. 



 15 

realm as mission designers are not given the big picture nor the tools to easily 

incorporate them into their studies.  Other techniques are well developed, but are only 

applicable to one small phase of the problem and are difficult to mesh with other 

techniques.  This dissertation seeks to connect multiple techniques together so that 

they can be seen as a whole.  From there, mission designers will be able to quickly 

assess the usefulness of techniques across the trade space. 

As was mentioned previously, the tour design problem lends itself well to 

optimization schemes.  However, optimization schemes are only as accurate as their 

inputs and often times can only provide local optima, unbeknownst to the user.  In 

order to avoid these pitfalls it is important to have a firm understanding of the big 

picture to be able to describe the problem accurately.  Most trajectory optimization 

software requires the input of a relatively good initial guess.  In this work we seek to 

characterize the trade space and provide approximations of global minima as inputs to 

high fidelity optimizers. 

The cartoon in Figure 1.3 shows the stages of our overall endgame strategy. 

The trajectory begins with a highly elliptical orbit following Saturn or Jupiter Orbit 

Insertion (JOI).  Next, an alternating sequence of targeted flybys and leveraging 

maneuvers are used to reduce the V∞ at the target moon.  The design of these 

sequences is aided by the use of a map – the V∞ Sphere.  Finally, a three-body capture 

orbit is used to reduce ∆V requirement to capture to the moon’s vicinity. 
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1. SOI or JOI

2. Targeted Fly-bys

3. V∞ Leveraging 

Maneuvers

4. Three-body         

Orbit Capture

 

Figure 1.3. Cartoon of general endgame strategy.  1. Orbital Insertion.  2. and 3. 
Alternating sequence of flybys and leveraging.  4. Three-body orbit capture. 

This dissertation provides a new method for the design and analysis of V∞ 

leveraging maneuvers – the Lambert solution technique.  This allows us to quantify 

and optimize these maneuvers with the aide of efficiency contours.  This technique 

frees some of the constraints traditionally placed on leveraging maneuvers (e.g. that 

the maneuver take place exactly at apoapsis).   

Armed with this tool, we generate tens of thousands of resonance sequences 

that are optimized at each leveraging maneuver.  The results allow us to analyze the 

trends that characterize optimal trajectories.  They also provide the mission designer 

with a good understanding of the trade off between the reduction of total ∆V and the 

increase in total time-of-flight. 

The final section of this dissertation explores the relationships between the 

two- and three-body problems.  This is useful during the capture phase as the 
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transition to the target moon’s sphere of influence is better understood in the three-

body realm.  We show that hyperbolic periodic orbits do exist and can be more useful 

as capture mechanisms than standard two-body orbits.  We also provide common 

terminology and metrics that allow us seamlessly connect the capture portion of a 

trajectory to the tour sequence and evaluate its usefulness.   

Portions of this research have been presented at the following conferences: 

1. AAS/AIAA Astrodynamics Specialist Conference, Pittsburgh, 

Pennsylvania, August 2009. AAS Paper 09-377, “Shrinking the V-

infinity Sphere:  Endgame Strategies for Planetary Moon Orbiters.”  

2. AAS/AIAA Spaceflight Mechanics Meeting, San Diego, CA, February 

2010. AAS Paper 10-219, “Optimal Pathways for Sequences of V-

infinity Leveraging Maneuvers.” 

3. AAS George H. Born Symposium, Boulder, CO, May 13-14, 2010. 

“Hyperbolic Periodic Orbits in the Three-Body Problem and Their 

Application to Orbital Capture.”  

It is also contained in the following (submitted) journal papers: 

1. Woolley, R.C. and D.J. Scheeres, “Applications of V-infinity 

Leveraging Maneuvers to Endgame Strategies for Planetary Moon 

Orbiters,” Journal of Guidance, Control, and Dynamics, Submitted 

Mar. 2010. 

2. Woolley, R.C and D.J. Scheeres, “Hyperbolic Periodic Orbits in the 

Three-Body Problem and Their Application to Orbital Capture,”  The 

Journal of the Astronautical Sciences.  (Pending submission). 
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1.5 Dissertation Organization 

This dissertation is organized as follows: Chapter 2 reviews the models and 

methods used throughout this research.  As the majority of the results are meant to 

rapidly characterize a trade space and to be used for preliminary analysis, 2BP 

equations are largely used.  However, the transition to the sphere of influence of the 

secondary during capture is better suited to the 3BP.   Therefore, a discussion of the 

3-body approximation and trajectory design along with the relevant equations are put 

forth.  The chapter is concluded with the mathematical relationship between integrals 

of motion in the two- and three-body problems. 

Chapter 3 describes the use of V∞ leveraging maneuvers during endgame 

sequences.  The V∞ Sphere, Globe, and Plane are introduced as maps of all possible 

orbits resulting from same body transfers.  With the aid of these maps, we tackle the 

problem of finding sequences of leveraging maneuvers, flybys, and resonant orbits 

that lead to V∞ = 0.  A novel method for analyzing the leveraging maneuvers using a 

Lambert’s solver is put forth.  This method allows us to better understand the 

dynamics involved in designing the most efficient maneuvers.  Using maximum 

efficiency plots, a theoretical minimum capture ∆V is derived. 

Since the minimum also requires an infinite flight time, we then look at 

feasible sequences that may be used in tour design at Saturn or Jupiter.  The 

combinatorics of the pathfinding problem lead to an infinite number of possible 

sequences.  A Monte Carlo-type simulation is used to generate tens of thousands of 
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sequences and to analyze their characteristics.  It was found that it is possible to 

reduce the total ∆V by 50% with only a modest increase in total time-of-flight.  

Increasing the mission duration further does not result in significant reductions.   

Chapter 4 looks at ways to use three-body dynamics to become captured to the 

vicinity of the target moon without having to reduce V∞ to zero first.  Simple periodic 

orbits exist in the 3BP that are hyperbolic in the 2BP during the point of closest 

approach.  Using these orbits as a capture mechanism, it is possible to expend 

approximately 25% less fuel during the insertion maneuver when compared to a 

similar elliptical orbit. 

Chapter 5 draws conclusions from this research and its applications in the 

practical realm.  We also suggest areas of future research that would be beneficial to 

the study of endgame strategies. 
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2 Models and Methods 

In order to perform analyses of endgame strategies, this dissertation makes use 

of the equations of motion from the Two-Body model and the Circular Restricted 

Three-Body model.  The Two-Body model is used for analyzing the motion of a 

spacecraft in the presence of one massive body and excludes any other perturbations.  

It is accurate under the assumptions listed in Section 2.1 and can be “patched” 

together to simulate trajectories with multiple bodies.  It is the primary model used in 

the analysis in Chapter 3.  The Circular Restricted Three-Body model assumes two 

massive bodies in circular orbits about their common barycenter.  This approximates 

most planets and moons in our solar system quite well.  The augmented equations of 

motion in this model allow for more complex orbits and it is the model used for 

analyses in Chapter 4. 

2.1 The Two-Body Problem 

The two-body problem (2BP) is the starting point for nearly all reference 

books in the field of astrodynamics.  The basic problem describes the motion of two 

point-masses in mutual gravitational attraction.  It is very well suited for quick 

approximations of trajectories in practical applications (including this dissertation) as 

most celestial bodies are spherically symmetric and the gravitational forces of one 
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body dominate all other perturbations for the majority of orbits.  Newton’s law of 

gravitation in Equation 1.1 leads to closed form solutions to the motions of the bodies 

with respect to the center of mass.  These solutions can be used to analyze orbital 

properties without the need for cumbersome numerical propagation. 

When the formula for gravitation force is applied to the two bodies, the 

equation relating each body’s position with respect to the center of mass of the system 

may be written: 
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where cmr  is the vector between either of the bodies and center of mass.  In the case 

where one of the bodies is much smaller than the second (m1>>m2)
6, such as an 

artificial satellite, we can neglect its mass and consider the center of mass to be the 

center of the larger body.  The position vector magnitude, r, is now the distance from 

the larger body and the satellite.  We can also replace Gm1 with the more common 

mass parameter, µ.  This leads to the simplified equation of motion for the satellite: 
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Equation 2.2 is the basic two-body equation and is a second-order, nonlinear, 

vector, differential equation.  It is the basis of the development of the remainder of 

the equations in this section, but it is only valid under the following assumptions: 

1) No other forces act on either body except for their mutual gravitational 

attraction. 

                                                 

6 For this dissertation the largest body will always have the lowest subscript, i.e. m1 > m2 > m3 
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2) The bodies are spherically symmetric with uniform density and can 

therefore be treated point masses. 

3) The mass of the smaller body is negligible compared to the central body. 

4) The coordinate system must be inertial. 

Manipulating Equation 2.2 gives what is known as the trajectory equation, 

which describes the shape of all two-body orbits: 
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where a is the semimajor axis, e is the eccentricity, and ν is the true anomaly.  It 

shows that all trajectories are conic sections: circles, ellipses, parabolas, or 

hyperbolas.  The shape that an orbit will take, and whether it is gravitationally bound 

or unbound to the central body, is determined by the specific mechanical energy.  

This energy is computed by subtracting the potential energy7 from the kinetic energy: 
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where v is the velocity of the satellite with respect to the central body.  When energy 

is positive the orbit is hyperbolic and the satellite will escape the system.  If energy is 

negative then the satellite is gravitationally bound and will follow an elliptical or 

circular orbit.  Zero energy denotes a parabolic orbit where velocity goes to zero at an 

infinite distance and represents the boundary of gravitational capture. 

The simplifying assumptions of the 2BP allow it to be a very well-

characterized system.  One way to look at it is to consider that all particles have 6 

                                                 

7 Since potential energy is negative, it is actually added to kinetic, which is positve 
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degrees of freedom: 3 in position and 3 in velocity.  If 6 constants, or integrals of 

motion, can be defined, then the motion can be known for any given time.  The 2BP 

has 12 degrees of freedom, but since we assume that the first body is massive and 

fixed at the barycenter, the conservation of linear momentum allows us to eliminate 6.  

Conservation of energy (Equation 2.4) provides the first integral, and conservation of 

angular momentum along with Kepler’s first two laws provide the remaining 5.  Keep 

in mind this only provides a complete solution to the relative motion of the two 

bodies due to the assumptions listed above. 

2.1.1 Orbital Parameters 

Since we know that the angular momentum vector, h = r x v8, is constant, the 

plane of the orbit is fixed in space.  The r and v vectors lie in this plane which is 

normal to h.  Now let us define a reference plane that is fixed in inertial space.  The 

angle between the planes is fixed and is called the inclination, i.   Two more angular 

parameters define their relative orientation, as shown in Figure 2.1.  The first, the 

longitude of the ascending node, Ω, is the angle between the x-axis (arbitrarily 

defined) and the line of nodes between the planes.  The second is the argument of 

periapsis, ω, which measures the angle between the line of nodes and the point of 

periapsis. 

The size and shape of an orbit are determined by two parameters – semimajor 

axis, a, and eccentricity, e.  The semimajor axis is determined by the energy of an 

orbit as shown by the equation 

                                                 

8 v = r& , or dr/dt 
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The eccentricity determines the shape of the orbit, ranging from a circle (e = 0), to an 

ellipse (0 < e < 1), all the way to a hyperbola (e > 1). 

      

Figure 2.1. Two-Body orbital parameters.  The reference plane and orbital plane are 
fixed in inertial space.  Three angular quantities define their relationship and a 
fourth, ν, denotes the spacecraft’s position on the orbit.     

These five parameters (a, e, i, Ω, and ω) completely describe a spacecraft’s 

orbit and its orientation in space.  A sixth parameter, the true anomaly, ν, is needed to 

indicate its location on the orbit.  True anomaly is measured from the point of 

periapsis to the spacecraft in the direction of travel and varies with time, whereas the 

others do not.  The six parameters, or some variation of them, are commonly known 

as the orbital elements.  They can readily be converted to position and velocity 

vectors and vice versa. 
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2.1.2 Orbital Transfers 

One of the basic goals of space exploration missions is to get from one place 

to another.  The mechanism for doing so is known as a transfer orbit.  The most basic 

and common transfer is from one circular orbit to another co-planar circular orbit.  In 

practice most orbits are not exactly circular nor co-planar, but the analysis of such 

transfers is a good approximation of many realistic orbits. 

The most fundamental and most often used transfer is known as the Hohmann 

transfer.  It is the most energy efficient two-impulse maneuver for transferring 

between two coplanar circular orbits under most circumstances.  The Hohmann 

transfer ellipse is half of an orbit that is tangent to both circles at its apse line.  The 

periapsis and apoapsis are the radii of the inner and outer circles, respectively.  The 

transfer can take place in either direction, for the same total ∆V. 

For the case of starting on the smaller orbit, a ∆V maneuver is required to 

boost the spacecraft to the transfer ellipse. The semimajor axis of this ellipse is 

simply at = ½(a1 + a2), where ‘1’ and ‘2’ represent the smaller and larger orbits, 

respectively.  After coasting for 180 degrees towards the outer orbit, another ∆V 

maneuver is applied to boost the spacecraft’s velocity to that of the larger circular 

orbit.  The total ∆V required for a Hohmann transfer is given by 
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If the ratio between the outer radius and the inner radius is greater than 11.94, 

it may be more efficient to use what is known as the bi-elliptic transfer.  This transfer 

uses two coaxial semi-ellipses which extend beyond the outer target orbit.  Each of 
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the ellipses is tangent to one of the circular orbits and they are tangent to each other at 

the apoapsis of both.  The reasoning is that the ∆V that takes place very far from the 

central body will be very small due to the decreased potential.  In fact, as the apoapsis 

approaches infinity the ∆V goes to zero in what is known as a bi-parabolic transfer.  

These are not practical as they require an infinite amount of time.  The total ∆V 

required for a bi-elliptical transfer is given by 
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where α = ra/a1,  β = a2/a1, and ra is the location of the distant apoapsis burn.  Bi-

elliptic transfers are always more efficient than Hohmann transfers when α is greater 

than 15.58, as well as for large values of β when α is greater than 11.94. 

Trajectories to the outer planetary moons often require transfers from large 

elliptical orbits down to the small circular orbits of a target moon.  If we set one 

distance unit (DU) to the radius of the target orbit and make the circular velocity 

equal to one velocity unit (VU), we can apply this analysis generically.  If we wish to 

apply a tangential, two-impulse transfer similar to the Hohmann, the question is now 

whether to apply the first ∆V at apoapsis to raise periapsis or at periapsis to lower the 

apoapsis.  The optimal answer depends on the size and shape of the initial ellipse, as 

shown in Figure 2.2.  For ellipses with smaller periapses, it is usually beneficial to 

perform the apoapsis maneuver first and vice versa for periapses nearer to the circular 

target orbit.  Note also that magnitude of the total ∆V required is more dependent on 

the periapsis location than the size (i.e. energy) of the initial ellipse. 
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Figure 2.2. Optimal Transfer to Circular Orbit from an Elliptical.  One distance unit 
(DU) is the radius of the target circle and one velocity unit (VU) is the circular 
velocity.  Depending on the eccentricity of the ellipse, it may be most efficient to 
perform the 1st maneuver of a two-impulse transfer at either apoapsis or periapsis. 

2.1.3 Lambert’s Problem 

According to the theorem of J. H. Lambert, the transfer time, ∆t, from one 

point in space to another is independent of the orbit’s eccentricity and depends only 

on the sum of the magnitudes of the position vectors, the semimajor axis, and the 

length of the chord connecting the points.  If we are given ∆t and two points, then 

Lambert’s problem is to find the trajectory joining them.  The trajectory is determined 

once we find the velocity vector at the first point, because the position and velocity of 

any point on an orbit are determined by r1 and v1.  A proof of Lambert’s theorem is 

given in Appendix C. 
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A primary application of Lambert’s problem is that of interplanetary mission 

design.  Known ephemeredes of the planets give the start and end positions when the 

launch and arrival dates are specified.  Solving Lambert’s problem defines the orbital 

elements of the desired transfer orbit.  It also gives the magnitude and direction of the 

∆V required to achieve the transfer and to arrive at the desired orbit.  Figure 2.3 

shows an example of an interplanetary Lambert transfer from Earth to Mars.  With 

the launch and arrival dates and positions known, solving Lambert’s problem yields 

the ∆V required to leave Earth orbit and to arrive at an orbit about Mars. 

 

Figure 2.3. Interplanetary Lambert Transfer.   

The time required for the transfer can be written 

 [ ])sin(sin2 00

3

0 EEeEEk
a

tt −−−+=− π
µ

 (2.8) 
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where k is the number of complete revolutions and E is the eccentric anomaly given 

in radians.  The subscript ‘0’ refer to values at the initial time.  We now must find the 

correct values of a, E0, E and e that will give the desired transfer time.  With the latter 

three parameters given by the problem definition, it only remains to find the 

semimajor axis. 

There are many ways to go about solving Equation 2.8 (Prussing and Conway, 

1993; Schaub and Junkins, 1993), but the use of (∆E)2 allows for well-behaved 

iteration and is the chosen method for the universal formulation (Battin, 1987).  Such 

formulation allows transfers to be elliptical, parabolic, or hyperbolic without a priori 

information.   

What follows is a derivation of how Lambert’s problem is solved using a 

universal variables formulation.  A similar derivation may be found in Bate, Mueller, 

and White (1971) and Vallado (1997).  For now the 2kπ term in Equation 2.8, which 

is used for multiple revolutions, will be omitted. (See Section 9.2 in the Appendix for 

a discussion of multi-revolution solutins). First we begin by defining the universal 

variables x and S 
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 (2.9) 

where ∆E = E – E0.  Substituting x3
S into Equation 2.8 and rearranging yields 

 )sin(sinsin 0

333 EEeaEaSxt −+∆+=∆µ . (2.10) 

Using the trigonometric identity 

 00 sincoscossinsin EEEEE −=∆ . (2.11) 
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and multiplying Equation 2.10 by (1-e2)1/2(1-ecosE0)(1-ecosE) over itself and 

collecting terms gives 
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At this point we can use the true anomaly relationships 
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along with a similar trigonometric identity to Equation 2.11 and r = a(1 - ecosE) to 

yield 
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where A and y have been introduced for convenience.  The transfer time is now just a 

function of x, S, A, and y.  Two new variables, z = ∆E
2 and C = (1/z)(1-cos∆E), allow 

us to write 
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where A is positive for ∆ν < π and negative for ∆ν > π.   

With r0 and r given, all that remains is to iterate on z until the desired ∆t is 

attained.  Each iteration of z is used to update C, S, y, and x (A is not a function of z 
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and is only calculated once).  Once the desired transfer time is achieved, v0 and v can 

be found by using the f and g functions  

 
g

rfr
v 0

0

rr
r −

=  and 
g

rrg
v 0

rr
&r −

=  (2.16) 

where 
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2.1.4 The Dynamics of a Gravity-Assist Flyby 

Before considering interplanetary trajectories, a basic understanding of the 

dynamics of a hyperbolic passage, or flyby, is required.  Figure 2.4 shows the 

trajectory of a typical hyperbolic trajectory.  Let us consider a spacecraft approaching 

a planetary body which we will designate the “gravity-assist” body and denote with a 

subscript ‘ga’.  The spacecraft has a relative velocity of V∞,in at a great distance (r ~ 

∞).  We now define rp to be the radial distance of closest approach, ν∞ to be the true 

anomaly of the asymptotes, and δ to be the turn angle of V∞. 
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Figure 2.4. Geometry of a Hyperbolic Passage.  Vga is th velocity vector of the 
gravity-assist body.  The V∞ vector of the spacecraft has a true anomaly at infinity of 
ν∞.  The point of closest approach is designated rp.  The V∞ vector is bent by an the 

turn angle, δ.  Subscript ‘in’ represents conditions before the fly-by, ‘out’ subscripts 
are after the fly-by. 

For a hyperbola, e > 1 and a < 0 to maintain the energy equation E = -µ/2a.  

Thus, energy is positive and constant.  We also note that 

 
222

22
∞=−=−=

V

r

V

a
E

µµ
. (2.18) 

Therefore, the magnitude of V∞ is the same on the inbound and outbound legs.  The 

parameters e, δ, and ν∞ can be found by using the equation for a conic section in 

Equation 2.3.  Since ν∞ occurs when r � ∞, we can write 
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From inspection of Figure 2.4 

 
22

δπ
ν +=∞ . (2.20) 

Equating 2.19 and 2.20 yields 
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From the energy relation in Equation 2.18, the semimajor axis of the hyperbola is 

given by a = -µ/V∞
2.  Substituting this into Equation 2.3 gives us an equation for the 

eccentricity 
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∞+=

Vr
e

p
. (2.22) 

The amount of bending, or turn angle, gained by a flyby is governed by the mass of 

the gravity-assist body, µ, the magnitude of V∞, and the closest approach, rp: 
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The discussion thus far has dealt with quantities in the inertial frame centered 

on the gravity-assist body.  However, the assist body has a velocity of its own in an 

overall inertial frame centered on a central body.   The hyperbolic excess velocity 

with respect to the gravity-assist body, or the V∞ vector, is in fact defined as the 

velocity of the spacecraft with respect to the central body, Vsc, minus the velocity of 

the gravity-assist body, Vga: 

 gasc VVV
rrr

−=∞ . (2.24) 

This relationship is best described by the velocity triangle in Figure 2.5.  If the 

gravity-assist body is in a circular orbit, as is the assumed case for this dissertation, 

then the angle between Vsc and Vga is the flight path angle, γ.  The direction of the V∞ 

vector is defined by the angle α, which is the angle between V∞ and Vga and varies 

from 0° (parallel) and 180° (anti-parallel).  This is known as the “pump” angle 

(Uphoff, 1976), as changing α changes the orbital energy directly. 
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Figure 2.5. Geometry of a fly-by.  Vga and Vsc are the velocity vectors of the gravity-
assist body and spacecraft, respectively.  The V∞ vector is the difference between the 
two.  Subscript ‘in’ represents conditions before the fly-by, ‘out’ subscripts are after 

the fly-by.  In coplanar orbits, the “pump” angle, α ,is changed by the turn angle, δ.  

