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Tardivel, Simon Charles Vincent (Ph.D., Aerospace Engineering)

The Deployment of Scientific Packages to Asteroid Surfaces

Thesis directed by Prof. Dr. Daniel J. Scheeres

A strategy for the deployment of landers to asteroid surfaces is described. The landing pods

are scientific packages with no guidance, navigation and control system, and no specific landing

apparatus, so as to minimize onboard platform and maximize payload. The landers are jettisoned

from a main spacecraft at high altitude over the target. They impact its surface, bouncing multiple

times before finally coming to rest.

The amended gravity field of an asteroid is described in general and regions favorable to

a deployment are found close to saddle equilibrium points. For elongated bodies and for binary

systems, a linearization shows that a branch of the unstable manifold intersects the surface of the

body; the strategy then consists of choosing initial conditions that will express this branch. For

quasi-axisymmetric bodies, the initial velocity of the lander is increased to guarantee an impact.

The efficacy of the strategy is numerically verified.

A model of the asteroid surface and of the interaction between the pod and this surface is

detailed. The asteroid surface is represented with three layers. The asteroid is first modeled using a

mesh of triangular facets that can represent its global shape down to the presence of large boulders

(greater than 1m). The presence of smaller rocks is accounted for via a stochastic model that

generates random collisions with rocks, at impact with the surface or during lasting contact motion

(rolling). Finally the interaction with the regolith is handled with a model of contact dynamics,

including surface forces and torques (reaction, friction and rolling resistance). The rolling resistance

force and torques experienced on regolith are defined and justified. Their coefficients are measured

by experiments and explained by theory and finite-element simulations.

Practical mission case studies are presented and discussed, for asteroid Itokawa, 2008 EV5,

1999 KW4 Alpha and Beta.
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Chapter 1

Introduction

1.1 Small bodies of the solar system

The study of small bodies of the solar system, such as asteroids and comets, has become a

topic of great interest for solar system science in the last two decades. Although comets have been

witnessed since the dawn of time, the first asteroid, Ceres, was only discovered in 1801 by Giuseppe

Piazzi, and mistaken for a new planet. During the 19th century, as their number grew and their

characteristics were better understood, it appeared that asteroids should be distinguished from the

usual planets. As observation techniques improved, it also became clear that asteroids consist of a

vast multitude of very different objects: from dwarf planets to small rocks. With the coincidental

development of theoretical scenarios of the formation of our solar system, the existence of asteroids

was useful to support the nebular hypothesis, a simple model of the solar system formation that

evolved, in modern astrophysics, into the Solar Nebular Model.

In this widely accepted theory, the majority of small bodies are the remnants of the pro-

toplanetary accretion that began shortly after protostellar formation, akin to leftover bricks on a

construction site. But this metaphor could give the impression that asteroids are dead celestial

bodies, forever in the shape they acquired a few billion years ago. On the contrary, recent stud-

ies have proven that asteroids have a rich history, evolving both through slow mechanisms and

catastrophic events (e.g. collisions, disruptions)[55, 75, 97, 65, 70, 56, 37, 80]. Small bodies are

an identified topic of interest for planetary science (Decadal Survey[1], chapter 4), and are a prime

source for understandings the formation of our solar system and of planetary systems in general.
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In 1993, the NASA spacecraft Galileo, while en route to Jupiter, crossed the path of 243

Ida, that had been known for more than a hundred years, and took a picture that undoubtedly

identified a natural satellite to Ida. Ida and its moonlet Dactyl became the first example of what

is known as an asteroid system, here more precisely a binary asteroid system. Today, the asteroid

scientific community estimates the percentage of binary asteroids to be near 16% of the total Near

Earth Object population[50], and the evolution of these systems has become a hot topic of asteroid

science.

In 2001, the NASA spacecraft NEAR-Shoemaker visited 433 Eros, orbiting it for over a year

and eventually landing at is surface, although this last part was not a mission objective. Amongst

the discoveries made on asteroid science, NEAR showed that the surface of Eros was probably

susceptible to evolution as some surface smoothing was observed: no crater smaller than a few

kilometers in size could be found, and ponds of dust had form here and there. Several theories

exist today[95, 68, 22, 37] to explain these striking features that were not envisioned before a craft

actually orbited an asteroid.

In 2005, the JAXA spacecraft Hayabusa met asteroid 25143 Itokawa. Two orders of mag-

nitude smaller than Ida and Eros, Itokawa had a very different aspect, and confirmed what ob-

servations and some theories had been predicting[36, 55]: it was a rubble pile made of monoliths,

boulders, small rocks and large grains[33]. This confirmation indicated the necessity of a better

understanding of asteroid internal structure, for this interrogation carries further than its scientific

importance.

Indeed, the encounter of a large asteroid with the Earth in the near future is a statistical

certainty. Although there is little chance this collision could be a catastrophic event, like the

Cretaceous-Paleogene event that caused or at least initiated the demise of the dinosaurs, the effect

of the impact of even a small asteroid near populated areas would be disastrous. The destructive

power of the impact of an asteroid of more than 10 m of diameter stands the comparison with the

largest thermonuclear explosions. Many planetary defense concepts have been imagined, ranging

from nuclear blast destruction or deviation, made famous in literature and movies, to the more
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exotic solar sailing gravitational tractors and paint-it-white methods. As of today, the most studied

and promising method involves an impact of some sort with the asteroid to alter its orbit long before

the time of collision.

Yet, without any information on the internal structure of asteroids, this strategy cannot be

fully understood. Landing on the surface of an asteroid, assessing its surface mechanisms behavior

and its internal structure and composition is then paramount both as a scientific issue and as

planetary defense issue. But, such operations are difficult, and the spacecraft that have gone to an

asteroid have shown us that the astrodynamics are indeed complex and that asteroid environments

should not be underestimated. Although the low-gravity provide us with significant advantages,

they come with significant challenges. On the positive side of things:

(1) Low-gravity makes impact speeds very low and non-threatening. No need of thrusters or

special devices to soften the landing, the lander already is at levels of speed (cm/s) that

do not endanger it in any way.

(2) Low-gravity makes spacecraft have total freedom off motion. For instance, if the spacecraft

realizes its descent or its orbit is not appropriate, 1m/s of ∆V is enough (in most cases) to

allow it to retreat to a safe position far from the asteroid.

But, at the same time:

(1) Low-gravity means low impact speeds, which in turn mean impacts have a much higher

coefficients of restitution. In general, and in first approximation, it can be said that all

rigid materials are elastic when the impact velocity goes to 0. In practice, it means the

lander bounces very high on all rigid surface (e.g. rocks).

(2) Low-gravity means that the bodies studied are not generally spherical and that their gravity

field is highly irregular, making trajectory prediction and even navigation very difficult.

(3) Low-gravity is an unknown environment for the behavior of grains. Depending on some

unknown parameters (e.g. cohesion, friction between particles), the sandy regolith could
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be a very hard surface or behave as a liquid or even a gas.

(4) Low-gravity and fast spin rate of some asteroids means that the amended gravity (gravity

and centrifugal force) cancels almost exactly at the equator. Reaching the surface is not

harder but staying on it becomes very challenging.

The goal of this thesis is to provide the reader with a simple and robust strategy for the

deployment of scientific packages at the surface of an asteroid. Taking advantage of the features of

asteroid environment to circumvent their inherent difficulty, this strategy provides needed technical

support for current and future missions of exploration of asteroids.

1.2 Literature review

Landing on object on a planetary body is never a small feat. We are so used to the success

of Mars landers that we might forget that these landings are made possible by the experience that

was gathered by dozens of failed landing missions. And, as of today, only one space agency has

successfully operated a lander on the surface of the red planet. Comparatively to Mars, or the

Moon or any other massive planetary body, landing on a small body is much easier. However,

there is not much experience of such operations. Consequently, there is also little knowledge of the

surface of a small body and its behavior to a landing. And finally, their is extremely little literature

on the topic and the papers that explicitly consider the motion of lander to and on the surface are

very limited. Hence, this literature review will be very short.

Before 2010 and the beginning of this work, to our knowledge, the only papers discussing the

deployment of a lander (or similar considerations) to an asteroid are:

(1) A description on the deployment of Hayabusa 1 target markers and how to minimize their

bouncing on the ground, published in 2001 (reference [71])

(2) A presentation of Hayabusa 1 rover Minerva and its surface motion, that unfortunately

never reached the surface (reference [102])
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(3) A theoretical analysis of transfers from a primary body to a secondary body of a binary

asteroid system in Chapter 4 and 5 of Bellerose’s Ph.D. dissertation in 2008 (reference [9])

Regarding these works, the first reference[71] considers an insightful qualitative analysis of

the astrodynamics of the deployment but does not go into the details of the landing trajectory. It

also considers only local surface motion, by imposing a flat surface in a constant gravity field. The

second reference [102] focuses on an analysis of the hopping mechanism of Minerva, that would

have allowed it to jump and thus travel distances across Itokawa. Although pivotal for the design

of hoppers, the paper does not provide any insight on the global trajectory in the complex gravity

field of the asteroid and does not detail the surface topography or composition. Both these works

are pre-Hayabusa 1 though, and it should then be considered that they were written before the

rocky surface of Itokawa was discovered. The last work inspired most of the astrodynamics of

this thesis, and was very important for understanding how the linear manifolds (introduced later)

could be used for easy landings. On the other hand, Bellerose’s thesis, on this very topic which

was absolutely not its focus, remains theoretical and also does not provide an established general

strategy for deployment.

To our knowledge, the only other significant paper on asteroid landers in the last four years

was published in 2013, again for Hayabusa 2 target markers[62]. An excellent analysis of the

controlled deployment of the target markers, the paper is however focused on the problematic of

controls and navigation and dismisses the complexity of the surface interaction. It also consid-

ers deployments very close to the surface, therefore only applicable to mission designs where the

spacecraft risks itself down to ten meters of the surface.

However, if the astrodynamics of the deployment of lander have only occasionally been con-

sidered, it does not mean there was not abundant research existing on irregular gravity fields and

the three-body problem. Works of Lagrange and Poincare, and more recently Conley[18] and others

are at the very basis of this work – and this thesis would not exist without them. Yet, the specific

type of trajectories used by a lander to reach the surface of a small body (i.e. ballistic, low energy)
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has been very rarely studied and for good reason: until very recently, there was no motivation for

designing such trajectories.

None of the papers available to us ever considered the detailed interaction with the surface.

And, maybe to one’s surprise, even the simple motion of sphere on gravel on Earth has never been

detailed. Notably the last works, known to us, on the resistance to motion of an object rolling

on dirt and gravel date back to 1906[5]. The US military has declassified some studies of vehicles

rolling on sand (e.g. [81]), but these regard wheels with high loads in a continuous medium and

cannot be applied to the problem at hand. And indeed, there is objectively no motivation for

anyone to study such trivial motion, unless one has to land a spherical pod on an asteroid as in

the BASiX proposal[21, 67] that initiated this work. This study of surface motion was then started

with very little to build on, essentially devising the surface model from the most basic equations

of classical mechanics[60] and empirical laws on friction of all types documented since the 17th

century[23].

1.3 Outline of this thesis

This thesis is divided into five chapters. Chapter 1 is this introduction and Chapter 5 is the

conclusion. Chapters 2 and 3 contain the core technical content of this thesis and build towards

Chapter 4 that exposes the mission design results of these studies.

Chapter 2, Amended Gravity, considers the general astrodynamics problem on our hands:

placing a lander on a ballistic trajectory to the surface of a body. To solve this problem, the study

begins with a very general analysis of the properties of the amended gravity field of an arbitrary

mass distribution and identifies mathematical objects of interest, notably a ridge line containing

the accessible equilibria of the system. The discussion then moves on to the linearization of the

dynamics at an equilibrium point, using Conley’s theory as a guideline and showing why the previous

analysis of the ridge line means that, essentially, all equilibria look alike. At this point, enough

tools would have been obtained so as to devise the landing strategy, and this description allows for

a better understanding of the types of motion that can be expected when leaving the vicinity of the
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equilibrium point. Indeed, two cases arise: strong manifold or weak manifold. The strong manifold

case is studied for the 3-body problem and for the case of elongated bodies. The weak manifold

case is finally described and a periapse/energy criterion is used to design the strategy. With this

chapter, the reader will understand the trajectory of the lander from release to first impact on the

surface.

Chapter 3, Surface Motion, forgets about the complexities of the trajectory of the lander

and considers the physics of the motion of a spherical pod on an asteroid modeled with hundreds

of thousands of triangular facets. The interaction of this pod with a flat surface is considered:

the normal and friction forces are detailed and the concept of rolling resistance is introduced.

The translation of these simple equations into the numerical model is then discussed, with an

emphasis on the singularities and difficulties that then appear and the ways to circumvent them

in a satisfactory way. The concept of rolling resistance, introduced in earlier sections, is studied in

more details and the estimation of the coefficients of rolling resistance krr and crr is presented in

an analytical model and in experiments. Finally, because faceted models can only take us so far in

the modeling of a very rocky surface, a stochastic model of rock collisions is introduced, explained

and its results are presented. With this chapter, the reader will understand the trajectory of the

lander from first impact to final stop at the surface.

Chapter 4, Strategy for the Deployment of Landers, will finally show the integration of these

two studies in the mission design of lander deployments at asteroids. Chosen examples are discussed

and especially landings at the surface of Itokawa, 1999 JU3, and 1999 KW4 Alpha and Beta. For

Itokawa, it shows the importance of the stochastic rock collision model. For 1999 JU3, the coefficient

of restitution (bounciness) is varied to show its effect of the final landing spread, and the stochastic

model is enabled or disabled to see its effects on the trajectories.

1.4 Interesting asteroids

This dissertation considers several asteroids as examples and case studies: Itokawa, Castalia

2008 EV5 and 1999 KW4. The asteroids selected are quite different from each other (dynamically
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wise) but they share the two following traits:

(1) they are of interest for the scientific community.

(2) they have been observed and have now an established shape model and a rotation period.

Of course, one understands that the first and second trait foster each other. As asteroids,

and small bodies in general, only begin to be understood by planetary scientists, any observation

of any asteroid is of some importance. However, the presence of some elements (water, volatiles,

rare-earth metals), the location of their orbit, their dynamical structure, make some these asteroids

more interesting than others. When such an asteroid is found, the community will turn their eyes

and their instruments to the targeted asteroid, and much more information will be obtained.

These bodies are now presented quickly, giving the reader the fundamental information to

understand the examples: density, rotation period, shape. Regarding the chemical composition,

thermal signature, spectra and other significant scientific characterization, as they have no impact

for this work, the reader is referred to the existing and abundant literature on these bodies. The

density and the rotation period are very important as it will later be shown that a ratio between

the mass and the angular frequency determines if a landing is possible, and if it is easy or difficult.

The shape is important, as the strategy depends on the elongation of the body and as the shape

also define basins of attraction for landings.

1.4.1 Itokawa

25143 Itokawa holds a very special place in this work. In 2005, it was visited by Hayabusa,

a spacecraft of the Japanese Aerospace Exploration Agency (JAXA). This sample return mission

was also a pathfinder for many technologies (notably electric thrusters). Touching down on the

surface of Itokawa proved very difficult for the spacecraft who was already “injured” from its long

flight and operations and could only count on a minimal number of functional actuators. Despite

an unexpected and harsh landing, and the resulting several months of communications black-out,

Hayabusa finally made it back to Earth in 2010. She yielded very little but measurable amounts of
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dust from the surface of Itokawa and thus accomplished all of its goals despite a very rocky journey.

The spacecraft is often anthropomorphized in the shape of a little girl braving obstacles after

obstacles and managing, despite all odds, to come back to her home.1 Because of Hayabusa,

this work is possible. Without it, the possible surface conditions at an asteroid would be largely

unknown and most of what is presented in the second part of this work would fall short of having any

experimental data. If anything, Hayabusa is the proof that space exploration strives on missions

that boldly go where no craft has gone before, pushing back the boundaries of what aerospace

engineers have mastered – even if the road proves to be rocky and the end uncertain.

Figure 1.1: A photograph of the surface of asteroid Itokawa, taken by the JAXA spacecraft
Hayabusa in 2005. Photograph is courtesy of ISAS/JAXA.

Itokawa has been described as a potato, a peanut or even a sleeping baby wrapped in its

swaddling clothes,2 see Fig 1.3. Itokawa is 500 m of length in its longest dimension and its mass

is around 3.55 × 1010 kg, placing its average density around 1.9 kg/L[33]. Its rotation period is

1 Anyone who reads the accounts of Hayabusa and her team’s feats will most likely start to think alike
2 The author will let the reader be her or his own judge of the accuracy of these descriptions
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12.13 h. It is an Apollo asteroid and as such crosses Earth’s orbit (but is not a potentially hazardous

asteroid).

Figure 1.2: Artist illustration of Hayabusa touching down on Itokawa. Courtesy of JAXA.

The surface conditions of Itokawa are now well known thanks to Hayabusa’s pictures. The

land is very rocky, even in the sandiest region named Muses Sea3 shown on Fig. 1.1

1.4.2 1999 JU3

Also an Apollo asteroid, 1999 JU3 is the target of the JAXA mission Hayabusa 2 scheduled

to launch in 2015, and will likely inherit another name in the years to come. 1999 JU3 is a spheroid

of about 1km diameter, see Fig. 1.4, and its period is about 7.6 h[2]. Because of its low rotation

rate, whatever its density may be, JU3 is a dynamically easy target for landings. The reason to

have 1999 JU3 in this study lies in the fact that Hayabusa 2 will deploy a lander at the surface,

Mascot[48], and several target markers used for navigation[92].

3 a clever pun on Hayabusa’s original name MUSES-C
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1.4.3 2008 EV5

2008 EV5 is a potentially hazardous asteroid. It was selected as the main target for the

mission proposal MarcoPolo-R. An oblate spheroid of about 400 m in diameter, its period is well

estimated at 3.725 h[15]. The density of EV5 however is unknown and makes its environment

difficult to predict: with high density (above 2 kg/L) EV5 is an easy target for landings, dynamically

comparable to 1999 JU3. Closer to 1 kg/L however, its equator dangerously approaches orbital

speed, and it becomes dynamically comparable to 1999 KW4 Alpha.

An interesting feature of EV5 is the presence of a concavity. Sometimes referred to as a crater

– although it is most likely not a crater – this concavity notably perturbs the equator ridge that

can be seen on the shape model. On Fig. 1.5, the concavity is perceptible on the right.

1.4.4 Castalia

4769 Castalia consists in a 1800 m by 800 m body, that exhibits two lobes. In fact, its shape

is very similar to that of a peanut. The rotation period is about 4.1 h. Its density is unknown and

different values have been used in the literature. A density of 2.8 kg/L is assumed, which means

that the body does not spin fast enough to be in tension. Bringing this density to 2.1 kg/L and

lower would make Castalia a contact binary. The two lobes would then be orbiting each other

remaining in contact by tensile strength. This is a very plausible situation, and it was very recently

confirmed that asteroids (or small bodies in general) can speed up rotation to the point of breaking

up [75, 97, 65, 42], by the direct observation of the fragmentation of a main-belt asteroid.[44]

1.4.5 1999 KW4

As of today, 1999 KW4 is the most well documented binary asteroid system. A close pass

allowed high fidelity radar imaging of the system[63] and the characteristic of the two bodies are

now well known. Moreover, KW4 proved to be an interesting case. Alpha, the primary body (left

of Fig. 1.7), is an oblate spheroid of 1700 km equatorial diameter presenting an equatorial ridge

and whose period of rotation, 2.75 h, places this equator at the limit of orbital speed. Beta, the
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secondary body (right of Fig. 1.7), is a prolate spheroid of 500 m in its longest axis always pointing

towards Alpha, with a period of rotation equal to its period of revolution, at ≈17.4 h.

On average, the binary system can be described as being in a circular mutual orbit, with

Alpha rotating very quickly and Beta tidally locked (similarly to our Moon), both sharing their

poles with the pole of their mutual orbit. However, the system can exhibit fluctuations in its orbit

and librations of the secondary’s orientation, probably due to excitation at its periapse around the

Sun[78]. These excited periodic but transient states are neglected; a perfectly circular orbit and

perfect tidal locking are assumed.

KW4 being an Aten asteroid, its orbit is very eccentric. It crosses Earth’s, Venus’ and

Mercury’s orbit and its eccentricity is 0.688. For this reason, it is unlikely to be the target of any

mission, given the trajectory design creativity that would be needed to match its orbit – and not

even considering the dangerously close proximity to the Sun at periapse.
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Figure 1.3: A series of photographs of asteroid Itokawa, taken by the JAXA spacecraft Hayabusa
in 2005. All photographs are courtesy of JAXA, with annotations from the University of Aizu.
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Figure 1.4: A 3d representation of 1999 JU3, viewed from 20◦ elevation from the equator plane
(north vector points up). This shape model is courtesy of the Deutsches Zentrum für Luft- und
Raumfahrt (DLR).
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Figure 1.5: A 3d representation of 2008 EV5, viewed from 20◦ elevation from the equator plane
(north vector points up). This shape model was obtained trough radar inversion and is courtesy of
the Jet Propulsion Laboratory[15].
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Figure 1.6: A 3d representation of Castalia, viewed from 20◦ elevation from the equator plane
(north vector points up). This shape model was obtained trough radar inversion and is courtesy of
the Jet Propulsion Laboratory[40].

Figure 1.7: A 3d representation of binary system 1999 KW4, viewed from 20◦ elevation from the
orbital plane (north vector of Alpha, north vector of Beta and the angular momentum of the orbit
all point up). This shape model was obtained trough radar inversion and is courtesy of the Jet
Propulsion Laboratory[63].



Chapter 2

Amended gravity

In this chapter, the properties of the amended gravity field of a mass distribution are in-

vestigated. The term “amended” signifies that the field considers both the gravity field and the

rotational field stemming from the constant spin of the work frame.

This work frame will vary depending on the asteroid of interest. For a single asteroid, the

work frame will be the asteroid-centered asteroid-fixed frame (i.e. the origin is at the center of

mass of the asteroid, the asteroid itself is fixed in this frame). In the case of binary asteroid

system, when studying the spin-synchronized (tidal locking) secondary asteroid, the work frame is

the classic circular-restricted 3-body problem frame. Both situations are detailed further in this

work, but these frames share the same fundamental structure: they rotate around the center of the

mass distribution in such a fashion that the mass distribution remains fixed. This feature allows for

using laws of conservation of energy and is also very favorable to the later study of surface motion.

As it will be shown, when studied in their appropriate frame, the two situations are dynamically

identical. And although this study originated from the study of binary asteroid system, it applied

straightforwardly to single asteroids. Studying the properties of an amended gravity field is then

key to understanding motion in these two frames.

Few generalities can truly be said about the amended gravity field, as it is possible to math-

ematically construct mass distributions that defy almost all common sense assumptions. However,

in practice, nature does not present us with such variations and the same few patterns are witnessed

over and over again. For example, the equilibria of the amended gravity field could theoretically
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be of 8 identifiable types, whether they are maxima or minima when restricted to each of the three

dimensions of configuration space. And although it is very easy to give examples of mass distri-

butions where each would manifest, only two types are observed in practice. One of these types is

useless to the purpose of landing and one is then left with the study of a single object, commonly

referred to as a “saddle” equilibrium, that always present the same dynamic features in all possible

situations.

Such saddle equilibria provide us with a natural access to the surface of the asteroid. Motion

in their vicinity and characterization of trajectories that emanate from these points put very simple

and lose requirements on the deployment of a lander. For now, a successful landing is limited to

two criteria: first showing that the lander impacts the asteroid once (in a reasonable amount of

time) and second proving that, if speed is damped by some factor on the impact, the lander is not

able to escape the asteroid surface.

This chapter proceeds from theoretical discussions towards more and more practical consid-

erations. Its objective is to understand the astrodynamics of the deployment of lander. So, first of

all, general properties about the amended potential field are established and the equilibrium points

of this system are identified. The discussion then moves on to the understanding of the motion in

the vicinity of these points. Then it is shown why saddle equilibria are very favorable to a landing

trajectory and the deployment strategy can be described. Once the strategy is understood, the

global motion expected from the designed trajectories is analyzed.

2.1 Generalities on the amended gravity field

Consider a mass distribution spinning at a constant rate ω around some arbitrary fixed axis ẑ.

Build an arbitrary frame (x̂, ŷ, ẑ), whose origin coincides with the center of mass of the distribution

and that rotates with the body in such a fashion that the mass distribution is fixed in this frame.

This is the work frame of this whole study and it is referred to as the rotating frame. Because the

directions of x̂ and ŷ do not matter, they will frequently be reoriented in a way that simplifies the

analysis of the problem – x̂ will frequently be a radial axis and ŷ a tangential axis.
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2.1.1 Problem statement

In this work, Ω is the amended potential, comprised of the gravitational potential U and

the rotational potential. Note that throughout this study, the classic convention that the force F

stemming from a potential V is equal to the opposite of the gradient of such potential, or F = −~∇V ,

is used.

Ω = U − 1

2
ω2(x2 + y2) (2.1)

The equations of motion of a particle in this amended potential field can be put as:

ẍ− 2ωẏ = −∂Ω

∂x

ÿ + 2ωẋ = −∂Ω

∂y

z̈ = −∂Ω

∂z

(2.2)

The only two varying parameters of this model are the gravity field U , that is a function of

R3 into R−, and the value of ω. In its most general form the potential can be written as:

U (r) = −G
∫∫∫
space

dm

|r − ρ|
(2.3)

In this equation, G is the universal gravitational constant, r is the field point at which U

is evaluated and ρ denotes the point of the body corresponding to the mass element dm. This

equation is usually rewritten by replacing the integral on dm (loosely defined) by an integral on

the local mass density σ, that is a function of R3 into R+.

U (r) = −G
∫∫∫
space

σ(ρ)dρ

|r − ρ|
(2.4)

Admittedly, this latest equation does not allow for the presence of point masses in the dis-

tribution – at least not if one considers σ as a classic function R3 into R+. First, such a thing as a

point mass does not exist in the universe – or when they hypothetically do (e.g. black hole) they

cannot reasonably be studied with the means of classical mechanics and are thus irrelevant. Second,

it is in fact possible to add point masses into this discussion: they do not alter the fundamental
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results shown here but make the mathematical study of the objects defined hereafter much more

cumbersome, forcing us to handle infinite and/or undefined gravitational potentials.

Yet, because they are so easy of use, the term of point-masses will sometimes be used to

illustrate examples or counter-examples of situations. Indeed, a major result of potential field

theory is that a sphere of homogeneous density1 and of total mass M creates a gravity field,

outside of the sphere, identical to the gravity field of a point mass M located at its center. A direct

consequence of Gauss’s integral theorem, this result forms the very basis of celestial mechanics and

astrodynamics. In this work, the reader will then understand the term of point mass as “a sphere

of homogeneous density and specific mass, whose radius can be made as small as desired”.

Before moving further in the discussion, the following hypotheses are made:

(1) the constant rotation rate ω is positive and non-zero:

0 < ω (2.5)

(2) the density function σ is defined on the whole space R3 and cannot take negative values:

∀ρ ∈ R3, σ(ρ) ≥ 0 (2.6)

(3) the total mass is non-zero and finite:

0 <

∫∫∫
space

σ(ρ)dρ <∞ (2.7)

(4) the total mass is located in a bounded region of space:

∃R ∈ R such that

∫∫∫
space

σ(ρ)dρ =

∫∫∫
|ρ|≤R

σ(ρ)dρ (2.8)

(or, conversely, such that

∫∫∫
|ρ|≥R

σ(ρ)dρ = 0)

For the smallest radius R verifying these conditions, the ball centered on the origin and of

radius R is called the Brillouin sphere, and is noted BB.

1 One can also note that the same statement is true for spherical bodies whose density is only a function of the
radius, i.e. σ is a function of the scalar ρ, or mathematically σ(ρ) = σ(ρ).
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(5) the density function σ is a piecewise-continuous, piecewise-differentiable, and piecewise-

continuously-differentiable function:

∃{Oi}i∈N disjoint open sets of R3 such that ∪iOi = BB (2.9)

and ∀i , σ |Oi is C1 and can be extended as a C1 function on Oi (2.10)

2.1.2 Examples of potential U

Some notable examples of gravity fields are given, and especially the expression of the homoge-

neous polyhedron gravity field that has been derived by Werner and Scheeres[99]. This closed-form

expression of the potential of a homogeneous polyhedron is the gravity field model used for most

of the numerical computations in this study.

The point mass potential. The gravitational potential of a point mass of gravitational

constant µ, located at ρ, is:

U(r) = − µ

|r − ρ|
(2.11)

The homogeneous sphere potential. The gravitational potential of a sphere S of homo-

geneous density σ, of radius R, and of gravitational constant µ = 4/3πR3Gσ, located at the origin,

can be very simply expressed both in the exterior and in the interior. Notably, in the exterior, it

has the same potential as a point mass of gravitational constant µ located at the origin:

U(r /∈ S) = −µ
r

(2.12)

And in the interior:

U(r ∈ S) = −1

2

µ

R

(
3−

( r
R

)2)
(2.13)

The circular restricted three-body problem point mass potential. When two bodies

orbit each other in a circular fashion and when the potential of each is (or can be approximated

by) that of a point mass located at their respective center mass, one defines the classic circular

restricted three-body (point-mass) problem, or CR3BP. The potential is obtained by summing the

potential of two point masses, but the problem is constrained by the fact that the two bodies must

orbit each other.
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Let the first body be the most massive and denote its gravitational constant µ1 and place

it on the x̂-axis at position ρ1 = (x1, 0, 0). Consider the second body, of gravitational constant

µ2 and place it on the x̂-axis at position ρ2 = (x2, 0, 0). The vector from a field point r to each

of these mass is noted respectively r1 and r2. Define µT = µ1 + µ2 the sum of the gravitation

constants, and µ =
µ2
µT

, the mass fraction of the system.2

Because the center of mass is located at the origin, (1 − µ)x1 + µx2 = 0. Following the

now established convention on the three-body problem, x1 is chosen negative. Define the distance

between the two bodies a = |x2 − x1|. For the two point masses to orbit each other and maintain

their position x1 and x2, the rotation rate ω must be:

ω =

√
µT
a3

(2.14)

The full potential can then be put in the following form:

Ω =
µT
a

(
− 1− µ
a−1r1

− µ

a−1r2
− 1

2

((
a−1x

)2
+
(
a−1y

)2))
(2.15)

And so the equations of motion become:

∂2(a−1x)

∂(ωt)2
− 2

∂(a−1y)

∂(ωt)
= −

∂(µ−1T aΩ)

∂(a−1x)

∂2(a−1y)

∂(ωt)2
+ 2

∂(a−1x)

∂(ωt)
= −

∂(µ−1T aΩ)

∂(a−1y)

∂2(a−1z)

∂(ωt)2
= −

∂(µ−1T aΩ)

∂(a−1z)

(2.16)

Although heavy in notations, this last equation proves formally that the system is much

simpler that one might have thought: the only true parameter of this equation is µ. a, ω and µT

are respectively units of length, of the inverse of time, and of gravitational attraction (i.e. ultimately

of mass) of this system. In this new system of units, this strictly equivalent – but much easier to

2 The author apologizes for the confusion, but it seems that the letter µ is very popular with astrodynamicists,
even to denote fundamentally different concepts – and we will not stray from this notation convention now widely
adopted.
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read – set of equations can be written:

ẍ− 2ẏ = −∂Ω′

∂x

ÿ + 2ẋ = −∂Ω′

∂y

z̈ = −∂Ω′

∂z

(2.17)

where Ω′ = −1− µ
r1
− µ

r2
− 1

2
(x2 + y2)

Please remember that in these simplified equations, the variables of time t and of position x, y and

z are expressed in this new system of units, commonly referenced as Jacobi units.

