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Multi-spacecraft systems can provide enhanced capability and robustness of space missions

as compared to their single-spacecraft counterparts. This improvement, however, comes at the

cost of a more complex mission design and optimization process. Spacecraft operators must also

contend with space becoming increasingly congested and contested. Both cooperative and non-

cooperative spacecraft interactions must be managed as an increasing number of spacecraft and

spacecraft operators populate space. While these opportunities and needs exist for multi-spacecraft

systems, trajectory optimization methods for them are relatively underdeveloped. Finding optimal

trajectories can be critical in enabling enhanced performance of these missions.

In this dissertation, optimization theory is employed to develop methods that can simultane-

ously optimize the trajectories of multiple, dynamically connected spacecraft to analyze both co-

operative and non-cooperative scenarios of interest. Several multi-spacecraft optimization methods

are developed that cover varying applications as well as mathematical formulations. Applications

explored in this work include: fuel-optimal multi-spacecraft rendezvous/deployment with uncon-

strained rendezvous/deployment orbits (e.g. constellation deployment), single and multiple space-

craft traveling salesman problems, cooperative and non-cooperative spacecraft collision avoidance,

Pareto-optimal single spacecraft low-thrust interplanetary trajectories that are robust to missed

thrust events (using a spacecraft swarm transcription), and fuel-optimal spacecraft pursuit-evasion

games with terminal rendezvous. The solutions provided to these problems provide additional

insight into each of these areas.

The mathematical techniques used in this work cover both single and multiple decision maker

scenarios. If it can be reasonably assumed that a single decision maker decides the controls for all

spacecraft, the multi-spacecraft optimization problem is formulated and solved as a mathematical



iii

programming (MPP) or optimal control problem (OCP). However, because multi-spacecraft prob-

lems are higher-dimensional than single-spacecraft optimization problems, solution methods that

use MPP or OCP formulations must be carefully constructed to manage this additional complexity.

When multiple decision makers must be accounted for, a di↵erential game perspective is used to find

optimal trajectories. This includes both zero-sum and general-sum games. The methods developed

in this work provide additional tools to design improved spacecraft systems and trajectories.
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