The flight path angle, γ, is the angle between Vga and Vsc. 

The V∞ vector is constant in the absence of perturbations and can be turned via 

close fly-bys of the gravity-assist body up to some maximum turn angle.  This 

maximum occurs when rp is minimized.  If we define Vc to be the local circular 

velocity at the point of closest permissible approach to the gravity-assist body9 given 

by 
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If we substitute the expression for Vc into Equation 2.23 we have  
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The quantity Vc is very useful in quantifying the bending power of a celestial body 

and in assessing the difficulty of orbital capture.  Table 3.1 on page 65 lists 

normalized Vc values for a few moons of interest. 

                                                 

9 Typically the minimum flyby distance will be ~100 km above the body’s surface if there is no 

atmosphere.  For a dense atmosphere such as Titan it may be 300-500 km 
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The outgoing direction after a flyby can be controlled by fine tuning the 

approach condition via small orbital maneuvers.  This is known as B-plane targeting.  

Typically these maneuvers only require a few m/s of ∆V or less.  The new V∞ vector 

also leads to a new Vsc vector that may be longer or shorter than prior to the flyby.  

This means that the orbital parameters and energy with respect to the central body can 

be modified to suit mission needs for a negligible cost in fuel.  For this reason flybys 

are often called gravity-assists.  The boost gained by a gravity assist is given by 

 
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The realm of possible orbital parameters following a flyby can be plotted on a map 

called a V∞ Sphere, as described in Section 3.4. 

Orbital Capture.  Many scientific missions end with an orbit about a target 

planet or moon.  This can be achieved by reducing energy during hyperbolic passage.  

The simplest method of establishing a circular orbit with one decelerating impulse is 

to adjust the approach parameters such that the distance of closest approach is equal 

to the final orbit radius, rc.  When this point is reached an orbital insertion maneuver 

is performed to slow the spacecraft.  The size of the maneuver is given by 
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This maneuver may be optimized when the final orbit radius is not critical.  

To minimize ∆V, we take the derivative of Equation 2.28 with respect to rc and set it 

equal to zero, noting that V∞ is constant 



 36 

 0
2

1

2
3

2

2

=+

+

−

=
∂
∆∂

∞
c

c

c

c r

r
V

r

r

V µ

µ

µ

. (2.29) 

This indicates that the minimum ∆V occurs when  
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and has the value 
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2.1.5 Patched Two-Body Trajectories 

The patched two-body approximation is a method to simplify trajectory 

calculations for spacecraft in a multiple body environment.  The simplification is 

achieved by dividing space into various parts by assigning each of the n bodies (e.g. 

the Sun, planets, moons) its own sphere of influence. When the spacecraft is within 

the sphere of influence of a smaller body, only the gravitational force between the 

spacecraft and that smaller body is considered, otherwise the gravitational force 

between the spacecraft and the larger body is used. This reduces an unsolvable n-

body problem to multiple solvable two-body problems, for which the solutions are the 

well-known conic sections of the Keplerian orbits.  This method gives a good 

approximation of trajectories for interplanetary spacecraft missions.  

Defining the sphere of influence (SOI) of the smaller body is not as simple as 

calculating the location where its gravitational pull is stronger than that of the larger.  

If this were the case, then the moon would fall 50% outside of the Earth’s SOI, which 

is obviously not true.  The correct definition of SOI, due to Laplace, involves 
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considering the spacecraft to be in orbit about one body and calculating the perturbing 

force due to the other body.  This allows us to determine the ratio of the disturbing 

acceleration to the central body attraction.  The resulting analysis yields the 

approximate radius of the SOI 
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where R is the distance between the two bodies and m1 >> m2. 

The SOI is both very large and extremely small, depending on your frame of 

reverence.  Relative to the size of m2 it is so large so as to consider it at infinity.  

Relative to m1, it is essentially a point and of little consequence.  Because it is so 

large in the first case, the velocity relative to m2 exiting the SOI on an escape 

hyperbola is considered to be the V∞ vector.  This vector is then added to the smaller 

body’s orbital velocity to obtain the spacecraft’s velocity with respect to the larger 

body.  This velocity, along with the position upon exiting the SOI, determines the 

Keplerian orbit about m1 until the SOI of a smaller body is again entered. 

As a simplification due to the smallness of the SOI in the larger reference 

frame, the effects of a flyby can be considered to be instantaneous and occur exactly 

at the location of the smaller body.  This is called a zero sphere-of-influence method 

of patched conics.  This eliminates the need to calculate the actual location of the SOI 

boundary crossing and convert to the new reference frame.  We can also assume that 

the B-plane targeting that controls the turn angle, δ, is negligible and occurs 

automatically to meet the mission design’s needs.  This method is used in the analysis 

of V∞ leveraging in Chapter 3. 
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2.2 The Three-Body Problem 

In this section the equations governing the PR3BP and planar Hill’s Problem 

are set forth.  Using consistent notation and quantities it is possible to show their 

equivalences under specified assumptions.  Writing the 3BP Jacobi integral in an 

inertial coordinate system permits a derivation of Tisserand’s criterion and also 

allows a relationship with 2BP orbital parameters and quantities, specifically V∞. 

2.2.1 Planar Circular Restricted Three-Body Problem 

The primary body, m1, and the secondary body, m2, are assumed to be in 

circular orbits relative to each other and their center of mass, or barycenter, as 

illustrated in Figure 2.6. They are separated by a distance R.  The coordinate frame, 

X-Y, rotates with constant angular velocity, ω, given by 
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where µ1(or2) = Gm1(or2) and G is the gravitational constant.  A massless third body, m3, 

is located at  
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Figure 2.6. Problem setup for the PR3BP.  Two massive bodies, where m1 > m2, are 

separated by a distance R.  The coordinate frame rotates with angular velocity ω 
about their barycenter.  A small third body, m3, moves in their vicinity. 

In this dissertation we will use capital letters to represent dimensional10 

coordinates and lower case to represent normalized coordinates.  The augmented 

effective gravitational potential of the 3BP is given by 

 )(
2

1 222

2

2

1

1 YX
rr

U +++= ω
µµ

, (2.36) 

where the third term accounts for the effects of a rotating coordinate frame. Since 

total energy is classically given by the kinetic energy minus the potential, we can 

write an equation for the three-body energy as 

 U
V

E b −=
2

2

3 , (2.37) 

where V is the velocity of the third body in the rotating frame given by 

 22 YXV && += . (2.38) 
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2.2.2 Equations of Motion and Normalization 

To scale the equations to any system, we introduce the mass parameter, µ, 

given by 

 1
21
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µ
µ . (2.39) 

We also set R = 1, m1 + m2 = 1, and ω = 1.  This gives us R1 = µ, R2 = 1-µ, and the 

orbital period P = 2π/ω = 2π.  We can now write the equations of motion 
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where 
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in normalized units.  Last, the energy and Jacobi in nondimensional units can no be 

written: 
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where the subscript ‘3’ has been used to designate the non-dimensional form.  For 

orbits that are very close to m2, normalized energy, E3, is usually around -1.5 and J3 is 

around 3. In order to readily convert between the dimensional and nondimensional 

forms of the Jacobi, we can use the relation 
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2.2.3 Jacobi Constant 

The energy in this approximation is constant and is an integral of motion.  

Indeed, the expression given by Equation 2.37 is called the Jacobi constant in some 

instances in the literature.  However, the most common form of the Jacobi has a -2 

multiplier and is given by 
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where the subscript ‘3b’ is used to represent dimensional units. 

2.2.4 Hill’s Problem 

Hill’s problem is a special case of the restricted 3BP (Hill, 1878).  In this case 

µ tends towards zero and the distance to m1 goes to infinity.  It is appropriate for 

spacecraft orbits near the secondary and where µ1 >> µ2.   
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Figure 2.7. Formulation of Hill’s Problem.  The rotating coordinate frame is 
centered at the secondary, m2, with the primary acting as a perturbing body at 
negative infinity. 

Formulation of Hill’s problem differs from the PR3BP in that the center of the 

rotating coordinate system, X’-Y’, is now at m2 and in that m1 is at negative infinity on 

the X’ axis and acts as a perturbing body only (Figure 2.7).  Often the notation found 

in the literature is somewhat variable, but as much of the notation from the PR3BP as 

possible will be retained here so as to keep the quantities comparable. 

The angular velocity, ω, is the same as is given by Equation 2.33, but 

occasionally it will be given without µ2 because it is assumed to be small compared to 

µ1.  The coordinate transformation between X-Y and X’-Y’ is simply 
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which gives 
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Velocity in the Hill frame is equivalent to the PR3BP.  We can now give the 

equations of motion in dimensional units 
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Often the ‘µ2’ in the above equations is simply denoted ‘µ’, which is not to be 

confused with the reduced mass of the 3BP.  Note that setting ω = 0 in the equations 

above reduces them to the equations of motion of the 2BP. 

The Jacobi integral in Hill’s problem is most commonly given by 

 222

2

, '
2

3

2
X

r

V
J

H

dH ω
µ

−−= . (2.49) 

Here, ‘H,d’ in the subscripts denotes the dimensional nature of the quantity.  A lone 

‘H’ will be used when referring to the normalized value.  Note once again that setting 

ω = 0 yields the equation for energy in the two-body problem. 

Hill Normalization 

Normalization in Hill’s problem is different from that of the PR3BP.  Here the 

length unit is not the separation between the primaries but is given by11 
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The unit of time is given by τ = 1/ω.  Using Equation 2.50 to normalize the distance 

between m2 and m3, the realm of accuracy of Hill’s approximation is given by 
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These scale factors allow us to write the nondimensional equations of motion 
                                                 

11 l is approximately 1.5 times the distance to L1 or L2 and represents the radius of the Hill sphere. 
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where x’, y’, and rH are normalized by dividing by the length unit in Equation 2.50.  

The normalized Jacobi in Hill’s approximation is given by 
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This most common form of the Jacobi, unlike the three-body formulation, is 

similar to the two-body energy (kinetic minus potential) and does not contain the ‘-2’ 

multiplier.  In his series on numerical exploration of the restricted problem, Hénon 

(1969) uses the designation Γ as the integral of motion in Hill’s problem: 

 222 ''
2

'3 yx
r

x
H

&& −−+=Γ , (2.54) 

which is given here using our notation.  When compared to Equation 2.53, it can be 

seen that Γ = -2JH, which is analogous to the relationship between energy and Jacobi 

in the 3BP. 

We can readily convert between the dimensional and nondimensional forms of 

the Jacobi by using the relationships 

 3
2

2

2

, )()( ωµω HHdH JlJJ == . (2.55) 

2.2.5 The Jacobi Integral – PR3BP vs. Hill’s 

Since velocity is equivalent in both reference frames, we start with Equation 

2.45 plus 2 times Equation 2.49 to get 



 45 

 [ ]2222

1

1

2

22
,3 '3)(2222 XYX

rrr
JJ

H

dHb −+++−=+ ω
µµµ

. (2.56) 

Next we institute the Hill’s problem assumptions by presuming that the spacecraft is 

close to the secondary and R2>>R1.  These assumptions yield r1 ≅ R and rH = r2. 

Substituting these relationships into Equation 2.56, we have 
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Using Equation 2.33 in Equation 2.57 we get 
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Assuming µ1 + µ2 ≅ µ1 and X’
2
<<R

3 we have 
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, (2.59) 

which is the relationship between the Jacobi constants in the two problems. Note that 

µ1/R is the circular velocity of m2 squared.   

If we use the scaling factors in Equations 2.44 and 2.55, we can write the 

nondimensional relationship as 

 3
2

3 233 µµ HJJ −−≅  (2.60) 

where the reduced mass, µ, is used.   

2.2.6 Propagating Orbits and the State Transition Matrix 

Like any system of nonlinear differential equations, the generation of 

trajectories in the 3BP requires numerical integration.  For a given set of initial 

conditions, r0 and v0, a trajectory is obtained by numerically integrating four first-

order scalar differential equations derived from Equation 2.40: 
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where r1 and r2 are given by Equation 2.41. 

From differential equation theory, any State Transition Matrix (STM or Ф) 

defines, given the initial conditions, the solution to a set of linear differential 

equations of the form 

 stAs
r&r )(=  (2.62) 

where s is the state vector s = [x y x& y& ]T and A is a matrix that is a function of time.  

The solution to this equation is 

 )(),()( 00 tsttts
rr

Φ=  (2.63) 

where the STM, Ф, is the solution to the matrix differential equation 

 ),()(),( 00 tttAtt Φ=Φ& . (2.64) 

A Taylor series expansion of the 3BP equations of motion (Equation 2.40) 

yields variational equations that can be integrated to find the STM.  This linearization 

determines and equation that governs how a small difference from a given solution 

will behave.  The solution to this variational equation is in the form of Equation 2.63, 

but with s(t) replaced with δs(t).   

While special cases occur where the STM can be found analytically, it is 

typically found numerically using Equation 2.64, where the matrix A(t) is equal to 
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 47 

In the PCR3BP, A(t) is equal to 
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2.2.7 Stability and the Monodromy Matrix 

The STM from the initial time (t0) to the time after one period (t0 + P) is 

referred to as the monodromy matrix.  After being propagated for one full orbit, the 

matrix contains information about every region that a spacecraft would pass through 

along that orbit.  The stability of a periodic orbit may be determined by analyzing the 

eigenvalues of the orbit’s monodromy matrix.  A random perturbation in the state of a 

spacecraft on an unstable orbit will cause the particle’s state to exponentially diverge 

from that of the original orbit over time. 

The monodromy matrices of periodic orbits in the PCR3BP have four 

eigenvalues:  λ, 1/λ, 1, and 1. The fact that these eigenvalues occur in reciprocal pairs 

is a consequence of the symplectic nature of the STM, while the pair of values equal 

to one is a result of Jacobi integral of motion.  The stability of an orbit is related to the 

absolute value of the real component of each eigenvalues.  If a value exists that is 

greater than 1, this indicates that an orbit is unstable to perturbations along the 

corresponding eigenvector.  If the value is less than 1 then an orbit is considered to be 
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stable in that direction.  In fact, the eigenvalues of Keplerian orbits are all equal to 1, 

indicating that any perturbation neither grows nor decays. 

The instability of periodic orbits indicates that both stable and unstable 

manifolds exist, which lead to and leave from them, respectively.  These manifolds 

contain the set of all trajectories that a spacecraft may take if it is perturbed in the 

direction of the orbit’s unstable eigenvector.  They are invariant, meaning that a point 

on the manifold will remain on the manifold as time evolves.  Periodic orbits can be 

useful as capture mechanisms as a spacecraft can arrive nearly ballistically on an 

stable manifold, and then depart after a time on a stable manifold towards a lower 

orbit.   

2.2.8 The Single-Shooting Method 

The search for periodic orbits in the 3BP is typically an iterative process.  An 

initial guess is propagated to some point where we check for some indicator of 

periodicity (usually a form of symmetry).  Knowledge of the dynamics of the system 

allows for an educated update to the initial conditions and the process is repeated.  

This continues until periodicity conditions are met and a solution is found.  In this 

section we lay out the equations for a form of differential correction known as the 

single-shooting method. 

The basic algorithm, described by Howell (1984), is modified here for the 

planar case. It uses the symmetry about the x-axis in the CRTBP in order to search for 

periodic orbits. This means that if a trajectory intersects the x-axis twice with a 

velocity perpendicular to the x-axis, the trajectory will be periodic. In this method, a 

point on the x-axis with initial conditions close to the desired orbit is integrated 
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forward in time until it returns to the x-axis. The requirement that the intersection 

with the x-axis be perpendicular (i.e. x&  = 0) imposes constraints that can be used to 

modify the initial conditions. This process is repeated until a periodic orbit within the 

desired tolerances is obtained.  Howell found that if | x& | < 10-8, then the orbit can be 

considered periodic. 

The initial state has the form [x0 0 0 0y& ]T.  After this state has been 

propagated for half the period, a state of s(P/2) = [x 0 0 y& ]T will indicate a periodic 

orbit of period P.  Since the initial guess rarely results in a subsequent perpendicular 

crossing, an algorithm must be developed to calculate the updates needed to the find 

the correct initial conditions.  The initial state and the state at P/2 is related by 
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where φij are components of the STM.  We can now use the fact that δy0 = 0x&δ = 0 to 

find the δy component 

 )2/(024021 Pyyxy δδφδφδ && ++= . (2.69) 

Fixing x0, we can find the updated to 0y& from x& by the equation 
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The process is iterated until 0y&  yields a perpendicular crossing (within desired 

tolerance). 
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2.2.9 The Inertial Frame and Tisserand’s Invariant 

The state of a spacecraft in the rotating frame is given by Sr = [X Y X& Y& ]T.  

To transform the state from the rotational (or synodic) frame, to the inertial (or 

sidereal) frame we must take into account the rotational offset, θ, and the angular rate, 

ω = θ& .  Here we will assume the offset is zero (see Anderson (2005) for non-zero θ 

transformations).  Since the Z axes are aligned in both frames, we can write 
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where the subscript ‘i’ denotes the inertial frame.12 Note that ω = 1 in the 

nondimensional frame.   

Recall that the rotating frame is centered at the barycenter of m1 and m2.  

However, most inertial frames are centered on either of the bodies.  As such we must 

shift the state vectors to the new center.   
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12 Variables such as X and Y without a subscript are rotational quantities, where a subscript ‘r’ has 

been omitted for clarity and redundancy 
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where states with the added subscript ‘1’ refer to states centered at the primary and 

states with subscript ‘2’ are centered at the secondary. 

Applying the transformation in Equation 2.72 to Equation 2.45 gives the 

Jacobi in inertial coordinates 
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Rearranging and canceling like terms we get 
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The first term is the velocity squared in the inertial frame, the second is twice the 

gravitational potential from either body, and the third is 2ω times the Z-component of 

the angular momentum.  We can apply the vis-viva equation, 
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where ‘ad’ is the dimensional semimajor axis of the spacecraft, to the first term. Also, 

the equation for angular momentum (in the plane), 

 )1()( 2

11 eaphYXYX diiii −===− µµ&&  (2.76) 

where p is the semi-parameter and e is the eccentricity, can be applied to the third 

term.  If it is assumed that the spacecraft is far from the secondary so that two-body 

dynamics dominate, we can let r1 = r and µ2 � 0.  These assumptions allow us to 

write 
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where Td is Tisserand’s parameter (or invariant) in dimensional units, which is an 

approximation of the Jacobi using two-body parameters.  Normalizing using Equation 

2.44 we have 
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where a = ad/R and µ�0.  

Nineteenth century astronomer Francois Felix Tisserand (1896) used this 

application of the Jacobi integral as a criterion to identify comets.  If this function is 

computed for two comet observations on different orbits and the results are the same, 

it can be concluded that the observations are of the same comet that was perturbed by 

a planet. 

2.2.10 Normalization Parameters 

As it has been shown above, it is possible to normalize a system’s parameters 

such that the results can be applied generally to all systems that can be approximated 

under the same assumptions.  We have outline two normalization procedures: one for 

the 3BP and one for Hill’s problem.  Both use a time unit (TU) of 1/ω which is 

equivalent to the period (P) of the secondary divided by 2π.  The two approximations 

differ, however, in length units (LU).  The 3BP uses the semimajor axis of the 

secondary, whereas Hill’s problem uses a derived length, l, given by Equation 2.50, 

which represents the radius of the Hill Sphere and is roughly 1.5 times the distance to 
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the first two libration points.  The velocity units (VU) are then given by LU/TU for 

each case. 

Table 2.1 below lists the normalization parameters for a few selected moons 

in the solar system.  The table lists the gravitational parameter (µ2), period, angular 

velocity, time unit, length units for each approximation, velocity units for each 

approximation, the reduced mass (µ), and normalized radii in each approximation.  

The last two columns are used to determine which orbits impact the body in a 

normalized system. 

Table 2.1.  Normalization Parameters for a Few Moons.   

Body GM  
(km

3
/s

2
) 

Period 
(days) 

ωωωω 
 (s

-1
) 

Radius 
(km) 

TU 
(days) 

LU-3BP 
( 10

5
 km) 

LU-Hill 
(km) 

VU-3BP 
(km/s) 

VU-Hill 
(m/s) 

µµµµ    Radius 
(3BP) 

Radius 
(Hill's) 

Titan 8978 15.95 4.56E-06 2575.5 2.54 12.22 75576 5.57 345 2.37E-04 0.0021 0.034 

Io 5960 1.77 4.11E-05 1821.6 0.28 4.22 15227 17.33 626 4.70E-05 0.0043 0.120 

Europa 3203 3.55 2.05E-05 1560.8 0.57 6.71 19696 13.74 403 2.53E-05 0.0023 0.079 

Ganymede 9888 7.15 1.02E-05 2631.2 1.14 10.70 45743 10.88 465 7.80E-05 0.0025 0.058 

Callisto 7179 16.69 4.36E-06 2410.3 2.66 18.83 72314 8.20 315 5.67E-05 0.0013 0.033 

Enceladus 7 1.37 5.30E-05 252.1 0.22 2.38 1368 12.62 73 1.90E-07 0.0011 0.184 

Rhea 154 4.52 1.61E-05 764.3 0.72 5.27 8407 8.48 135 4.06E-06 0.0015 0.091 

Triton 1428 5.88 1.24E-05 1353.0 0.94 3.55 21047 4.39 260 2.09E-04 0.0038 0.064 

Moon 4903 27.32 2.67E-06 1737.5 4.34 3.84 88372 1.02 236 1.22E-02 0.0045 0.020 

 

2.3 Relationships between the Two- and Three-Body Problems 

The formulation of Tisserand’s parameter gives us a bridge between the two- 

and three-body problems.  Just as the Jacobi does not change during a flyby of the 

secondary, likewise the magnitude of the hyperbolic excess velocity, V∞, is 

unchanged by a flyby in the two-body problem. 