Of course, this problem can be made more complex by changing the potential of each body

to be different than that of a point a mass. In fact, for actual binary asteroid systems, the potential

of the bodies always differs from this simple form. Without discussing the form of the potential

inside each bodies, the potential outside of each body is rarely equivalent to one of a point mass. In

particular, the secondary is very often an elongated ellipsoid. Yet, as this ellipsoid is tidally locked

with the primary, and as the primary itself is relatively axisymmetric with respect to the ẑ-axis,

the potential Ω remains invariant. Thus the general structure of the problem is retained. And,

in practice, the existence, location, and properties of the collinear Lagrange points L1, L2 and L3

(introduced later) do not vary significantly from this simplified point-mass example[9].

The homogeneous ellipsoid potential. The gravitational potential of an ellipsoid E of

homogenous density σ, located at the origin, and of principal radii α, β and γ on respectively the

x̂, ŷ and ẑ axis can be expressed in terms of elliptic integrals[19]. Notably, in the exterior region:

U(r /∈ E) = Gσαβγ

∫ ∞
λ0

(
x2

α2 + λ
+

y2

β2 + λ
+

z2

γ2 + λ
− 1

)
dλ

∆(λ)
(2.18)

where ∆(λ) =
√

(α2 + λ)(β2 + λ)(γ2 + λ) (2.19)

and λ0 verifies
x2

α2 + λ0
+

y2

β2 + λ0
+

z2

γ2 + λ0
= 1 (2.20)

In the interior region, the expression simplifies slightly into:

U(r ∈ E) = Gσαβγ

∫ ∞
0

(
x2

α2 + λ
+

y2

β2 + λ
+

z2

γ2 + λ
− 1

)
dλ

∆(λ)
(2.21)
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The homogeneous polyhedron potential. The gravitational potential of a homogeneous

polyhedron has a surprisingly simple closed form solution. It is derived in Werner and Scheeres[99]

and has been recalled recently[73].

For a polyhedron made of triangular facets, and a field point r, define the following notations:

• For each facet f , n̂f is the normal of the facet, directed outward the body.

• For each facet f , r̂fi for i = 1, 2, 3 is the vector from the origin to the corresponding vertex

of the facet. NB: the facets are ordered counter-clockwise w.r.t. the facet normal n̂f .

• For each edge e, r̂ei for i = 1, 2, 3 is the vector from the origin to the corresponding vertex

of the edge.

• For each edge e, n̂fe is the normal of edge e corresponding to f , and is defined as the unit

vector perpendicular both to e and n̂f , and pointing away from the center of f . NB: one

edge always corresponds to exactly two facets f and f ′ and in general n̂fe and n̂f
′
e are

different.

• For each edge e, re denotes the vector from an (arbitrary) point on the edge to r .

• For each edge f , rf denotes the vector from an (arbitrary) point on the facet to r .

Now define the following objects:

Ee = n̂f (n̂fe )T + n̂f ′(n̂
f ′
e )T (2.22)

Ff = n̂f (n̂f )T (2.23)

Le = ln
re1 + re2 + ee
re1 + re2 − ee

(2.24)

ωf = 2 arctan
r̂f1 ·

(
r̂f2 × r̂

f
3

)
rf1 r

f
2 r
f
3 + rf1 r̂

f
2 · r̂

f
3 + rf2 r̂

f
3 · r̂

f
1 + rf3 r̂

f
1 · r̂

f
2

(2.25)

Then, the potential, gradient and Hessian are:

U(r) = −1

2
Gσ

 ∑
e∈edges

Lere ·Eere −
∑

f∈facets

ωfrf · Ffrf

 (2.26)
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~∇U(r) = Gσ

 ∑
e∈edges

LeEere −
∑

f∈facets

ωfFfrf

 (2.27)

~∇2U(r) = −Gσ

 ∑
e∈edges

LeEe −
∑

f∈facets

ωfFf

 (2.28)

Notice that, to speed up calculations, Ee and Ff can be precomputed.

Also, for the propagation of the equations of motion, an approximation of this formulation

is used. Instead of computing the exact value of the acceleration, this acceleration and its Hessian

are only computed every short distances dlin (the value of which varies from model to model, for

Itokawa dlin ≈ 2 m) and a linearization of the acceleration takes place in between. This considerably

speeds up the calculation during the contact motion phase. Moreover, it does not really affect the

computation during the flight phase as motion over flight phase time steps is almost always much

larger than dlin.

2.1.3 Fundamental properties

With these few hypotheses placed, U and Ω already have fundamental properties. From now

on, the symbol ĥ indicates any horizontal radial direction, i.e. ĥ is the polar radius. Formally, ĥ

is any unit vector that is a linear combination of x̂ and ŷ. A measurement of the position on this

line is noted h. Depending on the situation, h may be considered always positive, its variations

describing a semi line originating at (0, 0, 0), or may be allowed to cross the origin and go to −∞

and hence define a full line.

2.1.3.1 Existence of derivatives of Ω

Hypothesis (5) formulated before may seem technical and one could wonder why it is even

needed. In fact, the theory of potential cannot be mathematically grounded without this assump-

tion. Indeed, an oft-neglected fundamental hypothesis of the theory of potential is that the force

F coming from a potential V , F = −~∇V can be computed by taking the gradient inside the triple

integral of Eq 2.4 – a technique called differentiation under the integral sign. Yet, this mathemat-

ical trick cannot be justified without a few hypotheses. The precise expression of Equation 2.4
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reduces the number of hypotheses to check to hypothesis (5). In fact, without hypothesis (5), the

very existence of the gradient of V cannot be guaranteed anymore[20] – or such a guarantee would

require other mathematical tools.

For further details on potential theory and the fine intricacies debated here, the reader is

referred to the Theory of Potential, by MacMillan[49]. In section 22, MacMillan presents a slightly

weaker version of hypothesis 5, essentially requiring σ to be continuous on a finite number of Oi –

where the finiteness of {Oi}i∈N is not needed, only its countability. The differentiable and contin-

uously differentiable property of σ are mentioned in section 61, when the higher order derivatives

of the potential are considered.

In summary, referring the reader to MacMillan[49], with the established hypotheses, the

following fundamental results hold:

(1) Ω is C1 everywhere.

(2) Ω is C2 everywhere σ is continuous.

(3) more generally, Ω is Ck everywhere σ is Ck−2.

Notably, one should note that result (3) implies that the potential is C∞ outside the mass

distribution. Yet, result (2) does restrict our mathematical arsenal: when considering a body of

arbitrary density, the surface of the body is a discontinuity of σ. And thus, at the surface of a body,

the potential is only C1 – in fact, MacMillan proves that the potential cannot be differentiated at

such a discontinuity. However, as later shown, whenever one would need to evaluate the second

order derivative of the potential at the surface, the situation would already be mathematically

degenerate.

2.1.3.2 Conservation of Energy

The equations of motion in Eq. 2.2 can be integrated to create an integral of motion. By

multiplying the three equations in Eq. 2.2 by, respectively, ẋ, ẏ, and ż, then adding the three of
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them and eventually integrating with respect to time, one obtains:

C =
1

2
v2 + Ω (2.29)

where C is a constant referred to as the integral or constant of Jacobi and v is the speed of a

particle in this field. This integral is simply the statement that energy is conserved in the rotating

frame, and C itself is a measure of the mechanical energy of the system.

Conservation of energy in this frame is a fundamental principle of this work. Indeed, given

a value of C, it may happen that, in some regions of configuration of space, the value of Ω forces

1
2v

2 to be negative, creating an imaginary speed. Such regions are then not accessible to a particle

of energy C: they are called forbidden regions.

Because the potential U is negative everywhere, then Ω ≤ U < 0 – and in fact the locus of

Ω = U consists solely of the ẑ-axis. No region is then forbidden for all levels of C, as any C > 0

opens up the whole configuration space to motion. In practice, C > 0 corresponds to very high

energies of unbounded motion that are not relevant to this work. When C < 0, there is always a

region of space that is forbidden to motion (and that extends far up and/or down on the ẑ-axis).

The forbidden regions can be delimited from accessible space by 2-dimensional surfaces of

configuration space that are essentially equipotential of Ω. On these surfaces, for the energy C at

which they are defined, the speed is necessarily 0 and they are so called zero-velocity surfaces. As

such surfaces are usually found to be transverse to the xy-plane, when one considers the restriction

of these surfaces to such plane, they are called zero-velocity curves.

Zero-velocity surfaces and curves have been extensively studied in the context of the three-

body problem. For most systems, the zero-velocity surfaces delimit an inner region, located close

to the mass distribution, and an outer region that exists far from the mass distribution. The key

characteristic of the zero-velocity surfaces and curves is that, for low energy, they isolate these two

regions from one another. Therefore, if one object is placed in the inner region with an energy C

low enough, it can never escape: the zero-velocity surfaces have trapped it in the inner region.

The general shape of these equipotential surfaces is impossible to give for an arbitrary system.
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However one can acquire a reasonable understanding of theses surfaces in general terms by observing

the following. When h2 →∞, the equipotentials of Ω approach cylinders of radius
√
C/ω2. When

r approaches a point mass3 (ρi, µi) of the distribution, the equipotential surfaces approach spheres

of radius µi/C centered on ρi.

2.1.3.3 Behavior of Ω

The first property regards the limits of Ω when h → ∞. Indeed, the mass being finite and

located in a bounded region of space lim
h→+∞

U = 0. As the rotational potential then tends to −∞:

lim
h→+∞

Ω = −∞ (2.30)

As Ω is a continuous function, it can then be concluded that, for each and every z, there

exists a global maximum of Ω considered as a function of only x and y. Visually, for each and

every z, in every direction ĥ, Ω function of h plunges toward −∞ on both sides of the real line, and

reaches at least one maximum in between – it will be seen later that it usually has two maxima

and one minimum.

Conversely, let’s examine, for a given position x and y, the variation of Ω as function of z.

Once again, the mass being finite and located in a bounded region of space lim
z→±∞

U = 0. And thus:

lim
z→±∞

Ω = −1

2
ω2
(
x2 + y2

)
= −1

2
ω2h2 (2.31)

So, by continuity of Ω, for every x and y, Ω considered as a function of z has a global

minimum. Visually, for each and every x and y, Ω function of z approaches −1/2ω2h2 from below

on both sides of the real line and reaches at least one minimum in between – it will be seen later

that it usually has only one minimum.

2.1.4 The amended potential ridge line and its equilibria

Zero-velocity surfaces are a very powerful tool for celestial mechanics. However, in the most

general case, they consist in a infinite number of two dimensional creatures, each defined for some

3 or anything that has the potential of a point mass, e.g. a homogeneous sphere.
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value of energy C. They are therefore difficult to visualize and, so, to use. Zero-velocity curves are

of much easier use as they can be represented on a flat surface but they are fundamentally limited

to a problem case where everything “interesting” happens in the plane in which they are computed

– such as most studies of the 3-body problem.

This subsection present a concept more adequate to the general case of an arbitrary mass

distribution of possibly highly irregular gravity field: the ridge line. Before reaching this final

concept, the z∗ set, and the zh∗ set are introduced. For all concepts, the fundamental example of a

homogeneous sphere is considered. These concepts are also briefly presented when applied to two

other important examples of gravitational potentials: the restricted three-body problem and the

homogeneous ellipsoid.

The potential, gradient of the potential and Hessian of the potential for a homogeneous sphere

located at the origin are recalled:

U(r) =


−µ
r

for r > R

−1

2

µ

R

(
3−

( r
R

)2)
for r ≤ R

(2.32)

~∇U (r) =



µ

r3

 x

y

z

 for r > R

µ

R3

 x

y

z

 for r ≤ R

(2.33)

~∇2U(r) =



µ

r5

 −2x2 + y2 + z2 3xy 3xz

3xy −2y2 + z2 + x2 3yz

3xz 3yz −2z2 + x2 + y2

 for r > R

µ

R3

 1 0 0

0 1 0

0 0 1

 for r < R

(2.34)
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The amended potential Ω and its derivatives, evaluated at r, are:

Ω(r) = U(r)− 1

2
ω2
(
x2 + y2

)
(2.35)

~∇Ω(r) = ~∇U(r)− ω2


x

y

0

 (2.36)

~∇2Ω(r) = ~∇2U(r)− ω2


1 0 0

0 1 0

0 0 0

 (2.37)

Please note that, in this work, the subscript notation to indicate differentials is used, e.g.

Ωz =
∂Ω

∂z
.

2.1.4.1 The z∗ set

It was proven in previously that for each x and y, Ω considered as function of z has a global

minimum. Because of the continuously-differentiable property of Ω, it entails that:

∀(x, y) ∈ R2,∃z ∈ R such that Ωz(x, y, z) = 0 (2.38)

The locus of Ωz = 0 is introduced, and it is called the z∗ set:

z∗ =
{
r = (x, y, z) ∈ R3|Ωz(r) = 0

}
(2.39)

With this simple definition, the z∗ set does not have any natural properties. Especially, this

definition does not imply that z∗ is a surface, or even that it is a connected set. In fact, one can

find mass distributions where the z∗ set is made of several disconnected surfaces (e.g. point masses

located on the ẑ-axis). One can also find potential functions that make the z∗ set a volume (e.g.

the inside of a spherical shell).

However, with some implicit conditions on the gravity field, the z∗ set can indeed be proven
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to be a surface, moreover locally flat and smooth. Indeed, using the implicit function theorem[53]:

∀r = (x, y, z) ∈ z∗ such that σ is continuous at r

if the matrix [Ωxz Ωyz Ωzz] is onto,

then z∗ can be locally extended at r as a smooth manifold of dimension 2.

(2.40)

Of course, the matrix [Ωxz Ωyz Ωzz] being a 1-by-3 matrix, its surjectivity is equivalent to

any of its coefficients being non-zero. Thus, in a more simple fashion:

∀r = (x, y, z) ∈ z∗ such that σ is continuous at r

if Ωxz 6= 0, or Ωyz 6= 0, or Ωzz 6= 0,

then z∗ can be locally extended at r as a smooth manifold of dimension 2.

(2.41)

Moreover, remember that Ωz is a continuous function, regardless of the continuity of σ.

Therefore, at each surface where σ is discontinuous, as long as Ωxz 6= 0, or Ωyz 6= 0, or Ωzz 6= 0 the

z∗ set can be locally extended to the surface crossing by continuity – however its smoothness is not

guaranteed anymore.

At a crossing r0 of z∗ with a surface of discontinuity S of σ

if ∃V neighborhood of r0 such that

∀r = (x, y, z) ∈ {V ∩ z∗} − S,Ωxz 6= 0, or Ωyz 6= 0, or Ωzz 6= 0

then z∗ can be locally extended at r as a continuous surface.

(2.42)

Thus, finally, a global result may be stated:

if ∀r = (x, y, z) ∈ z∗ such that σ is continuous at r

Ωxz 6= 0, or Ωyz 6= 0, or Ωzz 6= 0,

then z∗ is a surface of dimension 2, smooth everywhere σ is continuous.

(2.43)

One might wonder for which mass distributions does statement 2.43 hold true. Indeed, this

is an implicitly defined condition on the mass distribution. However, this criterion cannot be
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easily replaced by another condition on the potential field. In practice, for simple enough mass

distributions, and for mass distributions considered in this work, it always holds. In fact, in practice,

an even simpler situation is encountered:

if ∀r = (x, y, z) ∈ z∗ such that σ is continuous at r,Ωzz 6= 0,

then ∃ψ : R2 7→ R such that z∗ = {(x, y, ψ(x, y))}(x,y)∈R2

with ψ continuous on R2 and C∞ wherever σ is continuous.

The z∗ set is said to be “simple”.

(2.44)

This last statement is important because it also yields that, in this situation, the z∗ set is

a single connected surface. And it can be seen as a deformation of the xy-plane. For example,

what does the z∗ set look like for the homogeneous sphere? It simply consists in the equatorial

xy-plane and ψ is simply the zero function. The homogeneous ellipsoid is also in this situation.

The three-body problem is also in this situation. In fact, it can be stated more generally that, if the

mass distribution is of homogeneous density, z-convex and symmetric with respect to the xy-plane,

then the z∗ is the xy-plane. Indeed, the potential can then be integrated on vertical lines that all

contribute with the same sign to Ωz. Thus, ∀z > 0, Ωz > 0 and ∀z < 0, Ωz < 0, thus yielding

z∗ = {(x, y, 0)}(x,y)∈R2 .

More interestingly, examining the homogeneous sphere, observe that for z = 0:

Ωzz(r = (x, y, 0)) =


µ

r3
for r > R

µ

R3
for r < R

(2.45)

So ∀(x, y) ∈ R2, Ωzz > 0. More generally, if the mass distribution is of homogeneous density,

z-convex and symmetric with respect to the xy-plane, then Ωzz > 0 everywhere on the z∗ set.

Therefore, by continuity of the potential as a map of the mass distribution σ, if a mass

distribution is obtained by deforming slightly enough another mass distribution of homogeneous

density, z-convex and symmetric with respect to the xy-plane (e.g. the sphere, the ellipsoid, the

three-body problem) then ∀r ∈ z∗, Ωzz(r) > 0. Thus, in that situation, the z∗ set remains a

smooth connected manifold of dimension 2 that can be written as {(x, y, ψ(x, y))}(x,y)∈R2 .
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The key hypothesis of this latter statement is that the deformation from the ideal mass

distribution described is “small enough”. Indeed, with a sufficient deformation of the body or of

the value of σ within it, one can very easily reach situations where the z∗ set becomes more complex.

In particular, as soon as one places two point-masses (i.e. very small spheres) on top of each other,

the z∗ set, when approaching these masses, bifurcates in three different layers. However, most

natural objects known exhibit a connected and smooth z∗ set that is a very weak deformation of

the xy-plane.4 For the rest of this work, it is considered that the situation is the one the usually

encountered, where the mass distribution is such that the z∗ set is a single connected manifold of

dimension 2 and ∃ψ such that z∗ = {(x, y, ψ(x, y))}(x,y)∈R2 .

In this situation, as stated before that Ω, as a function of z only, had a global minimum for

each and every (x, y), then the z∗ set consists precisely in these global minima – and there are no

other maxima, minima or simply critical point elsewhere. Thus, because they are minima then

everywhere on the z∗ set Ωzz > 0. This will be very useful when looking at the eigenstructure of

the equilibria of the system.

2.1.4.2 The zh∗ set

Now that the vertical variation of Ω have been understood, the variations of Ω in an arbitrary

direction ĥ are considered, the analysis being restricted to the z∗ set. The locus of Ωh = 0 and

Ωz = 0 is named the zh∗ set.

Let’s place ourselves very far away from the distribution. At h = +∞, the gravitational

acceleration deriving from U goes to 0 but the centrifugal force is infinite and directed in the +ĥ

direction, thus Ωh < 0 . Conversely, at h = −∞, Ωh > 0.

Consider now the following curve defined in the hz-plane (h, ψ(h)). This curve is continuous

(and smooth), as z∗ is a continuous surface, and extends from −∞ to ∞ in the ĥ direction.

Therefore, by continuity of this curve and by continuity of Ωh, there exist at least one h0 such that

4 The author of this thesis does not know of a single natural body that would not exhibit a single layered, connected
and smooth z∗ set. This fact is probably linked to the tendency of bodies to rotate around their axes of maximum
inertia (because it is a stable state of minimal energy) – although this tendency does not prove in any way the
structure of z∗.
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Ωh(h0, ψ(h0) = 0. This locus is called the zh∗ set:

zh∗ =
{
r = (x, y, z) ∈ R3|Ωh(r) = Ωz(r) = 0

}
(2.46)

Similarly to the z∗ set, the condition for making the zh∗ set a well-behaved curve of R3 rests

on Ωh and Ωzpartials. Using the implicit function theorem:

∀r = (x, y, z) = hĥ+ zẑ ∈ zh∗ with h 6= 0 such that σ is continuous at r

if the matrix

 Ωhx Ωhy Ωhz

Ωzx Ωzy Ωzz

 is onto,

then zh∗ can be locally extended at r as a smooth manifold of dimension 1.

(2.47)

The onto property of the matrix can be tested by checking that each of three sub-2-by-

2 matrix has a non-zero determinant. Please note the paramount importance of the hypothesis

h 6= 0. Indeed, when h = 0 the vector ĥ becomes undefined and the whole mathematical structure

of the statement collapses. This is not simply a mathematical artifact, it means that the structure

of the z∗ set at 0 is fundamentally degenerate, and it makes perfect sense when realizing that ĥ is

the polar vector, and so always a cause of singularities at the origin. As for the z∗ set, a restricted

(but simpler) statement for this theorem, commonly encountered with usual bodies, can be given:

∀r = (x, y, z) = hĥ+ zẑ ∈ zh∗ with h 6= 0 such that σ is continuous at r,

if ΩzzΩhh − Ω2
hz 6= 0, then ∃ψ1 and ψ2 : [0, 2π] 7→ R such that

in some neighborhood V of r, V ∩ zh∗ = V ∩ {(ψ1(θ) cos θ, ψ1(θ) sin θ, ψ2(θ))}θ∈[0,2π]

with ψ1 and ψ2 continuous on [0, 2π] and C∞ wherever σ is continuous.

(2.48)

This latest statement means in simpler english that, if at some point ΩzzΩhh − Ω2
hz 6= 0, then

around that point, the zh∗ set is a simple curve of R3 parametrized by the polar angle θ.

Unfortunately, a global statement for zh∗ that would be as simple as the one for the z∗ set

cannot be given. Indeed, the fundamental singularity that the definition of the polar vector creates

at h = 0 prevents from considering that the conditions of the previous local statements could stay

unviolated globally.
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Consider the set zh∗ set for the homogeneous sphere. Here, a description where h > 0 is

adopted. Looking at the expression of Ωx and Ωy, and restricting ourselves to the z∗ set (i.e. z = 0):

Ωh =


µ

h2
− ω2h for r > R

µh

R3
− ω2h for r ≤ R

(2.49)

So one needs to differentiate three cases depending on the ratio
µ

R3ω2
.

for 1 <
µ

R3ω2
zh∗ =

{
h =

( µ
ω2

)1/3
and z = 0

}
∪ {h = z = 0}

for 1 =
µ

R3ω2
zh∗ = {h ∈ [0, R] and z = 0}

for 1 >
µ

R3ω2
zh∗ = {h = z = 0}

(2.50)

This analysis tells an interesting story of the evolution of zh∗ when the spin rate ω is varied.

The origin is always part of the zh∗ set. But, when the spin rate is low enough, the set also

comprises a circle of radius (µ/ω2)1/3. When the spin rate is increased, this circle progressively

constricts till touching the sphere. At this very moment, the zh∗ set suddenly expands to the the

whole equatorial disk of radius R. At this moment the outside circle and the center point fuse.

When ω is further increased, the only remaining part of the zh∗ set is the origin of the sphere.

Trying to apply statement number (2.48) on this case, one realizes that the origin always

violates the hypothesis h 6= 0. And indeed, the origin cannot be extended into a curve. On the

outlying circle, observe that:

ΩhhΩzz − Ω2
hz = ω2 (2.51)

Thus, this quantity is always non-zero, and thus on all the points of the circle statement

number (2.48) can indeed be applied. However, inside the sphere:

ΩhhΩzz − Ω2
hz = µR3 − ω2 (2.52)

And therefore, when reaching the critical spin rate, ΩhhΩzz−Ω2
hz = 0 prevents from applying

statement number (2.48). And indeed the structure is not a one-dimensional entity (parametrized

by the polar angle) but is a full disk.
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For any mass distribution, one cannot say what the zh∗ set consists of. Just as the z∗ set

could bifurcate in any number of ways, the zh∗ set could be of any shape. However, once again,

a general statement can be give near the homogeneous sphere conditions, and for non-critical spin

rate(s).

If a mass distribution M is obtained by deforming slightly enough a homogeneous sphere,

∃ωc > 0, such that ∀ω < ωc, outside of M, denoting θ the polar angle

zh∗ consists in a closed smooth curve of θ, called “ the ridge line”,

i.e. ∃ ψ1 and ψ2 of C∞ ([0, 2π] 7→ R) with ψ1(0) = ψ1(2π), ψ2(0) = ψ2(2π) such that

zh∗ ∩
(
R3 −M

)
= {(ψ1(θ) cos θ, ψ1(θ) sin θ, ψ2(θ))}θ∈[0,2π]

(2.53)

The reader may wonder why only the set outside the mass distribution, called the ridge line,

is characterized. The mathematical reason behind the affirmation of the form of the ridge line,

when slightly deforming the homogeneous sphere, is that ΩhhΩzz −Ω2
hz is non-zero at this location

for the sphere. Thus, by continuity, there exists a (small) domain where the variations of σ do

not affect the existence and shape of the outlying curve. However, the origin is not covered by

such considerations. Because it is fundamentally degenerate, its evolution when the function σ is

altered, even infinitesimally, is unknown.

In practice, the central point becomes a curve that always crosses the origin (and is undefined

there). In fact, for an arbitrary mass distribution, the center of mass is rarely an equilibrium point.

Another point, close to it, is always found however (see next subsection). But at this point,

frequently, one has ΩhhΩzz − Ω2
hz 6= 0. Thus, statement (2.48) can be applied and, locally, the

zh∗ set is indeed a curve. Still in practice, this curve has no other choice than to collapse at some

point on the ẑ-axis (on h = 0), and it does so at two polar angles opposite of each other (at some

θ, and at θ + π). One can then, technically, extend the curve into a closed smooth line that goes

through the pole, but this curve lacks a well-defined continuous parametrization in θ (as it collapses

to h = 0 between some θ, and at θ + π).
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Interestingly, in practice, the degeneracy occurring for the sphere for the critical spin rate is

often found in one form or another in other shapes. Specifically, when ω is decreased to the point

where the ridge line touches the surface, the structure of the ridge line often bifurcates in two or

more curves that meet at the origin. An example is given with the ellipsoid potential, as can be

seen on Fig. 2.1.

Yet, in general, there is no fatality in this degeneracy. For instance, take a homogeneous

sphere and suppose σ is a linear function of the radius, so σ(0) = σ0 and σ(R) = σR. Then when

the ridge line reaches the surface, it is preserved. The proof is straightforward: divide the sphere

in infinitely many layers of equal density. When at a radius r < R, the layers of radius R′ ≥ r do

not contribute to the acceleration (see Gauss’s integral theorem) while R′ ≥ r does. Inside this

sphere the gravitational acceleration increases as a second order polynomial when receding from

the origin, as from Gauss’s law:

Ur = −4

3
πσ0r −

1

R
π (σR − σ0) r2 (2.54)

Thus the total acceleration projected on the radius is:

Ωr = −(
4

3
πσ0 − ω2)r − 1

R
π (σR − σ0) r2 (2.55)

There is no degeneracy anymore as the singularity 4/3πσ0 − ω2 = 0 does not make the

polynomial Ωr identically 0. One can derive the values of Ωh, Ωhh and Ωzz to verify that indeed

statement (2.48) does apply for the ridge line. Finally, note that any polynomial form of the density

as a function of the radius ρ would remove the singularity.

However, in all cases considered, notice that, unless the mass distribution is significantly

different from a sphere or unless the density varies considerably within the body, there remains

a numerical instability when the ridge line approaches the surface of the body. Indeed, as the

homogeneous sphere is deformed, the mathematical singularity transforms into a weakly defined

locus. For example, consider the sphere for σ increasing linearly with the radius and take σR ≈ σ0.

Mathematically, there is no singularity; numerically it becomes very hard to find the ridge line.
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This numerical instability remains until the ridge line has completely exited the body (ω > ωc) or

when the ridge line has completely disappeared and only the origin, or a degenerate polar curve

going through the origin, remains.

2.1.4.3 The equilibrium points

The definition of a static equilibrium point for a dynamical system is: an equilibrium is a

point in space where a particle with no velocity experiences a null acceleration. In this situation,

when velocity is null, the accelerations all derive from the potential Ω. And this potential is of

class C1 everywhere hence:

An equilibrium point is a point re such that

~∇Ω(re) = 0

(2.56)

Existence of an equilibrium point

First of all, the following statement is proven:

There is at least one equilibrium point.

It is not a strict local minimum and it is not a strict local maximum.

(2.57)

This statement is proved as follows. Indeed, consider a cube of side 2a centered on the origin

and aligned with all natural axes x̂, ŷ and ẑ. The faces of the cube that are perpendicular to the

ẑ axis are noted Fz+ and Fz−, with Fz+ located on the positive ẑ axis and Fz− located on the

opposite side. Similarly, define Fx+ and Fx−, and Fy+ and Fy−.

If a is chosen large enough, as the mass distribution is contained in a bounded region of space:

∀r ∈ Fz+,Ωz > 0 and ∀r ∈ Fz−,Ωz < 0

∀r ∈ Fy+,Ωy < 0 and ∀r ∈ Fy−,Ωy > 0

∀r ∈ Fx+,Ωx < 0 and ∀r ∈ Fx−,Ωx > 0

(2.58)

Visually, the last equations mean that the gradient of Ω exits the cube everywhere on faces

Fz− and Fz+, and enters the cube everywhere on faces Fx−, Fx+, Fy− and Fy+. Because Ωz is
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Figure 2.1: Top-down view of the zh* set of a homogeneous ellipsoid at increasing spin rates (top
to bottom) in blue and green. In blue, is the differentiable portion of zh*. In green, the two lines
(vertical and horizontal) are portion of zh* corresponding to a degenerate situation at very specific
spin rates – additionally they are lines of equilibria of the system. The green stars indicate the
location of equilibrium points of the system.
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C0, ∀ rz+ ∈ Fz+,∀ rz− ∈ Fz−, any continuous path from rz+ to rz− passes through at least one

point r0 where Ωz = 0. Moreover, it can be added that, on any of these paths, among all points

verifying Ωz = 0, the point r0 can be chosen so that the first non-zero value of Ωz, from r0 to rz+

is positive. Thus, although one cannot and should not conclude that this location would then be a

strict minimum, it is known that it cannot be a maximum.

Because this is valid for any path taken from any point of Fz+ to any point of Fz−, it can

be concluded that there exists a region S inside the cube with the following properties:

(1) ∀ r ∈ S, Ωz = 0,

(2) Ω as a function of z is not at local maximum.

(3) S is connected and ∀ (x, y), ∃ zS such that (x, y, zS) ∈ S

In a more intuitive description, S is a region that contains a surface (but may very well be

“thicker” than a surface) without any hole that links the faces Fx−, Fx+, Fy− and Fy+ and on

which Ω has an extremum that is not a maximum. Please note that by its very definition, S is a

subset of the zh∗ set. In the simplest and non-degenerate of cases (e.g. ellipsoid), there is even

S = zh∗, but in general, and so for this demonstration, S is only a subset of zh∗.

The structure of S now allows us to continue the process started with Ωz with Ωy. Because

Ωy is C0, ∀ ry+ ∈ Fy+ ∩ S, ∀ ry− ∈ Fy− ∩ S, any continuous path in S from ry+ to ry− passes

through at least one point r0 where Ωy = 0. And, r0 can be chosen so that it is not a strict

minimum. And thus there exists a region L ⊂ S that has the following properties:

(1) ∀ r ∈ L, Ωz = 0 and Ωy = 0,

(2) Ω as a function of z is not at local maximum, Ω as a function y is not a local minimum.

(3) L is connected and ∀ x, ∃ {yL, zL} such that (x, yL, zL) ∈ L

And thus L contains a continuous path from Fx− to Fx+. As such, because Ωx is C0,

∃ r0 ∈ L where Ωx = 0 – and it could also be added here that r0 could be chosen to not be a local

minimum. So
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(1) ∃ r0 such that Ωz = 0, Ωy = 0, and Ωx = 0

(2) Ω as a function of z is not at local maximum, Ω as a function y is not a local minimum, Ω

as a function x is not a local minimum.

So there exists an equilibrium point to the system and this point in neither a local minimum

nor a local maximum. Q.E.D.