If we apply the law of cosines to the triangle in Figure 2.5 we get 

 γcos2222

scgagasc VVVVV −+=∞ . (2.79) 

Next, we substitute the two-body relationships 
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If we use Equation 2.33 and Equation 2.76 to insert ω and replace h in the bracketed 

term above we find that it becomes equivalent to the expression for the Jacobi in 

Equation 2.77.  Noting that the first term equals 3Vga
2
 we have 

 ibga JVV ,3

22 3 −=∞ . (2.82) 

Now we have an expression for the relationship between the Jacobi and V∞.  Vga is 

constant for a circular orbit and yields a simple quadratic relationship.  We can 

normalize the expression by dividing each term by Vga
2, noting that Vga

2 = (1-µ)(Rω)
2 

which is close to the term in Equation 2.44.  Now we have 
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1
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, (2.83) 

where the lower-case v denotes the normalized quantity.  Recall that µ<<1.  Solving 

Equations 2.82 and 2.83 for J we have 

  22

,3 3 ∞−= VVJ gaib    and   )3)(1( 2

,3 ∞−−= vJ i µ . (2.84) 

V∞ and Hill’s Problem.  Having derived the relationships between the PR3BP 

and Hill’s Problem (Eqs. 2.59 and 2.60), we can now write the equivalence between 

V∞ and JH: 
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and solving for J: 
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The relationships in Equations 2.84 and 2.86 indicate that V∞ is positive when 

J3 goes below 3 or when JH is positive.  These orbits are hyperbolic in the two-body 

formulation but are bound to the “vicinity” when third body effects are taken into 

account. 

                                                 

13 Equation 2.54 yields the relationship Γ
−

−
=∞ µ

µ
1

3/2
2v . 
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3 V∞ Leveraging 

3.1 Introduction 

V∞ leveraging is the use of a deep-space maneuver to modify the V∞ of the 

spacecraft upon reencounter. They are typically used in conjunction with gravity-

assists in order to change the spacecraft's energy and reduce the total ∆V for a 

mission. The first example of such a maneuver was introduced by Hollenbeck (1975) 

in the form of the ∆V-EGA (Delta-V Earth-Gravity-Assist).  In this maneuver a 

spacecraft is launched on a nearly resonant orbit with Earth, usually 2:1. A small 

deep-space maneuver (~ 0.5 km/s) is then performed at aphelion to lower the 

perihelion and reencounter Earth non-tangentially with a V∞  greater than that at 

launch. As shown in Figure 3.1a, this fly-by can occur before or after the new 

perihelion. In this manner the Earth can be used as a gravity-assist body to bend the 

new V∞ vector towards parallel with its own velocity vector in order to maximize 

heliocentric energy. 
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Figure 3.1. V∞ Leveraging.  (a) ∆V-EGA Trajectory - A spacecraft is launched 
tangentially into a nearly resonant orbit. At apoapsis a retro-burn is used to retarget 
the Earth at a new location with a greater V∞.  (b) V∞ Reduction Maneuver – Fly-by 1 
sets up the desired orbit where a positive burn raises periapsis to reencounter the body 
tangentially and minimize V∞. 

Originally the fact that slowing down at the slowest point (rather than 

speeding up at the fastest point) in the orbit actually led to the greatest increase in 

energy was chalked up to the counterintuitive nature of orbital mechanics. The 

conventional explanation of the ∆V-EGA was that it was easier to change the orbit 

when the velocity was the lowest. Altering the shape of the orbit changes the angle at 

which the spacecraft and planet crossed. This leads to the greatest difference in 

velocity possible with a close fly-by and leads to the greatest heliocentric energy. A 

better explanation was offered by Sweetser (1993) when he showed that the change in 

Jacobi's constant is maximized if a maneuver is performed when the rotating-

coordinate velocity is the greatest, which is the case at apogee.  
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If we substitute Vsc
’ +∆Vsc

’
 for Vsc

’ in the equation for Jacobi's integral14 and 

differentiate we get  

 
2''' )(2 scscsc VVVJ ∆+∆=∆− , (3.1) 

where Vsc
’ denotes the velocity in the rotating coordinate system. By setting Equation 

3.1 equal to zero, it is possible to calculate an approximate value for the change in V∞ 

for a given ∆V. 

Credit is given to Sims and Longuski (1994, 1997) for coining the term “V∞  

Leveraging” and further developing its application to interplanetary missions.  An 

analysis was done to determine the maximum aphelion radius achievable for a given 

total ∆V.  Figure 3.2 shows the significant improvement in performance provided by a 

V∞ leveraging maneuver. The numbers next to each curve indicate the resonance with 

the Earth and the '+' indicates that the orbits reencounter after the new periapsis. 

                                                 

14 
2'2 scVUJ −= , where U is the pseudo-potential in the three-body problem 
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Figure 3.2. ∆V -EGA Performance (Sims, 1994).  The numbers next to each curve 
indicate the resonance with the Earth and the '+' indicates that the orbits reencounter 
after the new periapsis. 

The typical assumptions for ∆V-EGA trajectory analyses found in the 

literature are as follows: 1) Earth is in a circular orbit, 2) a zero-sphere of influence 

patched-conics model is used, 3) the spacecraft is launched from a 185 km Earth orbit 

with a hyperbolic excess velocity parallel to the velocity of the planet, 4) the initial 

heliocentric orbit has a period “slightly” (never quantified15) greater than an integer 

                                                 

15 The literature never specifies what “slightly” means, nor why exactly resonant or less than resonant 

orbits should not be used. We will explore these assumptions later in this dissertation and quantify the 

results. 
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number of years, 5) at aphelion an instantaneous, tangential burn is applied to lower 

the orbit energy and reencounter the Earth either before or after periapsis, and 6) the 

new, greater V∞ is rotated via fly-by with a minimum altitude of 200 km to maximize 

final aphelion distance. 

As stated by Sims (1994): “We can infer from Sweetser's analysis that the 

most efficient deep space maneuver is at aphelion and parallel to the velocity at that 

point.” However, it is noted by Casalino and Cosalurdo (1998) that this method may 

be suboptimal but yields sufficient accuracy and speed for preliminary mission 

design.  

Multiple revolutions of the Earth and spacecraft on their orbits are also 

possible: simple ∆V-EGA trajectories are classified by means of the designation 

K:L(M)± where  

K = number of Earth orbit revolutions 

L = number of spacecraft orbit revolutions 

M = spacecraft orbit revolution on which the ∆V is applied ( 1 ≤ M ≤ L) 

±  = Earth encounter after/before the spacecraft orbit perihelion 

A 3:2(2)+ ∆V-EGA, for example, means that the spacecraft leaves Earth on a ~1.5 

year orbit, performs a negative burn at its second apoapsis, then reencounters the 

Earth slightly beyond the original launch location. 

In a general sense, V∞ leveraging can be performed on orbits both exterior and 

interior to the body’s orbit, and in both forwards (see Figure 3.1b) and backwards 

(Figure 3.1a) directions with respect to the spacecraft velocity. Both Backward-

Exterior and Forward-Interior maneuvers serve to increase V∞ while Forward-Exterior 
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and Backward-Interior maneuvers decrease V∞. In the latter two cases the spacecraft 

reencounters the body tangentially while the opposite is true for the former two. This 

is because V∞ is minimized when α = 180°, i.e. when Vga and Vsc are parallel.  

The ∆V-EGA we have discussed is an example of a Backward-Exterior leveraging 

maneuver, which increases V∞. For the endgame problem, however, we wish to 

decrease the V∞ while coming in from a larger orbit, so Forward-Exterior leveraging 

is in order. 

 

Figure 3.3. Four variations of the V∞ leveraging maneuver (Campagnola, 2010a) 
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3.2 Applications to Endgame Tours 

(Chains or sequences of maneuvers) 

In this chapter we describe the V∞ Sphere and the V∞ Plane, which serve as a 

map for the range of all possible orbits accessible via leveraging maneuvers and fly-

bys. In the next section we mathematically describe V∞ leveraging maneuvers and 

present a new analysis method using a Lambert’s Solver. From this, we plot contours 

of leveraging maneuver efficiencies and present a method using only the most 

efficient V∞ leveraging maneuvers, fly-bys, and powered fly-bys16 to calculate the 

theoretical minimum ∆V required to reduce V∞ to zero given an infinite flight time.  

Then we explore the domain of finite tour sequences and compare the results to the 

theoretical minimum.  As is often the case in trajectory design, a trade must be made 

between performance (minimizing ∆V) and time-of-flight (TOF).  

In order to create the data to characterize this trade space, a Monte-Carlo type 

simulation was set up to generate random sequences of resonances17 (not restricted to 

integer resonances) along with associated fly-bys and V∞ leveraging maneuvers. 

Pathway sequences are created in the simulation by following a predetermined rule or 

set of rules.  For example, a sequence may require that only integer resonances be 

used and that non-tangential leveraging is not allowed.  Each rule can be treated like a 

heuristic where some trade between reduced fuel usage and increased flight time is 

being made.  Intuitively, there is a general trend towards decreasing ∆V by increasing 

                                                 

16 A tangential ∆V maneuver performed at periapsis of the fly-by.  Powered fly-bys become more 

efficient than leveraging maneuvers for small values of V∞
  

17 This is similar to “resonance hopping” tours found in the literature  
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TOF.  However, some pathway rules are not as effective as others in trading ∆V for 

time and lead to contradictions to this trend.   

Total ∆V is plotted versus TOF to create a Pareto front and to reveal the trends 

that prove to be most efficient for V∞ leveraging sequencing.  The derived heuristics 

would be valuable to mission designers for both quick-look evaluations and in finding 

a globally optimized solution given a set of mission parameters.  

3.3 Models and Normalization 

In order to analyze the vast trade space of possible trajectories, we use a zero-

sphere-of-influence patched conic approximation (Section 0) which allows for rapid 

computation with reasonable fidelity.  Our simplified system consists of a large 

central body with a smaller body, denoted the “gravity-assist” body, in a circular 

orbit. A spacecraft18 is located in a co-planar orbit about the central body and flies by 

the gravity-assist body with the ultimate goal of gravitational capture at that body. 

The spacecraft is governed by the two-body equations of motion and is perturbed 

instantaneously during encounters with the gravity-assist body.    

The hyperbolic excess velocity with respect to the gravity-assist body, or the 

V∞ vector, is constant in the absence of perturbations and can be turned via close fly-

bys of the gravity-assist body up to the maximum turn angle, given by Equation 2.26.  

The direction of the V∞ vector is defined by the angle α, which is the angle between 

V∞ and Vga and varies from 0° (parallel) and 180° (anti-parallel) (See Figure 2.5). 

                                                 

18 Quantities pertaining to the spacecraft will have a subscript “sc”, whereas the gravity-assist body’s 

will be denoted  with a “ga” 
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Because the V∞ vectors before and after have the same length, the locus of all possible 

V∞’s after fly-by lie on a sphere centered at the head of Vga.  

Changing α via fly-by, coined “orbit pumping” by Uphoff et. al.(1976), 

changes the orbital energy and period about the central body. Post-fly-by orbital 

parameters are controlled through suitable selection of encounter conditions such that 

δmax given in Equation 2.26 yields a new V∞,out vector that results in the desired 

outgoing velocity and period.  The contours of all possible post-fly-by orbit 

parameters (inclination, period, resonance, periapsis, etc.) can be mapped onto the 

surface of a sphere (or V∞ globe) as an aid to mission design (Strange et al., 2007). 

Sequences of same-body transfers can be mapped across the surface of this globe in 

steps equal to or less than δmax. 

The normalized units described by Section 2.2.10 are used throughout this 

dissertation so that the results can be applied to any system with the proper scaling. 

Recall that normalization is achieved by dividing length, velocity, and time by the 

semimajor axis (a), circular velocity (Vga), and period (P) of the gravity-assist body, 

respectively.  Table 3.1 lists these values along with the gravitational parameter (µ) 

and the minimum permissible fly-by radius19 (rmin) for various moons in the solar 

system along with Mercury20.  The last column lists the local circular velocity (Vc) at 

rmin in normalized units.  Vc is indicative of how much control authority a particular 

moon has on bending the V∞ vector during fly-by.  Moons with a larger Vc such as 

                                                 

19 Minimum fly-by altitude is 100 km for each moon except Titan, which is 500 km due to atmosphere. 

20 Mercury may not be an ideal candidate for this analysis as it has a long period and low Vc.  However, 

it still may benefit from some reduction of ∆V for a longer flight time, as is the case with the 

MESSENGER spacecraft. 
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Titan may only require one fly-by to achieve the desired direction, whereas a smaller 

moon like Enceladus could require multiple fly-bys to achieve the same effect. 

Table 3.1.  Normalization Parameters for a Few Celestial Bodies 

Body 
µ 

(km3/s2) 
a 

(105 km) 
V  

(km/s) 
P      

(days) 
rmin  

(km) 
Vc 

Io 5960 4.2 17.3 1.8 1921 0.10 

Europa 3203 6.7 13.7 3.6 1661 0.10 

Ganymede 9888 10.7 10.9 7.2 2731 0.17 

Callisto 7179 18.8 8.2 16.7 2510 0.21 

Enceladus 7 2.4 12.6 1.4 352 0.01 

Rhea 154 5.3 8.5 4.5 864 0.05 

Titan 8978 12.2 5.6 16.0 2876 0.32 

Triton 1428 3.5 4.4 5.9 1453 0.23 

Moon 4903 3.8 1.0 27.3 1838 1.60 

Mercury 22032 579.1 47.9 87.9 2540 0.06 

3.4 The V∞∞∞∞ Sphere 

Strange et al. (2007) present a graphical method for the design of same-body 

transfers which they called the V∞ Globe (see Figure 3.4). Since the asymptotic 

velocity relative to the body is unchanged in an unpowered fly-by maneuver, the 

locus of all spacecraft velocity vector tips creates a sphere with radius equal to the 

magnitude of V∞. The contours of all possible post-fly-by orbit parameters 

(inclination, period, resonance, periapsis, etc.) can be mapped onto the surface of this 

sphere to aid in mission design. 
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Figure 3.4. The V∞ Globe (from Strange et al. (2007)).  Represents all possible V∞ 
vector tips after a fly-by. Contours of resonant orbits (blue) and inclination (green) 
are mapped onto the surface. 

At each encounter of the fly-by body, a new orbit can be achieved via careful 

targeting of B-plane parameters such that the outgoing asymptote is properly turned 

to place the spacecraft on the desired trajectory. The magnitude of the maximum turn 

angle, δmax, is limited by Vc and V∞, as shown in Equation 2.26.  Thus, in the absence 

of outside perturbations, fuel expenditures, aero-gravity-assists, etc., the maximum δ 

represents the angular “step” size21 across the surface of the V∞ Globe.  The 

                                                 

21 As an example, at the end of its prime mission, the Cassini probe had a V∞ of 5.8 km/s and a 

maximum δ of 8°. 
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individual orbits of a tour can be plotted along the surface of the globe as points 

separated by less than the maximum turn angle. 

The entire surface of the V∞ Globe is not accessible in practice, even if an 

unlimited number of fly-bys are used. For example, there is a region which separates 

prograde and retrograde orbits that impacts the central body, making it practically 

impossible to reverse an orbit from retrograde to prograde using a gravity-assist. If V∞ 

is great enough, there is a large area on the globe where the orbit becomes hyperbolic 

with respect to the central body and escapes the system. 

3.4.1 Accessible Regions 

Using the law of cosines for the triangle made up of the velocity vectors in 

Figure 2.5, we get 

 αcos2222

gagasc VVVVV ∞∞ ++= . (3.2) 

If we utilize the normalized form of the vis-viva equation to solve for Vga in terms of 

Vsc and asc we can substitute and rearrange Equation 3.2 to get an equation for the 

inverse semimajor axis in terms of V∞ and α: 

 αcos21 21

∞∞
− −−= VVasc .22 (3.3) 

With V∞ fixed and α limited to 0°-180°, we now have bounds on asc: 

 ∞∞
−

∞∞ −−≤≤+− VVaVV sc 2121 212
. (3.4) 

Equation 3.4 is plotted in Figure 3.5 for four values of α: 180° (minimum 

energy), 0° (maximum energy), 90°, and αcritical (division between prograde and 

                                                 

22 For a more detailed derivation see Strange et al. (2007) 
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retrograde). For values of V∞ below 0.41 ( 2 -1), all orbits are restricted to positive 

values of asc and therefore are elliptical and bound to the central body. Between 0.41 

> V∞ > 2.41, it is possible for asc to become negative, i.e. hyperbolic.  Above 2.41 

( 2 +1), all orbits are hyperbolic regardless of α and thus, they are not suitable for 

our purposes. If we note that semimajor axis and period23 are related by asc
3
 = Tsc

2, 

then these three regions give us insight into what the V∞ globes might look like for 

different values of V∞ with the relative size of their inaccessible zones. 

                                                 

23 Targeting resonant orbits is critical to tour design. 
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Figure 3.5. Bounds on Semimajor Axis vs. V∞. Values of normalized V∞ less than 0.41 are 

always elliptical regardless of α, and values above 2.41 are always hyperbolic.  

3.4.2 Shrinking the V∞∞∞∞ Sphere  

In the linked-conic approximation it is impossible to change the magnitude of 

the V∞ vector ballistically.  This is analogous to the Jacobi constant of the restricted 

three-body problem. Due to the constancy of these parameters, the V∞ Globe is, by 

definition, exactly the same on every encounter regardless of the location or fly-by 

characteristics.  If we desire to reduce the relative speed of the spacecraft and become 

captured, nothing can be done on the fixed globe.  Herein lies the ballistic endgame 

paradox. 

In the absence of outside perturbations, fuel expenditure is required to reduce 

the magnitude of V∞. This change brings about a new, smaller V∞ globe with shifted 

12 − 12 +
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parameter contours, like the next layer of an onion. The set of all the layers is the “V∞ 

Sphere”. The 3-dimensional structure of the parameter contours of the whole V∞ 

Sphere are difficult to visualize, let alone depict graphically. For simplicity24 we will 

slice the sphere equatorially to create a 2-D map, sufficient to analyze tours that 

remain in the plane of the gravity-assist body, which will be the case for the 

remainder of this dissertation. 

A planar slice of the V∞ Sphere, shown in Figure 3.6, depicts all the V∞ vector 

tips of orbits lying in the plane of the gravity-assist body. The polar angle is the pump 

angle (α), and the radial magnitude is V∞. The V∞ magnitudes, periapses (rp), and 

apoapses (ra) are in normalized units. Orbits to the left of the green line are retrograde 

with the dotted area around the line indicating orbits that would impact a typical 

central body (Rcb/aga = 0.05). The red dotted line separates the elliptical orbit region 

from the hyperbolic. 

                                                 

24 Analyzing the nature of V∞ leveraging maneuvers is much more straightforward when dealing with 

planar orbits, whose general principles can be extrapolated to all orbits. However, non-zero 

inclinations add a new facet to possible leveraging orbit combinations, but are beyond the scope of this 

dissertation. 
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Figure 3.6. The V∞ Plane.  Represents all orbits possible after a planar fly-by. 
Unpowered fly-bys may change α but will remain on concentric rings. The blue lines 
show contours of periapsis points while the magenta ones show apoapsis points. The 
green solid line separates prograde and retrograde orbits and the red dashed line 
encompasses the elliptical orbits. 

A spacecraft is constrained to a concentric ring in the absence of a ∆V 

maneuver. It can move along the ring in steps of δmax or less for free (i.e. no fuel 

required) during fly-bys. Each fly-by would of necessity target a resonant orbit 

(contours not depicted here for clarity) in order to return in a finite amount of time. 

∆Vs place the spacecraft on a smaller ring which can then be traversed in steps of the 

new δmax. An endgame tour could be represented by points creating a zigzagging path 

towards the center of the map, at which point V∞ would equal zero and the spacecraft 
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would be at the limit of gravitational capture. The object now is to find the path that 

requires the minimum total ∆V. 

The same planar map in a Cartesian projection is shown in Figure 3.7.  In this 

projection the spacecraft can move left and right (changing α) on horizontal lines for 

free, or expend fuel in order to move lower (lowering V∞). Prograde, elliptical orbits 

are those found below the green and red lines, respectively.  It can be seen why 

retrograde orbits are not used in tours as they cannot reach V∞ = 0 without becoming 

prograde first, which is prohibitively expensive, fuel-wise. In addition to the apses, 

contours for eccentricity and resonance (Tsc/Tga) given by  

 ( ) 2/32 cos21
−

∞∞ −−== αVVR
T

T

ga

sc , (3.5) 

are plotted on this map.  
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Figure 3.7. Cartesian Projection of V∞ Plane. Similar to the previous figure but with 
contours for resonant orbits (red) and eccentricity (blue dashed) as well. Elliptical 
orbits are located below the red dashed line and retrograde orbits are above the green 
line. 

The plot in Figure 3.8 is a blow up of the lower left-hand corner of Figure 3.7.  

Plotted on this map are contours for resonance (Tsc/Tga) and δmax for various values of 

Vc.  As we seek to reduce the magnitude of V∞ from some initial value to zero 

(capture), this map is used to plot potential pathways.  One such pathway is 

represented by arrows on the plot.  See Table 3.2 and the associated discussion for 

more details on how this sequence was constructed. 
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Figure 3.8. The V∞ Resonance Plane with an Example.  Colored contours represent 

lines of resonance for orbits of a given V∞ and α.  The dashed black lines show the 

maximum turn angle, δmax, as a function of local circular velocity, Vc, and V∞.  One 
potential pathway is illustrated with fly-bys, leveraging maneuvers and powered fly-
bys represented by red, green, and blue arrows, respectively. 

3.5 Designing V∞∞∞∞ Leveraging Maneuvers 

Since each type of maneuver consists of a known, tangential encounter and an 

(initially) unknown, non-tangential encounter, it is easier to begin with the known and 

target the unknown, as is the case with the ∆V-EGA trajectory. The beauty of the 

patched-conic approximation is that all trajectories are symmetric with respect to 

time, so we can find solutions for the more intuitive ∆V-EGA and then apply the 

results in reverse to the endgame problem. 

The standard method for calculating V∞ leveraging maneuvers is an iterative 

one due to the transcendental nature of the set of two-body equations used (see 
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Hollenbeck, 1975). After the spacecraft is launched to a slightly longer than resonant 

orbit, a guess is made at the value of a burn (∆VDSM) performed anti-parallel at 

aphelion. The trajectory is then propagated to where it intersects Earth’s orbit, both 

before and after perihelion. The Earth is then propagated to see if a reencounter 

occurs at either point. If not then ∆VDSM is modified, and the process is repeated until 

they converge. See Sims (1997) for a more detailed description. 

V∞ leveraging analyses found in the literature focus on tangential transfers 

where the orbits of the spacecraft and gravity-assist body are tangent to begin or end 

the maneuver.  This is because a tangential transfer results in the greatest change in 

V∞ for a given transfer orbit size.  However, occasionally it is more desirable to 

perform a non-tangential transfer (α ≠ 0 at either end), particularly in sequences of 

leveraging maneuvers where Vc of the moon is low, which makes it difficult to bend α 

back to zero without requiring multiple fly-bys and a long TOF. 

3.5.1 The Lambert Solution Technique 

In order to more completely explore the trade space, a different approach to 

leveraging design was used. We desired to free the constraints on the location and 

direction of ∆VDSM. To do so a universal variables solution to Lambert’s Problem was 

implemented in MATLAB (Bate, Mueller, and White, 1971; Vallado, 2001) This was 

done by first propagating the orbits of the gravity-assist body and the spacecraft to 

produce a specified number of ephemeris points per orbit (nominally 360). Next, the 

program loops through every combination of starting points on the spacecraft orbit 

and targets points on the gravity-assist body’s orbit using the Lambert Solver to find 

the ∆V direction and magnitude required to complete the transfer. 
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The true anomaly of the starting point on the spacecraft’s orbit is denoted ν, 

while the true anomaly of the reencounter is θ. Both start at zero as the spacecraft 

leaves tangentially. Positive values of θ (θ+) refer to long transfers past periapsis, and 

negative values (θ-) designate short transfers (see Figure 3.9), where θ is between -

180° and 180°. In practice ν had to be constrained to less than ~220° because larger 

values had difficulty converging and values below 70° (yellow region below) did not 

show much gain. Arrival θ was also generally restricted to +/-65° (pink region) due to 

difficulties in targeting higher values. 
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Figure 3.9. Lambert Solution Technique for V∞ Leveraging. A deep-space maneuver 

is performed at any true anomaly (ν) and a Lambert’s solver is used to determine the 

direction and magnitude to retarget the body at any location (θ). 

3.5.2 V∞∞∞∞ Leveraging Efficiency 

The efficiency of the leveraging maneuver is defined to be the ratio between 

the change in V∞ and the magnitude of the deep-space burn: 
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Contour plots were then created to illustrate the locations of the ν-θ pairs with the 

greatest efficiency. Figure 3.10a shows the efficiencies of leveraging maneuvers from 

a 2:1 exact resonance orbit (V∞ ≅ 0.17). Note that there are two regions of higher 
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fly-by 

Start 

Moon’s Orbit 

S/C 

νννν 

θθθθ-
 θθθθ+

 

D SM 



 78 

zero around θ = 0 (which would be the nominal trajectory). Efficiency is generally 

greater  

     

 

Figure 3.10. Efficiency of V∞ Leveraging near 2:1 Resonance. ν is the location of the 

burn and θ is the location of reencounter. a) Efficiencies for 2:1 – note that there are 

two peaks, with the largest being for -θ. b) Efficiencies for 1.99:1. c) Efficiencies for 
2.01:1 

for the short transfers and has a peak of 8.86 at ν = 172° and θ = -19°. This result is 

interesting in that the maximum efficiency does not occur at the apoapsis (θ = 180°). 
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The location of the point of maximum efficiency is very sensitive to the initial 

resonance25. If it is slightly off of integer resonance, the efficiency and location can 

change dramatically. The bottom left plot in Figure 3.10 shows the efficiency 

contours for a 1.99:126 orbit. The maximum efficiency has now shifted to 5.32 at ν = 

189° and θ = -35°. Long transfers (positive θ) are not very efficient at all. The bottom 

right plot shows the 2.01:1 contours. Note that now the most efficient location is a 

long transfer at θ = 14° with an efficiency of 9.25. At a 2.1:1 orbit the most efficient 

location moves out further still to (170°, 49°) with the peak efficiency falling to 6.9. 

With all the sensitivity to initial orbit resonance, the question arises as to 

where the peak efficiency actually occurs. Figure 3.11a shows the maximum 

efficiency for any ν-θ combination of orbits with resonances from 1.8:1 to 2.4:1 in 

steps of 0.01. In this plot the maximum occurs at 2.01:1 with efficiencies falling off 

much more rapidly for the resonances less than 2:1 than those greater, illustrating that 

orbits greater than integer resonance are preferable. 

                                                 

25 The term “resonance” is used loosely to denote the ratio of the orbit periods, regardless of rationality 

26 It is not necessary to be in an integer resonance with the gravity-assist body in order to return since 

the leveraging maneuver makes up the difference. If no maneuver will be performed after a fly-by, 

then it is crucial to use the gravity –assist to target a resonance. 
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Figure 3.11. (a) Leveraging efficiencies around 2:1 resonance, (b)-(d) The ∆V∞’s, ν’s,  

and θ’s associated with the peak efficiencies in (a). 

Figure 3.11c and Figure 3.11d show the ν and θ, respectively, of the 

reencounter locations for the points of maximum efficiency in Figure 3.11a. The 

maneuvers mostly take place before apoapsis but tend towards it for those orbits near 

2:1 (although they never occur exactly at apoapsis). The reason for this pre-apoapsis 

burn is the constraint of targeting both the position and time of the reencounter. It is 

easier to do this targeting earlier in the orbit, but the change in Jacobi is greatest at 

apoapsis. This interplay leads to optimal burn locations in the ~170° range. 

The maximum efficiency also switches from favoring short transfers to long 

transfers (θ goes from negative to positive) as the spacecraft orbit increases. It should 

also be noted that near 2:1 the values of θ are quite small, which implies only a small 

change off of the nominal orbits. This means that although the ratio between ∆V∞ and 

∆VDSM (i.e. efficiency) is large (Figure 3.11a), the absolute values of these parameters 

1.8 2 2.2 2.4 2.6

160

165

170

175

180

185

resonance

ν

1.8 2 2.2 2.4
-150

-100

-50

0

50

resonance

θ

1.8 2 2.2 2.4
2

3

4

5

6

7

8

9

resonance

E
ff
ic

ie
n
c
y

1.8 2 2.2 2.4 2.6
0

0.1

0.2

0.3

0.4

0.5

0.6

resonance

∆
V

∞

a) b) 

c) 
d) 



 81 

tend toward zero, as can be seen in Figure 3.11b.  The implication of this is that 

despite the efficiency, many maneuvers would be necessary to achieve the desired 

total ∆V∞, which add flight time. 

In order to more accurately determine the characteristics of orbits very close 

to 2:1, we ran the program again with ephemeris steps of 0.1° and resonance steps of 

10-4 (Figure 3.12). For values very close to exact resonance, the magnitude of ∆V∞ 

goes towards zero and efficiency becomes ill-defined. For this reason the peak 

efficiency jumps to a lower region and gains two orders of magnitude in ∆V∞. This 

trade between efficiency and ∆V∞ magnitude (which leads to shorter flight times) is 

discuss later and illustrated in Figure 3.18. 
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Figure 3.12. Expanded view of efficiencies (a) and ∆V∞ (b) near 2:1. Numerical 
difficulties occur around the integer resonance, causing the location of the efficiencies 
to jump to another region. 

For resonances around 3:1, 4:1, etc., the trends are very similar to those in 

Figure 3.11 but with higher peak efficiencies. Figure 3.13 and the corresponding table 

shows the increase in efficiency with higher resonances. This illustrates the reason to 

perform leveraging maneuvers at the highest resonance possible and close to the 

integer. 

a) b) 
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Resonance Max Efficiency 

2:1 9.55 

3:1 11.80 

4:1 13.95 

5:1 15.98 

Figure 3.13. Efficiencies of orbits with K:1 resonances along with their peak values.        

Multi-Revolution Solutions 

As we recall, it is possible to perform leveraging maneuvers when the 

spacecraft completes multiple orbits before the reencounter. The decision must then 

be made as to where to execute the targeting burn. The left plot in Figure 3.14 shows 

that orbits with M = 1 have higher peak efficiencies than those with M = 2. With the 

conventional method of doing leveraging maneuvers (anti-parallel at apoapsis), it is 

most efficient to perform maneuvers on the last orbit before rendezvous (M = L).  

This is consistent with our analysis because the first orbit of our V∞-increasing 

maneuver corresponds to the last orbit of the one decreasing V∞. 
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Figure 3.14. Leveraging Efficiencies around 3:2. The blue lines are 3:2(1) and red are 
3:2(2). While it appears that maneuvers performed on the first orbit are more efficient 

(a), 2nd orbit maneuvers have a greater change in V∞ (b) and may be preferable in 
some instances. 

The peak efficiency curves for all K:1, K:2, and K:3 orbits are plotted in 

Figure 3.15. Notice that the location of the peaks fall on a straight line.27  We would 

expect that all K:L (where K and L are integers) orbits would fall on this line. If K and 

L are allowed to go to infinity (infinite flight time), then this peak efficiency line 

would be achievable for any spacecraft orbit size. The slope of the efficiency vs. 

resonance line gives us a tool to calculate the theoretical minimum ∆V required to 

reduce V∞ to zero given infinite time, which is the topic of the next section. 

                                                 

27 Due to limited resolution, the peaks must first be extrapolated to where ∆V∞ goes to zero. It is with 

these values that their locations become truly linear. 
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Figure 3.15. a) Efficiencies for K:1 (blue), K:2 (red), and K:3 (green) resonances. The 
peak efficiencies fall on a line indicating the relationship between resonance and 

efficiency, given by linear fit.  b) ∆ V∞  goes towards zero at each point of maximum 
efficiency. 

3.6 Theoretical Minimum ∆∆∆∆V 

In order to calculate the minimum ∆V we first rearrange Equation 3.6 to get 

 
maxEff

V
V

∂

∂
=∂ ∞

, (3.7) 

which can be integrated over [V∞,i ,0] (where V∞,i is the initial V∞) to get the total ∆V. 

To do so we need an expression for the maximum efficiency (Effmax) in terms of a 

given V∞. The line passing through the extrapolated peak efficiencies has an equation 

of 

 32.5Re*14.2max += sEff . (3.8) 

Each value of V∞ has a range of achievable resonances (illustrated by Figure 3.7), 

which can be selected by changing α. Since efficiency increases with resonance, we 

desire the maximum resonance, which occurs at 

Eff=2.14(Res)+5.3 

a) b) 
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Now we can write an expression for Effmax(V∞) by substituting Equation 3.928 

into Equation 3.8 and by defining the equation 

 [ ] 32.5)1(214.2
2/32

max ++−=
−

∞VEff . (3.10) 

The integral for the minimum ∆V can now be expressed as 

 ∫
∞

∞=∆
iV

dV
Eff

V
,

0
max

min

1
. (3.11) 

The integral above can be solved numerically and is depicted by the blue line 

in Figure 3.16. We would begin to create the trajectory to achieve this minimum ∆V 

by using fly-bys to bring α to zero and to maximize the resonance for the initial V∞. 

The maximum resonance could be something like 186:37, but that is inconsequential 

since time is not restricted. On one of the 37 orbits, an infinitesimal ∆V would be 

applied to bring about a reduction in V∞ as efficiently as possible. This process would 

then continue in infinitesimal steps until V∞ goes to zero. The total ∆V required to 

reduce any V∞ above 0.41 (but below 2.41) is 0.034. This is because the orbits above 

V∞ = 0.41 can be made to perform their leveraging maneuvers at infinity for zero fuel. 

                                                 

28 Note that Resmax and Effmax go to infinity as V∞ approaches √2 -1 (~0.41). 
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Figure 3.16. Theoretical Minimum ∆V required to reduce V∞ to zero. The blue line 
uses leveraging maneuvers (LMs) only, whereas the magenta line additionally makes 
use of powered fly-bys (PFBs) when they become more efficient for low values of 

V∞. 

When V∞ leveraging is not used, it is possible to reduce V∞ with some 

efficiency by using powered fly-bys (e.g. performing a retro-burn during closest 

approach). We can compute the efficiency of these fly-bys (Efffb) by recalling that Vp
2 

= V∞
2 + 2Vc

2, where Vp is the velocity at fly-by periapsis and Vc is the local circular 

velocity. If we differentiate and rearrange, we find 

 2

22 2

∞

∞ +
=

V

VV
Eff c

fb . (3.12) 

If we assume a typical value of Vc = 0.3 (for Titan Vc = 1.8 km/s = 0.32), we can plot 

Efffb and the efficiency of leveraging maneuvers (EffLM), as seen in Figure 3.17a. 

Below V∞ = 0.058, powered fly-bys become more efficient. The location of this 

crossover point is shown in Figure 3.17b for various values of Vc, which was obtained 
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by setting EffLM = Efffb. The magenta (lower) line in Figure 3.16 uses the combined 

maximum efficiencies to compute the absolute minimum ∆V. 
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Figure 3.17. a) Maximum efficiency of leveraging maneuvers (LM) and powered fly-

bys (fb) vs. V∞ for Vc = 0.3. b) Minimum values of V∞ required for leveraging 
maneuvers to be more efficient. 

3.6.1 Practical Considerations 

The practical application of leveraging maneuvers requires that ∆V∞ be non-

infinitesimal at the expense of lower efficiency in order to limit the total TOF.  As 

demonstrated in Figure 3.11, efficiency decreases away from integer resonances as 

∆V∞ increases. This trend is depicted for various resonances in Figure 3.18. Larger 

∆V∞ steps than those corresponding to the points of maximum efficiency are required 

to complete a capture in a reasonable number of orbits and limit the total TOF. For 

this reason it is not always practical to perform a maneuver at the peak ν-θ pair found 

on the efficiency plot.  A maneuver must be used that is as efficient as possible while 

still meeting the minimum ∆V∞ required to achieve the next resonance desired in the 

tour sequence.  

b) a) 

Vc 

V∞∞∞∞ 
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Figure 3.18.  ∆V∞ vs. Efficiency.  In practice a trade must be made between 

efficiency and TOF.  To reduce TOF, larger ∆V∞ steps must be used.  This plot can 
be used to determine the degradation of efficiency vs. step size for various 
resonances. 

There are two ways to increase the ∆V∞ of a maneuver. The first is to move 

off the peak on the same resonance efficiency plot (Figure 3.10a) by targeting a larger 

θ, thus decreasing efficiency and increasing ∆V∞ by increasing α of the encounter.  

The second way is to increase the resonance (which is targeted during the previous 

fly-by) until the peak efficiency point of the new plot also meets the required ∆V∞.  

The second method leads to a greater efficiency for the same ∆V∞ but is much more 

complex to simulate.  The efficiency curves in Figure 3.18 were computed using the 

second method.  If the first method is used for a 2:1 orbit the efficiency falls off at a 

greater rate as shown by curve delineated by ‘+’s on the left side of the plot. 

The total TOF of a tour is calculated by adding all the K values (from the K:L 

maneuvers) and multiplying by the period of the gravity-assist body. The actual TOF 

would vary slightly due to the maneuvers’ effect on K, but for simplicity we sum the 
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integer values. With this in mind, it is preferable to use K:1 resonances as much as 

possible since they are ~50% more efficient than K:2 resonances of equivalent 

duration and even more efficient than for larger L values.  

3.7 Global Search Methodology  

An endgame tour sequence begins with a spacecraft in an elliptical orbit about 

the central body and in some (usually large) resonance with the gravity-assist body.  

A series of reducing resonances are targeted using alternating fly-bys (both un-

powered and powered) and V∞ leveraging maneuvers until V∞ = 0.  For our purposes 

we reverse the process by beginning with V∞ = 0 and work outwards towards the 

large resonance.  As an arbitrary metric, we chose an end point of a 6:1 orbit with V∞ 

= 0.3027 and α = 0.  The total ∆V and TOF for the tour sequence is accumulated for 

comparisons. 

To begin, a powered fly-by (more efficient for low V∞’s) is used to boost the 

spacecraft to a starting resonant orbit. Then a leveraging maneuver is performed 

around apoapsis to target the next fly-by at a new location with a new, higher V∞ 

corresponding to the next resonance in the desired sequence.  The value of the V∞ 

being targeted is calculated by 

 12 3/2

, −−= −
∞ newnew RV . (3.13) 
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The act of performing the leveraging maneuver also brings the orbits out of 

tangency, increasing α at the new encounter which can be approximated29 by 

 






 −−
=

∞

−
∞−

new

newnew

V

RV

,

3/22

,1

2

1
cosα . (3.14) 

Equations 3.13 and 3.14 are each just rearrangements of Equation 3.5 except that 

Equation 3.5 has α set to zero.  We bring these equations into agreement and achieve 

the new resonance by using the fly-by to bend the V∞ vector and to rotate α back to 

zero.  If α is greater than δmax, an intermediate α and R must be chosen as a “phasing 

orbit” until α can be reduced to zero on a subsequent fly-by. Phasing orbits increase 

the tour duration but not the total ∆V. Sometimes multiple phasing orbits may be 

required. Once the orbits are again tangent, the process is repeated to target the next 

resonance until the desired end point is achieved. 

3.7.1 Simulations 

Endgame tours can be constructed by a limitless number of combinations of 

resonance orbits, leveraging maneuvers, fly-bys, phasing orbits, etc.  One such 

sequence constructed “by hand” is depicted in Table 3.2 below and on the V∞ Plane in 

Figure 3.8, (which is repeated as Figure 3.19 below for convenience).  This tour uses 

the following resonant orbits: 2:1, 3:1, 4:1, 5:1, 6:1.  The tour begins with a powered 

fly-by to boost the spacecraft to a 2:1 orbit.  Around apoapsis a leveraging maneuver 

is applied to change the V∞ of the next encounter from 0.171 to 0.233.  The maneuver 

                                                 

29 This is an approximation because the leveraging maneuver also changes the resonance by a few 

percent thus making R not a constant in the derivation.  During our simulations we calculate the true 

value of α numerically. 
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also causes α to go from 0° to 48.6°.  This is illustrated by following the 2:1 

resonance line in Figure 3.19  starting at α = 0° and V∞ = 0.17 up until the line crosses 

V∞ = 0.233 (which corresponds to a 3:1 orbit when α = 0) at α = 48.6°.   

Table 3.2.  Maneuver Sequence for an Example Tour.  This tour has a resonance 

sequence of 2:1, 3:1, 4:1, 5:1, 6:1. Maneuvers consist of ∆V’s (DV), which are 
performed during fly-by (PFB) or as a leveraging maneuver (VILM), and fly-bys 

(FB).  Values for V∞ (initial and final), resonance (initial and final), efficiency, ∆V, 

times, α, and δmax are given for each maneuver. 

Maneuver Method V∞,i V∞,f ∆V∞ Ri Rf Eff ∆∆∆∆V Time α δmax 

DV1 PFB 0 0.171 0.171 - 2 5.17 0.0330 0 0 98.2 

DV2 VILM 0.171 0.233 0.062 2 1.96 8.00 0.0078 1 48.6 77.3 

FB1 FB 0.233 0.233 0 1.96 3 0 0 1 0 77.3 

DV3 VILM 0.233 0.266 0.034 3 2.97 11.11 0.0030 1.5 33.1 68.1 

FB3 FB 0.266 0.266 0 2.97 4 0 0 1.5 0 68.1 

DV4 VILM 0.266 0.288 0.021 4 3.98 13.34 0.0016 2 26.1 62.8 

FB5 FB 0.288 0.288 0 3.98 5 0 0 2 0 62.8 

DV5 VILM 0.288 0.303 0.015 5 4.98 15.28 0.0010 2.5 24.2 59.4 

FB6 FB 0.303 0.303 0 4.98 6 0 0 2.5 0 59.4 

TOTALS        0.04638 14   

 

For this V∞ level, δmax = 77.3°, which means that a single fly-by is sufficient to 

return α to zero and to enter the 3:1 orbit.  Another V∞ leveraging maneuver is 

performed near apoapsis (optimized using an efficiency plot) to pump V∞ up to 0.266 

(which is equivalent to a 4:1orbit when α = 0).  This causes α to increase to 33.1°, 

which is again less than the new δmax of 68.1°.  Therefore, a phasing orbit is not 

required before the 4:1 orbit is achieved during the next fly-by.  This process is 

repeated to reach 5:1, and likewise 6:1.  The total time to reach the end point is found 

by adding the K values, excluding 6:1, to give 14 time units (e.g. 223 days for Titan).  