One shall not conclude too quickly that the found equilibrium is a strict minimum in z and

a strict maximum in x and y. Indeed, that statement would be false in general: one may very

well obtain a plateau of constant potential and thus a whole line, surface or volume of equilibrium

points, e.g. a homogeneous sphere with a hollow spherical cavity at its center.

It is however useful to keep in mind that it is possible to find at least one equilibrium point

that is not a maximum neither a minimum. One can find local maxima and local minima, but

at least one equilibrium point of the system is neither maximum nor minimum. In most non-

degenerate cases, one can even safely expect that this point is indeed a strict minimum in z and a

strict maximum in x and y – but one should be warned not to assume blindly such a structure and

to check for any degeneracy.

Equilibrium points of the ridge line

The existence of an equilibrium point is a comforting feature of this dynamical system.

However, this work studying real spacecraft trying to deploy real landers to real asteroids, it is

only interested in studying equilibria that exist outside the mass distribution. And as seen for the

homogeneous sphere or the homogeneous ellipsoid, there is not always such an equilibrium point.

But when a ridge line exists, it was proven before that there are at least two equilibria on this ridge

line. Please remember that a ridge line is a smooth closed curve of the zh∗ set parametrized by the

polar angle noted θ.

On a ridge line, there are at least two equilibria. (2.59)

Indeed, because the ridge line is closed and Ω is continuous, it reaches a maximum and a
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minimum on its domain [0, 2π]. Because the ridge line is smooth and because Ω is smooth, denoting

s the curvilinear abscissa of the ridge line, at the maximum and at the minimum Ωs = 0.

On the zh∗ set, Ωh = 0 and Ωz = 0. On a ridge line, the direction of the ridge line ŝ is always

transverse to the zh-plane. Thus Ωθ = 0. And thus ~∇Ω = 0. So the maximum and the minimum

are equilibrium point. If the maximum and the minimum are different points, then there are two

equilibria. If the minimum and maximum are a same point then the potential is constant on the

ridge line, and there is an infinity of equilibria, and so at least two. QED.

This demonstration also gives a way to find all the equilibria of the ridge line:

All the equilibrium points of the ridge line are given by Ωθ = 0 (2.60)

Again, the possibility of degeneracy prevents from giving completely general statements on the

equilibria. However, excluding the non-pathological cases, their properties can be fully established.

Still using the previous demonstration:

If the number n of equilibria of the ridge line is finite

then n is even and they are an alternating sequence of minima and maxima

(2.61)

One then understands that, if the z∗ set is simple (i.e. a single surface parametrized by x

and y), and if there is a single ridge-line, the equilibria of this ridge line, correspond to minimum

in z, maximum in h and alternating minimum and maximum in θ. Linking

This line of thought is summarized into the following statement:

In simple and non-degenerate cases,

the ridge line (when it exists) has 2n equilibria (n ≥ 0) where:

(1) Ωzz > 0

(2) Ωhh < 0

(3) Ωθθ alternates sign along the ridge line

(2.62)

It is important to insist on the fact that the latter statement is subject to many mathematical

hypotheses summed up in its first broad hypothesis. However, one can safely assume that most mass
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distributions found in nature verify these hypotheses and so that the equilibria studied hereafter

all fall in this category.

The type of equilibrium where Ωθθ < 0 is called a maximum and the type of equilibrium

where Ωθθ > 0 is called a saddle. These appellations could in fact be considered misnomers, as all

of these equilibria are saddles as they all are minimum for z and maximum for h. However it is

true that, looking at the planar problem and disregarding the z dimension, their appellations make

sense, hence they will be used in this thesis.5

For single bodies, all interesting equilibria are located on the ridge line and only the homo-

geneous sphere was found to be degenerate. For the three-body problem, the Lagrange points L2,

L3, L4 and L5 lie on the ridge line of this mass distribution. L1 lies on another closed smooth curve

that joins another equilibrium that lies inside the secondary body – and thus is not a ridge line as

it cannot be parametrized with θ. A final sixth equilibria can be found inside the primary body

and is located on a curve that joins the origin at a polar angle ±90◦. These two supplementary

equilibria are local minima of the potential in all directions.

2.1.4.4 Computing the ridge line

One must note that the ridge line is very easy to compute. To compute a ridge line, one can

proceed as follows:

(1) Take a point on the x̂-axis, with x > 0 far from the body such that the acceleration along

x is positive. Fixing x and y = 0, converge on z so that Ωz = 0. That is P1.

(2) Halve the x-coordinate of P1 and repeat convergence on z to obtain P . If the acceleration

along x is still positive, call this point P1, repeat. When the acceleration along x becomes

negative, stop and call this point P2. If such a point cannot be found, there is no ridge line.

(3) Using a bisection mechanism between P1 and P2, always converging on z, find the coordinate

x where Ωx = 0. This point is P0, point of the ridge line for θ = 0.

5 Furthermore, there is the established convention in the 3-body problem of characterizing L4 and L5 as “maxima”
(when they are only maxima for the planar case).
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(4) Create point Pδθ by rotating P0 of δθ around the ẑ-axis (first guess). Converge both on h

and z, fixing θ = δθ to adjust point Pδθ. Repeat 2π/δθ times until you come back to P0.

Note that this process can be considerably improved. It is only present for the purpose of

showing that the computation of the ridge line does not require arcane algorithms of zero findings.

In the algorithm coded for this thesis, the last step also uses the direction of the ridge line to

optimize the first guess when moving along the ridge line in θ.

This process can be viewed intuitively as followed. Find a point P1 of the z∗ set, such that

the radial acceleration is projected outwards. Then find another point P2 of the z∗ set such that

the radial acceleration is projected inward. Moving on the z∗ set between P1 and P2, eventually

find a first point P0 on the ridge line. Then rotate around the z-axis, as it is known (or assumed

at least) that the ridge line is parametrized in θ.

Figures 2.2 - 2.6 give examples of ridge lines for a set of interesting bodies, viewed from the

top-down. For two of them, it is shown how the ridge lines changes when the density of the body

is varied. Indeed, the density of an asteroid is rarely known. Only binary systems, very massive

bodies interacting with others and visited asteroid can have their mass measured, and so their

density estimated. The surface density can be obtained through radar, but the uncertainty margin

remains high in any case. The figures also display the equilibria on the ridge line, denoting whether

they are saddles (down-pointing green triangle) or maxima (up-pointing red triangle). A colored

surface around the ridge line shows the potential (from red at high values to green and blue at low

values) on the xy-plane – the colors are optimized for showing the evolution of the potential for

each situation, they are not to be understood as an absolute scale.

2.1.4.5 Importance of the concept of ridge line

The reader may wonder why the concept of ridge line was established and what purpose it

serves in this work. In the light of statement (2.62), the ridge line clarifies some key features of the

amended potential field.

Detecting entrapment
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Figure 2.2: Ridge line of Itokawa, visited by spacecraft Hayabusa (JAXA). The colored surface
shows the value of the potential in the equatorial plane (color was non-linearly mapped to the
potential to enhance visualization), from blue (lowest) to red (highest).
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Figure 2.3: Ridge line of Castalia. A density of 2.8 kg/L was assumed. The colored surface shows
the value of the potential in the equatorial plane (color was non-linearly mapped to the potential
to enhance visualization), from blue (lowest) to red (highest).
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Figure 2.4: Ridge line of 1999 KW4 Alpha. Alpha is the primary body of the binary system 1999
KW4. The colored surface shows the value of the potential in the equatorial plane (color was non-
linearly mapped to the potential to enhance visualization), from blue (lowest) to red (highest). In
this study, only the amended field of Alpha is considered and other accelerations (presence of the
secondary, non-inertial effects) are neglected. Although in projection the ridge line seems to touch
the surface of the body, in reality it remains 15 m above the surface.
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Figure 2.5: Ridge line of 1999 JU3 for various densities. The colored surface shows the value of
the potential in the equatorial plane (color was non-linearly mapped to the potential to enhance
visualization), from blue (lowest) to red (highest). From top to bottom, left to right, the densities
are 4.5 kg/L, 2.6 kg/L, 1.3 kg/L and 0.45 kg/L. Observe how the ridge line approaches the equator
of the body when the density is lowered.
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Figure 2.6: Ridge line of 2008 EV5 for various densities. The colored surface shows the value of
the potential in the equatorial plane (color was non-linearly mapped to the potential to enhance
visualization), from blue (lowest) to red (highest). From top to bottom, left to right, the densities
are 4.25 kg/L, 3.25 kg/L, 2.25 kg/L and 1.25 kg/L. Observe how the ridge line approaches the
equator of the body, and how new equilibria appear when the density is lowered.
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This section began by mentioning the importance of zero-velocity surfaces and zero-velocity

curves for the 3-body-problem. Indeed both are very useful to considering entrapment of a particle

in such or such realm. The zero-velocity surfaces are never used in practice because they are a

continuous set of 2-dimensional entities. Zero-velocity curves (i.e. intersection of theses surfaces

with the xy-plane) on the other hand, are a great tool as they can be represented on a single plane.

As one can now understand, the z∗ set is simple in this situation. So, the zero-velocity curves,

being located on this set, are a minimum for the potential on the ẑ-axis. Therefore, if the planar

zero-velocity curves are closed and effectively trap an object within a specific region, the object

cannot hope to find an opening outside of the plane. Projected on the xy-plane, 3-dimensional

motion remains restricted by these planar curves.

Yet, if the z∗ set was not simple, the zero-velocity curves could very well be placed at a

maximum of the potential for the ẑ-axis and they would then become meaningless: they would

not restrict motion in the whole 3-dimensional space. Furthermore, even with a simple z∗ set, if it

is different than the xy-plane (e.g. for single bodies of arbitrary geometries) the curves, drawn at

some arbitrary z level, would never represent a minimum on the z axis for all x and y.

The ridge line is, in the context of statement (2.62), the local minimum in the z direction for

all its points. Therefore, if a particle has an energy less than the minimum energy found on the

ridge line (that is found at a saddle point), it cannot cross between the inner realm and the outer

realm. On a projection of the xy-plane, the trajectory cannot cross (or even reach) the ridge line.

Thus, a replacement of the zero-velocity surfaces is to present the ridge line, and to indicate

which portion of the curves can be crossed, given some level of energy. This presentation of

entrapment has the advantage to be generalized to arbitrary mass distributions that do not exhibit

the classic xy-plane symmetry.

Finding all the interesting equilibria

The problem of finding an equilibrium point for an arbitrary problem is a difficult task,

especially when the potential has quite flat zones – as is our situation for the maxima of the ridge

line. Yet, here, to find equilibrium points, one computes the ridge line and then the zeros of the
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acceleration on θ on the ridge line.

The ridge line simplifies greatly the search of equilibrium points because it takes advantage

of our knowledge of their structure. For 1999 KW4 Alpha or 2008 EV5, for instance, the potential

is very flat on the ridge line and this property makes the detection of the equilibria very difficult,

and only achievable with a sophisticated algorithm of multivariate optimization or zero-finding.

On the other hand, when one uses knowledge that there exists a ridge line and constructs it first,

the problem is reduced from 3-dimensions to 2-dimensions and finally 1-dimension. And finding

the zeros (or the extrema) of a real continuous function of R is a task orders of magnitudes easier.

Equilibria of the ridge line cannot be missed and converging on their precise location requires

nothing but a bisection method.

Loss of a dimension

Whereas iso-potential curves and surfaces are certainly useful to understand the structure of

potential, they have the disadvantage of being dependent on a given energy. Thus plotting or com-

puting zero-velocity surfaces requires the computation of a 1-dimensional family of 2-dimensional

entities, which is in itself a 3-dimensional object. Similarly, plotting or computing zero-velocity

curves requires the computation of a 1-dimensional family of 1-dimensional entities, which is in

itself a 2-dimensional object.

At the contrary the ridge line, being a maximum in one direction (on ĥ) and a minimum

in another (on ẑ) reduces dimensionality of the object to 1 while retaining some of the most

significant information: equilibrium points, location of low-energy passages, entrapment conditions.

The velocity surfaces or curves are very often computed for the sole purpose of finding equilibrium

points or showing entrapment by identifying the maximum value of the potential that can allow

passage from one realm to the other. However, the ridge line provides a faster way to identify all

the interesting equilibrium points of the mass distribution and thus to identify immediately the

minimum energy allowing passage from one realm to the other – as well as the location of such

passages.

The zero-velocity curves will be used when mentioning the 3-body problem. The ridge line



52

is another tool that does not replace iso-potential curves and surfaces. Nevertheless, the ridge line

introduced in this study has its place in a theory of the amended gravity field potential, restricting

the use of the zero-velocity curves to situations where it is their precise shape that matters and not

simply their general structure.

2.2 Linearization at an equilibrium point

In this section the motion around an equilibrium point of the amended potential, denoted

Xe, is investigated. The equilibrium Xe is supposed to be placed on the ridge line of the mass

distribution. So, statement (2.62) can and is used here. Although the discussion really focuses on

the motion near the equilibrium point, conclusions are drawn on the strength and direction of the

linear manifolds, that enlighten the non-linear motion.

Note X a small departure from Xe. To simplify the discussion, the body frame is rotated so

that the position of the equilibrium point has no component along the ŷ-axis, and xe > 0:

Xe =



xe

0

ze

0

0

0


(2.63)

Notice that, through this rotation, the direction ĥ becomes the direction x̂, and that the

direction θ̂ becomes the direction ŷ. Per hypothesis of being located on the ridge line, the potential

is locally C2. As the ridge line is very often located outside the mass distribution, it can be added

that the gravitational potential is harmonic and thus Ω is C∞.

A linearization around Xe yields:

Ẋ = AX (2.64)
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with A =

 (0) Id3

−~∇2Ω 2ωJ



and J =


0 1 0

−1 0 0

0 0 0



and ~∇2Ω =


Ωxx Ωxy Ωxz

Ωxy Ωyy Ωyz

Ωxz Ωyz Ωzz



(2.65)

The characteristic polynomial of matrix A, whose roots are the eigenvalues of A, can be

computed as follows:

det (A− λId6) = λ6

+ λ4
(
4ω2 + ∆Ω

)
+ λ2

(
ΩxxΩyy + ΩyyΩzz + ΩxxΩzz − Ω2

xy − Ω2
yz − Ω2

xz + 4ω2Ωzz

)
+

(
ΩxxΩyyΩzz + 2ΩxyΩyzΩxz − ΩyyΩ

2
xz − ΩxxΩ2

yz − ΩzzΩ
2
xy

)
(2.66)

One may notice that this polynomial is really a polynomial of Λ = λ2, noted as P with

coefficients α, β and γ:

P (Λ) = Λ3 + αΛ2 + βΛ + γ (2.67)

2.2.1 Practical observations

The terms in the coefficients of P can take (almost) any value for an arbitrary mass distri-

bution and any of its equilibrium points. However, on the ridge line, it has been the assumption

in this work that statement (2.62) holds. Thus it is known that Ωxx < 0 and Ωzz > 0, and that

there are two types of equilibrium: one where Ωyy > 0, called saddle, and the other where Ωyy < 0,

called maximum.

Moreover, it is always observed that, in practice, the ridge line is rather circular. And

especially, at an equilibrium point, it is observed that the direction of the ridge line is aligned with
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ŷ, which means that Ωxy, Ωyz and Ωxz are small quantities. It is then indeed assumed that A can

be rewritten as a function of small quantities ε:

A (ε) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−Ωxx ε ε 0 2ω 0

ε −Ωyy ε −2ω 0 0

ε ε −Ωzz 0 0 0


(2.68)

Assuming ε = 0, then A (ε) becomes:

A (0) =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−Ωxx 0 0 0 2ω 0

0 −Ωyy 0 −2ω 0 0

0 0 −Ωzz 0 0 0


(2.69)

The characteristic polynomial simplifies greatly and is then noted P0(Λ):

P0(Λ) = det (A (0)− λId6) = Λ3

+ Λ2
(
4ω2 + ∆Ω

)
+ Λ

(
ΩxxΩyy + ΩyyΩzz + ΩxxΩzz + 4ω2Ωzz

)
+ (ΩxxΩyyΩzz)

(2.70)

The eigenvalues and eigenvectors are continuous functions of the elements of the matrix A(ε).

As later shown, all these roots are of multiplicity one. Therefore there exists an open set around

ε = 0 where the structure of these eigenvalues and eigenvectors is preserved. Estimating analytically

the size of this open set is difficult, probably impossible for an arbitrary problem, yet it was checked

numerically that for all considered small body targets, for all their equilibria, this structure was

preserved. It is assumed in the rest of this discussion that this structure is indeed conserved and

the study of A(0) is sufficient to understand A (ε).
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2.2.2 Characterization of the roots of P0(Λ)

The signs of some of the coefficients of P0(Λ) = Λ3 +αΛ2 +βΛ +γ can be established. These

signs allow to characterize all the roots of P0 at a saddle point.

2.2.2.1 The sign of α

The only coefficient of P (Λ) whose sign can be determined for an arbitrary mass distribution

and equilibrium point is α: for any mass distribution, at any equilibrium point, α > 0.

The proof relies on noticing a well-known property of U . Derive the Laplacian ∆U :

∆U (r) = −G∆

∫∫∫
body

σ(ρ)

|r − ρ|
d3ρ

 (2.71)

The next step taken, i.e. moving the Laplacian sign inside the integral, assumes that ∆U is

evaluated at a point where σ is continuous – else there is no guarantee that ∆U even exists. If σ

is continuous, then the Laplacian of U can be expressed as:

∆U (r) = 4πG

∫∫∫
body

σ(ρ)δ3(r − ρ)d3ρ (2.72)

where δ3 is the three-dimensional Dirac generalized function: δ3 is defined on R3; ∀x 6= 0, δ3(x) = 0;

the triple integral of δ3 on any open set containing 0 is 1. Thus, the Laplacian of the gravitational

potential of an arbitrary body, evaluated at a point where the density is continuous, can be written

in the very simple form:

∆U (r) = 4πGσ(r) (2.73)

An interesting special case of this result is that on any point outside the mass distribution

∆U = 0 and so ∆Ω = −2ω2. Hence, the value of α, depending on the point it is evaluated at, can

be written as:

α =


2ω2 outside the body

2ω2 + 4πGσ inside the body

(2.74)

Per the hypothesis that ω > 0, then α > 0.
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2.2.2.2 The sign of γ

On the ridge line, Ωxx < 0 and Ωzz > 0. And so, the sign of gamma rests on the sign of Ωyy,

thus straightforwardly:

• At a saddle point, γ < 0

• At a maximum point, γ > 0

2.2.2.3 Roots at a saddle point

The situation is now clear at a saddle point, the polynomial P0(Λ) has coefficients of sign:

P0(Λ) = Λ3 + αΛ2 + βΛ + γ

> 0 Λ3 + < 0 Λ2 + ?0 Λ + > 0

(2.75)

It is then clear that, at a saddle point, the Descartes rule of sign can be applied regardless

of the sign of β. And indeed, the sign of β is not clearly established, even though it can simplified

(using the computation of the Laplacian) into β = ΩxxΩyy − Ωzz(Ωzz − 2ω2) . Although β has

always been observed to be positive, a general demonstration of this property (if true) eludes us.

As there is exactly one sign change, it can be stated that there is exactly one positive real

root to P0(Λ). Similarly, considering P0(−Λ), it can also be stated that there is either two distinct

negative real roots or no negative real roots to P0(Λ). Therefore:

At a saddle point of the ridge line, there is always:

(1) exactly one pair of 1-dimensional unstable/stable manifolds

(2) exactly two 2-dimensional manifolds

(2.76)

The nature of the two 2-dimensional manifolds is clear when one realizes that there is an

evident uncoupling between the ẑ-axis and the plane formed by x̂ and ŷ in the form of A(0).

Because Ωzz < 0, directly, there is a ẑ-axis harmonic oscillator (i.e. a center manifold). It has been

checked numerically that there is always a harmonic oscillator located near the ẑ-axis for systems

that are not exactly symmetric with respect to the xy-plane.
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Thus, there is one negative real root to P0(Λ). So, there must be another (last) one (a real

polynomial cannot have a single imaginary root, they always come in pairs). Hence:

At a saddle point of the ridge line, there is always:

(1) exactly one pair of 1-dimensional unstable/stable manifolds near the xy-plane

(2) exactly one 2-dimensional center manifold near the ẑ-axis

(3) exactly one 2-dimensional center manifold near the xy-plane

(2.77)

And similarly, although this study is not focused on the maxima:

At a maximum point of the ridge line, there is always:

(1) exactly one 2-dimensional center manifold near the ẑ-axis

(2) exactly two 2-dimensional manifolds near the xy-plane

(2.78)

This fact explains why all linearization of equilibrium points of an amended potential field,

whether they are done for the three-body problem or for a single body, look alike. Essentially the

linearized system is always the same. What changes is the precise value of the eigenvalues and the

precise orientation of the eigenvectors. But the structure of the equilibrium is topologically the

same for all these problems.

2.2.3 The situation for a saddle point

Next, the planar manifolds in the situation of the saddle point are investigated. The 2-

dimensional (planar) system has its system matrix A2D, written as:

A2D =



0 0 1 0

0 0 0 1

a 0 0 2ω

0 −b −2ω 0


where

a = −Ωxx > 0

b = Ωyy > 0

(2.79)

This matrix reminds of the planar system matrix encountered in the restricted-three body

problem; as it has been already explained, these developments all apply to the Lagrange points.
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The characteristic polynomial of A2D is:

det (λId4 −A2D) = λ4 −
(
a− b− 4ω2

)
λ2 − ab (2.80)

Once again, this polynomial is treated as a polynomial of Λ = λ2, P2D(x):

P2D(x) = Λ2 −
(
a− b− 4ω2

)
Λ− ab (2.81)

It is easy to check that such a polynomial has always one positive root and one negative

root, by observing that the constant term is negative. And, it was expected given the results of the

previous section. But more interestingly, one can now compute the eigenvalues and eigenvectors of

the planar system. A2D has two real eigenvalues λ and −λ, and two complex conjugate eigenvalues

±ıν, with λ and ν chosen positive. The corresponding eigenvectors of A2D are:

vλ =



1

−σ

λ

−σλ


v−λ =



1

σ

−λ

−σλ


wν =



1

ıτ

ıν

−τν


w−ν =



1

−ıτ

−ıν

−τν


(2.82)

where σ =
2ωλ

b+ λ2
and τ =

a+ ν2

2ων
are real positive constants (2.83)

Please notice these eigenvalues and eigenvectors were proven for the specific situation of the

circular restricted three-body problem, where a and b have specific values, by Conley in 1968[18].

The statement given here is more general as it applies to any a, b and ω, so to any saddle point

and for any mass distribution verifying the minimal hypotheses developed previously.

2.2.4 The direction and strength of the stable and unstable manifolds

Beyond Conley’s analysis, one can analyze the stable and unstable manifolds properties as

functions of a, b and ω. This requires some computation effort as it is needed to see how λ and σ

vary with respect to these values. Introducing κ =
(
a− 4ω2

)
:

λ =

√
2

2

√
κ− b+

√
κ2 + b (b+ 2a+ 8ω2) (2.84)
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σ = 4
√

2ω

√
κ− b+

√
κ2 + b (b+ 2a+ 8ω2)

κ+ b+
√
κ2 + b (b+ 2a+ 8ω2)

(2.85)

The direction of the unstable and stable manifold is along the polar direction χu and χs, respectively,

measured with respect to the positive x̂-axis where:

cosχu =
1√

1 + σ2
sinχu =

−σ√
1 + σ2

(2.86)

cosχs =
1√

1 + σ2
sinχs =

σ√
1 + σ2

(2.87)

For a given a > 0 and ω < 0, it can be shown that σ is a strictly decreasing function of b.

Remember that b is equal to the curvature of Ω along the ŷ-axis: b = Ωyy. A very low b means very

low curvature, so a locally very flat ridge line, whereas a high b means the ridge lines is significantly

curved at the equilibrium point. Thus, in a more practical sense, it means that σ decreases when

the amended gravity field shape narrows on the ŷ-axis at the equilibrium point, all other things (a

and ω) being kept equal.

From the definition of λ and σ, their behavior can be inferred for notable values of b. At

infinity, the behavior can be obtained by deriving the second order Taylor series around b =∞:

lim
b→∞

λ =
√
a and lim

b→∞
σ = 0 (2.88)

On the other side of the positive real line, when b approaches 0, one may observe that:

lim
b→0

λ =

√
2

2
(κ+ |κ|) and lim

b→0
σ =

4
√

2ω

κ+ |κ|
(2.89)

Hence, for b going to 0, the behavior depends on the sign of κ:

• if κ = a− 4ω2 ≤ 0, lim
b→0

λ = 0 and lim
b→0

σ = +∞

• if κ = a− 4ω2 > 0, lim
b→0

λ = κ
√

2 and lim
b→0

σ = 2
√

2ωκ−1

This last result is not interpretable readily because the dependency between a and b for an

arbitrary mass distribution is not completely understood. For instance, in the three-body problem,

it is possible to have κ > 0 (consider L1 or L2 with a small mass ratio) or κ < 0 (consider L3

with a small mass ratio). For small mass ratios, b does not go towards 0 at L1 and L2, but does
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at L3. The question whether or not, at a saddle equilibrium point, b can approach 0 when κ > 0

is unanswered at this time. Ultimately, using the fact that the Laplacian of U cancels outside the

mass distribution, this question is equivalent to: is it possible to have Ωzz−2ω2 > 0 and Ωyy small?

It is possible to have Ωzz − 2ω2 > 0, but it requires to have regions of very high density very close

to the equilibrium point. And, in that situation the high density region also creates a very strong

Ωyy. For the homogeneous sphere, note that κ = Ωzz − 2ω2 = −ω2 < 0 on the ridge line.

For all numerically or analytically investigated cases, it was observed that, at a saddle point,

b approached 0 only when κ < 0. A possible explanation of such a phenomenon is that the very

fact that b approaches 0 is generally encountered in a situation where the mass distribution locally

resembles homogeneous sphere, case for which κ = −ω2 < 0. This property is assumed in the rest

of the discussion so it can be stated the general rule that is key to understand the limits of the use

of the manifolds of a libration point.

In general, at a saddle point, when Ωyy becomes weaker, all things being equal, the stable

and unstable manifolds collapse on the ŷ-axis and their eigenvalue shrinks to 0; motion near the

equilibrium point does not depart the equilibrium point as fast and it becomes more susceptible

to non-linear effects. Conversely, when Ωyy becomes stronger, the stable and unstable manifolds

collapse on the x̂-axis and their eigenvalues approach ±
√
−Ωxx.

This rule applies especially to ellipsoids , as long as the equilibrium points are outside the

body. Keeping the same spin rate and total volume, changing the equatorial radius affects the man-

ifolds strength and direction. At the limit, when the ellipsoid becomes an axisymmetric spheroid,

the unstable and stable manifolds collapse completely and their eigenvectors structure merge into

a center manifold of eigenvalue 0.

This rule can also be used with respect to the harmonic coefficients. For two identical bodies,

differing only by their value of C22 (second order, second degree harmonic coefficient), the body

with the largest C22 has a larger Ωyy (both counted in magnitude) and therefore has stronger

manifolds, whose direction along the x̂-axis is more pronounced.
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2.2.5 Conley’s Criterion

A generic solution of the linear equation Ẋ2D = A2DX2D can be written as the expression of

all the linear manifolds, specifically:

X2D(t) = αue
λtvλ + αse

−λtv−λ + Re
(
βνe

ıνtwν
)

(2.90)

where αu and αs are real, βν is complex and all depend on initial conditions.

The asymptotic behavior of X2D(t) for t → ∞ depends only of αu: αu > 0 will send the

object inside the exterior realm (it is the right branch of the unstable manifold), whereas αu < 0

will bring it in the inner realm and towards the asteroid (left branch). Of course, this conclusion

regards the linear manifold, and it is expected that the non-linear manifold will depart from their

linear counterpart far from the equilibrium point. However, the description is accurate when

close enough to the equilibrium point and therefore it gives an unequivocal answer as to how the

equilibrium point region is escaped.

In a 1968 paper[18], Conley studied the planar manifolds of a Lagrange point of the three-

body problem. One of the most remarkable results of this work, previously applied to motion

around binary asteroid[10], consists in devising a simple criterion to help determine, given initial

conditions, which branch of the unstable manifold (left or right) will be expressed. This result

does not rest on the hypotheses specific to the three-body problem and applies to our more general

problem. As the concern here is to aim for the asteroid, this criterion will be used to make sure the

pod is sent towards the asteroid, i.e. in the negative x̂-axis direction from the equilibrium point.

Following Conley’s notations, define two quantities γu and γs:

γu = − ax− bσy
λv
√

1 + σ2
(2.91)

γs = − ax+ bσy

λv
√

1 + σ2
(2.92)

The Conley criterion theorem follows, and its demonstration is recalled, as it has not been

presented for the general full-body problem but solely for the 3-body problem.
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Let the initial conditions X2D(t = 0) be (x, y, v cos θ, v sin θ). Then the sign of αu can be

determined using the following criterion:

• if |γu| < 1, then αu > 0⇔ |θ − χs| < arccos γu

• if γu > 1, then αu < 0

• if γu < −1, then αu > 0

Similarly the sign of αs can be determined with:

• if |γs| < 1, then αs > 0⇔ |θ − χu| < arccos γs

• if γs > 1, then αs < 0

• if γs < −1, then αs > 0

The proof starts with the observation that the scalar product by the diagonal matrix E made

by the diagonal elements (-a,b,1,1) describes the integral of motion of the linear system:

1

2
X2D · EX2D =

1

2
v2 − 1

2
(ax2 − by2) = Const. (2.93)

where E =



−a 0 0 0

0 b 0 0

0 0 1 0

0 0 0 1


(2.94)

Conley proves that, by the hamiltonian structure of the system, if two eigenvectors v1 and v2 of

A2D corresponding to eigenvalue λ1 and λ2, one has:

v1 · Ev2 = 0 or λ1 = −λ2 (2.95)

Then, proceed to the computation of the scalar quantity v−λ · Evλ that is noted eλ. Note

that by the diagonal nature of matrix E, v−λ · Evλ = vλ · Ev−λ.

eλ = −a− bσ2 − λ2 + λ2σ2 (2.96)
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Because vλ · Evλ = 0, −a+ bσ2 + λ2 + λ2σ2 = 0. So, eλ simplifies to:

eλ = −2bσ2 − 2λ2 (2.97)

And this result gives essentially the information that eλ < 0. Now, consider the scalar product of

X2D by Ev−λ at t = 0. Only the product with vλ does not cancel out, therefore:

X2D · Ev−λ = αueλ (2.98)

Writing the initial conditions as X2D = (x, y, vx, vy), the explicit computation of X2D · Ev−λ

yields:

X2D · Ev−λ = −ax+ bσy − λvx − λσvy (2.99)

Equating the right terms of Eq. 2.98 and Eq. 2.99, and describing the velocity (vx, vy) with polar

variables v and θ:

αueλ = −ax+ bσy − λv cos θ − λσv sin θ (2.100)

Dividing both sides by λv
√

(1 + σ2) and remembering the definition of γu and χs, one obtains:

αueλ

λv
√

(1 + σ2)
= γu − (cos θ cosχs + sin θ sinχs) (2.101)

Using some trigonometry and rearranging, the following formula for αu is obtained:

αu =
λv
√

(1 + σ2)

eλ
(γu − cos (θ − χs)) (2.102)

The precise calculation of αu is not of interest here, only its sign matters. Thus, remembering

that eλ < 0, the following equivalence holds:

αu > 0 ⇔ γu − cos (θ − χs) < 0 (2.103)

This is the mathematically concise version of Conley’s criterion, that can be rewritten in the form

aforesaid. The same developments can be made regarding αs. Q.E.D.

Figure 2.7 gives a sketch of the planar manifolds and the results of applying Conley’s Criterion

at a few points in the form of “colored clocks”. The red portion of each clock represents, for the
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position at the center of the disks, the directions of velocity for which αu > 0, so an escape in

the exterior realm. The green region, represents the direction of velocities for which αu < 0, so a

trajectory to the inner realm and the asteroid. The green arrow (the hand of this clock) is always

along the direction of the stable manifold π + χs, only the margin around this arrow, i.e. γu,

changes with the position. Notice however, that in some places, no initial condition allows αu < 0,

and in some other, no condition allows αu > 0; this is the case when the value of γu is respectively

greater than 1 or less than -1.

Figure 2.7: A sketch of the planar manifolds of a saddle point and a representation of the Conley
Criterion in the means of “colored clocks” (see text).

2.2.6 Planar generalization of the Conley Criterion to Ωxy 6= 0

Interestingly, still assuming the complete ẑ-axis uncoupling, i.e. Ωxz = Ωyz = 0, but suppos-

ing Ωxy = ε 6= 0, Conley’s criterion is still valid, provided the polar reference (θ = 0) is adjusted.
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Indeed consider A2D (ε):

A2D (ε) =



0 0 1 0

0 0 0 1

a ε 0 2ω

ε −b −2ω 0


(2.104)

The bottom-left 2-by-2 matrix corresponding to the Hessian of the planar potential is sym-

metric (as Ωxy = Ωyx). Furthermore, the bottom right 2-by-2 matrix, corresponding to the planar

restriction of 2ωJ , is invariant by rotation. Therefore there exists a rotation R for which:

RTA2D (ε)R =



0 0 1 0

0 0 0 1

a′ 0 0 2ω

0 −b′ −2ω 0


with R =

 R 0

0 R

 (2.105)

where a′ and b′ are real constants (spectral theorem). There exists in fact four rotations R

that can give A2D (ε) this shape, each differing by a multiple of 90◦, and essentially interchanging

the values of a′ and −b′. By invariance of the determinant, and because ab > 0, it comes that

a′b′ > 0. It is therefore possible to choose, arbitrarily, the one such that a′ > 0 and so such that

b′ > 0. The Conley criterion then applies in this new planar basis, and can be stated identically,

as long as one adjusts the definition of χu χs, γu, γs and θ to the state variables (x′, y′, z) of this

new basis.

One should note that this result does not assume that ε is small but simply the equilibrium

point is a saddle point with a decoupled ẑ-axis motion. However, note that a small ε indeed yields a

small rotation R, which means that the Conley criterion, with native variable (x, y, z) then applies

with sufficient accuracy. In practice, rotation angles were found never to exceed 10◦, much less

usually, and the rotation R was simply neglected.
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2.2.7 Numerical verification of the Conley criterion

The criterion of Conley is an exact mathematical theorem but it applies to a linear system.

It should thus be checked in a non-linear context before it can be applied to this research. As the

classic theorem of local manifolds states, as long as the acceleration is C1 at the equilibrium point

(i.e. as long as the potential is C2 at the equilibrium point), the linear manifolds Ec (center), Es

(stable) and Eu (unstable) are tangents to non-linear counterparts at the equilibrium points[53]. In

other words, the topological structure of the non-linear manifolds matches (locally) the structure of

the linear manifolds. So, around the equilibrium points, the dynamics of the linear system describe

the non-linear motion with as much accuracy as the neighborhood is small. The crucial point here

is that this equivalence in the dynamics only holds in mathematical terms, for an infinitesimally

small neighborhood. It must be checked that the equivalence holds, to some extent, when the

neighborhood has a practical measurable size.

As it is usually found for these types of problems, the Conley criterion holds with good

accuracy for large neighborhoods as long as the linear manifolds are “strong enough”, i.e. if they

have large eigenvalues. A typical example of large eigenvalues is found in the Lagrange points

1 and 2 of a binary system – these points lie on one side and the other of the smaller body.

Whatever the mass ratio is, the eigenvalues of the unstable and stable manifolds are relatively

large. In practical terms, it is usually interpreted that motion around L1 and L2 is hard to control

because the instability of these points is very high. But in the present situation, a more appropriate

interpretation would be that the acceleration across the ridge line is very steep and, thus, motion

clearly falls between two categories: falling on the left, or falling on the right. Non-linear effects,

as they may exist, are not sufficient to cancel the influence of the linear motion.

Figures 2.8 and 2.9 show an appreciation of the accuracy of the Conley criterion in the case of

the L2 point of the binary system 1999 KW4. It is important to remember that the sole parameter

that influences the dynamics in the circular restricted three-body problem is the mass fraction of

the system, i.e. the ratio of the mass of the smallest body by the total mass. 1999 KW4 has an
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estimated mass fraction of approximately 5.42% in the models presented here, thus these results

hold for any system that has a mass fraction of 5.42%.

The figures compare the regions that were determined to have αu < 0 on the Conley criterion

with the regions that “directly” impacted the surface of the secondary. Indeed, it was proven

here that, as long as energy was small enough which is the case in these simulations, a trajectory

entering deep enough inside the inner realm of the secondary will impact its surface. The qualifier

“directly” here indicates that the trajectory had to impact the secondary before half a period of

the system and that the trajectory could not venture too far to the right of L2.

Ultimately, verifying the accuracy of the Conley criterion would require a 6-dimensional

figure, a number of dimension that is rather difficult to visualize. By considering only planar

velocities, it is reduced to 5 dimensions. By setting, for each figure, a constant parameter, it is

reduced to a 4-dimensional problem: Fig 2.8 constrains energy to a fixed value, while Fig 2.9

constrains speed. By setting the x position to the constant value of the “neck” position, it is

further reduced of one dimension. However, even this three-dimensional graph is very difficult to

evaluate, when projected on paper, thus it is cut in a z plane and in a y plane, so that one can

more adequately appreciate the comparison between numerical (full non-linear simulations) and

analytical (Conley linear criterion).

Figures 2.8 and 2.9 show an excellent accuracy between the analytical and numerical results.

As expected, as we get further (in phase-space) from the equilibrium point, the accuracy of the

Conley criterion suffers. Note that the dimensions indicated on the figures are in meters and thus

are to be compared to the distance between the two bodies, i.e. ≈ 2500 m. Furthermore, for this

purpose, the Conley criterion is even conservative as the αu < 0 region is smaller and included in

its numerical counterpart. The linear theory does not differentiate going towards or away from the

mass distribution, however the non-linear simulations show that the direction towards the mass

distribution is always favored. If the purpose was to avoid the surface of the asteroid, the Conley

criterion could be dangerous. As the goal is precisely to aim for the surface, the non-linear effects

do play to our advantage.
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Figure 2.8: Comparison, for constant energy, between the analytical Conley criterion and numerical
simulations at the L2 of the asteroid system 1999 KW4. The colored area show the conditions for
αu computed analytically and conditions for numerical simulations to escape the Lagrange point on
the left. Conversely, the blank area shows the conditions for αu > 0 (analytically) and an escape to
the right (numerically). The boundary of these regions correspond to αu = 0. At the top, αu < 0,
as function of y, for z = 0, for constant energy. At the bottom, αu < 0, as function of z, for
y ≈ 31m, for constant energy.
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Figure 2.9: Comparison, for constant speed, between the analytical Conley criterion and numerical
simulations at the L2 point of the asteroid system 1999 KW4. The colored area show the conditions
for αu computed analytically and conditions for numerical simulations to escape the Lagrange point
on the left. Conversely, the blank area shows the conditions for αu > 0 (analytically) and an escape
to the right (numerically). The boundary of these regions correspond to αu = 0. At the top,
αu < 0, as a function of y, for z = 0, for constant speed. At the bottom, αu < 0, as function of z,
for y ≈ −50m, for constant speed.
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2.3 Outline of the deployment strategy

Before explaining the global motion, it is important to explain how a deployment strategy

takes shape from the results obtained of the previous section.

2.3.1 Deploying from a saddle point

The key result of this work is that saddle points are interesting points for the release of a

lander to the surface of an asteroid. Two key features of saddle points make them ideal locations:

(1) They are minimum energy points on the ridge line

(2) Their eigenstructure gives a clear direction of instability

Before detailing these two points, a remark must be made. If the body spins slowly, the

dynamical problem of reaching the surface is very simple. The ridge line is then far from the body

and the equilibrium point is several hundreds of meters above the surface. Deploying from it would

be unnecessary and one would rather deploy from a given altitude of 50 m, 100 m or yet 150 m

depending on the mission operation constraints. If the lander were then given a zero velocity in

the rotating body frame, as it is far from the geostationary orbit (another way to understand the

ridge line) it will fall to the surface and it will not be able to escape.

The difficulty for asteroid landings is that this is usually not the case. Bodies have ridge

lines that are sometimes tens of meters away from the surface. Or they are in a binary system

where motion obeys the complex rules of the three-body problem. These are the cases for Itokawa

(Hayabusa 1 in 2005), Castalia, 2008 EV5 (target of the late MarcoPolo-R proposal), low-density

1999 JU3 (Hayabusa 2, launching in 2015), 1999 KW4, 1996 FG3, Didymos.

Asteroid environments are rarely easy for landing trajectories. If such asteroid proves to be

very favorable to landings then any reasonable strategy can be successful. But if one finds itself

in the common situation of a very difficult environment with very limited room to operate, one

will find in this thesis an easy-to-implement strategy, safe, robust, cheap and accessible to most

missions.
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2.3.1.1 Minimal energy

Per construction of the ridge line, we know that the surface of an asteroid is separated of

the exterior by a ridge of potential. If one deploys in the exterior, outside this potential ridge,

one will need to overcome the value of the potential at whatever point it tries to cross it. Two

haunting visions should and do compete in the mind of the principal investigator designing an

asteroid lander: on one side the lander lacks energy and never reaches the surface, on the other the

lander goes too fast and bounces back in orbit.

Deploying from the equilibrium point allows the possibility of each catastrophic scenario to

be assessed, and so the mission may be prepared accordingly. At the equilibrium point, the lander

already has enough energy to be in the asteroid inner realm. Given proper direction, it will wander

in this realm and can be set to reach the surface (see details in the next section). At the equilibrium

point, the lander does not have too much energy and will then need to dissipate only a small fraction

of its kinetic energy on impact to remain bounded to the surface.

Of course, if the asteroid spins slowly, as stated, one could deploy much closer to the surface

than this equilibrium point. The lander will then have a much lower energy. But this is not often

possible because of the proximity between the ridge line and the surface. Conversely, in the three-

body problem, nothing prevents the spacecraft to graze the secondary, hover there and deploy the

lander tens of meters from the surface. However one should consider the difficulty of performing

such maneuvers and compare it to the simplicity of placing the spacecraft on a hyperbola whose

periapsis is located around L2, hundreds of meter away of any harm. And, addressing the observed

risk aversion of space agencies, why jeopardize a hundreds of millions of dollars spacecraft when a

robust risk-free solution now exists?

2.3.1.2 Clear direction of instability

Yet, the minimal energy is not the only interesting feature of a saddle point. It has been

shown here that at, a saddle point, there exists a single unstable manifold of dimension 1. Just
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like an inverted pendulum inevitably falls left or right, lingering around the equilibrium point is

only a mathematical possibility that cannot manifest itself in practice. And because the unstable

manifold is one-dimensional, it shows a direction and gives the lander a clear choice: left or right,

inner realm or outer realm, deployment success or deployment failure.

Motion near a maximum is very different. Their eigenstructure, in practice consists of cen-

ter manifolds and they are linearly neither unstable nor stable (a situation also called marginal

stability). However, a non-linear analysis shows that what may be identified as the remnants of

the 1-dimensional unstable and stable manifolds has merged into a center manifolds that can be

non-linearly stable or unstable. A very quick description would be that these maxima are found

unstable when the planar potential becomes locally narrower and stable when the potential flattens.

The specific situation depends on the parameters of each problem. The restricted three-body prob-

lem identifies a Routh criterion, a critical mass fraction of ≈ 0.0385 below which L4 and L5 become

stable. The homogeneous ellipsoid identifies regions of δ, β̂ and γ̂ of stability or of instability[74]:

when the asteroid becomes sufficiently narrower in β̂, the equilibrium become more stable; for a

given β̂, a higher γ̂ is favorable to stability; for any shape, the equilibrium is always stable when

the asteroid spins slowly enough (i.e. δ is high enough).

By deploying near any other region that an equilibrium, one would take the risk that the local

linear (or affine) manifolds do not partition motion as clearly. The lander would end up spiraling

towards a stable maximum or spiraling out without any clear control of where it will finish its

course.

2.3.2 Parameters of the deployment

In practice and in the simulations, the deployment is done with uncertainties on the state of

the spacecraft and on the pod deployment mechanism. The uncertainties on the state are denoted

with the prefix δ. The nominal deployment positions and velocities are denoted with 0 and the

positions are measured from the equilibrium point, and its coordinate system previously established.

The deployment mechanism imparts to the lander a velocity vd with uncertainties as well.
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Table 2.1: Notations of the main deployment parameters

Parameter Nominal Uncertainty Remark

Release Position r0 = Xe +

 x0
y0
0

 δr0 -

Spacecraft Velocity vs =

 0
vs
0

 δvs -

Deployment Velocity vd =

 vd cos θd
vd sin θd

0

 δvd -

Lander Velocity v0 =

 v0 cos (π + χs)
v0 sin(π + χs)

0

 δv0 induced by δvs and δvd

2.3.3 The energy constraint

Considering only the energy – a safe and reliable consideration as orbital motion around an

asteroid can be difficult to understand – a second requirement can be put in mathematical terms

on the trajectory of the lander: the landing pod should be given an energy at release C0 such

that C0 < Cmin – the energy identified as the minimum of the potential on the ridge line, i.e. the

value of the potential at the equilibrium point. This first criterion can be difficult to ensure, when

considering the GNC and release mechanism accuracy that can be expected from the mothership.

But, as the trajectory of the lander is designed to impact the surface of the asteroid, a less drastic

and still valid energy criterion is that the energy after the first impact C1 should be used instead.

Estimating, how much energy will be damped on the first impact on an asteroid is a difficult

question. Assuming some simplifying yet realistic and conservative assumptions, one may come to

the conclusion[85] that speed is damped by a factor η defined as:

η = min

(
1− e, I

I +mR2

)
(2.106)

where e is the coefficient of restitution of the spherical pod, I its inertia, m its mass and R its

radius. The two terms of the min comparison respectively express the normal velocity damping
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and tangential velocity damping (when velocity and spin synchronize because of friction). As it is

not known what will be the angle of impact of the lander, Eq. 2.106 is a way to select the worst

case scenario (normal impact or tangential).

Now, noting Ω0 the amended potential at release, Ωs the amended potential at first impact

on the surface and v0 the speed at release, the conservation of energy gives an inequality on v0 to

ensure that C1 < Cmin:

v0 <

√
2

(
Cmin

(1− η)2
−
(

1

(1− η)2
− 1

)
Ωs − Ω0

)
(2.107)

The strategy devised here has Ω0 ≈ Cmin (with Cmin slightly greater than Ω0). So, the

following conservative criterion sets the upper limit for the maximum release speed allowed, for a

given η, Ω0 and Ωs:

v0 <

√
2

(
1

(1− η)2
− 1

)
(Ω0 − Ωs) (2.108)

Because the region of release may be relatively large, Ω0 should be the minimum value of the

potential observed on this region. Similarly, Ωs should be taken to be the maximum value observed

on the first impact region. If in that situation the simpler Eq. 2.108 puts too much constraint on

the deployment speed, the more accurate Eq. 2.107 should be used.

2.3.4 Releasing the lander

The deployment is then done as follows. Given the results obtained in the previous section,

the lander should be released at r0 = Xe+ (x0, y0, 0), where x0 < 0 and y0 > 0 in order to have γu

as large as possible. The velocity of the spacecraft vs and the velocity imparted by the deployment

mechanism vd should be chosen so that the polar direction of the lander nominal velocity v0 is

π+χs. The magnitude of v0 should be as small as possible, given these formulas and Eq. 2.107 puts

a maximum bound of the value of v0. Yet, v0 should be large enough so that, when considering

uncertainties δr0, δvd, and δvd, the release state (r,v) of the lander remains favorable to a landing.

A simple deployment maneuver design is as follows. The mothership is set on a hyperbolic

trajectory passing the asteroid at some periapsis set close to a saddle equilibrium point. At this
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point ρ0, it releases a lander in a certain direction. The combination of the spacecraft velocity and

the deployment velocity gives the lander a release velocity that leads it on a collision course with

the asteroid. vs should be directed on the positive ŷ-axis, which yields that the release position

is very close to (yet not exactly at) the periapse of the spacecraft trajectory. The magnitude vs

should be set so that the spacecraft trajectory is hyperbolic enough to ensure its safety but not so

large so as to drive ψ too close to −90◦ and impose too large vd. Once the spacecraft velocity is

set, the deployment velocity follows:

vd =
√
v20 − 2v0vs sin (π + χs) + v2s (2.109)

cosψ =
v0
vs

(2.110)

Figure 2.10 sums up the triangle of velocities and the different uncertainties accounted for

the special case where the uncertainty on the deployment speed is considered to be in magnitude

only, so that the reader can see the different contributions. Later, the 3σ uncertainties on the

vertical velocity and the horizontal velocity will be distinguished. As depicted, the lander energy

is nominally larger than the saddle point energy. Of course, all these parameters are to be adapted

to the specificities of a given mission.

The mothership trajectory is ballistic by nature, although it will probably be slightly con-

trolled to ensure the deployment conditions are met, both in position and velocity. The term

hyperbolic is here employed, by analogy to Keplerian motion, to characterize high energy orbits

that are not bound to the asteroid. Although not a real geometrical hyperbola, the actual trajectory

usually resembles one.

2.3.5 Variable energy

It is important to notice that the strategy is set up so that, for low energies (at low speed),

the lander follows the unstable manifold of the equilibrium point. It then exits the equilibrium

region along a trajectory that wraps around the unstable manifold. The lander then escapes the

equilibrium region along the direction π + χu.
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Figure 2.10: Velocity and position uncertainties for the deployment. The inner region and the
asteroid are to the left, and the exterior region is to the right.

For high speeds, the same linear analysis theoretically applies but is not valid anymore in

practice. Indeed, the velocity can be so large that the spacecraft exits the vicinity of the equilibrium

point before the linear unstable manifolds can be expressed. In that situation, it would be irrelevant

to look at the unstable manifold because the spacecraft does not follow it. And in that situation,

the velocity of the spacecraft does not change significantly between its release and the moment it

exits the equilibrium point region. Because of the strategy presented in this thesis, one can see

that the lander is then aimed in the direction π + χs (see Fig 2.10).

Simply put, the spacecraft exits the equilibrium point along the direction π + χu at low

energies, and along π + χs at high energies. For the intermediate and most common energies, a

combination of these directions is observed.
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2.4 Motion from an equilibrium point

It is finally possible to come to the analysis of the motion of a lander released from a saddle

equilibrium point, using the strategy outlined in the previous section.

From the previous sections, it is known that the saddle equilibrium point of lowest energy on

the ridge line is a great location in terms of energy. It is known from our studies on linearization

that it is a simple task to aim the deployment velocity so that the lander goes towards the surface.

But, nothing yet explains why the lander would indeed impact the surface. This is the study of

the global motion – motion that comes after the lander leaves the vicinity of the equilibrium point.

Two cases naturally arise: a strong manifold case and a weak manifold case.

The strong manifold case is the situation where the linear manifold leads the lander directly

to the surface. It corresponds to an easy situation: the dynamical system is naturally designed to

bring the lander to the surface. It is the case of the secondary body of most asteroid systems (e.g.

1999 KW Beta) and it is the case for elongated single bodies (e.g. Itokawa). In these situations,

the goal is to follow the unstable manifold as much as possible, as it will bring the lander to the

surface. The task is then simply to ensure that the Conley criterion is verified, and to make the

energy of the lander as small as the uncertainties on the deployment allow.

The weak manifold case is the situation where the linear manifold cannot bring the lander to

the surface. In that situation, the energy should be increased to force the trajectory down to the

ground. This case happens in two broad situations: first when the body spins too slowly (e.g. 1999

JU3), and second when the body is axisymmetric (e.g. low-density 2008 EV5, or 1999 KW4 Alpha).

If the body spins too slowly, the dynamical situation is very easy: the ridge line will be located far

enough and thus, coming closer to the surface, one will ensure that the lander will be released on

an impact trajectory without enough energy to escape. The case where the body spins quickly and

is axisymmetric is the difficult and so most interesting case. Eventually the study of each body

should lead to a detailed numerical analysis of motion emanating from a chosen equilibrium point.

However, guidelines for such analyses can be given, as well as the solutions to issues that arise.
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2.4.1 Strong manifold case – secondary body of a binary system

A typical example of strong manifold is given with the three-body problem, from the Lagrange

point L2 towards the secondary. The circular restricted three-body problem (CR3BP) ceases to be

a purely point-mass attraction problem as the question of intersecting the surface of the asteroid

becomes central. Therefore, the system cannot be characterized uniquely by the mass fraction µ

anymore; it needs to include a necessary element that would relate to the size of the asteroid.

Because the shape of an asteroid may be very complex, and not necessarily known prior to the

mission, it is considered here that its dimensions are defined simply by a minimum radius from its

center of mass.

2.4.1.1 Radius-To-Orbit size ratio

As the CR3BP was normalized such that the distance between the two bodies equals 1, the

radius of a body in these units is, in fact, the ratio between its radius and the semi-major axis

of the mutual binary orbit. For this reason, the authors name the radius in normalized units the

Radius-To-Orbit size ratio or, shortly, RTO. The RTO is bounded physically between 0 and 1, and

should not logically exceed 0.5 for the secondary body, as it is the smallest asteroid. Considering

the RTO in the context of zero-velocity surfaces, the RTO is a measure of how much room a body

occupies in its inner realm. Note that two RTOs are defined, the primary RTO and the secondary

RTO depending on which body is considered. To address the feasibility of landing on a specific

body of a binary system, one now needs only two parameters: the mass fraction of the system (µ)

and the RTO of the targeted body.

The very interesting aspect of asteroids within binary systems is that they exhibit unusually

large RTOs compared to most other systems, precisely because of their low mass. Table 2.2 presents

RTOs of different binary systems, including known asteroid binaries but also planetary systems for

a possible comparison.
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Table 2.2: Radius To Orbit size ratio (RTO) of some binary systems

System Primary RTO Secondary RTO

Earth-Moon 1.66% 0.45%
Jupiter-Ganymede 6.25% 0.49%

1999 KW4 ≈ 28% ≈ 10%
1996 FG3 ≈ 37% ≈ 6%
Antiope ≈ 24% ≈ 23%

2.4.1.2 Periapses maps

The question of landing may now be formulated differently. Instead of seeing it as the crossing

of the asteroid surface, a landing trajectory is defined, equivalently, as a trajectory for which the

distance to the targeted body will, at some point in time, lie under the RTO of this body. Obviously,

it is then necessary and sufficient that the minimal distance, i.e. the periapse, to the targeted body

lies below the RTO.

This definition of a landing trajectory naturally yields to realize a Poincaré map of the

periapses of a bundle of trajectories coming from an equilibrium point region, a method devised by

Villac[96]. If the problem is reduced to a planar problem, initializing on an equilibrium point neck,

there are but 3 degrees of freedom: position along the ŷ-axis, polar angle of the initial velocity in

the xy-plane and magnitude of the velocity. Fixing the integral of Jacobi (mechanical energy) along

one bundle of the trajectory, the problem is now limited to two degrees of freedom. The advantage

of doing so is that each periapsis point can be mapped uniquely to a point on the neck from which

it originates. If two periapses regions overlap, it means that the overlapping points correspond to

the same trajectory.

Because planar periapses maps correspond to trajectories of equal energy, they are therefore

especially easy to understand. And one may be interested in how, for a fixed energy, the entire

initial space is mapped. Figure 2.11 shows such a map (up to the 6 first periapses), initialized

from the libration point L2, in the 1999 KW4 system. Each color corresponds to the rank of the

considered periapse in the trajectory. Note that many trajectories escaped without ever entering
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the inner realm or having a periapse.

The most important periapse region, for this study, is the first periapse region (red on

Fig. 2.11). Notice that for such levels of energy, a trajectory that penetrates the inner realm

will necessarily, because of the zero-velocity surfaces, approach the secondary body before it can

depart it. Determining the location of the first periapse region is then key to understanding where

a lander goes when on a ballistic trajectory that enters the inner realm. Two distinct areas corre-

spond to a first periapses passage on Fig. 2.11: a first area still located in the neck region and a

second area located deep in the inner realm and under the surface of the asteroid. The first area

corresponds to trajectories that do not directly penetrate deep inside the inner realm; some might

eventually progress more deeply in the region, some might eventually escape on the right of the

neck. The second area is the inner first periapse zone; trajectories that will penetrate deep inside

the inner realm will necessarily go through this zone, whether they had a previous periapse in the

neck or not. Therefore, this latter inner region is called “the” first periapse zone, dismissing the

periapses that potentially occurred in the neck region as they are of no relevance to the following

discussions. Fig. 2.11 shows only the planar location of the periapses but the full three-dimensional

periapses regions show no significant difference: essentially, the first periapse zone fills in, when

projected on the xy plane, as it thickens out in the third dimension.

Because the desire is to reach the surface soon after having released the landing pod, the

landing should be timely constrained. Therefore, it is decided that a trajectory qualifies as an

acceptable landing trajectory if its first periapsis lies under the RTO. As can be seen already on

Fig. 2.11, for the considered system and energy level, the first periapsis zone located in the inner

realm is well under the surface of the secondary body. Now, one may want to ascertain how this

red area grows or shrinks as energy is varied. Indeed, it may be expected that the larger the energy,

the larger the area, and that could be a problem if this area was to outgrow the asteroid surface.

Figure 2.12 shows agreement with this expected behavior. It shows the first periapse area

only, color coded now along energy, for a wide range of integrals of Jacobi. As can be seen, the

increase of energy may be quite high while still ensuring a landing for all trajectories penetrating
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Figure 2.11: Secondary periapses of trajectories initialized near L2, for a constant of Jacobi corre-
sponding to a well formed L2 neck in system 1999 KW4. A grey ellipsoidal shape for the surface
of Beta has been provided.

the inner realm. As these levels of energy may seem abstract to the reader, they are best understood

by looking at the variation of the zero-velocity curves, shown in shades of gray or by observing that

the speed at L2 was multiplied by more than 5 between the narrowest zero velocity curve shown to

the broadest. Despite proving that motion is very predictable even for large values of energy, the

very interesting point of Fig. 2.12 is that the periapse region does not shift nor moves around the

asteroid when varying the energy but merely grows in every direction, from a point located at the

upper left of the center of the asteroid, a phenomenon already identified by Paskowitz[64].

2.4.1.3 Manifold delivery and minimum RTO

This last remark gives a remarkably simple way to ascertain the feasibility of the deployment

strategy. One only needs to compute the first periapsis distance of a single and very specific

trajectory that consists in the unstable manifold coming from L2 for minimal energy. As seen
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Figure 2.12: Secondary first periapse of trajectories initialized at L2, for constants of Jacobi between
C2 (L2 opening) and C2 + 12× 10−3 (normalized units) in system 1999 KW4

in “Linearization at an Equilibrium Point”, L2 possesses an unstable manifold that can place an

object on a trajectory that enters the inner realm, and therefore has a periapsis inside the inner

realm. Numerical simulations have shown that this precise periapse is very important as the other

energy-fixed maps grow around it.

In other words, if the minimum-energy periapse lies under the surface then, at least for a

small range of integrals of Jacobi, the periapse region remains under the surface. A contrario, if

this periapsis lies on the surface or above it then, if the energy is sufficiently low, the trajectories

entering the inner realm do not have their first periapse under the surface, and therefore do not

satisfy our definition of an acceptable landing trajectory. Figure 2.13 shows the manifold delivery

from L2 to the secondary, still in the context of system 1999 KW4: as expected from Fig. 2.12, the

first periapse is well below the asteroid surface.

The possibility of a ballistic landing from any libration point may now be assessed simply
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Figure 2.13: Manifold delivery from L2 to the secondary body of 1999 KW4. The periapses are
indicated with black dots and are numbered as they happen.

for any system. This strategy is feasible if and only if the RTO is greater than the minimum-

energy first periapse distance to the center of the targeted asteroid. Therefore, such a distance is

called the minimum RTO (denoted RTOmin). The primary body has one RTOmin associated with

a deployment from L1 and one RTOmin for a deployment from L3, and similarly for the secondary

body with L1 and L2. For any mass ratio µ, the corresponding value for its RTOmin can be computed

and compared to the actual RTOs. Figure 2.15 shows a plot of RTOmin versus µ, and the RTO

estimates of several known binary NEOs, whose parameters are given in Tbl.2.3. Generally, the

dynamical situation at binary NEOs always offer a possibility for landing on the secondary from

L1, and very often from L2.

On the other hand, consider what happens with a deployment to the primary. Reaching the

surface of the primary is generally impossible from L3 and only rarely from L1. Figure 2.14 clearly

shows what a failed attempt at landing from L3 looks like: the lander dramatically fails to reach
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Figure 2.14: Manifold delivery from L3 to the primary body of 1999 KW4. The periapses are
indicated with black dots and are numbered as they happen.

the surface on the first pass and enters the secondary’s realm, very possibly impacting it later on.

In the end, reaching the surface of the secondary body of binary asteroid systems is generally

feasible either from L1 or L2. As L1 is located between the two bodies, it lies in a more hazardous

region than L2. Also, L2 is located on the ridge line of the three-body problem whereas L1 is not,

although the two equilibria do share the same eigenstructure. In conclusion, it is then confirmed

that a deployment from L2 at the secondary body of a binary asteroid system falls within the strong

manifold case.

2.4.2 Strong manifold case – elongated bodies

Elongated bodies naturally show strong values of b and a (see Linearization at an Equilibrium

Point) at their saddle points. Although it would be mathematically very limited and physically

dubious to model these bodies with a three-body problem, we can see a parallel in the mass
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Figure 2.15: This figure shows the minimum RTO, for the primary (top) and the secondary (bot-
tom), depending on the mass fraction µ, and, indicates with grey polygones the estimated param-
eters (with margins) of several NEOs.
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Table 2.3: Estimated parameters of the binary asteroid systems plotted on Fig 2.15.

System Mass fraction (µ) Primary RTO range Secondary RTO range

1999 KW4 2.84% – 6.66% 26.94% – 29.46% 9.06% – 11.19%
1996 FG3 0.30% – 0.72% 36.46% – 40.63% 5.21% – 6.25%
1999 HF1 0.48% – 2.88% 18.83% – 37.30% 4.66% – 7.89%
Didymos 0.19% – 1.60% 32.92% – 38.94% 4.17% – 9.62%
Sekhmet 0.46% – 1.91% 39.16% – 52.82% 7.53% – 12.32%

2000 DP107 1.27% – 19.62% 11.38% – 19.71% 4.00% – 8.21%
1991 VH 1.96% – 19.25% 6.61% – 12.79% 2.51% – 5.67%

repartition.

2.4.2.1 The equilibrium location is primarily determined by the moment of inertias

In general, the gravity field of elongated bodies is dominated by their harmonic coefficients

C20 and C22. This can be seen directly in the expression of the harmonic coefficients as a function

of the inertias of the body. In a principal axes frame, the only non-zero coefficients of order and

degree less than or equal to 2 are C22 and C20. C20 itself does not directly affect the value of Ωyy.

The values of these coefficients are recalled[49, 73], depending on the principal inertias Ixx, Iyy and

Izz, and on the mass of the body M and the radius of the Brillouin sphere R.