The total ∆V for all the maneuvers is 0.0464 velocity units (e.g. 260 m/s for Titan) to 

go from V∞ = 0 to 0.3027.    
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Figure 3.19. The V∞ Resonance Plane.  Colored contours represent lines of resonance 

for orbits of a given V∞ and α.  The dashed black lines show the maximum turn angle, 

δmax, as a function of local circular velocity, Vc, and V∞.  One potential pathway is 
illustrated with fly-bys, leveraging maneuvers and powered fly-bys represented by red, 
green, and blue arrows, respectively. 

Using different sequences from the infinite possibilities of resonances and 

maneuvers result in new combinations of ∆V and TOF.  Sequences that increase TOF 

do not necessarily decrease ∆V because some resonances and combinations are not as 

efficient as others.  However, it is reasonable to suspect that the most efficient 

sequences would follow a general trend of decreasing ∆V as TOF increases.     

In order to determine the sequences that are most efficient for a given TOF, 

we set up a pseudo-global search for all the combinations that result in increasing V∞ 

from zero to 0.3027 (6:1).  The reason that it is not a true global search is that 

resonances used need not be rational numbers leading to an infinite number of 
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pathways.  To thoroughly explore the trade space, we set up a Monte Carlo-like 

algorithm that uses random number generators to select the next maneuver of a 

sequence from a range or set of possibilities. 

The algorithm begins by assuming that V∞ = 0 (parabolic orbit) and Vc = 0.3 

(Titan-like).  A random number generator selects K and L values such that K/L = R > 

6.  They are also restricted to values less than 24, with lower values being more 

heavily weighted in order to favor shorter flight times.  The required ∆V is then 

calculated for a powered fly-by to reach the generated R.   

Next the number generator selects a resonance and associated V∞ to target.  A 

V∞ leveraging efficiency plot such as the one in Figure 3.10a is generated for the 

initial resonance. The most efficient ν-θ pair that also results in the desired ∆V∞ is 

then selected as the next leveraging maneuver.  The associated ∆V and duration (~K) 

is added to the totals, and α for the next encounter is calculated.  If α is less than δmax, 

then the fly-by is used to bend α back to zero, and the process is repeated.  If α is 

greater than δmax, then a choice is made whether to target a phasing orbit, use a 

powered fly-by, or to begin the next leveraging maneuver from a non-tangential orbit 

(using the smallest α achievable with the one fly-by).   

If a phasing orbit is used, then a script is called that selects the intermediate 

resonance to use from the range dictated by α and δmax.  A heavier weight is placed on 

resonances with lower K values as well as those that use a larger δ so that α can reach 

zero in as few phasing orbits as possible.  This sequence selection and calculation 

process continues until R = 6 and α = 0.  The total ∆V, TOF, and resonance sequence 

are output for each iteration. 
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The algorithm just described can be tailored to obey one of three overarching 

rules: (1) No Crossing δmax (NX) - the use of phasing orbits is disallowed by requiring 

that next target resonance in a sequence does not cause α to cross the δmax line for the 

given value of Vc on the plot shown in Figure 3.19. This means that the orbits can 

always return to tangency at the cost of smaller ∆V∞ steps and more leveraging 

maneuvers.  (2) Phasing Orbits (PH) - crossing of the δmax line is allowed but requires 

that phasing orbits be used until α returns to zero before another leveraging maneuver 

can be performed.  The sequence given in Table 3.2 is an example of this rule.  (3) 

Non-Tangential (NT) - the third overarching rule is opposite from the second one in 

that no phasing orbits are allowed and leveraging maneuvers are performed from 

orbits that begin from a non-tangential state. 

3.8 Results 

Our Monte-Carlo simulations generated tens of thousands of unique paths, 

most of which are not useful for practical tours as they are either extremely long in 

duration, less effective than a direct powered fly-by, or are much less efficient than an 

alternate sequence of an equivalent duration.  Figure 3.20 is a plot of ∆V vs. TOF for 

all the simulated cases with Vc = 0.3.  The lowest total ∆V across the range of TOFs 

creates a Pareto front indicated by the solid line.  This front represents the trade 

between fuel and duration in the tour design process. 



 95 

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0 20 40 60 80 100

TOF

∆∆ ∆∆
V

Simulated Sequence

Pareto Front

 

Figure 3.20. ∆V vs. TOF from global search for Vc = 0.3.  Each point represents a 
sequence generated from Monte Carlo simulations.   The black line represents a 

Pareto front comprised of the most efficient sequences.  Note the rapid drop in ∆V for 
the shorter TOFs followed by a flattening after about 5 time units. 

The shortest TOF sequences and their associated ∆V’s are listed in Table 3.3.  

The quickest method is to perform no tour at all and boost directly to a 6:1 orbit using 

a large ∆V burn at the beginning.  Recall that powered fly-bys are only more efficient 

than leveraging maneuvers for small values of V∞ (and hence, resonances).  

Therefore, it is possible to increase overall efficiency by using a smaller powered fly-

by first, followed by a series of leveraging maneuvers.  To keep the TOF low, it is 

best to boost to an intermediate resonance with L = 1 (e.g. 2:1, 4:1).  From there 

higher resonances with L = 1 only are targeted until 6:1 is reached.  Various 

permutations of this strategy lead to the 7 fastest sequences. 
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Table 3.3. The 10 Shortest TOF Sequences for Vc = 0.3.  Parentheses represent 
phasing orbits and ‘NT’ indicates a resonance that started out non-tangentially (i.e. α 
> 0). 

TOF ∆V Sequence 

0 0.0969  Direct Powered Fly-by 

3 0.0665  3:1, 6:1 

4 0.0794  4:1, 6:1 

5 0.0477  2:1, 3:1, 6:1 

5 0.0682  5:2, 6:1 

6 0.0493  2:1, 4:1, 6:1 

6 0.0687  3:2, 3:1, 6:1 

7 0.0515  2:1, 5:1, 6:1 

7 0.0522  2:1, 5:1 NT, 6:1 

7 0.0537  2:1, (5:1), 6:1 

 

The 10 lowest total ∆V sequences found in the Monte-Carlo simulations are 

shown in Table 3.4. The resonances that comprise each sequence are listed with 

leveraging maneuvers occurring on each. The lowest ∆V sequence found requires 

0.0442 velocity units, or 55% less than the direct boost.  It does, however, take 75 

time units (e.g. ~4 years @ Titan).  It makes use of long-duration resonances, 

including 15:4 and 23:4.  The other sequences in the table have similar total ∆V’s 

with flight times ranging from 16 to 64 time units.  Note that none of the sequences 

required the use of a phasing orbit or non-tangential maneuver.  This is due to the 

relatively large Vc value.  For lower values more and more phasing orbits and non-

tangential leveraging are required as α often crosses the δmax line. 
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Table 3.4. The 10 Lowest Total ∆V Sequences for Vc = 0.3.  Each resonance in the 
sequence includes a leveraging maneuver. 

Time ∆V Sequence 

75 0.0442  5:3, 7:4, 2:1, 3:1, 15:4, 4:1, 5:1, 11:2, 

21 0.0445  7:4, 2:1, 3:1, 4:1, 5:1, 6:1 

45 0.0446  7:4, 2:1, 3:1, 4:1, 24:5, 5:1, 6:1 

22 0.0446  5:3, 7:4, 2:1, 3:1, 5:1, 6:1 

56 0.0447  7:4, 2:1, 3:1, 4:1, 24:5, 5:1, 11:2, 6:1 

16 0.0447  7:4, 2:1, 3:1, 4:1, 6:1 

18 0.0448  9:5, 2:1, 3:1, 4:1, 6:1 

37 0.0449  9:5, 2:1, 3:1, 19:5, 4:1, 6:1 

46 0.0449  7:4, 9:5, 2:1, 21:8, 3:1, 4:1, 6:1 

64 0.0449  7:4, 2:1, 19:7, 3:1, 4:1, 24:5, 5:1, 6:1 

 

The most significant trend in the Pareto front is that the minimum ∆V is 

reached quickly and is followed by a flattening where increasing TOF does little to 

affect the fuel requirement.  This rapid decrease followed by a flat line creates an 

“elbow” in the curve where the most appealing sequences lie.  It is possible to reduce 

the ∆V requirements by around 50% for a relatively small increase in TOF at this 

“elbow”.  Increasing duration beyond this point results in little to no gain, contrary to 

intuition.  One would expect the total ∆V to continue to approach the theoretical 

minimum (about 20% lower in this case), but this does not occur.  In fact, simulated 

sequences that take 100-300+ time units actually started to increase in total ∆V.  One 

possible explanation for this trend is the decreasing width of the efficiency peaks (see 

Figure 3.13) with increasing K and L values.  This means that leveraging maneuvers 

that do not fall exactly on the peak (which is the norm in practice) have efficiency far 

below the theoretical maximum for long duration sequences. 
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To this point we have primarily discussed simulation results for Vc = 0.3 

because this work is especially meant to be applicable to the Titan-Saturn system, 

where there is only one significant body available for gravity assists and  Vc,Titan = 

0.32.  Changing Vc dramatically alters the control the gravity-assist body has on the 

V∞ vector and hence, limits (or enables) orbital parameters after a single fly-by.  The 

points and Pareto front in Figure 3.20 are a conglomeration of all the sequences 

generated, allowing for all three of the overarching rules described in the previous 

section.  In this case, where Vc = 0.3, the first rule, NX (or no crossing of the δmax 

line), is almost always the most beneficial as α rarely approaches the δmax line.  

However, if we break the front into those sequences that use phasing (PH), non-

tangential maneuvers (NT), and a mix for Vc = 0.2, we can see in Figure 3.21 that 

each strategy can be equally beneficial for reducing the total ∆V and creating an 

efficient sequence with none being clearly better than the others.   
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Figure 3.21. Pareto front broken into the 3 overarching rules for Vc = 0.2: NX – 

Sequences do not cross the δmax line (α always returns to zero), PH – Phasing orbits 

are used when α > δmax, NT – Non-tangent orbits are used when α > δmax. 

For lower values of Vc, phasing and non-tangential sequences become 

dominant.  For example, a sequence that is not permitted to cross the δmax for Vc = 0.1 

would have to take many small steps and “zigzag” close to the α = 0 line, whereas 

phasing or non-tangent maneuvers would allow much more freedom for more 

efficient sequences.  Increasing Vc also raises the crossover point where powered fly-

bys are more efficient than leveraging maneuvers, making them more useful to higher 

values of V∞.  Figure 3.22 plots the Pareto fronts for Vc’s of 0.1 (e.g. Europa), 0.2 

(e.g. Callisto), 0.3, and 1.6 (e.g. the Moon).  Note the common trend to fall to a near 

minimum ∆V sharply and then plateau.  For Vc = 1.6, the decrease is only around 10% 

and occurs very quickly, whereas the drop is almost 50% for the others with the 

“elbow” moving to longer TOFs for decreasing Vc’s. 
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Figure 3.22. Pareto fronts for various values of Vc. 

 The Monte-Carlo algorithm also allowed for the use of powered fly-by’s at 

any point in the sequence if they proved to be beneficial.  For example, they can be 

used to raise a resonance from 8:3 to 3:1 or to help bend α beyond the δmax of an 

unpowered fly-by.  As it turned out, these types of maneuvers were very costly and 

resulted in sequences that fell well above the Pareto front.  Theoretically, a powered 

fly-by should not be used above V∞ = 0.06 (6:5 resonance) for Vc = 0.3, as this is 

where leveraging becomes more efficient.  But in practice, sequences that started off 

below V∞ = 0.17 (2:1) were required to use many large L-value orbits (e.g. 9:7, 7:5).  

This is because the resonance curves on the V∞ Plane are relatively flat in that region 

and many intermediate resonances are required to achieve the sufficient ∆V∞.  As was 

noted previously, orbits with large L values have narrow efficiency peaks and result 

in sub-optimal efficiencies in practice. 

Vc  
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3.9 Conclusion and Future Work 

V∞ leveraging is a useful tool in the design of planetary moon endgame 

strategies. If applied properly it is possible to significantly reduce the total ∆V 

required to send an orbiter to a planetary moon such as Titan.  In this dissertation we 

present theoretical calculations that show that the total ∆V required can be up to 10 

times or more the change in ∆V∞. While the theoretical minima require infinite 

durations, they do serve to illustrate a lower bound on the fuel required to place a 

spacecraft into a captured orbit. As the V∞ decreases, leveraging maneuvers become 

less and less efficient. Below a certain point, it was shown that powered fly-bys 

become a more efficient means of V∞ reduction.  

In addition, we have developed tools to construct, map, and analyze sequences 

of leveraging maneuvers and to compare them to the theoretical minimum. The 

reduction in fuel requirements comes at the expense of added flight time. Tens of 

thousands of sequences were generated using a Monte-Carlo type simulation and the 

total ∆V and TOF pairs were accumulated.  By plotting these pairs we were able to 

generate a Pareto front of most efficient sequences for a given flight time. 

Reducing a 6:1 orbit to V∞ = 0 using a direct burn during fly-by would require 

0.097 velocity units, whereas an infinite series of fly-bys and leveraging maneuvers 

(theoretical minimum) would reduce the total ∆V required to 0.028, a savings of over 

70%.  Since infinite missions are not possible, it is helpful to the mission designer to 

know that it is possible to reduce the total ∆V by 50% with a TOF of only 5-10 time 

units. Increasing the mission duration further does not result in significant reductions.   
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The V∞ Sphere and V∞ Plane are useful design tools in that they allow the 

designer to quickly see what types of orbits are possible given a set of input 

parameters. Post fly-by orbits can be targeted by noting the change of α required on 

the V∞ Plane. Sequences of leveraging maneuvers and fly-bys can be plotted as points 

on the map. 

The maneuver sequences detailed in this dissertation are restricted to orbits 

confined to the plane of the gravity-assist body and are very theoretical in nature.  In 

practice planetary tours make use of inclined orbits, fly by other moons, and must 

take into account many other factors. Because of this, the more “optimal” tour 

sequences generated here are not necessarily what would be used in true mission 

design.  However, the tools and results are instructive for preliminary analyses and 

for understanding the trends that lead to optimal tour design. 
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4 Hyperbolic Periodic Orbits 

4.1 Introduction 

Following the success of the Galileo and Cassini missions to the Jovian and 

Saturnian system, respectively, there has been much talk and planning for a dedicated 

orbiter mission to one of the moons of interest, such as Titan, Europa, or Enceladus.  

Trajectories of such orbiters typically employ multiple gravity assists during 

interplanetary flight and elaborate and lengthy tours in the planetary system in order 

to reduce fuel requirements before the final orbital insertion.  Such tour design is a 

complicated and time consuming process.  However, recent studies have shown the 

usefulness of V∞ leveraging maneuvers in the reduction of fuel requirements, and as a 

result, tools for rapid implementation have been developed (Campagnola et al., 2010; 

Woolley and Scheeres, 2010).  Endgame tours typically make use of alternating 

leveraging maneuvers and gravity assists at the target moon to decrease resonance 

towards unity and ultimately capture (Ross and Scheeres, 2007). However, while 

leveraging is very efficient for higher resonances, it becomes less so at lower 

resonances and can require long flight times. 

In the previous chapter, sequences of leveraging maneuvers were designed 

using linked-conics for rapid calculations with reasonable accuracy.  In the 2-body 

problem (2BP), hyperbolic excess velocity (V∞) at the target moon is a constant in the 
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absence of perturbations or leveraging maneuvers, much like the Jacobi constant in 

the 3-body problem (3BP).  In the first section, we review the mathematical 

relationships between integrals of motion in the 2BP, planar restricted 3BP (PR3BP), 

and Hill’s problem.  

Since gravity assists and the transition to gravitational capture are essentially 

expressions of third body effects, it makes more sense to analyze them using three-

body techniques.  Our previous work on leveraging sequences ended when V∞ = 0, 

which corresponds to a parabolic orbit or the limit of gravitational capture in the 

patched 2BP.  However, relationships between the Jacobi and V∞ yield the possibility 

of bound, periodic, or quasi-periodic orbits with a positive V∞.  If such orbits exist, 

then they would amount to hyperbolic orbits in the 2-body sense yet be bound to the 

vicinity of the secondary.  Targeting a “hyperbolic periodic” orbit during the final 

phase of a leveraging maneuver sequence would result in a lower required insertion 

∆V. 

In a series of papers, Hénon (1965, 1969, 1970) classified families of planar 

periodic orbits in the restricted 3BP and explored their limits as the Jacobi goes to ± 

∞.  A few families continue to exist well into the realm of positive V∞’s.  Distant 

retrograde orbits exist for all values of V∞ in Hill’s approximation, but they grow ever 

distant from the primary, they do not exhibit stable and unstable manifolds, and they 

are difficult to target.  Lyapunov and direct quasi-periodic orbits also exhibit positive 

V∞’s, but the radius of closest approach goes towards zero as energy increases.  

Depending on the normalized radius of target body, minimum allowable altitude 

orbits still yield relatively high V∞ values. 
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In this chapter the limits and usefulness of hyperbolic periodic orbits are 

explored along with their application to the endgame problem.  Orbits are generated 

using a single shooting method in the PR3BP and integrated into the final phase of 

leveraging sequences found in Chapter 3.  Results are scaled as to be applicable to 

most systems, but are applied to the Titan-Saturn system where appropriate. 

4.2 Families of planar periodic orbits with positive V∞’s 

Placing an orbiter directly into a scientific30 orbit about a planetary moon can 

be prohibitively expensive fuel-wise, often requiring thousands of m/s in ∆V.  That is 

why typical orbiter mission designs usually include an extensive (months to years) 

tour about the planet, making use of gravity-assists and strategically placed 

maneuvers in order to reduce the V∞ at the target body (Campagnola and Russell, 

2010a; Ross and Scheeres, 2007; Johannesen and D’Amario, 1999). When V∞ is 

sufficiently low, a capture maneuver is performed to place the spacecraft in an orbit 

(often loosely) bound to the target moon.  Using patched 2BP dynamics, V∞ must, by 

definition be reduced below zero.  However, if third-body perturbations are taken into 

account, periodic orbits exist which exhibit positive V∞’s in the 2-body sense.  These 

orbits arise from the 3BP approximation and can be related to the 2BP using the 

relationships detailed in the previous section.  These “hyperbolic periodic” orbits 

have higher energies than traditional capture orbits and therefore require less fuel to 

achieve. 

                                                 

30 Usually low, circular, and near-polar. 
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Periodic orbits in the 3BP have been studied extensively by many researchers, 

more notably Poincare (ed. 1993), Szebehely (1967), and Hénon (1969).  There are a 

number of methods to find periodic orbits, both specific solutions and continuous 

families.  One common approach involves systematically scanning the phase space 

immediately surrounding a known solution.  Initial conditions are propagated, and the 

trajectory is checked for conditions of symmetry which indicate periodicity.  If 

conditions are nearly met, a differential corrector method is used to converge on the 

exact solution.  The new solution is then used as the seed, and the process is repeated 

to find all the solutions of one family within a specified range.  Often times families 

intersect at bifurcation point and care must be taken to distinguish between the two.  

A second approach to finding periodic orbits makes use of a brute force global scan 

over a grid of parameters to find those initial conditions that result in conditions of 

periodicity (Russell, 2005).  This second method is much more computationally 

expensive, but modern computers have made it practical and fruitful.   

In this dissertation we are interested in finding those periodic orbits which 

have higher energies so as to be hyperbolic in the 2BP and require less fuel to 

achieve.  Hénon found five families of simple periodic (crossing the x-axis only 

twice) planar orbits which he denotes: a, c, f, g, and g’.  Families a and c are 

Lyapunov orbits about the libration points L2 and L1, respectively.  Family f 

represents retrograde orbits about the secondary, while g and g’ originate as simple 

prograde orbits and evolve to more complex ones with four x-axis crossings as energy 
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increases.  Each of these families can be extended to Γ31 = -∞, where Γ < 0 

corresponds to a positive V∞.  However, for families a, c, g, and g’, the minimum 

approach radius, rp, goes to zero as this limit is realized.  For the moons listed in 

Table 2.1, Γ becomes negative before the normalized radius is reached, indicating the 

existence of positive V∞ periodic orbits. 

In order to generate these periodic orbits, we set up a simple grid search for 

orbits which originate on the x-axis close to the secondary with 
0x& = 0.  A single 

shooting method  (Howell, 1984) was employed to vary 
0y&  until the subsequent x-axis 

crossing was again perpendicular, indicating a symmetric periodic orbit (see Section 

2.2.8).  The equations of motion of the PR3BP (Equation 2.40) were used with the 

value of µ from Titan.32 The x value was increased until the orbits no longer had 

positive V∞ values.  Retrograde orbits, which comprise family f, increase in V∞ as the 

distance from the moon increases.  However, because these orbits are highly stable, it 

can be difficult to transfer from them to a science orbit.  Lam and Whiffen (2005) and 

Demeyer and Gurfil (2007) describe of the use of Lyapunov orbits as a transfer 

mechanism. 

Orbits generated are characterized by their family and by the point of closest 

approach which is given in Titan radii (TR) so as to readily illustrate the actual flyby 

distance and to indicate if a collision occurs.  One Titan radius is equal to 0.0021 LU, 

which is very similar to the scaled radii of Europa and Ganymede.  Other moons’ 

                                                 

31 Recall that Γ = -2*JH, which is the Jacobi constant in Hill’s Problem 

32 All the plots throughout this dissertation will use µTitan = 2.37e-4, but the results will be similar for 

nearly all of the outer-planetary moons as µ << 1. 
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radii can be deduced from the data in Table 2.1.  In practice, a radius of around 1.1 

TR approximates the minimum allowable flyby distance. 