C22 =
Iyy − Ixx
4MR2

(2.111)

C20 =
Ixx + Iyy − 2Izz

2MR2
(2.112)

The location of the equilibrium points is recalled from Hu and Scheeres 2004[39]. Placing

ourselves in non-degenerate cases, and where the body is not in tension, two saddle points can

always be found along the longest planar axis and two maxima are located along the shortest

planar axis. Of course, all are located on the ridge line of this problem. Notably a saddle point,

in the equilibrium point frame, is located at (xe, 0, 0) (and in this situation, the x̂-axis is aligned

with the longest axis) with:

xe =
( µ
ω2

)1/3(
1− 1

2
C20 + 3C22

)
+O(C2

20, C
2
22) (2.113)
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An unexpected and yet telling evidence that the location of the bodies is indeed influenced

mostly by their C22 and C20 coefficients comes from the ridge lines given in the previous section.

One may have noticed on Fig. 2.2-2.6 that the saddle equilibria are always roughly aligned with the

x̂-axis. Moreover, there are often two saddle points and two maxima. When more equilibria are

present it is a bifurcation of the maximum into a maximum-saddle-maximum configuration that

remains located in the vicinity of the original maximum. This is no happenstance. The bodies

are indeed given with their pole aligned with the ẑ-axis and with their longest axis aligned with

the x̂-axis. Thus, by the vey design of the shape model, we are placed in situations where the

body principal axes are roughly aligned with the frame axes and where Ixx < Iyy < Izz. And

although some of these bodies do exhibit other significant harmonic coefficients, it is apparent that

the characterization and location of their equilibria remains strongly determined by second order

and second degree gravity fields.

2.4.2.2 The value of a and b for a homogeneous ellipsoid

For an ellipsoid, the explicit derivation of Ωxx = −a and Ωyy = b at a saddle point was

computed in Scheeres 1994[74]. The asteroid is supposed to rotate around its major principal axis,

the ẑ-axis. Its radii α, β and γ respectively along x̂, ŷ and ẑ verify α > β > γ. Following Scheeres,

denote β̂ = β/α and γ̂ = γ/α and define δ the dimensionless parameter:

δ =
µ

ω2α3
(2.114)

Please notice the similarity between the definition of δ and the critical ratio identified for the

homogeneous sphere in a previous section. If the saddle points do exist (i.e. the body does not

spin too rapidly), a saddle point is located at (xe, 0, 0) with:

xe = α
√
νe + 1 (2.115)

where νe verifies the integral identity
3

2
δ

∫ ∞
νe

dν

(1 + ν)∆(ν)
= 1 (2.116)

and where ∆(ν) =

√
(1 + ν)(β̂2 + ν)(γ̂2 + ν) (2.117)
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One can note that a necessary and sufficient condition for the existence of this equilibrium is that

νe exists and is positive. And then:

Ωxx = − 3δ

∆(νe)
(2.118)

Ωyy = ω2

(
3

2
δ

∫ ∞
νe

dν

(β̂2 + ν)∆(ν)
− 1

)
(2.119)

As β̂ < 1 then Ωyy > 0, so we are indeed at a saddle point as identified in this study. Fixing

µ, when β̂ decreases, νe and xe increase. Because νe remains defined through its transcendent

equality, the integral present in Ωyy also increases. The situation for Ωxx is not as clear however.

The knowledge obtained from previous section can then be applied to the evolution of the

unstable manifold as a function of b = Ωyy. So, the more elongated the body is, the higher b. And

so, the manifolds become stronger as the body elongates.

2.4.2.3 Unstable manifold deliveries

Although the equilibrium point location is mostly determined by C22 and C20 and although

the ellipsoid analysis shows the effect of elongation on the strength of the manifolds, one should not

hastily conclude that the global motion is governed solely by such coefficients or the approximate

geometry of the body. In the case of asteroids, especially when approaching the surface, many

other gravitational perturbation manifests themselves. Contrary to the 3-body-problem that was

dynamically governed by the established rotation of the secondary around the primary, the global

motion from any saddle equilibrium point of any asteroid should not be generalized.

For a given body of interest, the full non-linear manifolds of each saddle equilibrium should

be computed. If they intersect the surface, with some margin, then one is in a strong manifold

case. If they do not, one is in a weak manifold case.

The example of two manifold deliveries are shown. The first example is Itokawa, an elongated

body of prime interest as its shape is known with great details since Hayabusa (JAXA) visited it

in 2005. The second body is Castalia.

Itokawa
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Itokawa being an elongated body, and as its equilibrium points are rather close to it, one

should expect a strong unstable manifold leading to the surface. And indeed, this is what happens

on Fig. 2.16. A parallel can be drawn with the unstable manifold deployment at a secondary as

shown on Fig. 2.13.

Figure 2.16: Unstable manifold from the lowest energy saddle point of Itokawa. The unstable
manifold leads directly to the surface.

Castalia

With an estimated density of 2.8 kg/L, Castalia has equilibrium points very close to the

surface. Fig. 2.17 shows that the unstable manifold of the saddle point directly impacts the asteroid

on the face directly in front of it, to the difference of Itokawa’s case or of the three body problem.

2.4.3 Weak manifold case

2008 EV5 is an almost perfectly axisymmetric body. Then, per this thesis’ results, we should

expect a weak unstable manifold and motion at low energy would be quickly dominated by non-
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Figure 2.17: Unstable manifold from the lowest energy saddle point of Castalia. The unstable
manifold leads directly to the surface.



91

linear effects. And indeed, this is confirmed on Fig. 2.18 where the lander fails to reach the surface

even after 96 h (4 days). In fact, longer simulations show that an impact occurs only after 139h

(almost 6 days) – though such studies become rather irrelevant as they do not include solar radiation

pressure that would become a significant perturbation over such a long time.

Figure 2.18: Unstable manifold from the lowest energy saddle point of 2008 EV5 (density 2.97
kg/L). The unstable manifold fails to reach the surface even after 96h! The apoapses of all the
orbits outline the presence of the potential ridge line. Riding the manifold is not enough to reach
the surface.

As just presented, 2008 EV5 does not allow the only use of the eigenstructure of the saddle

point to reach the surface. In that situation an additional effort is required, so that the trajectory

of the lander is brought to the ground. But, as shown, this situation is found when the body is

almost axisymmetric. And when the body is axisymmetric, very useful laws of conservation can be

used in the inertial frame.
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2.4.3.1 General periapse equation

Indeed, if the body is axisymmetric, the gravity field in the body inertial frame (quasi-

inertial frame fixed at asteroid center and that does not rotate with the body) is constant. Because

gravitational forces are conservative, it then comes that, in this frame too, the energy is conserved.

The angular momentum may precess but its magnitude is conserved. The fact that energy and

magnitude of the angular momentum is conserved leads us to use quasi-Keplerian relations relating

the initial state to the location of the periapse of the trajectory.

Define E the energy of the system in the inertial frame. Then, for a gravitational potential

U :

E =
1

2
v2 + U(r) (2.120)

Define H the (specific) angular momentum of the system in the inertial frame. Then, by

definition:

H = r × v (2.121)

A periapse and an apoapse can be defined as moments on the trajectory where the radius is

orthogonal to the velocity. Indeed, at this point the spacecraft is at a critical point of the radius as

a function of time. Mathematically, this position may correspond to a critical point that is neither

minimum or maximum, but that is an extremely rare situation. In most situations, this position

will indeed be a local extremum.

So, a necessary and sufficient (in non-degenerate cases) condition for a position to be a

periapse or an apoapse is H = rv – notice that the quantities are not vectors but scalars here.

Thus one may write the general extremum equation. Considering a trajectory of energy E0

and angular momentum H0, its extrema are located at rX , where the rX are the solution of:

1

2

H0

|rX |
+ U(rX)− E0 = 0 (2.122)

The reader can verify that for a point mass (so U = −µ/r), solving Eq. 2.122 analytically
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yields:

rX =
µ

2E0

1±

√
1 + 2

H2
0

µ2
E0

 (2.123)

And each of the terms in this last equation can be replaced into the famous:

rX = a (1± e) (2.124)

where a is the semi-major axis and e is the eccentricity.

If accuracy is needed, one could then solve the location of the periapse for an axisymmetric

body for a given set of initial conditions. However note that, in general, Eq. 2.122 is a very complex

equation – and may be transcendental. Thus, the solving of Eq. 2.122 would likely be numerical

and may involve constraining the problem further.

2.4.3.2 The point-mass approximation

A much simpler approach is proposed, albeit less accurate. It implies assuming the mass

distribution can locally be assimilated to a point mass, and computing the periapse location (de-

pending on initial conditions) using Keplerian relations. This criterion has shown sufficient accuracy

and allows to deploy on binary body 1999 KW4, that is, by far, the hardest target of this study.

One must first compute the equivalent gravitational constant µeq of this fictive point mass.

At point r, one computes the gravitational acceleration a caused by the mass distribution using the

most detailed potential model that one considers (e.g. ellipsoid, polyhedron). Then one reconstruct

µeq through:

µeq = |a| |r|2 (2.125)

The reader may wonder why the point mass acceleration is used and not the point mass

potential definition. The reason is simple: the local value of a potential has no meaning for a field

particle. A potential is a mathematical object that allows locally to compute accelerations and

globally to account for transfers of energy. But locally, the value in one point of the potential is

meaningless. Thus, the gravitational acceleration is used.
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Once this µeq is done, one can use the formulas of the two body problem to solve for a and e

for a given initial condition. It then becomes a trade-off between the initial energy in the rotating

body frame and the periapse radius.

Two examples are given here: 2008 EV5 and 1999 KW4 Alpha. For each examples, the

situation is recalled and four graphs are given, two for each saddle equilibrium point. The first

graph shows the periapse radius as a function of the velocity in the rotating body frame. The second

graph shows the energy level (in SI units) as a function of the velocity in the rotating body frame.

On both graphs, the direction of the stable manifold is indicated with a black arrow. Although the

manifolds are weak, they still play a role in the vicinity of the equilibrium point. Thus, especially

if the speed remains low, the mission designer should orient the velocity along the direction π+χs

Using these two graphs, one may perform their own mission design for each of these asteroids.

(1) First, one determines a maximum value of periapse acceptable: it should guarantee landing.

This step may be the most difficult one as one can easily be over-confident (selecting the

equatorial radius) or over-conservative (selecting the minimum radius) and trial-and-error

approach may be useful to establish the minimum acceptable radius.

(2) Second, one considers the uncertainty (e.g. to 3σ) in the release velocity of the lander. One

then places the nominal velocity along the black arrow so that a worst case error on the

release velocity still ensures the periapse is below the minimum radius obtained in step 1.

(3) Third, one considers the maximum level of energy obtained and compares it with their

energy criterion. If the energy is too large, one must reconsider the parameters of the

mission.

2008 EV5

The two graphs in Fig. 2.19 and in Fig. 2.20 show a relatively easy situation in either case.

The two equilibrium have extremely similar characteristic, and deploying from one or the other

does not make any significant difference. One may also observe that π + χs is very close to the

−90◦ direction, a direct proof of the weakness of the stable and unstable manifolds. From the top
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graph, one can conclude that, given 5 cm/s with a 3 cm/s accuracy at 3σ, a lander is guaranteed

to impact. With a coefficient of restitution of 0.65, one can check that it dissipates enough energy

to satisfy the energy criterion.

Figure 2.19: Using the point-mass approximation to compute initial conditions to guarantee impact
on the surface, for a deployment at the lowest energy saddle point of 2008 EV5 (density 2.97 kg/L).

1999 KW4 Alpha

The situation for 1999 KW4 Alpha is very difficult, given the proximity of its ridge line

with the surface. But moreover, it will be shown later that the presence of the secondary can

significantly disturb the deployment. Nevertheless, for now, this analysis is performed assuming

1999 KW4 Alpha is a single body. The two equilibrium points are only tens of meters above the
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Figure 2.20: Using the point-mass approximation to compute initial conditions to guarantee impact
on the surface, for a deployment at the second lowest energy saddle point of 2008 EV5 (density
2.97 kg/L).

surface. Hence, almost any amount of speed lowers the periapse under the surface. However, the

energy criterion becomes very difficult to ensure and the risk of bouncing back in orbit in significant.

Notice that the two saddle point are slightly different both in term of distance to the center

but also in the directions of the manifolds. Regarding these directions, notice that both manifolds

are relatively strong as π+χs is not very close to −90◦. Indeed, despite its axisymmetry, the body

does exhibit unusually strong Ωyy and Ωxx at the saddles sue notably to the very close proximity

with the surface.
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It will be shown later that the second saddle point is a better candidate for landing given

that its altitude is higher and thus allows for a deployment very close to the ridge line. A contrario,

the first saddle point forces to a deployment from the outer realm, which noticeably undermines

the strategy.

The maximum periapse value is placed at 720 m, which, in the direction of π + χs, yields

a minimum total speed (in the rotating body frame) of about 0.8 cm/s in both cases. Still, for

an uncertainty of 3 cm/s, it gives a minimum speed of 3.8 cm/s. In fact, later in this work, the

deployment will occur from a higher altitude than the equilibrium point (because it is too close of

the surface) and the minimum speed will be increased (using the same method) to 1 cm/s and so

4 cm/s with the 3σ uncertainty on velocity.
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Figure 2.21: Using the point-mass approximation to compute initial conditions to guarantee impact
on the surface, for a deployment at the lowest energy saddle point of 1999 KW4 Alpha.
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Figure 2.22: Using the point-mass approximation to compute initial conditions to guarantee impact
on the surface, for a deployment at the second lowest energy saddle point of 1999 KW4 Alpha.



Chapter 3

Surface Motion

3.1 Problem Statement

This section presents the simple yet essential concepts and equations that govern the motion

of a spherical pod on a surface that represents some part of an asteroid surface. The mathematical

model used is detailed, the equations of motion are given and the constraints on the motion of the

pod due to the presence of the surface are laid out.

3.1.1 Model

The model considered is as follows. The pod, of mass m, is assumed to be a perfect sphere

of radius r, its center of mass coinciding with the center of the sphere. The pod is assumed to be

a non-deformable perfectly rigid body of matrix of inertia I. It is recalled that the inertia matrix

I has value 2
3mr

2Id3 for a shell and 2
5mr

2Id3 for a ball of homogeneous density.

The surface is a 2-dimensional bounded, closed (topologically and geometrically) surface of

configuration space. and is assumed to be an unmovable and perfectly rigid object. Although the

surface could be given a local curvature, asteroid models are built with flat facets, triangles mostly.

The surface is then assumed to be made of flat triangles, connected by their edges and vertices.

The surface itself can rotate in an inertial frame, at a rate and direction that can vary through

time – although in most cases, the rotation is taken to be constant.

A rule given to the model is that the pod and the surface cannot interpenetrate. The physical

interaction between the pod and the surface is described by a coefficient of restitution e, coefficient
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of friction f and coefficient of rolling resistance crr, the meaning and dependencies of which are

detailed later.

3.1.2 Equations of Motion

The equations of motion are propagated in the rotating body frame of the asteroid and

incorporate gravity, frame rotation effects and surface forces.

3.1.2.1 Free equations of motion

It is assumed that, at time t, a force Fext and an torque Le are acting on the pod. The

position vector of the pod in the rotating body frame is noted ρ, and the spin vector of the pod ω,

denoted with B when expressed in the pod frame (in later equations, this frame upper script will be

omitted when the context is clear enough). Because the work frame is the asteroid rotating frame,

other accelerations must be added to the asteroid rotating frame time derivative of ρ (transport

theorem). For the sake of generality, we will regroup all the external forces and these fictive forces

in a single symbol Fe (that we will refer to as a ”force”). The upper dot symbol ˙ will denote the

time derivative of a vector in the rotating frame. Without any surface interaction, the equations of

motion would be:

 mρ̈ = Fe

IBω̇ = −B [ω̃] IBω +B Le

(3.1)

Because the spin’s equation is propagated in the pod frame, it is important to propagate the

attitude of the pod. This model considers a quaternion set q = (q1, q2, q3, q4) and it is propagated

by:
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q̇ =



q1 −q2 −q3 −q4

q2 q1 −q4 q3

q3 q4 q1 −q2

q4 −q3 q2 q1


 0

Bω

 (3.2)

In the context of an asteroid environment, the external forces comprises: the gravitational

acceleration of the asteroid, the solar radiation pressure, other gravitational perturbation (solar,

planet tides), other external forces. The external torques may essentially account for solar radiation

pressure induced torque and gravity gradient. It was found in practice that the only important

external force is the asteroid’s gravity force, and that the external torques are all negligible. And

because the propagation is made in a rotating frame (the asteroid fixed frame), Fe and Le must

also comprise of non-Galilean frame induced forces (most notably centrifugal and Coriolis’) and

torques, respectively. The exact expression of these torques and forces depends on the motion and

spin state of the asteroid. In the usual case of a constant spin of the asteroid ωA, they simply have

to account for the non-Galilean forces and therefore Fe has the form:

Fe = Fext −mωA × (ωA × ρ)− 2mωA × ρ̇ (3.3)

where Fext represents gravity and other external forces.

3.1.2.2 Constraints

First of all, the distance between a point ρ and the surface is defined as:

|ρ− S| = min
q∈S
|ρ− q| (3.4)

Notice that because the surface is a bounded and closed set, this minimum is reached in

at least one point. The condition of non-penetration of the pod through the surface S can be

formalized as follows.
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|ρ− S| ≥ r (3.5)

A collision with the surface occurs when:

|ρ− S| = r and
∂ |ρ− S|

∂t
< 0 (3.6)

Because of the hypotheses of the model detailed previously, a collision can only be solved

outside the model, be it by computing the result of the collision with a hard sphere routine or

through another simulator (e.g. finite element, granular mechanics methods). Solving a collision

changes instantaneously the velocity and spin vector of the pod in order to ensure that the non-

penetration constraint will continue to be enforced. The equations of this instant modification will

be detailed later. Finally, the specific condition of being in contact with the surface S is obtained

when:

|ρ− S| = r and
∂2 |ρ− S|

∂t2
< 0 (3.7)

Note that “being in contact” does not only mean that the pod touches the surface but also

that external forces (gathered in Fe) push the pod toward the surface. It is very important to note

this last remark, as it is not only a matter of semantics: the condition for which the pod may ever

cease to be in contact with the surface is not that the distance increases – as it would numerically

be a very hazardous condition – but that the motion is not affected anymore by the presence of

the surface, i.e.
∂2 |ρ− S|

∂t2
≥ 0

3.1.2.3 Equations of surface motion

Rather than propagating Eq. 3.1 and using the mathematical constraints described in the

previous section, the equations of motion are completed with forces and torques exerted by the

surface on the pod. The role of such forces and torques are to naturally enforce these constraints.
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The equations can then be written as:

if |ρ− S| = r and
∂2 |ρ− S|

∂t2
< 0 then

 mρ̈ = Fe + Fsurface

Iω̇ = [ω̃] Iω +Le +Lsurface

(3.8)

where
∂2 |ρ− S|

∂t2
< 0 is computed using Eq. 3.1.

The fundamental problem addressed in this chapter is to be able to model Fsurface and

Lsurface with a desired accuracy, and to be able to numerically propagate these equations.

3.2 Interaction with a surface

This section explains and details the terms Fsurface and Lsurface of the equations of motion.

The forces and torques to take into account are the following: the normal force, the friction force

and its associated torque, and the rolling resistance torque and force. The normal force N appears

in order to enforce the non-penetration constraint. The friction force F and its associated torque

L are empirically observed: they drive the velocity of the contact point to 0. The rolling resistance

torque Lrr and force Frr are empirically observed: they drive the spin and velocity of the pod to

0. Figure 3.1 shows the direction of these forces and torques, depending on the state of the pod.

Their definition, meaning and computation are now detailed.

Figure 3.1: Forces and torques at play during contact motion. Dashed vectors may extend outside
the figure’s plane. Note that, in this general case, the vectors v and ω are note necessarily related.
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3.2.1 Normal Force

Using the previous constraint description of the problem, the normal force N is a way to

ensure the condition |ρ− S| = r during contact motion. At time t, suppose a force Fe is affecting

the pod and is directed against the surface. The pod being in contact with a surface, a reaction

force N is applied at the contact point H, preventing the ball from penetrating the surface. The

unit vector from the center of the ball to the point H is noted ur.

Figure 3.2: The normal force N prevents the ball from crossing the surface.

If the ball simply rests on the interior of a flat facet, the computation of N is straightforward:

N = − (Fe · ur)ur (3.9)

However this equation is only valid on the interior of a flat facet. Precisely, it is wrong

whenever

∣∣∣∣durdt
∣∣∣∣ is not zero. Indeed, the simple form of the previous equation comes from the

assumption that ur was constant. If the time derivative of ur is not identically 0, another term

needs to be accounted for. This is the case when the facet curvature is not null, and when the pod

reaches an edge between two facets or a vertex shared by several facets. The angular velocity θ̇,

that directly relates to the time derivative of ur, is introduced and defined by:

θ̇ =

∣∣∣∣durdt
∣∣∣∣ (3.10)
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Please notice that the angular velocity θ̇ has no relation to the spin vector ω and is only

related to the local angular curvature of the path of the ball. As this definition is not particularly

enlightening on the actual value of θ̇, formulas to compute its value in practical situations are given.

As stated previously, if the facet is flat then on its interior:

θ̇ = 0 (3.11)

Figure 3.3: The normal force N prevents the ball from crossing the surface. Yet, in this example,
the kinematics of the problem reduce the magnitude of the force N needed.

In the case of contact with an edge, whose unit vector (aligned from any one vertex to the

other) is denoted ê:

θ̇ =
|v − (v · ê) ê|

r
(3.12)

In the case of a contact with a vertex, θ̇ simplifies to:

θ̇ =
|v|
r

(3.13)

Therefore, the vector N can be obtained, in any general contact situation, through:

N =
(
mθ̇2r − Fe · ur

)
ur (3.14)
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The last equation can be generalized to objects of arbitrary curvatures and to landscapes of

arbitrary curvatures. In the most general case, one should redefine the symbol r in the previous

formula as the general curvature of the contact equal to the sum of the local curvature of the

object and the curvature of the surface, each measured positively away from the contact point.

The definition of θ̇ is unchanged but its computation may require some numerical calculations. A

derived example is given in Schaub and Junkins[72] in example 4.5 (p. 160) showing one disk rolling

on another; one may notice that the resolution given in this example does not depend specifically

on the precise problem but is absolutely general to any curvature.

3.2.2 Friction Force

Once N is obtained, the calculation of the Coulomb friction force follows in the form:

F =



0 for vH = 0 and aH = 0

−min (|maH | , |fN |)
aH
|aH |

for vH = 0 and aH 6= 0

− |fN | vH
|vH |

for vH 6= 0

(3.15)

where vH and aH are the velocity and acceleration, respectively, of the contact point H belonging

to the pod. The definition of f comes from the empirical Coulomb force of friction: an object in

contact at one of its points H with a surface, and subject to a reaction force N , from this surface

experiences a friction force F at H directed against the velocity of H. Classic tribology literature

has shown that f does not depend upon the area in contact but solely of the two materials in contact.

Finally, because the friction force is applied at the point H, it creates a torque L = rur ×F . This

is summarized in Fig.3.4.

3.2.3 Rolling Resistance

Considering the previous equations, a ball rolling on a flat surface would never stop. Indeed,

the friction force only dissipates energy until spin and velocity are synchronized so that the ball

actually rolls. However, in practice, this prediction is known to be wrong: any ball rolling on any
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Figure 3.4: The friction force and torque depend on the velocity of the contact point H.

surface dissipates energy over time and eventually comes to a stop. Similarly, with the previous

equations, a ball spinning exactly on its contact point with a flat plane will never de-spin, although

it is observed that all spinning things, even spintops, come to a rest after some time. Hence, the

concept of rolling resistance is introduced as the empirical torque and force that are observed and

bring the velocity and the spin to zero over time.

3.2.3.1 A first approach

The first usage of the term rolling resistance comes from the civil engineering of the industrial

revolution[23, 66]. It became especially important for the purpose of understanding how much

traction was needed to set a train, or any vehicle, in motion. For instance, on a perfectly flat track,

a wagon is only set in motion when enough force is applied[5]. Or, still on a flat track, at some

velocity v, how much traction is needed for the wagon the maintain its speed? In both case, the

opposite force to this minimum traction was called a rolling resistance and is still used today by

the locomotive industry or tire manufacturers.

There is little in common between the resistance to motion encountered by a train on flat

steel tracks on Earth and the resistance to motion encountered by a pod on regolith on an asteroid.

Yet, this concept of rolling resistance can be suitably adapted to the problem at hand.
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3.2.3.2 Definition

The rolling resistance defined in this work is indeed inspired by this early definition. For the

present problem, rolling resistance is rather defined through torque than force for a reason that will

become clear below. Formally, considering a pod in contact with a facet, with spin vector ω, the

rolling resistance torque is defined as the following empirical torque Lrr, introducing the coefficient

of rolling resistance crr:

Lrr =



0 for ω = 0 and ω̇ = 0

−min (|Iω̇| , |rcrrN |)
Iω̇

|Iω̇|
for ω = 0 and ω̇ 6= 0

− |rcrrN |
ω

|ω|
for ω 6= 0

(3.16)

The reader should note how close to the friction force this definition is. Essentially, the angu-

lar momentum Iω has replaced the velocity of the contact point vH . This torque is accompanied

by a force called force of rolling resistance, applied at the center of gravity of the pod, and whose

value is determined as follows.

Frr =



0 for v = 0 and v̇ = 0

−min

(
|mv̇| ,mrI−1

(
(ur ×Lrr) ·

v̇

|v̇|

))
v̇

|v̇|
for v = 0 and v̇ 6= 0

−mrI−1
(

(ur ×Lrr) ·
v

|v|

)
v

|v|
for v 6= 0

(3.17)

Equations 3.16 and 3.17, although quite complex at first glance, were in fact chosen for

their convenience and their simplicity. Put in simpler terms, Eq. 3.16 means there is a constant

“friction torque” causing ω to go to 0 and remain there unless a sufficient torque is exerted on

the pod. Equation3.17 means the balance or imbalance between spin and velocity is maintained;

in particular, if the pod is rolling without slip, this state is preserved after applying the rolling

resistance force and torque. Moreover, defining torque before force allows to affect the spin of the

pod even if there is no displacement from the ball.

The purpose of this section was to present and describe the main features of the rolling

resistance force and torque. A next section will go further and give a theoretical model explaining
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Figure 3.5: The rolling resistance torque and force depend on the spin and velocity of the pod.

the causes of rolling resistance on a gravel bed.

3.2.4 Impacts on a surface

A collision on a surface can be solved in any number of ways, e.g. hard-sphere model, soft-

sphere model, finite-element models. Because the considered environment (a faceted unmovable

and non-deformable surface) is by its very nature an approximation of what is an asteroid surface,

the authors deem unnecessary to come up with overly complex models for collisions.

Especially, the hard-sphere model gives a sufficiently complex set of parameters for the present

purpose. Considering only impulses, it assigns to the collision a coefficient of restitution e. The

coefficient of restitution expresses the deformation energy restitution of the pod after a bounce on

the surface, and is related to the inbound velocity v0 and the outbound velocity v1. The following

notations are introduced: ⊥ denotes the part of a vector that is aligned to the local vertical, and ‖

denotes the remainder. The coefficient of restitution e is then defined as:

e =
v⊥1
v⊥0

(3.18)

It ensues from this definition that e shall be comprised between 0 and 1 for any real system.

On an asteroid, speeds are very small so very elastic shocks should be expected when impacting

hard surfaces. However the regolith material itself may have properties that would significantly

damp the energy of the bounce. The spacecraft Hayabusa bounced with a coefficient of restitution

of 0.83 on Itokawa[100], while large boulders on Eros were found to have e = 0.1[27].
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When considering a bounce of the pod, the equations of motion naturally integrate into

an impulse equation. In fact, it simplifies, as there is no need to consider v̇, v̇H or ω̇: the

bounce taking place during an infinitely short amount of time, any impulse term coming from these

constant terms disappears. Indeed, denoting Imp the integral of the surface forces and torques

over a infinitesimally small interval of time, the impulses are:

ImpN = mv⊥1 −mv⊥0 = −m (1 + e)v⊥0 (3.19)

ImpF =



0 for v
‖
H = 0

−min


∣∣∣mv‖H ∣∣∣∣∣∣∣∣∣ur × (Id3 + mr2I−1)

ur × v
‖
H∣∣∣v‖H ∣∣∣
∣∣∣∣∣∣

, |ImpN |


v
‖
H∣∣∣v‖H ∣∣∣ for v

‖
H 6= 0

(3.20)

and its associated torque ImpL = rur × ImpF (3.21)

ImpLrr
=


0 for ω = 0

−min (|Iω| , |rcrrImpN |)
Iω

|Iω|
for ω 6= 0

(3.22)

ImpFrr
=


0 for v‖ = 0

−min

(∣∣mv‖∣∣ , mrI−1((ur × ImpLrr

)
· v
‖∣∣v‖∣∣
))

v‖∣∣v‖∣∣ for v‖ 6= 0

(3.23)

Finally, please note that because the force of friction, when it exists, is much more important

than the force of rolling resistance, the friction impulse forces and torques are applied before the

computation of the rolling resistance impulse. Figure 3.6 illustrates the meaning of ImpN . The

computation of the other impulses can be understood by applying Fig.3.1 with N replaced by

ImpN .

Although it is often assumed that e, f and crr are constants, specific of the surface and of the

internal structure of the impacting object, it should be best considered that they are also functions

of the state of the object on impact. It is especially interesting to do so in this situation as the
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Figure 3.6: The normal impulse ImpN computed during a collision on a facet.

regolith behavior might very well depend on variables such as the incoming speed, the attack angle

and the spin of the pod. Using granular mechanics code to precompute the expected evolution of e,

f and crr as a function of such variables, one can see that the seemingly over-simplified hard-sphere

model can become remarkably detailed, while granting a minimal computation time.

3.3 Numerical model

An implementation of the physical model described in the previous section is now presented.

3.3.1 Contact dynamics on 1 facet

On one facet, the equations presented before can be computed readily. The equations of

motion to integrate are:  mρ̈ = Fe +N + F + Frr

Iω̇ = − [ω̃] Iω +Le +L+Lrr

(3.24)
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3.3.2 Contact dynamics on two facets

When considering multiple contact points, the problem becomes more difficult. The general-

ization of the previous formula to 2 facets requires us to solve a system of equations, the unknowns

of which being the magnitude of the normal forces N1 and N2. Indeed, the situation is more

complex than previously as the configuration of the two facets (and of the state of the pod) creates

an interdependent system: N1 and N2 cannot be solved for independently.

In the case where vHi 6= 0, the magnitudes of the friction forces and normal forces are

proportional. It is assumed that this proportionality is always enforced. As it will be seen later,

the non-continuity of the friction force is numerically problematic. The friction force will in fact

be made continuous, through a process known as regularization, which will de facto ensure the

proportionality between normal and friction force magnitude. f ′i is defined as the coefficients of

proportionality between, respectively, Ni and Fi. ufi is defined as the direction of the friction

force from facet i (along −vHi). Please note that, following the definition of the force of friction, if

vhi 6= 0, then f ′i = fi.

It is also important to notice that the rolling resistance force plays no part in this system.

Indeed, the rolling resistance force only acts against the velocity of the object. As the velocity of

the object is parallel to both facets, rolling resistance does not influence the computation of the

normal force. Defining Ni as −Ni · uri , the problem can be set up as follows: 1 (ur1 + f ′1uf1) · ur2

(ur2 + f ′2uf2) · ur1 1


N1

N2

 =

θ̇21r − ae · ur1
θ̇22r − ae · ur2

 (3.25)

Interestingly, one can check that, for the cases where vHi = 0 on one or two facets, the

previous formula holds true and yields correct values for N1 and N2. Such values are then obtained

from numerical inversion of the previous equation and the equation of motion to integrate is: mρ̈ = Fe +N1 +N2 + F1 + F2 + Frr1 + Frr2

Iω̇ = − [ω̃] Iω +Le + (L1 +L2) + (Lrr1 +Lrr2)

(3.26)
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3.3.3 Contact dynamics on three facets or more

Regarding contact on 3 facets, the possibility of degenerate cases must be addressed first.