Low-Jacobi, high-energy Lyapunov orbits are roughly kidney-bean shaped 

with a hyperbolic component near the secondary and with a distant component similar 

to a large prograde or retrograde orbit.  Family a, L2-centered orbits, and family c, 

L1-centered orbits, for a few energy levels are shown in Figure 4.1a and b.  Note that 

L2 orbits are prograde at the point of closest approach and retrograde at the opposite 

x-axis crossing, whereas the reverse is true for L1 orbits.  Also note that L1 orbits are 

larger for equivalent TR levels.  The orbits in family g in Figure 4.1c start out as a 

prograde orbit close to the secondary, but there is twist in the orbit both above and 

below which causes the direction to be retrograde for the majority of the orbit.  These 

orbits may be of interest since a close fly-by occurs on both the near and far sides of 

the moon. 
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Figure 4.1. Plots of planar periodic orbits with close fly-by’s of the secondary and 
positive V∞’s.  a) Orbits in the a family – L2 Lyapunov, b) c family orbits – L1 
Lyapunov, c) Family of g orbits which originate as prograde orbits about the 
secondary.  TR = Titan Radii. 

Family g’ bifurcates from g near the Jacobi value for L1 and L2.  At high 

energy levels these orbits have a prograde (g’2) or retrograde (g’1) close passage of 

the secondary and behave similarly to families a and c, with the exception of an extra 

loop around m2.  They are depicted in Figure 4.2a and b.  The distant retrograde 

orbits, as they are most commonly called, of family f are show in Figure 4.2c.  They 

are very stable and increase in V∞ as they increase in size.  In the PR3BP 

approximation they exist to infinity, however, they become less useful as capture 

orbits as they grow to be very far from the secondary. 
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Figure 4.2.  Planar periodic orbits with positive V∞’s.  a) Orbits in the g’1 family – 
similar to family c about L1 with two extra x-axis crossings, b) g’2 family orbits – L2 
version of g’1, c) Family of f orbits which are retrograde, stable, and increase in V∞ as 
distance from m2 increases. 

Parameters for a few hyperbolic periodic orbits are given in Table 4.1.  The 

ephemeredes of these orbits, generated in the 3BP, can be converted to inertial 2BP 

values using Equation 2.72.  This allows us to calculate the V∞ in the 2-body sense 

throughout the orbit and then compare it to the approximation derived in Equation 

2.83.  The normalized V∞ in the 2BP is given by 
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Table 4.1 gives the parameters for periodic orbits that just graze Titan’s 

surface, ten percent above the surface (corresponding to closest allowable approach), 

and for a few Titan radii out until the orbits are no longer hyperbolic.  This is true for 

all the orbits except the distant retrograde orbits of family f, which do not pass near 

Titan and are increasingly hyperbolic.  Notice that the point where V∞,3b goes to zero 
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occurs at different distances for each family.  The V∞ value for grazing (TR = 1) orbits 

varies as well.  This is illustrated by the plot in Figure 4.4.  This plot is comparable to 

figure 1 in (Hénon, 1969), zooming in around the origin and replacing ξ with x and Γ 

with J. Each family curve would approach x = 0 as J decreases except that the curves 

end where a collision occurs.  The vertical line corresponds to V∞ = 0 at J = 3/(1-µ).  

Note that the Lyapunov orbits (a and c) have the lowest Jacobi (highest V∞) when x = 

1 TR and the greatest x when V∞ = 0.  This suggests that they would make the good 

candidates for a capture orbit. 
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Figure 4.3.  General map of periodic orbits in the (J, x) plane.  The curves of various 
families impact the surface (TR = 1) as Jacobi decreases and V∞ increases. 
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Table 4.1.  Selected Hyperbolic Periodic Orbits at Titan (µ = 2.366e-4).  Values given 
are for the point of closest approach.  rp is given in Titan radii (negative values 
correspond to passage on the Saturn side of Titan) and the other parameters are 

normalized using the conventions of the 3BP.  xr and 
ry& are in the rotating frame with 

respect to the barycenter.  P is the orbit period. xi,2 and 
2,iy& are inertial with respect to 

Titan.  V∞ (3-body) is calculated using the approximation in Equation 2.83 whereas 
V∞ (2-body) is calculated using Equation 4.1. 

Family rp      

(TR) 
J3 rx  ry&  P 2,ix  2,iy&  V∞,3b V∞,2b    

a 1 2.9948 1.0019 0.4783 7.1670 0.0021 0.4804 0.0668 0.0791 

a 1.1 2.9953 1.0021 0.4560 7.0441 0.0023 0.4583 0.0633 0.0769 

a 1.5 2.9967 1.0029 0.3900 6.5909 0.0032 0.3931 0.0510 0.0698 

a 2 2.9979 1.0040 0.3368 6.1039 0.0042 0.3410 0.0366 0.0634 

a 3 2.9998 1.0061 0.2725 5.3545 0.0063 0.278 - 0.0537 

a 5 3.0025 1.0103 0.2044 4.4497 0.0105 0.2149 - 0.0360 

a 7 3.0049 1.0145 0.1641 3.9549 0.0148 0.1788 - - 

c -1 2.9925 0.9977 -0.4807 7.3526 -0.0021 -0.4828 0.0821 0.0925 

c -1.1 2.9932 0.9974 -0.4582 7.2495 -0.0023 -0.4605 0.0779 0.0893 

c -1.5 2.9952 0.9966 -0.3918 6.8474 -0.0032 -0.3950 0.0637 0.0796 

c -2 2.9969 0.9955 -0.3384 6.3777 -0.0042 -0.3426 0.0493 0.0715 

c -3 2.9990 0.9934 -0.2739 5.5871 -0.0063 -0.2802 0.0169 0.0606 

c -5 3.0019 0.9892 -0.2058 4.5514 -0.0105 -0.2163 - 0.0435 

c -7 3.0044 0.9850 -0.1655 3.9606 -0.0148 -0.1802 - 0.0201 

f -30 2.9953 0.9365 0.1543 4.0658 -0.0632 0.0910 0.0634 0.0284 

f -40 2.9919 0.9154 0.1881 5.0170 -0.0843 0.1039 0.0900 0.0719 

f -50 2.9878 0.8944 0.2273 5.5451 -0.1054 0.1219 0.1072 0.1018 

f -70 2.9770 0.8522 0.3131 5.9891 -0.1475 0.1656 0.1492 0.1556 

g 1 2.9978 1.0019 0.4752 9.1907 0.0021 0.4773 0.0387 0.0573 

g 1.1 2.9981 1.0021 0.4528 9.0096 0.0023 0.4552 0.0342 0.0553 

g 1.6 2.9995 1.0032 0.3695 8.1148 0.0035 0.3729 - 0.0462 

g 2.6 3.0014 1.0053 0.2894 6.8253 0.0055 0.2949 - 0.0317 

g'1 -1 2.9951 0.9977 -0.4780 11.0724 -0.0021 -0.4801 0.0649 0.0775 

g'1 -1.1 2.9955 0.9974 -0.4571 10.8048 -0.0023 -0.4594 0.0611 0.0832 

g'1 -1.6 2.9973 0.9964 -0.3770 9.6612 -0.0034 -0.3803 0.0443 0.0657 

g'1 -2 2.9983 0.9955 -0.3363 8.9415 -0.0042 -0.3405 0.0317 0.0606 

g'1 -2.7 2.9996 0.9941 -0.2876 7.9255 -0.0057 -0.2933 - 0.0537 

g'2 1 2.9966 1.0019 0.4764 10.2643 0.0021 0.4785 0.0517 0.0668 

g'2 1.1 2.9970 1.0021 0.4541 10.0176 0.0023 0.4564 0.0482 0.0649 

g'2 1.5 2.9981 1.0029 0.3882 9.1730 0.0032 0.3914 0.0348 0.0589 

g'2 2 2.9991 1.0040 0.3350 8.3332 0.0042 0.3393 0.0132 0.0532 

g'2 3 3.0007 1.0061 0.2708 7.1071 0.0063 0.2771 - 0.0440 

 

Inspection of the last two columns of Table 4.1 shows that the 2-body V∞ at 

the point of closest approach differs from the 3-body value.  This is due to the 3-body 

approximation assumption that the spacecraft be far from the second body.  With the 

exception of the distant retrograde orbits, the 2-body values are greater than the 3-

body values and those positive V∞’s extend to greater distances from m2.  However, 



 113 

this relationship does not hold true over the entire orbit.  If the instantaneous V∞,2b is 

calculated over the whole 3-body orbit, we can see that it varies widely.  Figure 4.4 

shows the V∞ values over three a-type orbits with rp = 1.1, 1.6, and 2 TR.  For lower 

energy orbits, the V∞,2b curve actually goes to zero for those times that the spacecraft 

is far from the secondary, indicating that the periodic orbit is hyperbolic near closest 

approach and gravitationally bound elsewhere.  The fact that V∞,2b > V∞,3b at t = 0 is 

true for all orbits (excluding f) where V∞,3b > 0, further bolstering the rationale to use 

hyperbolic periodic orbits as a capture mechanism. 
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Figure 4.4.  Instantaneous V∞ values over one orbital period for family a orbits with rp 
= 1.1 TR(blue), 1.5 TR(red), and 2 TR(green).  Phase = 0 corresponds to the point of 
closest approach. 

The relationship between Jacobi and V∞ while in close proximity to the 

secondary is further examined in Figure 4.5.  The solid blue line is the simple 

quadratic relationship approximated in the 3BP from Equation 2.83.  The other curves 

represent the actual 2-body calculated relationship for families of periodic orbits.  

They approach the 3-body approximation as V∞ gets large, but they vary at V∞ = 0.  

The curves for families a, c, and g’ (g is very similar to g’ and was not included in the 

plot for clarity) terminate when TR = 1 (collision) at much higher Jacobi values than 

the 3-body estimate, which means that they have an even greater relative velocity at 

that point and require less ∆V to achieve from a hyperbolic passage. 

TR = 

1.1 

2 

1.5 
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Figure 4.5.  Jacobi vs. V∞.  The solid blue line is the simple quadratic relationship 
approximated in the 3BP from Equation 2.83.  The other curves represent the actual 
2-body calculated relationship for families of periodic orbits. 

In the previous chapter we studied endgame tour sequences that consisted of 

ever decreasing resonant orbits until gravitational capture at the target moon could be 

achieved.  Gravitational capture was defined as V∞ = 0, which corresponds to a 

parabolic orbit centered on the moon. The relative velocity at periapsis (which would 

be the location of the insertion burn) is just 2  times the local circular velocity, Vc. 

Hyperbolic periodic orbits have a greater relative velocity than parabolic orbits at the 

same distance.  The difference between the velocity for a-type and parabolic orbits 

(∆Vp) versus periapsis distance is show by the dashed line in Figure 4.6. However, a 

parabolic orbit is not a true capture orbit as it does not return to the target body.  In 

practice, long-period elliptical orbits are used for the initial insertion, and then later 
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adjustments bring the orbit down to the desired level.  If we wish to compare the true 

usefulness of periodic capture orbits, we must calculate the required periapsis velocity 

of an elliptical orbit with a period equal to the period of a periodic orbit with the same 

periapsis. The difference in velocity in normalized units is given by 
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where xi,2 and 
2,iy& , and P are the characterizing parameters of the periodic orbit.  This 

quantity is shown by the solid red line in Figure 4.6.  For near-grazing orbits the 

maximum benefit of a Lyapunov capture orbit is 0.0077 velocity units, which for 

Titan corresponds to a savings of 43 m/s.  This is significant when considering that it 

requires 190 m/s to capture to a highly elliptical orbit from a 2:1 resonance with 

Titan. 
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Figure 4.6. The difference in velocity at periapsis  between a-type periodic orbits and 

a parabolic orbit  (∆Vp) or an elliptical orbit with an equivalent period (∆Ve). 

4.2.1 Hyperbolic Periodic Orbits as Capture Mechanisms 

 In the 2BP, the location of the insertion maneuver is inconsequential as long 

as the desired periapsis radius is achieved.  Targeting periodic orbits in the 3BP, 

however, requires that the angle with respect to the line of syzygy be specified as 

well.  For resonant orbits greater than one, the y-component of the V∞ vector during a 

fly-by will be positive, regardless of whether the x crossing is positive or negative.  

This means that y& of a target periodic orbit should be positive as well, eliminating 

families c and g’1 as potential candidates.33  Also, since the x-axis crossing must be 

perpendicular, the orientation of V∞ (designated by α as depicted in Figure 2.5) 

                                                 

33 Families c and g’1 can still be targeted at their second x-axis crossing, but at a significant loss in 

efficiency. 
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should be such that half the bending of the trajectory during fly-by, δ, leads to the 

desired condition at periapsis.  Specifically, δ must equal twice α, where δ is given by 

 

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

+
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−
2

2
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Vrpµ

µ
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where µ2 may be replaced with µ if rp and V∞ are given in normalized values. The 

bending angle must equal 2α because of the fact that only half of the bending will be 

achieved before periapsis, at which point a retro-maneuver is performed to match the 

velocity with that of the targeted periodic orbit.  The geometry of the desired fly-by 

and maneuver is depicted in Figure 4.7. 

 

Figure 4.7. Hyperbolic passage and periodic orbit targeting.  In order to have a 

perpendicular crossing of the x-axis and perform a ∆Vinsertion to target a periodic 

orbit, the turn angle, δ, must be equal to 2α of the hyperbolic orbit. 

Endgame sequences of resonant orbits can be plotted on a “V∞ Resonance 

Plane”, which is a map of lines of resonances and maximum turn angles as a function 

of V∞ and α.  Figure 4.8 shows the zig-zag pattern of the example sequence plotted on 

the V∞ Resonance Plane.  The goal of any endgame sequence is reduce V∞ to zero, 

which corresponds to the bottom of this map.  Since fly-bys cannot change V∞, the 
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only way to move downwards is through the use of ∆V maneuvers.  Fly-bys change α 

while V∞ remains constant and are represented in Figure 4.8 by horizontal lines.  V∞ 

leveraging maneuvers modify both α and V∞ and roughly follow the lines of 

resonance.   
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Figure 4.8. The V∞ Resonance Plane.  Colored contours represent lines of resonance 

for orbits of a given V∞ and α.  The dotted black line shows the maximum turn 

angle, δ, as a function of V∞.  The red contour shows the location of approach α’s 
that lead to periodic orbit capture conditions.  The black X’s are the 2-body 
representations of a few periodic orbits from family a.  One potential resonance tour 
is illustrated with fly-bys, leveraging maneuvers and powered fly-bys represented by 
red, green, and blue arrows, respectively.  The dotted blue arrow shows a direct 
insertion maneuver to a parabolic orbit, whereas the dashed red and blue arrows 
show an alternative approach and capture to a hyperbolic periodic orbit. 

An example sequence of leveraging maneuvers and fly-bys of 6:1, 5:1, 4:1, 

3:1, and 2:1 is drawn on the V∞ resonance plane.  At its conclusion, a powered fly-by 
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maneuver is performed to reduce V∞ to zero.  This sequence requires 0.046 VU (258 

m/s @ Titan) in ∆V, of which 0.033 (190 m/s) are needed for the final maneuver, and 

88 TU (223 days) to perform.  This result can be compared to a direct insertion 

maneuver from the 6:1 resonance (V∞ = 0.3048) to V∞ = 0, which requires 0.097 VU 

(540 m/s).  The added flight time of the resonance tour buys over 50% in ∆V savings. 

There are hundreds of possible resonance sequences that result in up to 60% 

∆V savings for only a modest increase in total flight time (Woolley and Scheeres, 

2010).  The problem is that the final insertion maneuver in each sequence typically 

uses around 75% of the total sequence ∆V requirement.  If a hyperbolic periodic orbit 

is targeted at the end of the sequence then about 0.007 VU (~40 m/s) can be saved.  

This is about 25% of the final insertion maneuver, or an additional 8% savings versus 

the direct insertion approach. 

The sequence plotted on Figure 4.8 concludes at V∞ = 0, shown by the 

vertical, blue dotted arrow.  An alternate conclusion to a periodic orbit is shown by 

the red and blue dashed arrows.  The red one represents a fly-by designed to set up 

the final insertion approach geometry by targeting the α = ½δmax line depicted by the 

red contour.  Halfway through the subsequent fly-by, an insertion maneuver matches 

the velocity to that of the periodic orbit and capture occurs.  This is represented by the 

blue dashed arrow that terminates at the bold X, which still has a positive V∞. 

The δmax and approach α lines are calculated for a specific radius of periapsis, 

in this case rp = 1.1 TR.  Capture can take place at greater distances, but this is 

usually at a loss in efficiency, as ∆V maneuvers are most efficient were velocity is the 

greatest.  The other X’s near the bottom right-hand corner of the plot represent the 
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target conditions for other periodic orbits with increasing periapses. They are each the 

termination point of a corresponding approach α line and represent the 2-body 

conditions that result in a 3-body “exit” from the V∞ Resonance Plane. 

4.3 Conclusion 

Periodic orbits in the PR3BP that exist near the secondary and are hyperbolic 

in the 2BP are useful as capture mechanisms at planetary moons.  We have shown 

that most families of simple periodic orbits have increasingly positive V∞’s as their 

periapses approach the radius of the target moon.  Lyapunov orbits (families a and c) 

have the highest V∞ for a given periapsis distance, and family a is the most suitable 

for capture from resonance orbits greater than one due to its approach geometry 

conditions.  Targeting a “hyperbolic periodic” orbit during the final phase of a 

leveraging maneuver sequence results in a lower required insertion ∆V, on the order 

of 20-25%. 

This dissertation explores the limits and usefulness of hyperbolic periodic 

orbits and their application to the endgame problem.  Orbits were generated using a 

single shooting method in the planar restricted problem and integrated into the final 

phase of leveraging sequences found in Section 3.7.  We showed that using a 

hyperbolic periodic orbit to capture to the vicinity of a target moon following an 

optimized sequence of leveraging maneuvers and fly-bys yields significant fuel 

savings (60-70%) over direct trajectories. 

We have only presented simple planar periodic orbits, yet an infinite number 

of more complex periodic and quasi-periodic orbits exist.  It is unlikely that higher 
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order planar orbits will result in higher V∞’s at the same distances as Lyapunov orbits, 

however, they may exhibit properties that are much more desirable from a mission 

design standpoint. Depending on a mission’s requirements (∆V, duration, science 

objectives, lighting angles, communications, etc.), any of the 3-body periodic orbits 

may exhibit both pros and cons for mission optimization.  There also exist 3-

dimensional periodic orbits that can be used as efficient capture and transfer 

mechanisms for orbiters wishing to achieve low, highly-inclined science orbits about 

a planetary moon. 
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5 Discussion  

5.1 Overview of Findings 

V∞ leveraging is a useful tool in the design of planetary moon endgame 

strategies. If applied properly it is possible to significantly reduce the total ∆V 

required to send an orbiter to a planetary moon such as Titan.  In this dissertation we 

present theoretical calculations that show that the total ∆V required can be up to 10 

times or more the change in ∆V∞. While the theoretical minima require infinite 

durations, they do serve to illustrate a lower bound on the fuel required to place a 

spacecraft into a captured orbit. As the V∞ decreases, leveraging maneuvers become 

less and less efficient. Below a certain point, it was shown that powered fly-bys 

become a more efficient means of V∞ reduction.  

In addition, we have developed tools to construct, map, and analyze sequences 

of leveraging maneuvers and to compare them to the theoretical minimum. The 

reduction in fuel requirements comes at the expense of added flight time. Tens of 

thousands of sequences were generated using a Monte-Carlo type simulation and the 

total ∆V and TOF pairs were accumulated.  By plotting these pairs we were able to 

generate a Pareto front of most efficient sequences for a given flight time. 

Reducing a 6:1 orbit to V∞ = 0 using a direct burn during fly-by would require 

0.097 velocity units, whereas an infinite series of fly-bys and leveraging maneuvers 
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(theoretical minimum) would reduce the total ∆V required to 0.028, a savings of over 

70%.  Since infinite missions are not possible, it is helpful to the mission designer to 

know that it is possible to reduce the total ∆V by 50% with a TOF of only 5-10 time 

units. Increasing the mission duration further does not result in significant reductions.   

Periodic orbits in the PR3BP that exist near the secondary and are hyperbolic 

in the 2BP are useful as capture mechanisms at planetary moons.  We have shown 

that most families of simple periodic orbits have increasingly positive V∞’s as their 

periapses approach the radius of the target moon.  Lyapunov orbits (families a and c) 

have the highest V∞ for a given periapsis distance, and family a is the most suitable 

for capture from resonance orbits greater than one due to its approach geometry 

conditions.  Targeting a “hyperbolic periodic” orbit during the final phase of a 

leveraging maneuver sequence results in a lower required insertion ∆V, on the order 

of 20-25%. 

5.1.1 Contributions to the Field 

The V∞ Sphere and V∞ Plane are useful design tools in that they allow the 

designer to quickly see what types of orbits are possible given a set of input 

parameters. Post fly-by orbits can be targeted by noting the change of α required on 

the V∞ Plane. Sequences of leveraging maneuvers and fly-bys can be plotted as points 

on the map. 
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5.1.2 Areas of Future Research 

The maneuver sequences detailed in this dissertation are restricted to orbits 

confined to the plane of the gravity-assist body and are very theoretical in nature.  In 

practice planetary tours make use of inclined orbits, fly by other moons, and must 

take into account many other factors. Because of this, the more “optimal” tour 

sequences generated here are not necessarily what would be used in true mission 

design.  However, the tools and results are instructive for preliminary analyses and 

for understanding the trends that lead to optimal tour design. 