These cases correspond to three facet being in contact with the ball and the contact point H1, H2

and H3 are in a plane containing the center of the ball. For example, a ball rolling in a gutter

made of three walls. For such situations, the mathematics of the problem break down because

of the existence of a continuum of solutions. Only by considering the deformation of the sphere

or the surface can such a problem be solved in general. If the facets have been generated with

some randomness, the probability for such an event is zero. Moreover, if in such a case one the

facet is simply discarded, the trajectory obtained considering only the two others is a valid, albeit

arbitrary, trajectory. Therefore, there is no need to deal with such 3-facets degenerate case.

But, if the 3-facets case is not degenerate then there can be no motion of the pod. Indeed,

the property that the sphere cannot penetrate any of these 3 surfaces means mathematically that:

ur1 · v = 0 and ur1 · a = 0

ur2 · v = 0 and ur2 · a = 0

ur3 · v = 0 and ur3 · a = 0

(3.27)

But, by stating that H1, H2 and H3 are not in a plane containing the center of the sphere,

then the vectors {ur1 ,ur2 ,ur3} form a basis of R3. So, v = 0 and a = 0.

Please notice that, in the non-degenerate 3-facets case, Eq. 3.29 is still useful to obtain the

precise values of each Ni. Although the center of mass of the ball does not move, there is still

the rotation part of the equation of motion to propagate and the normal forces determine the

magnitude of the friction forces, which in turn dictate the evolution of the pod spin vector through:

Iω̇ = − [ω̃] Iω +Le + (L1 +L2 +L3) + (Lrr1 +Lrr2 +Lrr3) (3.28)

Interestingly, it is possible for the pod to be stuck between 3 facets because of the existence

of these friction forces. Propagating the previous equation can yield to a state where one or more

of the friction forces becomes zero, potentially canceling the need for one more of the other facets.

In that situation, the pod could potentially be set into motion again.
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For n facets, n > 3, analysis of the mathematics of the problem yield that the problem can

be reduced to a 3-facets or less problem. In fact the linear equation one would need to solve is the

following:

1 (ur1 + f ′1uf1) · ur2 . . . (ur1 + f ′1uf1) · urn

(ur2 + f ′2uf2) · ur1 1 . . . (ur2 + f ′2uf2) · urn
...

...
. . .

...

(urn + f ′nufn) · ur1 (urn + f ′nufn) · ur2 . . . 1





N1

N2

...

Nn


=



θ̇21r − ae · ur1

θ̇22r − ae · ur2
...

θ̇2nr − ae · urn


(3.29)

However the rank of the system’s matrix is at most 3, giving the system an infinite number

of solution for n > 3. Indeed, for any family of vectors {ai}i∈[1,n] and {bi}i∈[1,n] taken in Rp, the

rank of the matrix M of Rp2 defined by Mij = ai · bj is less than or equal to p. The linear system’s

matrix has the form of M , and here p = 3, so the rank is less than or equal to 3. Therefore, n− 3

unknowns, amongst the {Ni}i∈[1,n] can be set to 0, which means that at least n− 3 facets can be

removed from the problem, which leaves us with at most 3 facets.

3.3.4 Remarks for numerical modeling

The physics of a ball rolling on a flat surface or in contact with two or three surfaces is not a

new topic. The equations derived herein above, although rarely presented in such a general form,

are simple ones. Yet, their implementation into a numerical model is troublesome.

3.3.4.1 Detecting collisions

First of all, there is the problem of collision detection. Detecting the intersection between a

sphere and a facet is a very simple mathematical problem. But, as presented, two issues arise for

the present problem: performing such computation for hundreds of thousands of facets takes too

much computation time and the time step should not too big so that the pod completely crosses

through the surface in between time-steps. Many solutions exist for these two issues, with different

cost in terms of efficiency and complexity. In the presented model, facets are pre-sorted so that no
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more than a few of them are investigated at any time; facets are oriented so that there exists an

interior and an exterior to the asteroid hence detecting the passage from interior to exterior rather

than a mathematical intersection and then only converging precisely on the time of intersection; the

time step of the flying phases is upper bounded (to a value of about 10 s for Itokawa, for instance).

3.3.4.2 Infinite bouncing over finite time

In a hard-sphere model, as long as e > 0, the sphere will experience an infinite number of

bounces, within finite time, before contact motion can start. This problem can be addressed in

two ways. Define a minimum vertical speed v⊥min such that any vertical motion of this magnitude

is considered small enough or, equivalently, such that the time between this current bounce and

complete rest on the surface is considered small enough. One way to deal with infinite bounces is

to detect when v⊥1 < v⊥min and, in that situation, to set v⊥1 = 0 and initiate contact with the surface

the pod was bouncing on. If v⊥min is chosen close to zero, the effects of this computation artifice are

negligible.

Yet, if it is assumed that e is independent of the normal speed (at least for small values of

such speed), it is possible to solve for the effect of the infinity of bounce that will occur in the finite

time it will take for the pod to come to rest. Indeed, assuming the displacement from one bounce

to the other is small, the potential energy of the pod does not significantly change from one bounce

to the other. In other words, given the outbound speed v⊥1 = ev⊥0 of the current bounce, the next

bounce is made with the incoming speed v1⊥. Assuming that the value of e does not change for

small values of v0⊥, it then follows that all the n-th bounce are made with the incoming speed

env0⊥. The entirety of the infinite bounces are solved by computing the effects of a single virtual

bounce of incoming normal speed v⊥∞:

v⊥∞ =
e

1− e
v⊥0 (3.30)

This bounce at infinity possibly changes the values of the spin rate and of the tangential

velocity. In practice, if v⊥min is small enough, this bounce has no discernible effect on the trajectory.
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However, it allows us to increase v⊥min, where the effect become noticeable, while retaining essentially

the same accuracy of the computation of lower values.

3.3.4.3 Detecting lasting contact and loss of contact

Then, there is the issue of knowing when there is indeed contact between a facet and the pod.

Considering here the distance between the pod and the facet would not be of any interest. Indeed,

this distance fluctuates because of numerical imprecisions, making such detection impossible in

practice. However, there is a simple way to know if a facet is needed or not: a facet i is needed if

and only if Ni > 0.

Therefore, whenever it is considered that the pod could move on such or such facet, a check

for the sign of Ni indicates unequivocally if the facet is needed or not. Then the facet needs to

be remembered and becomes, as of this moment, a “contact facet” that is not solved for collision

anymore but appears directly in the equations of motion. During the contact dynamics propagation,

a check should be made, every time step, on the sign of Ni. Please note that Ni is not continuous

on an edge or on a vertex, as θ̇i will suddenly jump from 0 on the interior to some value non-zero

on the edge or vertex. If is often found that, for the considered magnitudes of speed and gravity,

the pod usually exits a facet whenever it reaches its edge.

3.3.4.4 Discontinuity of the friction force

At last, as mentioned herein above, the discontinuity of the friction force poses a major issue

to any numerical integrator.

The velocity of the contact point, because of numerical imprecisions and because the inte-

grator is only accurate to a point, is never null. In fact, the two first cases of Eq 3.31 do not

appear unless work is done outside the propagator to recognize and appropriately deal with such

situations. In practice, if Eq 3.31 is implemented as such, the propagator detects the discontinuity

and brings the time step to 0, unless this time step is lower bounded. If the time step is lower

bounded, the integrator then creates unwanted oscillations of the velocity of the contact point. The
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contact point goes too fast or too slow, alternatively, creating a friction force of high magnitude

that significantly impacts the mechanical energy of the pod, possibly increasing it.

One way of dealing with this issue is to detect the moment of discontinuity, converge toward

it, and then propagate the equations of motion while enforcing vh = 0. Such detection can be

hard to make except in very specific situations whose occurrence is extremely rare. Yet, even if

it were made, it then renders the equations of motion even more complicated, especially in the 2

facets case, as the acceleration of the pod affects the acceleration of the contact point, which in

turn affects the friction force and so the acceleration of the pod. Because of the scope and the

objectives of this project, it appeared unnecessary to go that far in the accuracy of the model,

especially because there is another way to address the problem.

There is another way of dealing with this issue, that is to perform a regularization of the

friction force close to vh = 0. This technique is used in many contact dynamics scientific codes[29,

82, 70] and consists, with variations, in computing the magnitude of friction force as follows:

|F | =


f |N | |vH |

|vmin|
for |vH | < |vmin|

f |N | for |vH | ≥ |vmin|
(3.31)

This simple trick makes the friction force continuous at vh = 0. Provided the minimum time-

step of the integrator is small enough (i.e. δt such that f |N | δt < |vmin|), it solves any numerical

instabilities the integrator might have. Yet, one should reasonably question the validity of such a

transformation.

The practical effect it has on a trajectory for which Fe is perpendicular to the surface (e.g.

flat plane with gravity) is simply to put a “delay” on the state of the pod; specifically, it will not

affect the final mechanical energy of the pod. In this model, for such a situation, the delay is of

a few tenths of a second, to be compared with the typical duration of a landing of 6 h. At the

contrary, if Fe has a component parallel to the surface and large enough so as to prevent the ball

to synchronize its spin with its velocity (e.g. plane inclined by more than arctan(f) with gravity),

Eq 3.31 will yield the correct behavior.
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However, if Fe has a non-zero but small enough parallel component so that there should be

synchronization between spin and velocity to achieve rolling motion (e.g. plane inclined by less

than arctan(f) with gravity), propagating Eq. 3.31 will in fact direct vh towards a non-zero steady

state. The issue with this feature is that energy is then be erroneously dissipated by the friction

force as the contact point H is in motion. Nevertheless, if vmin is small enough (set to 10−5 m/s

for Itokawa), this energy loss becomes negligible and its effects are not discernible on the overall

trajectory.

Moreover, one can show that this effect acts as a rolling resistance of variable but very small

magnitude. In this model, the magnitude of the supplementary rolling resistance introduced by the

regularization of the friction force is orders of magnitude smaller than the accuracy on the actual

rolling resistance. Therefore, for all practical numerical purposes, Eq. 3.31 is an acceptable way of

computing the friction force.

3.3.4.5 Discontinuity of the rolling resistance

Similarly to the friction force, the rolling resistance torque and force are discontinuous. This

discontinuity can be handled exactly as for the friction force, through regularization.

However, in that situation, the integrator should check whenever to do this regularization

or when to stop the simulation. Indeed, if this regularization is made in every situation where ω

and v are small, the motion of the pod will never stop, even on a facet without inclination. So, in

the situation where regularization should occur, the integrator should check, analytically, that the

simulation should not, in fact, end because the pod is coming to a stop. A simple yet accurate way

to check this scenario is, when the velocity and spin come to the regularization levels (typically

0.1 mm/s for the velocity), to compute the angle θ between the external forces acting on the pod

and the plane containing the facet on which it is rolling. The pod should then stop if and only if

θ < arctan
(
mr2I−1crr

)
.

With this rolling resistance enabled, the pod can now stop in two distinct situations: on one

or two facets because of the rolling resistance, or stuck between three facets because it cannot move
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in any direction. For any expected values of crr, ranging from 10−3 to 10−1 (see further), it was

observed with simulations that the three facets case was rare and most stops occurred on a single

facet, occasionally on two. However, one should also note that this observation may come from the

fact that the shape models available today are smooth in most places. If one were to model the

smallest rocks with facets, then the three facet case may be more common.

3.4 Rolling resistance

Rolling resistance was briefly discussed in the previous section. This concept is expanded

with the idea of detailing it as much as possible. In Chapter 4 of this dissertation, it will be shown

that the rolling resistance force and torque are not the determining factor for the motion of a pod at

the surface of an asteroid. However, they play a very important role in understanding this motion

and so it is relevant to include the following discussion in this work.

3.4.1 A discussion on the definition of rolling resistance

Usually and historically, rolling resistance has been defined as a force rather than a torque.

One might wonder why, then, rolling resistance was defined first through torque and second through

force. First of all, Eq. 3.16 and Eq. 3.17 are reproduced for the convenience of the reader:

Lrr =



0 for ω = 0 and ω̇ = 0

−min (|Iω̇| , |rcrrN |)
Iω̇

|Iω̇|
for ω = 0 and ω̇ 6= 0

− |rcrrN |
ω

|ω|
for ω 6= 0

(3.16 - rep.)

Frr =



0 for v = 0 and v̇ = 0

−min

(
|mv̇| ,mrI−1

(
(ur ×Lrr) ·

v̇

|v̇|

))
v̇

|v̇|
for v = 0 and v̇ 6= 0

−mrI−1
(

(ur ×Lrr) ·
v

|v|

)
v

|v|
for v 6= 0

(3.17 - rep.)
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3.4.1.1 Rolling resistance is first a torque

Originally, rolling resistance was accounted for as a force, directed against the velocity of

the pod. It was essentially a kind of friction force, applied at the center of the pod. This is a

common modeling for vehicles. However, the model presented here is significantly different than

the modeling of a vehicle.

For a vehicle, the motion of the wheels is almost always assumed to match the speed of the

vehicle: forces and torques are all accounted for and combined in the form of a net force acting

on the vehicle and directed against the velocity. When rolling resistance is analyzed, computing

the torques acting on the wheels are only a mean to an end, i.e. computing the rolling resistance

force acting on the vehicle.[66] Also, these studies frequently assume rectilinear motion, and thus

vectorial equations simplify into scalar ones.

In the present problem, the motion of the pod at the surface of the asteroid is fundamentally

2-dimensional. It is very important to understand that the condition vh = 0 is equivalent to the

vectorial equation v−rur×ω = 0 but not to the scalar equation v−rω = 0 – into which it is often

simplified. As a simple example, consider a ball resting on a perfectly flat surface and spinning at

the rate ω about the vertical axis. At the contact point H there is no displacement, i.e. vH = 0.

And indeed v − rur × ω = 0 + 0 = 0. Still, v − rω = −rω 6= 0.

This detail explains a fact well-known to soccer players: a real ball rolling on a real surface

rarely verifies v−rω = 0. It usually exhibits an angular momentum that has a non-zero component

vertical to the surface it rolls on. Rewrite ω as ω‖ + ω⊥, with ω‖ the component parallel to the

surface vertical and ω⊥ the component perpendicular to it. Because ur is vertical, ur×ω simplifies

to ur × ω‖. Thus enforcing v − rur × ω = 0 only enforces v − rur × ω‖ = 0, it does not affect,

in any way, the value of ω⊥. If only a rolling resistance force was applied to the ball, assuming

that vH = 0 stays enforced, the final state of the ball would be v = 0 and ω‖ = 0. But ω⊥ 6= 0.

And originally, as rolling resistance was only included as a force, all the simulations ended with a

non-zero vertical component of the spin vector.
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Therefore the decision of modeling rolling resistance by a torque was taken. Indeed, it

guarantees that ω tends to 0. Thus, if one considers only Eq. 3.16 and not Eq. 3.17, then it is

found that the friction force F comes into play and compensates for the imbalance. Through a

simple coupling between the friction force and the rolling resistance, the torque Lrr contributes to

damping speed as well and the final state of the ball is also v = 0.

For a rectilinear motion of the pod, as long as crr is smaller than f which is always the case

in practice, one will eventually obtain exactly the same results as when implementing both Eq. 3.16

and Eq. 3.17, but with a different value of the “effective” crr. Indeed, implementing only Eq. 3.16,

the friction force acts in the direction of the velocity v. As a consequence, the spin rate ω does

not decrease as fast as expected. As crr has no physical definition other than being a coefficient of

Eq. 3.16, it is much simpler to estimate it from experiments or simulations with both torque and

force being considered than through the friction coupling force.

3.4.1.2 Lrr and the directions ω and Iω

One will notice that Eq. 3.16 uses the vectors Iω̇ and ω. In simpler terms, the second line

of Eq. 3.16 means that the rolling resistance torque opposes the variation of angular momentum

when ω = 0. And the third line means that the rolling resistance opposes the spin when ω 6= 0.

If the inertia matrix I is trivial – i.e. I is equal to a the identity matrix multiplied by a scalar

– then the distinction is a moot point: angular momentum vector and spin vector both have the

same direction and orientation. However, when I is not trivial they do not necessarily point in the

same direction. Hence, the directions
Iω

|Iω|
and

ω

|ω|
should not be confused.

Therefore, the reader could be intrigued by the manifest choice of choosing that the rolling

resistance opposes angular momentum variation in one case, and spin in the other. Why not consider

both spin variation and spin? or both angular momentum variation and angular momentum? The

reason for not doing so is based on empirical assumptions on the cause of rolling resistance. As

said, this reason is an assumption and not an empirical observation or a demonstrated quality.

If the ball is not moving, then rolling resistance should oppose any torque that could change
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this state – rolling resistance then represents the energy needed to move the ball from position where

it has created or found a small depression in the gravel bed. It should oppose the variation of angular

momentum, thus preventing the ball from moving. However if the ball is already moving, then the

phenomena behind rolling resistance are the micro-collisions and micro-friction events happening

at the contact area. If it is assumed that the ball does not deform, then the contact points have

a velocity that is independent of the direction of angular momentum but depends solely on the

velocity and the spin of the ball. Therefore the micro-collision and micro-friction events would then

against the spin direction.

The reader should keep in mind that this expression is the model of a still poorly documented

phenomenon. To add to the problem, the vast majority of spherical balls have a high degree of

spherical symmetry of their mass distribution and thus have a trivial I, so prevent us from seeing

the effects of the distinction between angular momentum direction and spin rate direction. It is

ultimately the opinion of the author of this thesis that debating the fine intricacies of Eq. 3.16 is

not immediately relevant to the understanding of the motion of the pod on an asteroid. This model

has been very successful in describing, to the best of measurement techniques, the motion of a ball

of trivial inertia matrix I on a granular surface. Until more data is acquired on the behavior of

non-trivial inertia matrix I and allows to assess the validity of the full model of Eq. 3.16, such a

discussion is moot.

3.4.2 The simple expression of rolling resistance

Although Eq. 3.16 and Eq. 3.17 are written in a somewhat convoluted form so as to address

the most general situations, it should be noted that, most of the time, they simplify to much simpler

(and more understandable) equations. Indeed the most common situation is when ω and v are

such that the pod is rolling without slip on the surface, with the scalar equation v−rω = 0 holding,

and when the spin is aligned with a principal axis of inertia, whose scalar inertia is noted Is – it is

recalled that, for a spherical shell, a ball, and a cube, all axes are principal axes of inertia . Then
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Eq. 3.16 and Eq. 3.17 simplify to the much more readable form:

Lrr = −crrrN
ω

|ω|
(3.32)

Frr = −krrN
v

|v|
(3.33)

where krr is defined as dimensionless quantity krr = crrmr
2I−1s

These two equations now allow us to compare the pod to a vehicle and use rolling resistance

as it is usually done. Indeed, in this assumed rectilinear motion, the pod experiences a force

of magnitude Frr = krrN directed against the velocity. The spin without slip state is ensured

by applying both force and torque, which means that looking either at the angular momentum

evolution or and its center of mass displacement is sufficient to fully understand motion. The pod

is seen as experiencing a constant deceleration of magnitude krrN/m, just like a cube experiences a

deceleration, due to friction, of magnitude fN/m. As millennia of industrial activities have shown,

spheres and wheels have always been easier to push than cubes, therefore it can safely be stated

that f is always much larger than krr.

3.4.3 Estimating the value of krr

As aforesaid, krr is always expected to be smaller than f , and possibly by a few orders of

magnitude. But what is the value of krr or crr and how can it be estimated?

Rolling resistance has been extensively investigated in the 19th and 20th century. However,

it was focused on the understanding of rolling resistance for trains and other vehicles. For instance,

It is indeed of prime importance to know how much traction a train needs to be set in motion as

it will directly affect the power of the engine and/or the amperage of the catenaries. Two aspects

are characteristics of these studies: heavy load and flat surfaces.

The physics of the interaction between a loaded wheel and a flat surface involves complex

concepts. For studying the departure from a still state, the deformation of the surface is the most

important factor. It creates, only locally, a slope and the traction then opposes the forces of gravity

in order to climb up that slope. It mostly depends on the size of the wheel, how heavy the load
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per wheel is and how long the vehicle sat there[24], which is why loaded trains do not stay still for

too long – the traction necessary to move them could become infeasible.

Most studies focus on the heat loss due to micro-deformation of the surface and of the wheel.

The deformation, albeit elastic, steals energy from the motion that it does not fully restitute.

Thus, the wheel and the surface become warmer and velocity is lost. Other phenomena, such as

micro-slipping at the area of contact, have been investigated[66]. More recent studies have also

investigated motion on dry sand[81].

But all these studies fail to capture the problem of a light ball on an uneven surface. For

this reason, the problem of obtaining krr was investigated in depth. Three approaches were used:

theory, experiments, and simulations. A theoretical model was first devised, in order to guess the

order of magnitude of krr. This order of magnitude was then confirmed in a very coarse experiment.

A more sophisticated experiment was devised, involving computer vision to estimate krr more finely.

Finally, simulations using soft-sphere discrete elements method codes, implemented and run by Dr.

Paul Sánchez (CSML at CU Boulder) explained the mechanisms at play.

3.4.3.1 The reduced inertia j

The parameter j is defined as the “reduced” measure of the moment inertia:

j =
Is
mr2

(3.34)

The reason for defining the quantity j is that it is the constant linking the two coefficients

of rolling resistance: crr = jkrr. One will also note that this coefficient will naturally appear when

the momentum exchange occurring during the collision of a ball with a surface is considered.

The quantity j is dimensionless and represents how far, from the center of the sphere, the

mass is distributed. The value mr2 represents the maximum inertia that can be reached by an

object of radius r. It is in fact attained by the circle of radius r and a sphere could only reach this

value if its shell was infinitely light – it could in fact be argued that the most that could realistically

be expected for Is is the inertia of a spherical shell, i.e. 2/3mr2.
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The quantity j varies between 0 (a ball whose mass is concentrated at the center) and 1 (a

ball that is essentially a hoop). For a sphere of homogeneous density, j = 2/5, and for a spherical

shell, j = 2/3. Note that j ∈ [0, 1] implies that crr ≤ krr.

Finally, an interpretation of the quantity (1 + j), that will appear throughout the following

developments, is proposed. This quantity manifests in the specific kinetic energy of a ball rolling

at velocity v without slip E =
1

2
(1 + j) v2. Applying a force F to the center of a ball or of a wheel

rolling without slip does not create an acceleration equal to F/m. Indeed, if rolling without slip is

enforced, the friction force partly counters the force F . In fact the force F creates an acceleration

equal to F/(1+j)m. Remembering that the concept of inertia is defined in physics as the resistance

to a change in motion, then (1 + j)m is the real inertia of the ball, i.e. the resistance to change in

its motion. And while j was interpreted as the reduced moment of inertia of the ball, the quantity

(1 + j) could be seen as the reduced inertia of the ball.

3.4.3.2 A theoretical model of rolling on a gravel bed

In this theoretical model, it is assumed that a gravel bed can modeled as a flat surface

covered by tiny unmovable obstacles of height d. A ball rolls on this flat gravel bed, because of an

acting gravity field g, and impacts frequently such unmovable obstacles. It is assumed the collision

happens with a coefficient of restitution e = 0 and an coefficient of friction f =∞. The condition

f = ∞ can be restated equivalently as ”the ball is always rolling without slip”. Many aspects

of this model go against the actual behavior of a ball rolling on a gravel bed, but it was simply

theorized as a back-of-the-envelope calculation to estimate the order of magnitude of krr that could

be expected for experiments. It yielded surprisingly accurate results and DEM simulations will

explain this accuracy.

Figure 3.7 shows how the ball approaches the obstacle, bounces on the obstacle and then

impacts the ground again farther on. There are really two collision to account for here: one with

the obstacle and a second with the ground. And, during each collision, two mechanisms occur: first

the velocity normal to the impact is damped (because of e) and second the spin rate and speed are
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adjusted because of the friction force. Although assuming e = 0 has some impact on the calculation

(ultimately it underestimates krr), assuming f = ∞ has none. Indeed, as long as f 6= 0, friction

dissipates the same energy whether it happens at first bounce, at the second bounce, or afterwards

when the ball is slipping on the ground. Finally note that the order of the dissipation mechanisms

(restitution and friction) does not import, and indeed in reality they are simultaneously occurring.

Figure 3.7: Micro-collision model of a ball rolling on a gravel bed

The resolution of the bounces is now detailed. Because motion is really 1-dimensional, the

study can focus on scalar equations. The parameters of this problem are defined in Tab.3.1. The

ball is initially rolling without slip, i.e. Rω0 = v0.

Table 3.1: Parameters used in the theoretical model to compute krr

Symbol Meaning

v0 initial speed
ω0 initial spin

v1 speed after velocity normal to the 1st impact is damped
v2 speed after the 1st impact has re-established rolling without slip
ω2 spin after the 1st impact has re-established rolling without slip

v3 speed after the velocity normal to the 2nd impact is damped
v4 speed after the 2nd impact has re-established rolling without slip
ω4 spin after the 2nd impact has re-established rolling without slip

After the first impact, when the normal speed is damped (e = 0), the speed is:

v1 = v0 cos θ (3.35)
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Then, friction is applied and that means that the ball should be rolling without slip on the

obstacles, thus Rω2 = v2. If the friction is caused by a force of constant magnitude ma, during a

time δt, the variation in speeds and in spin rates can be written:
m(v2 − v1) = maδt

I(ω2 − ω0) = −rmaδt
(3.36)

This can be rewritten as: 
v2 = v1 + aδt

v2 = v0 − I−1mr2aδt
(3.37)

One may note that, as aforementioned, j−1 appears in the second equation. And equating

the right terms of each equation yields the value of the friction impulse aδt:

aδt =
1− cos θ

1 + j−1
v0 (3.38)

And finally the result of the first bounce is obtained:

v2 =
j + cos θ

j + 1
v0 (3.39)

That is only the first bounce. But the second bounce presents us with exactly the same

situation. And similarly it is found that:

v3 = v2 cos θ (3.40)

v4 =
j + cos θ

j + 1
v2 (3.41)

Thus finally:

v4 =

(
j + cos θ

j + 1

)2

v0 (3.42)

For notation purposes, ζ function of θ is defined as ζ(θ) =
j + cos θ

j + 1
. So the total loss of

speed ∆v = v0 − v4 (counted positively) is:

∆v =
(
1− ζ(θ)2

)
v0 (3.43)
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Now, the unit of time ∆t from impact 1 to impact 2 is the time it takes for the ball to describe

the classic free-fall parabola:

∆t = 2g−1v2 sin θ = 2g−1v0 ζ(θ) sin θ (3.44)

Eventually, the ratio between m∆v and ∆t gives us a averaged force that could have replaced

the presence of the obstacle. In fact, a force Frr, that may be called ”of rolling resistance”, opposing

the direction of motion and of magnitude, can be defined as:

Frr =
m∆v

∆t
(3.45)

That last equation assumes the fact that collision with obstacles are so frequent that the

surface is never really flat. In other words, the ball keeps impacting obstacles and never quite rolls

on the surface. If this expression is related to the simple definition of Frr given in Eq. 3.33, and

noting that N = g here, on obtains the expression for krr:

krr =
1

g

∆v

∆t
=

1− ζ(θ)2

2ζ(θ) sin θ
(3.46)

This equation will soon be simplified for small θ. But first let’s analyze this result. Equa-

tion 3.46 is remarkably independent of the initial velocity v0, and only depends on j and θ. Fig-

ure 3.8 shows the evolution of the coefficient krr as a function of θ. Because the computation is

valid even for very large collision heights, θ can vary up to 90◦. It may be surprising to see that

the coefficient does not go to infinity for θ = 90◦, but it should not. A ball bouncing on a wall

still retains angular momentum after impacting the wall. When it impacts the ground again, the

momentum is restituted in part in velocity. If the wall had disappeared in between the two bounces,

the ball would continue in its original direction.

Of course, θ is very small when the collision is made with a gravel bed particle. Figure 3.9

zooms on the interesting values of θ. The two curves are in fact straight lines and one can make

the Taylor development of krr for θ small to check it – yet, it is much easier to do this development

with ε = d/r.
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Figure 3.8: Evolution of the coefficient of rolling resistance krr as a function of the collision angle
θ for a spherical shell (j = 2/3) and for a homogeneous density full sphere (j = 2/5).

It is now time to investigate how θ can be related to d and the gravel particles. First of all,

θ is an angle related to the height of the obstacle d by:

θ = arccos
r − d
r

(3.47)

Equation 3.46 does simplify slightly when written in terms of ε = d/r (which is not yet assumed to

be a small quantity). Indeed, notice that the function ζ simplifies to:

ζ(θ) = 1− ε

1 + j
(3.48)

Thus the krr can be written as:

krr =
1

2

ε (2(j + 1)− ε)
(j + 1) (j + 1− ε)

√
ε(2− ε)

(3.49)

Figure 3.10 shows the graph of krr as a function of ε, in a range corresponding to the values

of θ plotted on Fig. 3.9. As one may guess, it is a square root function. And indeed, assuming ε is
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Figure 3.9: Evolution of the coefficient of rolling resistance krr as a function of the collision angle
θ for a spherical shell (j = 2/3) and for a homogeneous density full sphere (j = 2/5).

a small quantity, the previous equation can be readily simplified at first order into:

krr ≈
√

2

2

1

1 + j

√
ε (3.50)

Now, remember the relation between ε and θ: θ = arccos (1− ε). So, for small values,

θ ≈
√

2ε. And, the simplified expression of krr is that of a linear function of θ in Eq. 3.51 – and it

is obtained much more easily this way than through a Taylor series development of Eq. 3.46.

krr ≈
1

2

1

1 + j
θ (3.51)

Finally the typical value of d on a bed of gravel must be investigated. This question, as put, is

far from trivial and a generic answer cannot be given. However, a simple answer can be, by assuming

the gravel bed is made of small cubes resting on a flat surface. Using small spheres does not change

the calculation (at first order) as long as the gravel particles are small, but it makes the discussion

unnecessarily convoluted. In the cubic gravel particle model, a collision occurs when a bigger cube
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Figure 3.10: Evolution of the coefficient of rolling resistance krr as a function of the collision height
ratio ε = d/r for a spherical shell (j = 2/3) and for a homogeneous density full sphere (j = 2/5).

is encountered as shown on Fig 3.11. In this extremely simplified gravel bed representation, the

collision height d is equal to the average size difference between two particles – thus showing the

limits of this description when all particles have the same size.

Figure 3.11: Linking the particle size distribution to the height of the collision d

Assuming a uniform distribution of size between a minimum size dmin and a maximum size

dmax, the average difference in size and thus collision height would be d = 1/3 (dmax − dmin). Later
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on, experiments done to measure the coefficient of rolling resistance will be described. The gravel

used did not have a specified size distribution and it was assumed, by default, that the distribution

was uniform between the limit sizes given, 6.5 mm and 12.5 mm. For the balls used, that had a

radius between 110 mm and 120 mm, it yields ε ≈ 0.017. Thus in this situation, one would expect

krr = 0.066 for a homogeneous ball and krr = 0.056 for a spherical shell.

Please notice that, although krr of the full ball is higher than the krr of the shell, it is the

contrary when looking at the values of crr. Indeed, because crr = jkrr, crr of the ball is lower than

crr of the shell. The following general statement can be written for a given ε (or θ):

Is increases ⇔ j increases ⇔ krr decreases ⇔ crr increases.

This last relation does not affect the fact that low inertia balls are stopped faster than high

inertia balls. Indeed, as previously stated, this model of rolling resistance, by conserving the rolling

without slip state, allows to analyze the motion of the ball only by looking at its center of mass.

And the center of mass motion is affected by krr that is unequivocally a decreasing function of the

moment of inertia Is, as it varies as (1 + j)−1.

3.4.4 Measuring the value of krr

As this model is extremely simplified, it should only be trusted for giving an order of mag-

nitude of accuracy on the value of the coefficient of rolling resistance. Thus, experiments were

carried out to check this value. The first set of experiments was very simple but confirmed the

same order of magnitude. The second set of experiments was much more scientific and yielded

results surprisingly close to the model predictions.

3.4.4.1 A first experiment

This first experiment protocol was very crude. In many of its aspects, it may even appear

not scientific enough to be worthy of any mentioning. However, it utilizes the same technique as

the second experiment and was essential to understand the challenges of measuring the coefficient
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of rolling resistance krr.

From Eq 3.33, assuming that krr does not depend on the state of the ball, the ball rolling

on the ground experiences a constant deceleration of magnitude krrg (where g is the local gravity

acceleration, 9.81 m/s2 on Earth). Therefore, a ball rolling on a flat non-inclined gravel bed surface

(i.e. with local gravity perpendicular to the surface) along some x-axis, with initial velocity (along

x) v0 and initial position x0 has the classic form:

x(t) = −1

2
krrgt

2 + v0t+ x0 (3.52)

This equation is valid from t0 = 0 up to time tf , time at which the ball comes to a stop:

tf =
v0
krrg

(3.53)

The distance ∆x covered by the ball is:

∆x = xf − x0 =
1

2

v20
krrg

(3.54)

And so, much more interestingly, measuring ∆x and v0 yields the value of krr:

krr =
1

2

v20
g∆x

(3.55)

Using a soccer ball1 , the author of this thesis went outside CU’s engineering center, found a

suitably flat gravel bed and rolled the ball. The gravel was quite coarse, with particle size on the

order of 2 cm. Measuring ∆x to sufficient accuracy was easily achieved by using a long enough ruler.

However, measuring v0 was much harder, and it was done by rolling a ball down an improvised

ramp made of a few piled-up binders which h height could be determined. Converting the potential

energy into kinetic energy, the speed v0 is then:

v0 =

√
2gh

j + 1
(3.56)

As the ramp was approximately 17 cm, and as the soccer ball was assumed to be a spherical

shell (j = 2/3), v0 was estimated at approximately 1.4 m/s. The ball would typically rolled between

1 The author of this thesis thanks Dr. Yu Takahashi for providing his soccer ball.
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1 and 3m, with large variations from one try to the other. This yields a coefficient krr between 0.03

and 0.1, confirming the order of magnitude found in the theoretical model.

This first very basic experiment led to conceive another one that would allow to control most

of the variables that were not estimated, or only poorly. Indeed, major issues were identified with

this experiment:

(1) the local slope may very well have been off by a few degrees thus placing a bias on the

calculation of krr

(2) initial conditions (mostly v0) varied too much to have a set of consistent experiments

(3) krr was assumed to be constant (and not dependent for instance on the velocity)

3.4.4.2 DASboX

A second experimental setup, called DASboX (Durable Architecture for Sandbox eXperi-

ments), was devised to make a scientific estimation of the coefficient of rolling resistance of a ball

on a gravel bed. This experiment was of interest to another researcher of the CSM laboratory

(CSML), Dr. Paul Sánchez. A project was devised that would evaluate the behavior of a ball on

granular material, and its associated experiment set up. This work was accomplished with the help

of undergraduate student Darius Djafari-Rouhani (January to May 2013) and graduate student

Stefaan Van wal (August 2013 to May 2014). The author of this thesis supervised both students

and assisted them in the work, while Dr. Sánchez provided all with his guidance, wisdom and oc-

casional help. As it will be shown, this experiment needed indoor room, that none of the involved

parties had. Professor Christine Hrenya of CU’s department of Chemical Engineering was kind to

provide us with such space and all are very thankful to her for making this research possible.

The setup was designed by Dr. Sánchez and the author of this work, with comments from

Djafari-Rouhani and, later, improvements by Van wal. It consists in a box of dimensions 1.6 m

length by 1 m width and 0.5 m height, respectively defined as the x, y and z axes. It is to be filled

with a granular material, and have a ball roll on it. One side of the box is a transparent Plexiglas
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panel that allows to see through. Two wooden removable panels can isolate a 1 m by 1 m section

of the box, so that impact experiments could also be carried out – they have not yet been carried

out when this thesis is published.

The main experiment carried out up to this date is to roll the ball down the gravel contained

in the box and measure the rolling resistance coefficient krr. The measurement of krr was achieved

by recording the rolling of the ball and using computer vision algorithms developed in-house to

estimate the state of the ball at every frame. A ramp placed on one end of the box was used to

launch the balls from rest, leading to a consistent initial specific energy along the boxs longest

dimension (x-axis).

Figure 3.12: The camera setup featuring the GoPro, with its protective glass casing and wooden
heat insulator, and the floodlight.

The motion of the ball was recorded using a GoPro HERO3 Black Edition camera that has

a wide-angle lens capable of capturing video at high resolution and frame-rate. The camera was

mounted on a tripod and positioned in the middle of the longest side of the box, providing an

optimal overview of the entire scene. Recording was set to a 1280-by-960 pixels resolution, 100 fps
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frame-rate and 127◦ field-of-view. Moreover, a flood-light was mounted directly above the camera

to minimize shadowing, together with a wooden casing protecting the camera from the floodlights

heat. Finally, both balls were spray-painted bright green to facilitate detection in the video analysis

further on.

The following sections will briefly detail the fundamentals of this experimental setup and the

algorithms that allow to estimate krr. Unless otherwise noted, the pictures are reproduced with

permission from Van wal’s internship report[93] that contain additional practical discussions.

3.4.4.3 Tracking the ball

Before the computer can extract a 3-dimensional position of the center of the ball, it needs

to detect the ball. This task, trivial to human beings or our pets, is very hard to a computer. A

computer does not see objects, it only sees a grid of pixel. Over the course of two internships (with

Darius Djafari-Rouhani and Stefaan Van wal), an algorithm was designed that would recognize the

ball.

A first idea was to paint the ball in a vivid color that would not be found elsewhere in the

room. Hollywood’s movies making an intense use of computer-generated images (CGI) are shot

against green walls so that can easily be isolated from the rest of the set. So the balls were painted

green so that they could be isolated from the rest of the set – sand and gravel usually exhibits

shades of yellow and red, sometimes blue, rarely green.

A first computer vision program using Matlab’s built-in routines for object tracking was

implemented by Djafari-Rouhani. It would only follow moving pixels and would often fail to accu-

rately detect the center of the ball. This study was nevertheless essential to the understanding the

basics of computer and allowed us to devise a better algorithm with Van wal. Van wal implemented

a much more elaborate algorithm that works as follows: detect the color (green), perform an edge

detection, find the silhouette of the ball (find a circle).

The RGB convention is the logical choice for video display. Indeed, almost every video

color display in use today (television, computer, phones, etc.) create the color of each of its pixel
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by juxtaposing three very small light source of color red, green and blue of different intensity.

Individually they are not discernible and their combination forms all colors possible. However, this

system is not intuitive for analyzing a picture in terms of colors. So,the computer hue-saturation-

value (HSV) convention was preferred, as it measures respectively the type of color (on a circle

going through red, magenta, blue, cyan, green and yellow), the intensity of the color (no intensity

means white for all values of the hue), and the absence of black. Other similar systems exists (e.g.

hue-saturation-lightness or hue-chroma-value) but they are essentially only a variation on the same

theme. In HSV, the color of the ball (green with a shade of blue) was converted to a hue, that

could then be used to identify it in the shade or in the light – contrary to an RGB value that would

only recognize it for a specific level of light.

The obtained hue value was used to design a “selective gray-scale” filtering. The concept is

simple: gray-scale indicates levels of white in a picture i.e. the proximity to the color “white”, so

the selective gray-scale indicates the proximity to the selected hue value. Figure 3.13[93] shows the

result of applying this filter to a frame of the movie: the ball stands out at the left of the screen.

Yet, other objects appear in this scene and the computer needs a second filter being able to

identify objects: an edge-finder. A grayscale picture is essentially the graph of a function defined

over a domain of pixel and that takes values between 0 (black) and 1 (white). The gradient of

such a function can be computed. The magnitude of the gradient can be considered as a measure

of the local variation of the grayscale picture. A high magnitude means the pixel lies at the

boundary between regions of sensibly different level on the grayscale picture. A threshold for

minimum expected variation of intensity yields a matrix of zeros and ones, indicating where the

edges of objects (as seen by the camera) lie. The edge finder used to perform this computation

was Matlab’s built-in routine, using the method of Canny[16], that has more steps than outlined.

Among other features, the Canny filter reduces noise in the original image and follows identified

edges to check whether or not they are relevant.

To recognize the ball, the computer should know what a ball looks like after edge detection has

been applied. In this situation, it is a simple characterization: the ball looks like a circle. Matlab
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Figure 3.13: Selective grayscale applied to a whole frame of a movie. The ball, resting on the ramp,
is clearly visible on the left

has a built-in routine that recognize circles in a picture, using the Hough transform. A Hough

transform requires an analytical and finite parametrization of the feature, i.e. a parametrization

in terms of n parameters {ai}i∈[1, n]. The Hough transform is the idea that, to recognize patterns

in a picture of ones and zeros, each pixel should vote for each and every set of parameters that

produces a feature that it could belong to. By summing all the votes of all the pixels of the picture,

if a feature does exist in the picture, the set of parameters corresponding to this feature emerges

with more votes[6].

For a circle detection, an intuitive set of parameters is (xc, yc), the center of the circle and

r the radius of the circle. Each white pixel (x, y) could lie on an infinity of admissible circles –

because pixels are discrete, the maximum and minimum size of the circle are restricted, this number

is not actually infinite, but this technicality is irrelevant to the discussion. On this 3-dimensional

parameter space, each pixel creates a right cone, whose apex is at (x, y, 0) and that extends in
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the third dimension r with an opening angle of 90◦. Accumulating all these structures (the cones)

creates local maxima whenever a portion of circle is found[41]. The parameter space is in fact

cluttered of very small local maxima, but they are irrelevant. Only when a maximum has enough

votes should it be considered as a possible candidate – the minimum number of votes to be deemed

relevant then depends on the problem.

The great advantage of the Hough transform is that is does not rely on finding perfect features:

a circle with a missing section still appears as a significant maximum. Even a circle whose center

lies outside the picture could be identified if the threshold for the relevance of a given maximum is

appropriately low. In this situation, it allows us to recognize a ball even when its edge is not a circle

(a basketball has ridges) and is not always edge-detected as well as desired. The problem of the

Hough transform is that its memory allocation explodes with the dimension of the parameter space

and its algorithmic complexity grows with the dimensionality of the structure created by each pixel

(e.g. dimension 2 for the cone structure created for detecting circles). Giving an appropriate range

of circle radius can greatly reduce the size of the search space. In this situation, it is especially

appropriate as the size of the ball on screen does not change much from one frame to the next.

Figure 3.14: From left to right, the basket ball on the picture, with a selective grayscale applied,
and with edge detection. The red circle shows the detection by the computer, with the red star
showing the center of the circle and the green line showing its radius.

The Hough transform is also linear with the number of pixels present in the image. Thus

the full picture is only analyzed once, at the beginning of the movie; later, a box surrounding the
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previous position of the ball limits the work to a very small part of the picture, and speed the

algorithm 100 folds. Figure 3.14, reproduced with permission from Van wal’s internship report[93],

shows the different steps with the outlined circle found.

Figure 3.15: Tracking the trajectory of the ball. The green crosses are the final positions of
previously analyzed videos. The red cross is a trajectory that is discarded because the ball was not
properly detected.

Finally, Fig. 3.15 shows an example of tracking data superimposed over one frame.

3.4.4.4 Reconstructing a 3d position

Djafari-Rouhani, Van wal and the author of this thesis developed software that would trans-

form pixel coordinates on the screen to a 3-dimensional localization of the ball. Indeed, a pixel on a

screen gives a direction (azimuth and elevation) while the known radius of the ball and its apparent
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size in pixel allow to determine a range. Instead of using a known radius and trigonometry, our

eyes use stereopsis. But before going to the details of how to reconstruct a 3d position, one must

understand how cameras work.

A camera project the light that comes from its surroundings on a flat surface (the light

detector). This projection creates distortions, identical to the deformation a 3-dimensional globe

is subject to when flattened on a map. And similarly to the globe projected on the map, there

are many ways to project on a camera detector – but for a camera, the projection has to be done

by an optical apparatus and that somehow limits the creativity of the designer. The projection

distortions are not noticeable for small field of views but, for this work, the camera needed and

used a large one.

The field of view (FOV) is defined as the total angle covered by a camera. There exists

a horizontal and vertical FOV, usually different because the vast majority of modern standards

for aspect ratios of pictures and movies are larger in the horizontal dimension: e.g. ratio 4:3

(television), 16:10 (computers between 2003 and 2008), 16:9 (current standard for television, movies

and computers), 256:35 (4K cinema) or even 24:10 (the famous cinemascope format). When not

specified, FOV refers to the horizontal FOV. The field of view of 70◦ is used for video games as the

widest “comfortable” viewing angle – however it should be noted that most computer programs

specify the vertical FOV and adapt the horizontal FOV to fit the size of the window display so the

larger horizontal FOV usually reaches 120◦. The camera of a smartphone has usually a lower FOV,

around 50◦ rarely exceeding 70◦.

Thus, it should be noted that an angle of 127◦ is a very wide angle and distortions will always

be visible, whatever projection is used. Two type of projections exist: rectilinear and curvilinear.

The rectilinear projection is the most commonly used for computer 3d graphics (video games) and

some cameras. The rectilinear projection assumes the world is mapped onto a grid of evenly spaced

squares, each of them then mapped to a single pixel on the screen. The distortions created at very

wide FOV is a pinching of the center and an expanding of the sides of the screen. If the FOV

was at its maximum value 180◦, the center of the scene (the 179.999999...◦ center FOV) would be
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condensed in a single pixel. Thus, this projection is not the best for a wide FOV.

The curvilinear projection regroups all the other projections. Common cheap cameras do

not always have the hardware (or software) necessary to control their projection, thus they are

using an undetermined curvilinear projection. In other situations, a camera will project in a

very specific manner that is not rectilinear, and that will be used for artistic purposes. A classic

curvilinear projection consists in constraining to have an equal angle between two adjacent pixels

(called “equidistant” or “angular fisheye” projection). Note that this is absolutely not the case

for the rectilinear projections where pixels correspond to uniformly spaced angle tangents. But for

the classic curvilinear projection, the center and the side of the scene get the same area on the

frame. However straight lines in the scene appear curved, unless they pass through the center of

the projection.

The GoPro uses precisely this curvilinear projection and therefore a pixel on the screen

readily gives an angle information. In this projection, a displacement of one pixel corresponds to

an angular displacement of α defined by the horizontal field-of-view F and the screen width in

pixels wpix through:

α =
F

wpix
(3.57)

The elevation e and azimuth a of a pixel then come respectively from the pixel horizontal

position xpix and ypix:

a = αxpix and e = −αypix (3.58)

The position of the pixel is measured with respect to the center of the optical axis of the

camera. For this GoPro, the optical axis was also the center of the picture, but this may well not

be the case for other cameras. The minus sign in the elevation calculation comes from the fact that,

per convention of picture orientations, the y axis is directed at the bottom of the picture. Indeed,

in the camera frame, the x axis points to the right of the picture, the y axis points down and the

z axis is the depth axis.

The range information comes from the knowledge that the ball has a specific known radius
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R. Its radius in pixels Rpix can be linked to its distance r from the camera through:

r =
R

sin(αRpix)
(3.59)

In the previous equation αRpix is exactly the half of the angle subtended by the ball when

seen from the camera. Range r, azimuth a, and elevation e with respect to the camera can then be

transformed into a 3-dimensional position (xc, yc, zc), where c denotes coordinates in the camera

frame. Because the direction of x, y and z of the camera frame do not correspond to the usual

frame used associated to azimuth and elevation angles, the formulas differ from what is usually

found, e.g. for station-to-satellite pointing data. Here, the formulas are:

xc = r sin a cos e

yc = −r sin e

zc = r cos a cos e

(3.60)

Finally, the chessboard patterns on the wall show the directions of the x, y and z axes of the

box frame, also called true frame. The Camera Toolbox (integrated to Matlab) allows to find the

rotation matrix necessary to go from the camera frame to the true frame, i.e. the frame in which

results can be analyzed.

Figure 3.17 shows the different reference frame and units of the tracking (pixels or meters).

Figure 3.18 shows the true (or box) coordinates of a whole batch of experiments.

3.4.4.5 Fitting observations to the model

In the theoretical model, the coefficients of rolling resistance are constants, independent of

the speed or other state variables, determined only by the physical parameters of the ball and of

the gravel bed. It was thought that the model could not depict finer behaviors and it was expected

that, in reality, krr would depend on the velocity of the ball. Indeed, if we imagine that the ball

is plowing through the gravel bed, a model that comes to mind is the air drag, that follows v2 for

high speeds and v for low speeds. Thus, it was theorized that the ball would experience a total
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Figure 3.16: The calibration pattern (chessboards) on the wall are used to compute the direction
of the x, y and z axes of the box frame.

acceleration ẍ due to rolling resistance force that could be written as:

ẍ = −(a+ bẋ+ cẋ2) (3.61)

This differential equation is an integral form of Ricatti’s differential equation. Noting the

initial conditions ẋ(0) = v0 the solution of this differential equation is:

v(t) = ẋ(t) = − δ

2c
tan

(
1

2
δt− φ

)
− γ (3.62)

where δ =
√

4ac− b2 , γ =
b

2c
and φ = arctan

(
2c (v0 + γ)

δ

)
This integrates readily in the position x(t), noting x(0) = x0:

x(t) =
1

c
ln

(
cos

(
1

2
δt− φ

))
− 1

c
ln (cos(φ))− γt+ x0 (3.63)

Please notice that the previous equation does not place any constraints on the reals a, b and

c. Notably, they do not require that 4ac − b2 > 0. If one considers the functions presented above
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Figure 3.17: The position of the ball expressed in 3 different frames. At the top left, the screen
coordinates show where the ball is located the screen in pixels; at the top right, this two-dimensional
information is completed with the radius of the ball in pixels. In the bottom left, the trajectory of
the ball is displayed in frame of the camera. Finally, at the bottom right, the trajectory is shown
in the box frame: see the ball rolling down the ramp (z decreases) and decelerating because of the
rolling resistance (x slows down)

(square root, logarithm and trigonometric functions) with their natural complex extensions, then

all these equations are perfectly valid for all values of a, b and c.

In Eq. 3.63, the first and third terms are time-varying and express the non-constance of the

acceleration, while the second and last terms are constants that depend on the initial conditions.

If one sets b to 0, then realizes a Taylor series expansion around c = 0, it reveals that, for c = 0,
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Figure 3.18: For a whole batch of experiments (50 runs), the position of the ball is displayed in the
true (or box) frame. Note that the trajectories are, as expected, very similar although they do not
necessary go down the ramp at the same time. Especially notice the spread on the final spreads on
the different axes.

the solution matches the classic constant deceleration:

x = −1

2
at2 − v0t+ x0 +O(c) (3.64)

Interestingly, one may finally note that Eq. 3.63 also holds for 4ac−b2 < 0. In that situation,

δ = ı
√
b2 − 4ac and the functions ln, cos, tan and arctan must be understood in their broader

complex definition. As Matlab uses such definitions, it means that Eq. 3.63 and Eq. 3.62, as

written, are valid for all a, b and c.

First, the curve of the position was fitted to coefficients a, b and c using Matlab tools of

non-linear curve fitting. The fitting was done on a central portion of the curves, where the ball was

indeed rolling on the gravel. The results of these fittings were unanimous: b and c were negligible.

The algorithm would essentially bring them to a negligible value, around which Eq. 3.63 shows that
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the model simplifies naturally to the description of a constant deceleration.

Therefore, a least square fitting of the simplified model was applied to the curves, so converg-

ing only on the coefficient a and setting b and c to 0. However, before translating the coefficient a

into krr, its value was adjusted to include the slope of the gravel. Indeed, the determination of the

position of the ball is precise enough that it can capture differences in height from the beginning of

the rolling motion to its full stop. This height variation can be seen on Fig 3.18 in the spread about

the ẑ-axis. It was assumed that this variation would translate over the gravel into a uniform slope.

The resulting slope is generally lower than 2◦ degrees – such a value is also, in fact, the minimum

slope that could be measured with a level when performing the experiments.

So, distributions of krr for a basketball and for a medicine ball were obtained. The two balls

have very similar radii and differ mainly on their mass and on their assumed reduced inertia j.2

From the velocity of the ball exiting the ramp, the value of j could not be determined with sufficient

precision to comment on these assumed values.

Table 3.2: Summary of the parameters and results of the experiments DASboX

Basketball Medicine Ball

Mass m 0.63 kg 2.70 kg
Radius r 119 mm 113 mm
Reduced inertia j 2/3 2/5

Theoretical computed krr 0.056 0.066
Estimated krr 0.0524 0.0655

The results show a small spread around a central value for both the basketball and the

medicine ball. For the basketball, the coefficient krr is estimated at an average of 0.0524 and a

standard deviation of 0.0067. For the medicine ball, it is estimated at an average of 0.0655 and a

standard deviation of 0.0116. Figure 3.19 shows the distribution of the estimated krr for each ball.

Surprisingly, the experiments match extremely well the theoretical model, much better in

2 Please note that the actual value of j was not measured for the balls and this parameter is simply assumed
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fact than what was ever expected. It should be stated that this match may be random chance:

with only two points to compare with, the odds of the model being representative of all possible

gravel beds and spherical pods are not in its favor. However, a detailed simulation of this motion

explains why the theoretical model is a good representation of what happens.

Figure 3.19: Combining two batches of 50 runs each, done for both the basketball and the medicine
ball, the krr distributions can be estimated, shown here in the form of a box plot.

3.4.4.6 Explaining the accuracy of the model

The accuracy of the theoretical model might be due to chance, as aforementioned. With only

two data points, it would be presumptuous to pretend it could not be the case. However, one may

also wonder how such a simple model can capture such a complex motion. In such an effort, Dr.

Paul Sánchez used a soft-sphere discrete-elements-method (DEM) code to model the reaction of a

ball rolling on a gravel bed. The results of this analysis are reproduced here, with permission, to

make the discussion whole.

The parameters of the simulations were as follows. Grains were modeled as non-cohesive
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spheres of size ranging between 6 mm and 12.5 mm (uniform distribution), and of particle density

as measured during the experiments. The grains had an angle of rolling friction3 of 37◦. The

measurements indicated an angle of 39◦ but a higher value than 37◦ could not be obtained with

the current DEM model parameters – this discrepancy does not impact significantly the accuracy

of the results. The two balls had the same size matching an average of the medicine ball and the

basket-ball radii. The balls j value was idealized to 2/5 for the medicine ball (full sphere) and 2/3

for the basket-ball (hollow sphere). Their masses were varied, approximately between the medicine

ball and the basket-ball masses, for each case.

Figure 3.20 shows a 3d representation of the simulation. The box is a thinner version of the

real experimental box to allow the simulation of only the relevant fraction of grains present in the

box. For the medicine ball and the basket ball, the path of the ball is indicated by the blue particles

of gravel. Indeed, orange and brown particles were grains of the gravel bed not directly touched by

the ball, contrarily to the blue grains. Here the ball rolled right to left.

The position of the balls were fitted, in the x direction, with a constant rolling resistance

coefficient (see Eq. 3.64), as shown on Fig. 3.21. The resulting estimated coefficients of rolling

resistance are plotted, along with the experimental results for comparison, on Fig. 3.22. The

numerical simulations are in agreement with the experiments, although with some margin.

Interestingly, the numerical simulations also highlights the clear dependency of krr on j.

But it also shows a dependency on the mass of the object. Following the observed linear trend,

a massless object still has rolling resistance but less than any massive object. This is the direct

consequence of the plowing of the gravel. With more mass, the ball plows through the gravel and

the displacement of the gravel takes energy from the motion of the ball, thus creating a higher krr.

The computation of the levels of different type of energy losses confirms this qualitative

analysis. The total energy loss ∆ET can be decomposed in three terms: the variation in the

potential energy of the ball ∆Ub, the variation in the potential energy of the grains ∆Ug, the

3 In this context, rolling friction should not be confused with rolling resistance. Rolling friction, for granular
mechanics, is mostly a representation of the non-sphericity of the particles. The rolling friction then hinders the
non-slip rotation of particles on one another.
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Figure 3.20: DEM simulations by Dr. Paul Sánchez, showing a ball rolling on gravel (basket-ball
on top, medicine ball at bottom). Blue grains were touched by the ball, orange particles were not.

variation in the kinetic energy of the ball ∆Kb. This total energy loss comes from two contributors:

Wc, the work done by collisions (ball/grain and grain/grain) and Wf , the work done by friction

(ball/grain and grain/grain) – in this model, rolling friction is static and does not contribute any

work. So the energy balance equation can be written:

∆Ub + ∆Ug + ∆Kb = Wc +Wf (3.65)

Looking at the values of these terms in the simulations, the quantity ∆Ug + ∆Ub −Wf that

expresses the effect of plowing (the grains are pushed up, the ball sinks and the ball experiences
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Figure 3.21: DEM simulations run by Dr. Paul Sánchez, showing the position of the basket-ball
rolling on gravel for different masses and their respective fit (using Eq. 3.64) to obtain the coefficient
krr.

friction on its sides) accounts for about 25% of the energy loss ∆Kb for balls of about 3 kg while it

only accounts for about 15% of ∆Kb for balls of less than 1 kg. Hence, as it was expected, there is

a contribution of the weight of the ball to the coefficient of rolling resistance. As the experiments

only have one mass value for each j value, it is difficult to differentiate the effects of each variable

and to comment on the validity of these results. However, as shown by the simulations it does not

have an extremely important effect on the coefficient: for the medicine ball that shows the most

variations on that parameter, krr is only multiplied by 1.8 when the mass is multiplied by 5. It is

nevertheless possible that, at higher masses, this contribution would grow significantly.

The results of the analytical model can now be better understood. The reason why the

analytical model accurately describes the effect of rolling resistance is because the gravel bed

behaves, at the masses considered and at the gravity field considered, as a very rigid surface. If
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the particle density is significantly lowered, the ball will plow more easily and the analytical model

will become less and less accurate. Yet, these simulations give satisfying confirmation that the

analytical model, although much improvable, considers the right phenomena and can be taken

as a reliable first guess of the coefficient of rolling resistance – at least in the studied domain of

variations.
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Figure 3.22: The values of krr as measured in the experiments (box plot) and as estimated with
DEM simulations (stars) as a function of the mass. The blue elements correspond to j = 2/3 and
the red elements correspond to j = 2/5.
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3.5 Stochastic model of the surface rugosity

The previous sections covered how the interaction between a lander and the surface of an

asteroid could be modeled to some accuracy. Defined through facets, the global shape of the asteroid

can be made as precise as possible. For regolith interaction, a variety of gravel types can be modeled

with the rolling resistance force and torque, through the value of their coefficient crr. Yet, if these

two aspects of the problem cover, respectively, very large features and very small features of the

surface, the mid-range features still need to be accounted for.

In fact, one could continue the facet interaction further than what is done in this model.

This model uses facets that are 20 cm to 1 m in size. It is the best resolution could be found for

a model of the whole surface of Itokawa. This model could be enriched of small rocks, randomly

placed at the surface of Itokawa. However, the problem is that the number of facets to consider is

inversely quadratic to their relative size. For a fully detailed surface, modeling rocks of 5cm and

above would require the number of facets to explode into tens of millions. The memory size of such

a detailed modeling is prohibiting, given the authors’ numerical abilities. A way to go around this

limitation would be to refine the definition of the surface as the lander approaches it. However,

because of the complexity of the numerical architecture of such a solution, it was not implemented

on this model.

Yet, it is crucial to be able to model the presence of rocks at the surface of an asteroid, as

rocks will hinder the motion of the pod, and will bring it to a stop much faster than rolling resistance

alone could. Furthermore, it is now known that asteroids terrain is very rocky, the best example

being Itokawa’s[33, 100]. To be able to handle rocks that are not small enough to be accounted

for as gravel, the model uses a statistical approach. The combination of facets, stochastic rock

collisions and rolling resistance and torque makes the model integrate every size order present on

an asteroid, which yields to better understanding of the general motion of the pod on the asteroid.
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3.5.1 Statistical rock distribution

In this subsection, it is presented how the model can generate a rocky landscape. Indeed,

several questions should be addressed: what size should be the rocks? how many rocks should there

be? what geometric shape should the rocks be?

3.5.1.1 Size of the rocks

In fact, one reliable information we have on Itokawa is the size distribution of rocks at its

surface. Whether this distribution is representative of other asteroids is questionable, but, short

of any other detailed enough model, it is assumed that it is indeed. From Hayabusa’s pictures,

researchers have derived power laws to describe the statistical distribution of rock of any size at the

surface of Itokawa. In essence, it means that the probability density function of the rock distribution

is a function of the rock size:

PDFX(d) =
α dαmin

dα+1
for d ≥ dmin (3.66)

The key number defining the power law is α > 0, and is called the power index. Using

Itokawa’s data from Hayabusa, Mazrouei et. al (2012)[51] showed that the small boulders (less

than 15m) had a power index of 2.1, value updated to 3.1 and 3.5 in a very recent work[52],

whereas Michikami et al (2008)[57] found a power index of 2.8. Other values, between 2 and 4, can

be found. In the rest of this section, the value 2.1 is used.

The minimum value dmin is necessary for the distribution to make sense: saying that the

rocks follow a power law indeed assumes that the number of rocks goes to infinity when dmin goes

to 0. If one were to compute the number of rocks generated by such a distribution without a

dmin, one obtain an infinity of rocks of size 0, i.e. a dirac distribution. For the present problem,

specifying a dmin is convenient for it gives us a somewhat arbitrary threshold on what should be

considered a gravel element and what should be considered a rock. For a ball of radius r = 12.5

cm, the threshold was chosen at 5 cm minimum diameter.

Note that, although the probability function is fundamental to the statistics, it is in fact
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easier to work with the cumulative distribution function:

CDFX(d) = 1−
(
dmin

d

)α
for d ≥ dmin (3.67)

Inverting this equation allows one to obtain a power-law generated random distribution from

an initially uniformly distributed random set – such as the ones available to most computer lan-

guages. Precisely, suppose y is a uniformly-randomly generated number, then its corresponding

pareto-randomly generated d is:

d =
dmin

(1− y)
1
α

for 0 ≤ y ≤ 1 (3.68)

However, the previous formula can generate arbitrarily large rocks. Because the model as-

sumes that very big rocks are already included in the model (with facets) a correction is given to

the formula so as not to generate arbitrarily large rocks. If the maximum size is denoted dmax, the

formula implemented in the model is:

d =
dmin

(1− βy)
1
α

for 0 ≤ y ≤ 1 (3.69)

with β = 1−
(
dmin

dmax

)α
(3.70)

3.5.1.2 Number of rocks

The previous formula specified what the size of the rocks should be in the distribution, but

how many rocks should there be? To answer this question, another parameter relating to the

density of rocks is required. The easiest way to input such information is to give the number k0 of

rocks greater that some diameter d0 per unit of surface. Then the total number of rocks k per unit

of surface is:

k = k0

(
d0
dmin

)α
(3.71)

For instance, Mazrouei et al. (2012) gives that there are 820 boulders on Itokawa greater

than 5m in diameter. The surface of Itokawa being estimated at about 4 × 105 m2, it yields

k0 = 2.05× 10−3 m−2 for d0 = 5 m. All in all, that makes more than 117.1 rocks bigger than 5 cm
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per square meters. On a 5 m × 5 m surface, that is about 812 rocks. One can easily check that,

as long as the distribution is indeed on a Pareto law of power index α, the choice of d0 does not

matter and always generates the same value for k.