We have only presented simple planar periodic orbits, yet an infinite number 

of more complex periodic and quasi-periodic orbits exist.  It is unlikely that higher 

order planar orbits will result in higher V∞’s at the same distances as Lyapunov orbits, 

however, they may exhibit properties that are much more desirable from a mission 

design standpoint. Depending on a mission’s requirements (∆V, duration, science 

objectives, lighting angles, communications, etc.), any of the 3-body periodic orbits 

may exhibit both pros and cons for mission optimization.  There also exist 3-

dimensional periodic orbits that can be used as efficient capture and transfer 

mechanisms for orbiters wishing to achieve low, highly-inclined science orbits about 

a planetary moon. 
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7 Appendix A: Nomenclature 

δ Turn angle of the V∞ vector during a fly-by 

ω Angular velocity of secondary body about the primary 

τ One time unit, defined by 1/ω 

γ Flight path angle between Vga and Vsc 

Γ Hénon’s notation for Jacobi constant in Hill’s Problem 

δmax The maximum turn angle of a fly-by when rmin is used 

E Energy of the spacecraft 

G Universal gravitation constant 

J3b, JH Jacobi constant expressed in the 3BP or Hill’s problem, respectively 

l Length unit in Hill’s problem 

L1, L2 Referring to the 1st and 2nd collinear Lagrangian or Libration points 

LU,TU,VU Abbrev. for normalized Length Unit, Time Unit, and Velocity Unit 

m1, m2, m3 Referring to the primary, secondary, or spacecraft, respectively 

P, Psc, Pga Period of the spacecraft/gravity-assist body 

R Distance between the primary, m1, and secondary, m2. 

r, r1, r2 Distance from the barycenter, primary, or secondary, respectively 

rga, aga 

Radius and semimajor axis of the gravity-assist body, which are 

equivalent 
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rmin Minimum allowable fly-by radius of the gravity-assist body  

rp Radius of closest approach to the gravity-assist body 

Si, Sr Inertial or rotational state vector, respectively 

T, Td Non-dimensional and dimensional Tisserand’s Parameter, respectively 

TR Periapsis distance equal to one Titan radius 

V∞ Hyperbolic excess velocity of the spacecraft with respect to m2  

Vc The local circular velocity at rp around m2 

Vga Velocity of the gravity-assist body (circular) 

Vp S/C Velocity at periapsis during a fly-by 

Vsc Spacecraft velocity with respect to the central body 

α The angle between V∞ and Vga 

∆V The change in velocity during a maneuver 

µ Reduced mass of the system - m2/(m1+m2) 

µ1 , µ2 Gravitational parameter (GM) of the primary (1) and secondary (2) 
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8 Appendix B:  Coordinate Transformations 

The state of a space craft in the rotating frame is given by 
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where sr is the state in nondimensional units and Td
n is the transformational matrix 
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To transform the state from the rotational (or synodic) frame to the inertial (or 

sidereal) frame we must take into account the rotational offset, θ, and the angular rate, 

ω = θ& .  Here we will assume the offset is zero (see Anderson (2005) for non-zero θ 

transformations).  Since the Z axes are aligned in both frames we can write 
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where the subscript ‘i’ denotes the inertial frame.  (A subscript ‘r’ has been omitted 

from the rotational quantities for clarity and redundancy).  Notice that ω = 1 in the 

nondimensional frame.  The relations in (2.72) can be reversed: 
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Recall that the rotating frame is centered at the barycenter of m1 and m2.  

However, most inertial frames are centered on either of the bodies.  As such we must 

shift the state vectors to the new center.   
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Where states with the added subscript ‘1’ refer to states centered at the primary and 

likewise, ‘2’, for the secondary. 
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9 Appendix C:  Notes on Lambert’s Problem 

Lambert’s problem is concerned with the determination of an orbit that passes 

between two positions within a specified time-of-flight. This classic astrodynamic 

problem is also known as the orbital two-point boundary value problem (TPBVP) or 

the flyby and rendezvous problems. 

9.1 Lambert’s Theorem 

The theorem states that the time to traverse a trajectory depends only upon the 

length of the semimajor axis a of the transfer trajectory, the sum ri+ rf of the 

distances of the initial and final positions relative to a central body, and the length c 

of the chord joining these two positions. This relationship can be stated as follows: 

 tof = tof(ri+ rf, c, a) (9.1) 

Using a geometrical approach starting from Kepler’s second law (orbits sweep 

out equal areas in equal times), we can derive the following form of Kepler’s 

equation 

 )sin(
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 (9.2) 

from which we can write   
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where E is the eccentric anomaly associated with radius r, E0 is the eccentric anomaly 

at r0 , and t = 0 when r = r0.  At this point we introduce the following trigonometric 

sum and difference identities: 
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If we let E = α and E0 = β and substitute the first trig identity into Equation 

9.3, we have the following equation: 
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If we manipulate the elliptic relationships given by 
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we obtain: 
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Next, we make use of the following three relationships: 
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along with the trigonometric half angle formulas and several additional substitutions 

to derive the time-of-flight form of Lambert’s theorem 
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If we wish to take into account multiple revolutions the time is given by 
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where k is the number of complete revolutions and E is given in radians.  The process 

of solving Lambert’s theorem for any two position vectors and transfer time is done 

using iterations on a universal variable formulation (Vallado, 1997; Prussing and 

Conway, 1993). 

9.2 Multi-Revolution Solutions to Lambert’s Problem 

The universal variables solution to Lambert’s problem, as discussed in Section 

2.1.3, only admits hyperbolic and elliptical solutions of less than one full revolution.  

This is due to the omission of the 2kπ term of Equation 2.8.  The parameter z 

increases monotonically with total TOF until z = (2π)2 and TOF � ∞.  This is shown 

in Figure 9.1.  When z is negative the solution is hyperbolic and elliptical when it is 

greater than zero.  However, for long transfer times, it is possible to complete 
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multiple revolutions of the transfer ellipse before rendezvous occurs.  This happens 

when z > (2π)2.  Above this value, TOF decreases as z increases up to some minimum 

TOF, and then begins increasing to infinity again at z = (4π)2.  These solutions 

correspond to a type III trajectory of up to 1.5 revolutions.34 
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Figure 9.1. Universal variables solution regions for Lambert’s problem. 

Except for the minimum TOF (around z = 73 in Figure 9.1), type III 

trajectories have both an inbound and outbound solution for a given TOF.  This is 

shown by the red and green ellipses in Figure 9.2.  Both have the same transfer time 

and are followed for ~1.5 revolutions before the transfer is complete.  Specifying that 

                                                 

34 Type I and II trajectories have transfers of less than 180 degrees and greater than 180 degrees, 

respectively. 

Hyperbolic 

Multiple Revolution Elliptical 
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a multi-revolution solution be used requires that a proper initial guess and bounds be 

given for z before the iteration scheme takes place.  It is also important to use a 

method that considers solutions that are both increasing and decreasing.  For this 

reason it is not recommended to use a bisection technique that only finds solutions 

with positive slope.  However, both secant and Newton iteration schemes work quite 

well. 
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Figure 9.2. Type III inbound (red) and outbound (green) transfer trajectories. 

For type III trajectories, the bounds on z must be set to (2π)2 and (4π)2.  Above 

this region the z vs. TOF plot makes another dip between (4π)2 and (8π)2, 

corresponding to type IV trajectories, which have greater than 540° transfers.  This 
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End 
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trend continues with asymptotes at (16π)2, (32π)2, and so on, marking the boundaries 

for higher revolution transfers. 
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10 Appendix D:  Tables of V∞ Leveraging Sequences 

These tables contain some of the most efficient sequences found during the 

Monte Carlo simulations.  In each table the total time (in TU35), total ∆V (in VU36), 

and resonance sequence are listed.  The resonances are listed in decimal form.  For 

example, “2” is 2:1, “3.75” is 15:4, etc.  The sequences begin at V∞ = 0 and progress 

outward until a 6:1 resonance with α = 0 is achieved.  The zeros after the “6” are 

merely place holders in the output. 

The sequences where a zero is listed before 6:1 is reached indicates that a 

phasing orbit was required.  The resonance immediately preceding that zero is a 

phasing resonance where no leveraging maneuver is performed.  Sequences with 

values less than one indicate that a non-tangential maneuver was used.  This is where 

α does not return to zero after a flyby, and a leveraging maneuver is performed on the 

subsequent resonance.  The value that is less than one is the magnitude of α in 

degrees, divided by 100, for the resonance immediately following. 

                                                 

35 The time units here are the period of the gravity-assist body (P), not P/2π as used in the 3BP. 

36 One velocity unit is equal to the circular velocity of the gravity-assist body. 
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Table 10.1.  Top Sequences with Vc = 0.3 and no crossing of the δmax line (NX). 
(See preceding paragraphs for column descriptions). 

T ∆∆∆∆V Sequence 

75 0.0442 1.67 1.75 2 3 3.75 4 5 5.5 5.75 6 

21 0.0445 1.75 2 3 4 5 6 0 0 0 0 

45 0.0446 1.75 2 3 4 4.8 5 6 0 0 0 

22 0.0446 1.67 1.75 2 3 5 6 0 0 0 0 

56 0.0447 1.75 2 3 4 4.8 5 5.5 6 0 0 

16 0.0447 1.75 2 3 4 6 0 0 0 0 0 

18 0.0448 1.8 2 3 4 6 0 0 0 0 0 

37 0.0449 1.8 2 3 3.8 4 6 0 0 0 0 

46 0.0449 1.75 1.8 2 2.63 3 4 6 0 0 0 

64 0.0449 1.75 2 2.71 3 4 4.8 5 6 0 0 

43 0.0450 1.75 2 3 4.25 4.5 5 6 0 0 0 

31 0.0451 1.75 2 3 4.67 5 6 0 0 0 0 

54 0.0451 1.75 2 3 4.67 5 5.75 6 0 0 0 

17 0.0451 1.75 2 3 5 6 0 0 0 0 0 

65 0.0452 1.67 1.71 2 2.83 3 4.2 5 6 0 0 

89 0.0452 1.67 1.71 2 2.83 3 4.8 5 5.25 6 0 

28 0.0452 1.75 2 3 5 5.5 6 0 0 0 0 

63 0.0453 1.83 2 3 4.67 5 5.5 5.67 6 0 0 

89 0.0453 1.75 2 3 4.17 4.8 5 5.75 6 0 0 

54 0.0453 1.75 2 3 4 4.67 4.8 6 0 0 0 

83 0.0454 1.75 2 3 4.17 4.8 5 5.67 6 0 0 

70 0.0454 1.75 2 2.71 3 4 4.8 5.5 6 0 0 

75 0.0454 1.8 2 3 4.6 5 5.33 5.67 6 0 0 

68 0.0454 1.8 2 3 3.8 4.2 4.5 5 6 0 0 

33 0.0454 1.75 2 3 5 5.33 6 0 0 0 0 

72 0.0455 1.75 2 3 4.25 4.5 5.5 5.75 6 0 0 

69 0.0455 1.75 2 3 4.4 4.5 5.2 6 0 0 0 

74 0.0455 1.8 2 3 3.8 4 4.67 5.75 6 0 0 

38 0.0456 1.75 2 3 4.5 5.67 6 0 0 0 0 

40 0.0456 1.75 2 3 5.5 5.67 6 0 0 0 0 

44 0.0456 1.75 2 3 4.5 5.75 6 0 0 0 0 

48 0.0456 1.8 2 3 5.5 5.75 6 0 0 0 0 

44 0.0456 1.75 2 2.8 3 4 4.67 6 0 0 0 

80 0.0457 1.6 1.83 2 3 4 4.2 5 5.2 6 0 

51 0.0457 1.8 2 2.75 3 4.2 5 6 0 0 0 

29 0.0457 1.75 2 3 5.67 6 0 0 0 0 0 

67 0.0457 1.75 2 3 3.33 3.43 4 5.67 6 0 0 

71 0.0458 1.75 2 3 4.4 5.25 5.33 6 0 0 0 

46 0.0458 1.83 2 3 4 4.25 4.5 6 0 0 0 

42 0.0458 1.75 2 3 4.2 4.5 6 0 0 0 0 

42 0.0459 1.67 2 3 5 5.33 5.5 6 0 0 0 

69 0.0459 1.67 1.86 2 3.13 3.75 4 5 6 0 0 

16 0.0460 1.83 2 3 6 0 0 0 0 0 0 

57 0.0460 1.75 2 3 4.2 4.8 6 0 0 0 0 
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61 0.0460 1.75 2 3 4.2 5.5 5.67 6 0 0 0 

83 0.0460 1.75 2 3 3.6 3.67 4.6 4.67 5 6 0 

39 0.0461 1.75 2 3 3.29 4 6 0 0 0 0 

63 0.0462 1.5 1.71 2 3 4.75 4.8 6 0 0 0 

54 0.0462 1.75 2 2.8 3 3.83 5 6 0 0 0 

21 0.0462 1.67 2 3 5.5 6 0 0 0 0 0 

62 0.0462 1.5 1.63 2 2.8 3 3.5 4 5 5.5 6 

39 0.0462 1.67 2 3 3.33 3.75 4 6 0 0 0 

95 0.0462 1.75 2 2.8 2.88 3 3.5 3.8 4.5 5.5 6 

78 0.0463 1.75 2 3 3.83 4.4 5.25 6 0 0 0 

65 0.0463 1.8 2 2.75 3 4.2 4.75 6 0 0 0 

14 0.0464 2 3 4 5 6 0 0 0 0 0 

61 0.0464 1.75 2 3 3.33 4 4.33 5 5.67 6 0 

62 0.0464 1.83 1.88 2 3.57 4 5 6 0 0 0 

37 0.0464 1.67 2 2.6 3 4.5 5 6 0 0 0 

52 0.0464 1.83 2 3 3.5 4.8 5 6 0 0 0 

70 0.0464 1.8 2 3 3.8 4.2 5.33 6 0 0 0 

37 0.0465 2 3 4 5 5.75 6 0 0 0 0 

38 0.0465 2 3 4 4.8 5 6 0 0 0 0 

33 0.0465 1.67 2 2.8 3 4.5 6 0 0 0 0 

36 0.0465 1.75 2 2.6 3 5.5 6 0 0 0 0 

42 0.0465 2 3 4 5 5.5 5.67 6 0 0 0 

31 0.0465 2 3 4 5 5.67 6 0 0 0 0 

48 0.0465 1.75 2 2.67 3 4.25 5.5 6 0 0 0 

26 0.0465 1.8 2 3 3.5 5 6 0 0 0 0 

43 0.0465 2 3 4 5.5 5.75 6 0 0 0 0 

37 0.0465 2 3 4 4.5 4.67 5 6 0 0 0 

20 0.0466 2 3 4 5.5 6 0 0 0 0 0 

69 0.0466 1.8 2 3.5 4 4.75 5 5.75 6 0 0 

9 0.0466 2 3 4 6 0 0 0 0 0 0 

80 0.0466 1.83 1.88 2 3.57 4 5.75 6 0 0 0 

88 0.0466 1.75 2 3 3.33 4 4.33 5 5.25 5.75 6 

94 0.0466 1.83 1.88 2 3.57 4 5 5.25 5.5 6 0 

37 0.0466 2 3 4 4.6 5 6 0 0 0 0 

23 0.0466 1.67 1.75 2 4 5 6 0 0 0 0 

46 0.0466 1.75 2 3.6 3.75 4 6 0 0 0 0 

56 0.0466 1.75 2 2.63 3 4.6 6 0 0 0 0 

65 0.0467 1.75 2 3.25 3.67 4 4.6 5 6 0 0 

34 0.0467 2 3 4 4.5 5 5.5 6 0 0 0 

64 0.0467 1.75 1.8 2 2.5 3 3.6 3.75 5 6 0 

49 0.0467 1.5 1.6 2 3 5 5.5 5.67 6 0 0 

85 0.0467 1.75 2 2.71 3 3.8 4.8 5.5 6 0 0 

30 0.0467 2 3 4 5 5.33 6 0 0 0 0 

67 0.0467 1.6 2 3 4 4.4 5 5.75 6 0 0 

66 0.0467 1.8 2 2.75 3 3.5 4.17 4.5 6 0 0 

21 0.0468 1.5 1.86 2 3 6 0 0 0 0 0 

44 0.0468 1.75 1.8 2 4 5 5.67 6 0 0 0 

53 0.0468 1.67 2 3 3.2 3.83 4 6 0 0 0 

60 0.0468 1.67 2 2.5 2.8 3 4.4 4.5 6 0 0 

38 0.0468 1.75 2 3.57 4 6 0 0 0 0 0 
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Table 10.2. Top Sequences with Vc = 0.3 and phasing (PH). (See preceding 
paragraphs for column descriptions). 

T ∆∆∆∆V Sequence 

52 0.0500 1.67 1.75 2 5 0 5.33 5.67 6 0 0 

53 0.0502 1.67 1.86 2 5 0 5.5 5.67 6 0 0 

36 0.0503 1.67 1.86 2 5 0 5.5 6 0 0 0 

36 0.0507 1.67 1.75 2 5 0 5.67 6 0 0 0 

42 0.0509 1.75 2 5 0 5.5 5.67 6 0 0 0 

25 0.0509 1.75 2 5 0 5.5 6 0 0 0 0 

31 0.0512 1.75 2 5 0 5.67 6 0 0 0 0 

29 0.0518 1.67 2 5 0 5.67 6 0 0 0 0 

14 0.0518 1.75 2 5 0 6 0 0 0 0 0 

35 0.0519 1.67 2 5 0 5.75 6 0 0 0 0 

18 0.0520 1.83 2 5 0 6 0 0 0 0 0 

17 0.0521 1.5 1.75 2 5 0 6 0 0 0 0 

12 0.0524 1.67 2 5 0 6 0 0 0 0 0 

34 0.0524 2 5 0 5.33 5.5 6 0 0 0 0 

45 0.0524 2 5 0 5.25 5.67 6 0 0 0 0 

44 0.0525 2 5 0 5.25 5.33 6 0 0 0 0 

28 0.0525 2 5 0 5.25 6 0 0 0 0 0 

23 0.0526 2 5 0 5.33 6 0 0 0 0 0 

18 0.0528 2 5 0 5.5 6 0 0 0 0 0 

24 0.0531 2 5 0 5.67 6 0 0 0 0 0 

42 0.0534 1.5 2 5 0 5.25 5.5 6 0 0 0 

37 0.0534 1.5 2 5 0 5.33 5.5 6 0 0 0 

36 0.0535 1.5 2 5 0 5.2 6 0 0 0 0 

15 0.0535 1.6 2 5 0 6 0 0 0 0 0 

7 0.0537 2 5 0 6 0 0 0 0 0 0 

21 0.0538 1.5 2 5 0 5.5 6 0 0 0 0 

27 0.0541 1.5 2 5 0 5.67 6 0 0 0 0 

33 0.0542 1.5 2 5 0 5.75 6 0 0 0 0 

10 0.0547 1.5 2 5 0 6 0 0 0 0 0 

14 0.0627 1.4 2 5 0 6 0 0 0 0 0 

42 0.0679 1.8 1.86 2.14 5 0 6 0 0 0 0 

27 0.0680 1.33 2 5 0 5.33 6 0 0 0 0 

27 0.0682 1.8 2.17 5 0 6 0 0 0 0 0 

22 0.0682 2 2.14 5 0 6 0 0 0 0 0 

39 0.0682 2 2.13 2.14 5 0 6 0 0 0 0 

41 0.0688 1.6 1.83 2.13 5 0 6 0 0 0 0 

24 0.0689 2 2.13 5 0 6 0 0 0 0 0 

11 0.0691 1.33 2 5 0 6 0 0 0 0 0 

69 0.0716 1.83 1.88 4 0 5 5.5 5.75 6 0 0 

31 0.0720 1.8 1.86 4 0 5 6 0 0 0 0 

21 0.0726 1.5 2.17 5 0 6 0 0 0 0 0 

48 0.0728 1.67 1.83 4 0 5 5.75 6 0 0 0 

78 0.0728 1.75 1.8 4 0 4.75 5 5.5 5.75 6 0 

61 0.0729 1.5 1.88 4 0 5 5.5 5.75 6 0 0 

62 0.0729 1.67 1.88 5 0 5.25 5.33 6 0 0 0 

65 0.0731 1.5 1.88 4 0 5 5.25 5.67 6 0 0 

55 0.0733 1.75 1.8 4 0 4.75 5.33 6 0 0 0 
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28 0.0733 1.6 1.83 4 0 5 6 0 0 0 0 

25 0.0734 1.5 1.86 4 0 5 6 0 0 0 0 

46 0.0734 1.67 1.75 4 0 4.5 5 5.33 6 0 0 

68 0.0734 1.5 1.6 1.88 5 0 5.25 5.33 6 0 0 

36 0.0735 1.5 1.86 4 0 5 5.5 6 0 0 0 

39 0.0735 1.75 1.8 4 0 4.75 6 0 0 0 0 

27 0.0736 1.8 4 0 4.67 6 0 0 0 0 0 

47 0.0737 1.83 1.88 5 0 5.33 6 0 0 0 0 

42 0.0737 1.75 4 0 4.5 5 5.67 6 0 0 0 

23 0.0740 1.67 1.8 4 0 5 6 0 0 0 0 

34 0.0742 1.67 1.8 4 0 5 5.5 6 0 0 0 

60 0.0742 1.8 4 0 4.8 5.75 6 0 0 0 0 

62 0.0743 1.67 1.8 4 0 5 5.33 5.75 6 0 0 

29 0.0743 1.5 1.6 1.8 4 0 5 6 0 0 0 

36 0.0743 1.75 1.8 4 0 5 5.5 6 0 0 0 

61 0.0749 1.8 1.86 5 0 5.5 5.75 6 0 0 0 

56 0.0751 1.8 4 0 5 5.25 5.67 6 0 0 0 

35 0.0754 1.75 4 0 4.75 5 6 0 0 0 0 

51 0.0754 1.6 1.83 5 0 5.33 5.5 6 0 0 0 

46 0.0755 1.75 4 0 4.75 5 5.5 6 0 0 0 

37 0.0755 1.5 1.86 5 0 5.33 6 0 0 0 0 

35 0.0756 1.67 1.75 4 0 4.75 6 0 0 0 0 

34 0.0757 1.5 1.88 5 0 5.5 6 0 0 0 0 

51 0.0757 1.75 4 0 4.75 5 5.33 6 0 0 0 

23 0.0757 1.5 1.63 3 0 4 6 0 0 0 0 

81 0.0759 1.5 1.63 3 0 4 4.67 5 5.33 5.75 6 

30 0.0761 1.75 4 0 4.75 6 0 0 0 0 0 

49 0.0762 1.5 1.86 5 0 5.5 5.67 6 0 0 0 

32 0.0762 1.5 1.86 5 0 5.5 6 0 0 0 0 

21 0.0764 1.67 1.75 4 0 5 6 0 0 0 0 

44 0.0765 1.67 1.75 4 0 5 5.75 6 0 0 0 

91 0.0766 1.67 1.75 4 0 5 5.2 5.33 5.5 5.67 6 

40 0.0767 1.5 3 0 3.57 4 5 6 0 0 0 

58 0.0767 1.67 1.75 4 0 5 5.2 5.5 6 0 0 

27 0.0769 1.67 4 0 4.33 5 6 0 0 0 0 

60 0.0769 1.67 4 0 4.33 4.4 5 5.5 6 0 0 

61 0.0769 1.67 4 0 4.33 5 5.5 5.75 6 0 0 

68 0.0769 1.5 3 0 3.57 4 5.33 5.67 6 0 0 

44 0.0770 1.67 4 0 4.33 5 5.67 6 0 0 0 

80 0.0770 1.67 4 0 4.33 4.5 4.6 5 5.25 6 0 

38 0.0771 1.5 1.86 5 0 5.67 6 0 0 0 0 

36 0.0771 1.5 1.63 3 0 4 4.33 6 0 0 0 

56 0.0771 1.5 3 0 3.57 4 5.25 6 0 0 0 

27 0.0772 1.8 1.86 5 0 6 0 0 0 0 0 

73 0.0773 1.67 4 0 4.33 4.67 5.25 5.33 6 0 0 

54 0.0773 1.67 4 0 4.33 5.25 5.5 6 0 0 0 

29 0.0773 1.5 1.6 3 0 4 5.5 6 0 0 0 

45 0.0773 1.5 1.6 3 0 4 5.33 5.5 6 0 0 

44 0.0774 1.5 1.86 5 0 5.75 6 0 0 0 0 
47 0.0775 1.6 1.83 5 0 5.75 6 0 0 0 0 



 147 

 

Table 10.3. Top Sequences with Vc = 0.3 and non-tangential (NT) leveraging. (See 
preceding paragraphs for column descriptions). 

T ∆∆∆∆V Sequence 

43 0.0505 1.8 2 0.06 5.25 5.5 6 0 0 

30 0.0506 1.75 2 0.06 5.25 6 0 0 0 

51 0.0507 1.75 2 0.05 5.2 5.33 6 0 0 

62 0.0507 1.83 2 0.05 5.2 5.75 6 0 0 

31 0.0507 1.67 1.75 2 0.06 5.67 6 0 0 

36 0.0509 1.75 2 0.07 5.4 6 0 0 0 

41 0.0509 1.6 1.67 2 0.05 5.2 6 0 0 

37 0.0512 1.75 2 0.05 5.6 6 0 0 0 

33 0.0512 1.67 2 0.05 5.2 6 0 0 0 

26 0.0512 1.75 2 0.06 5.67 6 0 0 0 

39 0.0512 1.8 2 0.05 5.6 6 0 0 0 

34 0.0515 1.67 2 0.07 5.4 6 0 0 0 

7 0.0522 2 0.1 5 6 0 0 0 0 

62 0.0523 2 0.05 5.2 5.5 5.75 6 0 0 

39 0.0523 2 0.05 5.2 5.5 6 0 0 0 

34 0.0524 2 0.06 5.25 5.5 6 0 0 0 

51 0.0524 2 0.05 5.2 5.75 6 0 0 0 

46 0.0524 2 0.06 5.25 5.75 6 0 0 0 

40 0.0525 2 0.06 5.25 5.67 6 0 0 0 

28 0.0525 2 0.05 5.2 6 0 0 0 0 

23 0.0525 2 0.06 5.25 6 0 0 0 0 

44 0.0525 2 0.05 5.2 5.33 6 0 0 0 

52 0.0527 2 0.07 5.4 5.75 6 0 0 0 

29 0.0528 2 0.07 5.4 6 0 0 0 0 

30 0.0531 2 0.05 5.6 6 0 0 0 0 

19 0.0531 2 0.06 5.67 6 0 0 0 0 

55 0.0537 1.5 2 0.07 5.4 5.75 6 0 0 

49 0.0538 1.5 2 0.07 5.4 5.67 6 0 0 

32 0.0538 1.5 2 0.07 5.4 6 0 0 0 

39 0.0550 2 0.1 5 5.25 5.5 6 0 0 

51 0.0551 2 0.1 5 5.25 5.75 6 0 0 

28 0.0552 2 0.1 5 5.25 6 0 0 0 

39 0.0553 1.4 1.5 2 0.07 5.4 6 0 0 

34 0.0598 1.33 1.57 2 0.06 5.67 6 0 0 

44 0.0679 1.33 2 0.06 5.25 5.67 6 0 0 

34 0.0685 1.33 2 0.05 5.6 6 0 0 0 

30 0.0715 1.75 1.8 0.08 4.5 5 6 0 0 

42 0.0721 1.75 1.8 0.08 4.5 5.67 6 0 0 

95 0.0722 1.8 1.86 0.1 4.8 5.25 5.5 5.67 6 

67 0.0722 1.75 1.86 0.1 4.8 5.75 6 0 0 

67 0.0724 1.8 1.86 0.1 4.8 5.25 6 0 0 

85 0.0724 1.67 1.75 1.83 0.1 4.8 5.25 5.67 6 

63 0.0724 1.8 1.86 0.1 4.8 5.67 6 0 0 

69 0.0725 1.8 1.86 0.1 4.8 5.75 6 0 0 
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46 0.0726 1.8 1.86 0.1 4.8 6 0 0 0 

81 0.0731 1.67 1.75 0.08 4.4 4.75 5 5.75 6 

45 0.0731 1.6 1.86 0.1 4.8 6 0 0 0 

39 0.0732 1.67 1.75 0.08 4.4 5 6 0 0 

28 0.0732 1.8 0.07 4.67 5 6 0 0 0 

73 0.0732 1.67 1.75 0.08 4.4 5 5.5 5.75 6 

27 0.0733 1.8 1.86 0.1 5 6 0 0 0 

92 0.0735 1.67 1.75 0.08 4.4 4.8 5.5 5.75 6 

89 0.0736 1.67 1.75 0.08 4.4 5.25 5.5 5.75 6 

71 0.0736 1.6 1.83 0.1 4.8 5.5 5.67 6 0 

65 0.0736 1.67 1.75 0.08 4.4 5 5.2 6 0 

44 0.0736 1.67 1.86 0.05 5.2 6 0 0 0 

68 0.0737 1.67 1.75 0.08 4.4 4.6 5.5 6 0 

57 0.0738 1.5 1.86 0.1 4.8 5.67 6 0 0 

50 0.0738 1.67 1.75 0.08 4.4 5.33 6 0 0 

43 0.0739 1.6 1.83 0.1 4.8 6 0 0 0 

51 0.0739 1.67 1.75 0.08 4.4 5.67 6 0 0 

40 0.0739 1.5 1.86 0.1 4.8 6 0 0 0 

57 0.0739 1.67 1.75 0.08 4.4 5.75 6 0 0 

34 0.0741 1.67 1.75 0.08 4.4 6 0 0 0 

35 0.0741 1.83 0.1 4.8 6 0 0 0 0 

21 0.0741 1.75 0.08 4.5 5 6 0 0 0 

44 0.0742 1.67 1.75 0.08 4.5 5.75 6 0 0 

40 0.0742 1.67 1.75 0.06 4.6 5 6 0 0 

63 0.0743 1.67 1.75 0.06 4.6 5 5.75 6 0 

70 0.0743 1.75 0.08 4.5 5 5.25 5.5 5.67 6 

51 0.0745 1.75 1.8 0.1 4.8 5.5 6 0 0 

42 0.0745 1.75 0.08 4.5 5 5.25 6 0 0 

49 0.0746 1.75 0.08 4.5 5.33 5.67 6 0 0 

56 0.0746 1.75 1.8 0.1 4.8 5.33 6 0 0 

32 0.0747 1.75 0.08 4.5 5.33 6 0 0 0 

63 0.0747 1.75 1.8 0.1 4.8 5.75 6 0 0 

42 0.0748 1.5 1.63 1.75 0.07 4.67 5 6 0 

16 0.0749 1.75 0.08 4.5 6 0 0 0 0 

49 0.0752 1.8 0.1 4.8 5.33 6 0 0 0 

33 0.0753 1.8 0.1 4.8 6 0 0 0 0 

40 0.0755 1.6 1.83 0.06 5.25 6 0 0 0 

43 0.0755 1.83 1.88 0.06 5.67 6 0 0 0 

61 0.0761 1.5 1.71 0.08 4.4 4.8 6 0 0 

58 0.0762 1.5 1.83 0.06 5.25 5.75 6 0 0 

51 0.0762 1.67 1.75 1.83 0.08 5.6 6 0 0 

65 0.0764 1.5 1.63 0.13 3.8 4.17 5 6 0 

49 0.0765 1.6 1.86 0.08 5.6 6 0 0 0 

70 0.0767 1.67 1.75 0.1 4.8 5.5 5.75 6 0 

69 0.0768 1.5 1.63 0.13 3.8 4.17 4.5 6 0 

30 0.0771 1.6 1.83 0.08 5.5 6 0 0 0 

79 0.0772 1.5 1.67 0.08 4.25 5 5.2 5.75 6 

60 0.0773 1.75 1.8 0.07 5.4 5.67 6 0 0 

43 0.0773 1.75 1.8 0.07 5.4 6 0 0 0 

65 0.0773 1.5 0.09 3.5 4 4.25 4.6 5.5 6 
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Table 10.4.  Most efficient sequences for Vc = 0.2. 

T ∆∆∆∆V Sequence 

37 0.05262 1.5 1.6 1.67 2 3 0.09 5.33 6 0 0 0 

58 0.05264 1.4 1.5 1.78 2 0.15 3 0.08 4.4 5 6 0 

74 0.05275 1.5 1.8 2 3 4.33 5 5.5 5.6 6 0 0 

100 0.05413 1.5 1.6 2 2.71 2.75 3 5 0 5.2 5.75 6 

75 0.05421 1.5 1.6 2 2.67 3 0.1 4.8 5.33 5.5 6 0 

26 0.05446 1.67 1.75 2 0.13 3 4 0 5 6 0 0 

44 0.05451 1.5 2 3 4 5 5.4 6 0 0 0 0 

48 0.05456 1.5 1.6 2 2.67 3 0.1 4.8 6 0 0 0 

81 0.05457 1.67 1.75 2 2.86 3 0.08 5.25 5.75 6 0 0 

61 0.05460 1.5 2 3 4 5.2 5.75 6 0 0 0 0 

22 0.05467 1.5 1.67 2 3 0 4 5 6 0 0 0 

17 0.05487 1.5 2 3 4 0 5 6 0 0 0 0 

66 0.05490 1.67 1.75 2 0.13 3 5 0 5.25 5.75 6 0 

37 0.05491 1.67 2 3 4 5.75 6 0 0 0 0 0 

38 0.05493 1.67 1.89 2 3 0.1 5.5 6 0 0 0 0 

17 0.05494 1.6 2 3 4 6 0 0 0 0 0 0 

61 0.05495 1.5 1.71 2 0.08 3.2 3.5 4 4.25 6 0 0 

61 0.05496 1.5 2 3 4.5 5 5.33 5.75 6 0 0 0 

43 0.05499 1.67 1.75 2 0.13 3 5 0 5.25 6 0 0 

37 0.05500 1.5 2 3 4 4.5 5.33 6 0 0 0 0 

12 0.05505 1.5 2 0.14 3 4 6 0 0 0 0 0 

26 0.05514 1.67 2 3 3.5 4 5 6 0 0 0 0 

54 0.05531 1.5 2 3 0.05 4.75 5.4 6 0 0 0 0 

38 0.05532 1.5 2 3 0.07 4.67 5.33 6 0 0 0 0 

45 0.05532 1.4 1.43 1.75 2 0.13 3 5 0 5.5 6 0 

41 0.05536 1.5 2 3 0.09 5.33 5.67 6 0 0 0 0 

48 0.05540 1.5 2 3 0.06 4.6 5.67 6 0 0 0 0 

34 0.05543 1.5 2 3 5 0 5.25 6 0 0 0 0 

41 0.05544 1.5 2 3 5 0 5.6 6 0 0 0 0 

59 0.05547 1.5 2 0.13 3 0.1 4.8 5.4 6 0 0 0 

13 0.05558 1.5 2 3 5 0 6 0 0 0 0 0 

55 0.05561 1.5 2 3 4 0 4.75 4.8 6 0 0 0 

26 0.05562 1.5 2 3 4 0 4.67 6 0 0 0 0 

62 0.05563 1.5 2 2.71 3 4.5 5.2 6 0 0 0 0 

18 0.05563 1.6 2 3 0.1 5 6 0 0 0 0 0 

83 0.05564 1.5 1.67 2 0.19 3.8 4.5 4.6 5 5.67 6 0 

109 0.05566 1.5 2 2.78 3 4.33 5.2 5.25 5.33 6 0 0 

51 0.05568 1.75 2 3 3.8 4 5 5.5 6 0 0 0 

37 0.05570 1.5 1.6 2 3 0 3.5 4.5 5 6 0 0 

43 0.05575 1.75 2 3 4 5.4 6 0 0 0 0 0 

70 0.05579 1.67 2 3 5 0 5.4 5.6 6 0 0 0 

47 0.05580 1.5 2 2.67 2.86 3 0.1 5.5 6 0 0 0 

59 0.05581 1.67 2 3 5 0 5.25 5.75 6 0 0 0 

57 0.05583 1.5 2 0.17 3 5 0 5.4 5.67 6 0 0 

44 0.05585 1.5 2 3 4.17 5.5 6 0 0 0 0 0 

97 0.05585 1.5 2 2.63 3 0.1 4.8 5.25 5.75 6 0 0 

78 0.05587 1.5 1.56 1.86 2 2.78 4 5.67 6 0 0 0 
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Table 10.5.  Fastest sequences for Vc = 0.2. 

T ∆∆∆∆V Sequence 

0 0.13147 6 0 0 0 0 0 

4 0.10834 4 6 0 0 0 0 

5 0.12155 5 6 0 0 0 0 

6 0.06593 2 0.23 4 6 0 0 

6 0.06654 2 0.25 4 6 0 0 

6 0.06712 2 0.27 4 6 0 0 

6 0.06723 2 0.27 4 6 0 0 

6 0.06741 2 0.28 4 6 0 0 

6 0.06750 2 0.29 4 6 0 0 

6 0.06775 2 0.29 4 6 0 0 

6 0.06800 2 0.3 4 6 0 0 

6 0.06816 2 4 0 6 0 0 

7 0.08917 3 4 6 0 0 0 

8 0.08986 3 0.1 5 6 0 0 

8 0.08989 3 0.11 5 6 0 0 

8 0.09031 3 5 0 6 0 0 

9 0.05996 1.5 2 0.25 4 6 0 

9 0.06092 1.5 2 0.29 4 6 0 

9 0.06103 2 3 4 6 0 0 

9 0.06142 1.5 2 0.3 4 6 0 

9 0.06158 1.5 2 4 0 6 0 

9 0.06372 2 3 0 4 6 0 

9 0.10814 4 5 6 0 0 0 

9 0.11635 4.5 6 0 0 0 0 

10 0.06172 2 3 0.1 5 6 0 

10 0.06216 2 3 5 0 6 0 

10 0.07147 1.33 2 0.25 4 6 0 

10 0.07309 1.33 2 4 0 6 0 

10 0.08771 2.5 0.18 5 6 0 0 

10 0.08810 2.5 5 0 6 0 0 

10 0.08826 2.5 0.17 5 6 0 0 

10 0.08838 1.5 3 0 4 6 0 

10 0.09238 1.5 0.31 3 4 6 0 

10 0.13789 1.33 2 0 4 0 6 

11 0.06042 1.67 2 0.25 4 6 0 

11 0.06100 1.67 2 0.27 4 6 0 

11 0.06111 1.67 2 0.27 4 6 0 

11 0.06163 1.67 2 0.29 4 6 0 

11 0.06188 1.67 2 0.3 4 6 0 

11 0.06204 1.67 2 4 0 6 0 

11 0.06597 2 4 0 5 6 0 

11 0.06621 2 0.23 4 5 6 0 

11 0.08531 1.5 0.28 3 0.11 5 6 

11 0.08751 1.5 0.31 3 0.11 5 6 

11 0.08838 2.33 4 0 6 0 0 

11 0.09512 1.5 0.37 3 5 0 6 

11 0.10021 3.5 4 6 0 0 0 
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Table 10.6  Fastest sequences for Vc = 0.1. 

T ∆∆∆∆V Sequence 

0 0.1919 6 0 0 0 0 0 0 0 0 0 

24 0.2696 1.67 0.62 2 5.67 0 6 0 0 0 0 

28 0.1862 5.5 5.67 0 6 0 0 0 0 0 0 

31 0.1721 4.5 0.15 5 5.67 0 6 0 0 0 0 

33 0.1793 5 5.5 0 5.67 0 6 0 0 0 0 

34 0.1882 5.67 5.67 0 6 0 0 0 0 0 0 

34 0.1861 5.5 5.75 6 0 0 0 0 0 0 0 

35 0.2633 1.67 0.61 2 5.5 0 5.67 0 6 0 0 

35 0.2597 1.67 0.61 2 5.5 0 5.67 0 6 0 0 

35 0.1706 4.33 0.17 5 5.67 0 6 0 0 0 0 

36 0.2775 1.67 0.62 2 5.8 0 6 0 0 0 0 

38 0.2651 1.6 0.61 2 5.5 0 5.67 0 6 0 0 

39 0.1794 5 5.5 0 5.75 6 0 0 0 0 0 

39 0.1683 4.25 0.15 5 5.67 0 6 0 0 0 0 

39 0.1628 4 0.11 4.33 0.15 5 5.67 0 6 0 0 

40 0.2586 1.67 0.59 2 5 0 5.5 0 5.67 0 6 

42 0.1723 4.5 5 0 5.5 0 5.67 0 6 0 0 

42 0.1720 4.5 0.14 5 5.5 0 5.67 0 6 0 0 

42 0.1720 4.5 0.13 5 5.5 0 5.67 0 6 0 0 

42 0.1718 4.5 0.11 5 5.5 0 5.67 0 6 0 0 

42 0.1718 4.5 0.1 5 0.08 5.5 5.67 0 6 0 0 

43 0.1641 4 0.08 4.25 0.17 5 5.67 0 6 0 0 

44 0.1842 5.33 5.5 0 5.67 0 6 0 0 0 0 

44 0.1841 5.33 5.5 5.67 0 6 0 0 0 0 0 

44 0.1840 5.33 0.07 5.5 5.67 0 6 0 0 0 0 

45 0.1862 5.5 5.67 5.67 0 6 0 0 0 0 0 

45 0.1793 5 0.1 5.5 5.8 0 6 0 0 0 0 

46 0.1699 4.33 5 0 5.5 0 5.67 0 6 0 0 

46 0.1623 4 0.13 4.5 5 0 5.5 0 5.67 0 6 

46 0.1621 4 0.18 4.67 5.5 0 5.67 0 6 0 0 

46 0.1620 4 0.19 4.67 5.5 0 5.67 0 6 0 0 

46 0.1619 4 0.13 4.5 0.1 5 5.5 0 5.67 0 6 

47 0.2649 1.67 1.71 0.61 2 5.5 0 5.67 0 6 0 

47 0.1752 4.67 5 0 5.5 0 5.67 0 6 0 0 

47 0.1749 4.67 0.11 5.33 5.67 0 6 0 0 0 0 

47 0.1747 4.67 0.11 5 0.08 5.5 5.67 0 6 0 0 

47 0.1747 4.67 0.11 5 0.07 5.5 5.67 0 6 0 0 

47 0.1747 4.67 0.11 5 5.5 0 5.67 0 6 0 0 

48 0.1722 4.5 5 0 5.5 0 5.75 6 0 0 0 

48 0.1634 4 0.15 4.4 0.17 5 5.67 0 6 0 0 

48 0.1626 4 0.11 4.4 0.15 5 5.67 0 6 0 0 

49 0.1795 5 0.05 5.33 5.5 0 5.67 0 6 0 0 

49 0.1794 5 0.05 5.33 5.5 5.67 0 6 0 0 0 

49 0.1794 5 0.07 5.4 5.67 0 6 0 0 0 0 



 152 

 