3.5.1.3 Shape of rocks

The shape of rocks is an important topic for it directly affects the probable location of the

impact points. Take the following example to understand the issue: rocks modeled as cubes or

spheres. For cubes, if the cube is larger than the ball then the contact point with the ball is

necessarily located at the equator of the ball. For spheres, if the rock sphere is larger than the ball

then the contact point happens above the ball’s equator and, conversely under the equator if the

rock sphere is smaller than the ball. Typically, spheres tend to send the pod in the air more often

than cubes and such behavior affects greatly the model. The result of bounces is therefore very

different from the cube or the spheres aspect of rocks.

Because the exact shape of rocks is neither cube, spheres or even classical solids, rocks were

modeled to have enough complexity to resemble Itokawa’s rocks while retaining enough simplicity

so that extensive simulations could be carried out. Eventually, a deformed icosahedron (20-sided

platonic solid) was used. To create a rock, a regular icosahedron of diameter d is created. All its

points then experience a gaussian deformation of standard deviation σ = d/12 on every cartesian

axes. The rock is then rotated along a random rotation vector and with random rotation angle.

The transformation obtained regularly creates non-convex yet star-shaped polyhedra. An example

of a created rock is given on Fig. 3.23.

The next question to ask, related to the shape of the rocks is: how much of this rock should

be above the surface and how much should be below it? Using photographs from the Hayabusa

mission, parameters that appear qualitatively correct were chosen. Figure 3.24 was generated

using the parameters that seemed visually most appropriate, by comparing with pictures from the

Hayabusa mission[100].

For the landscape generation, so that rocks are well-positioned, it is necessary to place the
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Figure 3.23: A rock created using the method presented in this chapter.

Figure 3.24: A flat landscape of randomly generated rocks, with the pod for size comparison, in
perspective view.

rocks in order of decreasing size. If overlapping is in fact authorized, it is however forbidden for a

rock to contain the center of another one, thus ensuring that the rocks are correctly placed over
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the landscape.

3.5.2 Random collisions model

Now equipped with a random rock generator, the effects of the presence of rocks on the

trajectory of a ball can be analyzed. Rock interactions happen in two situations: impacting the

ground, and rolling/sliding on the ground.

For both situations, the ball is initialized in a random state corresponding to the appropriate

situation – on the ground for rolling simulation, going down for the impact simulation. When and

how the trajectory of the ball (consisting in a straight line) impacts a rock is then computed and

recorded. For the rolling simulation, if the ball goes reaches the edge of the landscape without any

impacts, its trajectory is prolonged by assuming the landscape is periodic; this way, the ball always

impacts a rock eventually. However, for the impact simulation, the ball may hit the ground before

hitting a rock.

To develop a stochastic model of random collisions, hundreds of thousands of simulations

were run and recorded. Then, a fit was made on these events with different types of functions (e.g.

exponential, gaussian, Weibull, Kumaraswamy, etc.) and the best fit was selected to compute, later

on, random events.

3.5.2.1 Random rolling collision

For random rolling collision, the key elements of the collision event are: the distance the ball

rolled before impacting the rock, the latitude and longitude location of the collision on the ball. The

latitude, on the ball is defined with respect to the horizontal level. Hence, an impact at 0◦ latitude

means the ball impacted a rock exactly at mid section, whereas an impact at −90◦ means the ball

essentially rolled on a buried rock and an impact at 90◦ means the ball slid under a rock. Because

of the relative size of the rocks and the ball, rare are the impacts occurring above 0 latitude. The

longitude 0◦ reference is defined along the velocity, and positive angles are counted considering the

up vector as latitude 90◦ – not that the direction of positive angles would not essentially matter as
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the impact distribution is obviously symmetric in longitude.

To fit the distance rolled by the ball before collision occurs, also called free path, an expo-

nential seems the best choice. First of all, the usual result of the free path of a Boltzmann gas

particle is indeed an exponential. Although the application is very different, it seemed only natural

to transpose the reasoning to a ball moving on 2D surface. The data and its fit are shown on

Fig.3.25. One may observe that the ball indeed rolls barely its radius before encountering a rock.

If the threshold for small rocks is increased (i.e. only the bigger rocks are kept), then this free path

naturally increases.

The latitude measurement was the most difficult to fit, see Fig. 3.26. The Gaussian fit

evaluates quite well the −90◦ to −50◦ portion of the curve but fails at capturing the flattening

occurring afterwards. The Weibull fit is very bad at the lowest latitudes, underestimating their

occurrence, and does not catch up with the data, although it’s shape, in the −30◦ to 90◦ range,

is definitely appropriate. The Kumaraswamy fits very well the curve between −90◦ to −40◦ but

then does not capture entirely the flattened portion of the curve. However, the general behavior

is still well fitted by a Kumaraswamy distribution and the correlation coefficient remains high

(R2 = 0.997).

The longitude distribution, simply and expectedly, behaves as a truncated gaussian distribu-

tion. It is shown on Fig. 3.27.

The stochastic random collision model was implemented as follows. At initialization, three

values are computed: the distance to collision, the latitude and the longitude of the collision.

Whenever the pod is in contact with a facet, its distance travelled is subtracted from the distance

to collision. After possibly multiple facets, the pod has eventually been in contact with a facet

for exactly the computed distance to collision. At this moment, the integrator stops and a bounce

occurs at the precomputed longitude and latitude on the ball. The integrator resumes after the

bounce was solved.
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Figure 3.25: Random collision event: distance covered before the event.

−80 −60 −40 −20 0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Latitude (°)

C
u
m

u
la

ti
v
e
 P

ro
b
a
b
ili

ty

 

 

Data

Gaussian

Weibull

Kumaraswamy

Figure 3.26: Random collision event: latitude of the impact location on the ball.

3.5.2.2 Random impact collision

For the random impact collision model, only one value and two fits are needed. The value

needed here is the percentage of impacts that happened on rocks out of the total number of impacts.

Indeed, some impacts may occur on the flat regolith surface. To better understand the distributions
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Figure 3.27: Random collision event: longitude of the impact location on the ball.

to fit, it is better to rule out these cases and therefore separate, for each bounce, the two cases:

bouncing on a rock (with associated randomness) and bouncing on the flat regolith (where the

bounce is deterministic). Interestingly, it also allows to assign different coefficients of restitution

(and friction and rolling resistance) to rocks and to the regolith, thus allowing to encompass the

full spectrum of conditions encountered by a pod impacting an asteroid. For the values retained

for the simulations, the percentage of rock impacts is 94%.

First, the angle between the normal to impact and the ẑ-axis is fitted. In practice the ẑ-axis

is the facet normal hence this angle is a measurement of the diffusivity of the bounce. Note however

that this angle may, in theory, span 0◦ to 180◦. The 90◦ to 180◦ range corresponds to bounces that

would occur on the overhang facet of a small rock. However, given the relative size of the ball and

the rocks, this case did not happen in hundreds of thousands of simulation, so the diffusivity of the

bounce was fitted in practice to range between 0◦ and 90◦. Although a Weibull fit did work very

well on the distribution, it was eventually found that an exponential fit was in fact a simpler and

slightly better fit, as shown on Fig.3.28.

Then, the longitude of the impact model is fitted: that is the deflection with respect to the

direction of the horizontal speed from the rock. As for the prior case, the longitude was also fitted
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with a truncated Gaussian that gave a very accurate correlation coefficient, as shown on Fig.3.29.

Finally, a word should be said on the correlation of these variables with other parameters.

Indeed, there is some small correlation between the velocity angle with the facet normal and the

angle of impact. However, this correlation is, in general, quite weak (correlation coefficient of 0.22).

Preliminary investigation show that this correlation might only occur at very shallow angles, and

a comparison with the latitude distribution obtained for the rolling collision model weighs toward

this hypothesis. If proven, further work will refine this model to account for such behavior.
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Figure 3.28: Random impact: angle of normal to impact.

The stochastic impact collision model was implemented as follows. For each bounce, a random

number was drawn and compared to the percentage of rock impacts: if larger, a regular bounce

would not occur, if smaller, a rock impact would occur. For a rock impact, the values of angle of

normal and longitude are computed and a bounce then occurs as specified. However, because of the

possible angles at play here, before returning to the integrator, a check is made whether another

bounce, on the facet this time, should occur. Such a bounce may indeed be needed in the case of

unusually large angle of normal computed for the rock impact.
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Figure 3.29: Random impact: longitude of impact on the ball.



Chapter 4

A strategy for the deployment of landers

The two previous chapters have laid out the technical background for the deployment of a

lander to an asteroid. This final technical chapter will present the results that can be obtained

from the devised methods. At this point, any asteroid could be studied, for any set of parameters,

with any set of spacecraft GNC accuracy. However, it seems that, if case studies should be shown,

they should have special relevance to the problematic.

For instance, the precise value of the coefficient of friction f does not change the simulations,

as long as f is high enough (f higher than about ≈ 0.3). On the other hand, a small variation

in the value of the coefficient of restitution e impacts every aspect of the deployment. Variations

of the rolling resistance coefficients have their effects but it is only as significant as the slopes can

be precisely defined. Only on Itokawa is there a shape model with enough resolution that the

computed local slope can be trusted to some degree. The stochastic model described in Chapter 3

has many parameters, and they are sensitive to changes in the rock distribution that is considered

for its creation. However, no other rock distribution than that of Itokawa is known, it seems at

best an uneducated guess-work that to try and tweak these distributions. The author of this work

would rather place rocks on the surface using a single established model and compare with the

complete absence of rocks, rather than go in fine discussions about distributions that would be

purely hypothetical.

Eleven examples of deployment are shown, across four asteroids. The first asteroid studied

is Itokawa. It fits in the definition of a strong manifold case. The drastic differences whether the
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stochastic model is implemented fully, partially (impacts only) or not, are investigated.

The second asteroid studied is 1999 JU3, that corresponds to an easy deployment situation

because of its slow rotation. For this target, the effect of the presence of rocks and of the value of

the coefficient of restitution e are presented quantitatively. Essentially, it is shown that e affects

the landing time and the spread of positions whereas the presence of rocks alters the location of

the impacts (and highlights the need of high resolution models).

Finally deployments are considered on the most difficult target, binary system 1999 KW4.

Thanks to the astrodynamics understanding garnered on the amended gravity field, it is possible

to deploy both to the secondary and to the primary. Ultimately, it is shown that deploying on 1999

KW4 is definitely feasible, with the unexpectedly high success rate of 99% to Alpha and 100% to

Beta.

The deployment conditions (position, velocity and uncertainties) vary for each case, but the

physical parameters of the simulations are, unless specified otherwise, those of Tbl. 4.1.

Table 4.1: Nominal deployment parameters

Parameter Symbol Value

Pod radius R 0.125 m

Pod mass m 5 kg

Pod reduced moment of inertia j 2/5

Coefficient of restitution e 0.65

Coefficient of friction f 1

Coefficient of rolling resistance crr 0.04

Coefficient of rolling resistance krr 0.1

The deployments Monte Carlo set consists in 1000 simulations randomizing the initial state

and the rock distribution – the computation time for each set varied between 8 h and 30 h with an

average at 16 h. These simulations had an upper bound for the timely deployment of the lander:
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the first impact had to occur before some time, and then the motion had to stop at the surface

before another time, both depending on the situation. The randomness is controlled and the same

simulations (e.g. #42) of each Monte Carlo set can be compared one-to-one directly. For each and

every deployment the same figures are shown, on a single page each time. Figures 4.1 to 4.11 show:

(1) a longitude-latitude map displaying the initial positions in blue crosses and the final po-

sitions in green crosses. When the spread is small enough, the map is zoomed on the the

relevant zone.

(2) a 3d representation of the deployment. It depicts the asteroid shape model, the saddle

point closest to the deployment area (black circle with the mention “Eq. point”), the

initial positions in blue crosses, the first impact locations in yellow crosses and the final

landing positions with green crosses. A blue curve indicates an arbitrary trajectory for

illustration purposes.

(3) a histogram of the time to first impact (yellow bars) and the time to final rest (blue bars).

The distribution of time to first impact is always much more packed than the time to rest

and sometime appears only as very thin bars on the left of the graph.

(4) a histogram of the landing spread. The spread is computed from the nominal location of

the first impact (which is deterministic) to the final positions. This landing spread can be

considered as the landing accuracy of each deployment. Note that the distance is computed

simply as the norm between two locations: this line may go through the asteroid and does

not correspond to the distance at the surface; if the difference is minute for small spreads,

it can be significant when the distances are on the order of the size of asteroid.

Finally, for every set of simulations, are given the rates of trajectories: that impacted (before

maximum allowed duration), that remained at or near the surface, and that stopped motion (before

maximum allowed duration). The rate is always given on the total number of simulations (1000).

The fraction of trajectories that stopped motion at the surface is considered as the success rate.
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4.1 Itokawa

Deployments on Itokawa are especially interesting as Itokawa has a very refined shape model,

obtained from Hayabusa’s photographs. With these sets of simulations, it is shown how important

the stochastic model is to the understanding of the motion on Itokawa. As an elongated body

verifying the strong manifold case, Itokawa is especially suited for a deployment from its lowest

energy saddle equilibrium. The parameters used are displayed in Tbl. 4.2.

The deployment occurs from the upper left of the saddle point. In the equilibrium point

frame described in Chapter 2, the nominal position is set at (−25, 50, 0) m. The velocity is directed

along π+ χs and, because the unstable manifold is sufficient to guide the lander to the surface, its

magnitude is equal to its uncertainty, so 3 cm/s.

Table 4.2: Specific parameters to the deployments on Itokawa

Parameter Symbol Value

Position (saddle frame) r0 (-25, 50, 0) m

Velocity direction (saddle frame) θ π + χs

Velocity magnitude (saddle frame) v0 3 cm/s

Altitude - 177 m

Position uncertainty (3σ) δr0 60 m

Velocity uncertainty (3σ) δv0 3 cm/s

Max time before impact tmax
i 12 h

Max time before rest tmax
r 24 h

NB: to understand the figures presenting the deployment note that Itokawa photographs

present it upside down (“up” being defined by the spin vector ω). The reader will then use caution

when interpreting the longitude-latitude maps. For instance, Muses sea is located on the southern

part of Itokawa and the Sagamihara region is the north pole.
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4.1.1 Stochastic collisions – full model

With the full stochastic model implemented, the lander experienced random impacts with

rocks when colliding with the surface (which is apparent to a diffusive model of the bounce) and

when in contact with the surface. Figure 4.1 shows the result of this deployment.

The lander reached the surface in 99.1% of cases. Indeed, given the uncertainty on position

and on velocity, it may happen that the lander initial state does not meet the conditions of Conley’s

criterion and thus does not reach the surface. The position error was especially set at 60 m to allow

for a fraction of the deployments to fail; diminishing the position uncertainty to 50 m removes

all these failures. In a work such as a thesis, describing methods to solve a problem, it seemed

relevant to show deployment situations that push the presented strategy as far as possible. The

reader should also consider that 60 m is a considerable error in GNC. So this example proves that

the strategy is applicable for spacecraft that do not have state-of-the-art GNC systems aboard or

have defective sensors or actuators.

All trajectories that impacted remained at the surface, however some (2) did not stop under

the 24 h limit. They correspond to trajectories that reached low velocity on Itokawa’s head but then

started to fall toward the body. Their motion was always slow (a few mm/s) but never reached

a velocity low enough (and other conditions) to be considered stopped. The success rate, for a

deployment under 24 h, is then at 98.9%.

Table 4.3: Results of the deployments to Itokawa – full stochastic model

Rate of impact 99.1%

Rate of grounding 99.1%

Rate of landing 98.9%

Basins of attraction are located in Muses Sea, specifically in the area of Kamisunagawa, and

in the area of Sagamihara (see topography of Itokawa on Fig 1.3). These basins were expected:
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they have very low slopes and very low potential and thus corresponds literally to “basins”. The

impact occurs 1 to 2 h after release, and the lander comes to rest after 5.55 h on average with a

standard deviation of 1.12 h. The landing spread is very high, basically expressing that, with these

deployment specifications, aiming is not possible.

4.1.2 Stochastic collisions – impacts only

With only a partial stochastic model implemented, the lander experienced random impacts

with rocks when colliding with the surface (which is apparent to a diffusive model of the bounce)

but was allowed to roll on the facets as if they were perfectly flat. Figure 4.2 shows the result of

this deployment.

The lander reached the surface in 99.1% of cases, which is not a surprise, as randomness

being controlled, the initial positions and velocities are identical to the previous case studied. As

before all the trajectories that impacted remained at the surface but now only one failed to stop

under 24 h. It is a (marginally) better result than the full stochastic model as the absence of rocks

while rolling allows the lander to move faster in areas where it cannot stop. The success rate is

99.0%.

Table 4.4: Results of the deployments to Itokawa – partial stochastic model

Rate of impact 99.1%

Rate of grounding 99.1%

Rate of landing 99.0%

The very interesting result here is the perfect match between the landing map of a partial

stochastic model and the landing map of the full stochastic model. The same basins (Muses Sea

and Sagamihara) are present and the distributions are similar at their surface. Also, the time to

rest distribution is almost identical, at 5.58 h on average with a standard deviation of 1.12 h.
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Although it is true that the trajectories are identical for the two models until the pod starts

rolling, such rolling motion often occurs hours before finally coming to a stop. Moreover, simulations

ran with a non-identical random seeding have shown the exact same basins of attraction, hence

why it is relevant to compare them. These basins and the distributions on these basins are not

artifact of randomization control but dynamically relevant features of Itokawa’s topography.

4.1.3 No stochastic collisions

Without any stochastic model implemented, the lander trajectories are deterministic and

Itokawa becomes a very flat terrain. Figure 4.3 shows the result of this deployment.

The lander reached the surface in 99.1% of cases, which is not a surprise as, randomness

being controlled, the initial positions and velocities are identical to the two previous cases studied.

But now, 13 trajectories did not stop in time. They are trajectories that rolled on a flat surface at

relatively high speed, and because there are no rocks on the surface, never found anything to stop

them in time. The success rate drops to 97.8%.

Table 4.5: Results of the deployments to Itokawa – no stochastic model

Rate of impact 99.1%

Rate of grounding 99.1%

Rate of landing 97.8%

This difficulty to stop is well represented with the distribution of landing time, at 7.79 h

on average and 1.70 h of standard deviation. But, most interestingly, the landing basins have

changed. Though Sagamihara is still attractive (albeit in a different location), San Marco in Muses

Sea has become the most important landing basins. Notice that in the previous cases, it was almost

void of any landings. That shows that the presence of rocks, which are the smallest features here,

determines the location of the landing basins.
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Thus, if one wants to realistically model the possible landing locations for a lander, all levels

of modeling are needed:

(1) The global shape of the asteroid determines the gravitational potential and the location of

low-potential and low-slope areas, where the lander finishes its course.

(2) The presence of rocks alters the course of the pod and prevent it to roll for hundreds of

meter. Especially, when one only has shape models of very low resolution, the presence of

rocks is crucial.

(3) The contact dynamics cannot be forgotten. The pod rolls, sometimes for hours, before

coming to a stop. Stopping the simulation when contact motion is observed is not sufficient

even for non-spherical shapes: they may encounter a rock very quickly, and that may propel

them in the air. Finally rolling resistance determines the maximum slope for which a lander

may stop; it is then crucial for understanding where the pod may stop.
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Figure 4.1: MonteCarlo simulations of a deployment to Itokawa from 177m altitude, for a full
stochastic model (rolling collisions and impact collisions).
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Figure 4.2: MonteCarlo simulations of a deployment to Itokawa from 177m altitude, for a stochastic
model with impact collisions only.
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Figure 4.3: MonteCarlo simulations of a deployment to Itokawa from 177m altitude, without any
part of the stochastic model.
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4.2 1999 JU3

1999 JU3 is the target of the JAXA mission Hayabusa 2. The spacecraft will perform many

experiments at the asteroid. It will notably return a sample and fire a small projectile at the

asteroid, to evaluate the reaction of the surface and possibly collect a subsurface sample once a

crater has been formed. And, Hayabusa 2 will also deploy target markers (little white balls used

for navigation) and the DLR/CNES lander Mascot[48]. Help was provided to CNES, DLR and

JAXA by running these simulations on the deployment of Mascot to 1999 JU3.

However, a noticeable difference between Mascot and the landing pod considered in this

work is that Mascot is not a sphere but a cuboid. A cuboid cannot be simulated exactly with the

presented model. However, the response of a cuboid can be emulated, by changing the value of the

coefficient of rolling resistance. Indeed, when a cube is pushed on a surface, its “rolling resistance”

coefficient, i.e. the force opposing its motion, is equal to its friction coefficient. By this reasoning,

the cube should have krr = f . On the other hand, a cube can indeed also “roll” on a surface as

we have all seen when throwing a dice. So, placing krr = f would be too restrictive as it would

assume the cube is always in perfect contact between one of its face and the ground. Therefore a

value of krr close to f but smaller should be chosen to emulate the cuboid. It was decided that crr

would be 0.25 and thus krr = 0.625. Although it does have an impact on the numbers presented

thereafter, rolling resistance is not the most important parameter for stopping the pod. Moreover,

when it is so high, its precise value does not influence the accessible slopes and landing locations.

Finally, the trajectories have very little tangential velocity at first impact, limiting therefore the

importance of the coefficient of rolling resistance.

Some deployment parameters were not chosen: the deployment altitude, the velocity magni-

tude v0 and the uncertainties on position δr0 and on velocity δv0 were given by CNES. Because

the equilibrium point is very far away, the direction of the velocity is not especially relevant. Still,

it remained pointed along π + χs.

Because the lander coefficient of restitution on the asteroid surface is unknown to the mission
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Table 4.6: Specific parameters to the deployments on 1999 JU3

Parameter Symbol Value

Position (saddle frame) r0 (-480, 0, 0) m

Velocity direction (saddle frame) θ π + χs

Velocity magnitude (saddle frame) v0 5 cm/s

Altitude - 100 m

Position uncertainty (3σ) δr0
33.3 m horizontal

13.3 m vertical

Velocity uncertainty (3σ) δv0
1.55 cm/s horizontal

1.66 cm/s vertical

Max time before impact tmax
i 4 h

Max time before rest tmax
r 12 h

designer, it is varied here to understand how it impacts the landing on the asteroid. And because

the terrain conditions are unknown both situations are considered: with rocks or without rocks. In

the latter, the stochastic model is turned completely off (sandy terrain); in the former, it is fully

on (rocky terrain).

For the coefficient of restitution, the extreme values of 0.85 and 0.35 are considered with

an intermediate likely value of 0.65. Hayabusa was estimated to bounce at 0.83[100] and granite

spheres bounce on each other at 0.85. On the other hand, Hayabusa bounced on its sampling device

that was fitted with a spring, and rocks have been computed to bounce on Eros at 0.1[27], thus it

may be considered that 0.85 is an unlikely high, yet very possible, value for e. A value lower than

0.35 could be encountered, but the simulations do not have a lot of interest below this value: the

pod essentially stops where it first impacts. And understandably, one is more interested in seeing

the possible difficulties for Mascot than how easy things could potentially be.

Indeed, Mascot has a battery life of only 12 h to 15 h (value TBC). A very important factor

for the success of Mascot is the time it has at the surface to do experiments. Thus, one should be
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very attentive to the time it takes for the lander to come to rest in the different situations. And,

as Mascot needs to be set on relatively flat terrain in order to adopt a precise orientation, special

attention should be paid to the landing spread. It is likely that Mascot will target a designated

flat area and this area will likely have a maximum radius beyond which terrain can change and be

inappropriate for science operations.

4.2.1 Rocky terrain

With the stochastic model fully implemented, Figures 4.4, 4.5 and 4.6 show the results of

this deployment for respectively e = 0.85, e = 0.65 and e = 0.35. Because of the very favorable

dynamical environment of JU3, the success rate was at 100% for all cases.

Table 4.7: Results of the deployments to 1999 JU3 – full stochastic model, for e = 0.85, e = 0.65
and e = 0.35

Rate of impact 100.0%

Rate of grounding 100.0%

Rate of landing 100.0%

As expected the landing spread grows with the coefficient of restitution. With an average of

respectively 71 m, 40 m, and 16 m, and standard deviation of respectively 31 m, 22 m, and 9 m, it

is clear that the case 0.85 would make it very complicated for targeting a landing. To some extent,

even the case 0.65 allows for many trajectories to leave a 50 m radius from the nominal impact

location. Depending on the size of the landing site, one may want to deploy Mascot at a lower

altitude to minimize this spread.

The landing time however is very short. In the worst case scenario, e = 0.85, the worst

deployments still land after 3.5 h, which leaves time for Mascot to do its experiments, even with

a battery life of 12 h. However, it may prevent the lander from doing one of its possible mission

extension: a hop that would allow it to move at the surface of the asteroid. However, if Mascot has
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a coefficient of restitution of 0.65, 1.5 h is enough for its landing and that opens up this possibility.

4.2.2 Sandy terrain

Without any features of the stochastic model implemented, Figures 4.7, 4.8 and 4.9 show

the results of this deployment for respectively e = 0.85, e = 0.65 and e = 0.35. Because of the

very favorable dynamical environment of JU3, and despite the possible very long motion that the

absence of rocks could allow, the success rate was maintained at 100% for all cases.

Table 4.8: Results of the deployments to 1999 JU3 – no stochastic model, for e = 0.85, e = 0.65
and e = 0.35

Rate of impact 100.0%

Rate of grounding 100.0%

Rate of landing 100.0%

As before, the landing spread increased with coefficient of restitution, but here the spread

exhibits basins of attraction. These basins are artifacts of the shape model and do not represent

meaningful regions. Indeed the landing zone is above a number of facets that have some orientation.

As the trajectory, after initialization, is completely deterministic, impacting such or such facet

orients the lander in a specific direction. Moreover without any rocks to stop it on its way, the pod

must rely solely on the geometry of the facets to guide it. Thus, one can see patterns and abrupt

delimitations of basins of attractions that have no meaning in reality.

Thus, the reader should not draw any conclusion, for the mission design, about the shape

of these landing zones. However, the reader should interpret these artifacts as the proof that such

studies are indeed only preliminary. When Hayabusa 2 reaches 1999 JU3, it will be very important

to redo these analyzes with the precise shapes, at least to the decameter level and preferably to the

meter level. The values found here will not be completely altered, but some landing sites might

prove tricky or easy to land on, depending on their precise geometry. For instance, if the landing
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Figure 4.4: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, with a full
stochastic model and e = 0.85.
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Figure 4.5: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, with a full
stochastic model and e = 0.65.
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Figure 4.6: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, with a full
stochastic model and e = 0.35.
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site was in a concavity, the lander would stop faster and may not be able to escape the concavity,

thus limiting its spread. Conversely, if the landing site is rather convex, the lander could fly much

farther.

However, what is not an artifact of the model and could be a source of concern for the lander

is the value of the spread. With an average of respectively 132 m, 32 m, and 14 m, and standard

deviation of respectively 8 m, 12 m, and 15 m, it is clear that the case 0.85 would make it very

complicated for targeting a landing. It may surprise the reader to see that, compared with the

dull stochastic model situation, the spread is shorter for e = 0.35 and e = 0.65 but longer than

for e = 0.85. It can be explained by looking at the shape of the trajectories. Most impacts are

made at a very high angle, close 90◦. With a stochastic model, this impact is deflected with some

diffusivity and thus the pod gains speed. Without rocks, the tangential velocity is mostly acquired

with the Coriolis’ acceleration on the bounce up (Coriolis’ pushes the lander to the west) and then

canceled again on the way down (Coriolis’ pushes the lander to the east). This phenomenon is

clearly visible on the 3d pictures. It then goes as far as Coriolis’ can take it during its bounce.

If the lander does not bounces slow/low, the effect is small, and the lander does not travel far.

When the lander bounces fast/high and repeatedly, the effects add up and become very important.

With the stochastic model, Coriolis’ still acts but tangential velocity is acquired and dampened

through the diffusivity of bounce. The deterministic effect of Coriolis’ is then limited. This is why

the final positions were showing a very gaussian distribution on Figures 4.4, 4.5 and 4.6 but are

along very specific paths on igures 4.7. Thus, when e is not too important, the absence of rocks

limits the possible spread, but when e is high, this same absence allows the displacement due to

the deterministic Coriolis’ acceleration to add up and take the lander much further than expected.

This is an interesting feature, because Mascot should land on a sandy area. Thus, should the

real landscape be as flat as the one used here, Mascot could travel an average of 132 m in a worst

case scenario. Nevertheless, if there are indeed no rocks, then the effects of deterministic Coriolis’

force could be accounted for and fine aiming designed: the standard deviation of the spread is only

of 15 m.
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Figure 4.7: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, for no
stochastic model and e = 0.85.
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Figure 4.8: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, for no
stochastic model and e = 0.65.
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Figure 4.9: MonteCarlo simulations of a deployment to 1999 JU3 from 100m altitude, for no
stochastic model and e = 0.35.
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4.3 1999 KW4

1999 KW4 was the first target considered for this work, when it began four years ago. It

is only fitting that it is the last example presented in this thesis. To some extent, all the work

that was done on this thesis had one ultimate goal: understand how a deployment was possible

on 1999 KW4. If the asteroid system itself is not a viable target for a mission given its very

eccentric orbit, its structure is representative of binary systems[32]: a fast rotating primary and

a tidally locked secondary. The primary body is the perfect example for a fast rotating target,

and the perturbations caused by the secondary’s motion shows how one can account for important

perturbations. The secondary fits the analysis of deployments at secondaries using the unstable

manifold from L2 – the periapses maps shown on that topic were computed for 1999 KW4.

Itokawa was an interesting target because it had a very precise shape. JU3 was an interesting

target because its shape model was very flat and thus allowed to see the effect of the coefficient

of restitution and the presence of rocks on the spread. Yet for these two previous bodies, the

understanding of the astrodynamics only helped and was not strictly needed for successful deploy-

ments. On 1999 KW4, for Alpha as for Beta, a deployment is only possible in a very thorough

understanding of amended gravity fields and of surface motion – understanding that the author of

this work hoped to have provided in the previous sections.

4.3.1 Alpha

As the ridge line figures highlighted in Chapter 2, KW4 Alpha is a very difficult target: its

ridge line is extremely close to its surface (see Fig 2.4). From a top down view, one may believe

that the equator ridge of Alpha is on the same plane as the ridge line. This is not the case, and

in fact Alpha has a smaller northern hemisphere than southern hemisphere. Thus instead of being

only meters away, the ridge line altitude lies between 15m and 30m altitude.

The dilemma for Alpha is the following. Because the manifold is weak, supplementary energy

is needed to reach the surface. But because the ridge line is very close to the surface, minimizing
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the energy is critical to avoid bouncing back in orbit. This is the difficulty of landing on Alpha: if

one guarantees first impact the lander might go too fast and if one guarantees low energy the lander

might never reach the surface. To make things worse, there is the secondary, modeled for these

simulations as a point mass. The pull of the secondary is negligible compared to the gravitational

pull of the primary, but not compared to the amended gravitational pull of the primary. Because

of the proximity with the ridge line, and restricting the lander to low energies, the pull of the

secondary becomes suddenly crucial during the first hour after the release. Worse, when placed

appropriately on its orbit, the secondary pull can even pick up the lander after the first bounce

and prevent it from ever getting a second bounce. In general, until the lander has not secured

a few bounces on the surface, there is always the risk that the secondary can perturb its motion

significantly to make it orbit the primary.

A set of simulations to evaluate the influence of the secondary were launched where the

lander was initialized at the lowest energy saddle point (on the right of Fig 2.4) and 2 cm/s speed

along π + χs. The simulations were run for varying longitudes of the secondary, with a resolution

of 1/16π. It revealed that the lander failed to reached the surface from 1/4π to 7/16π, and that

otherwise there were notable variations in the time it took the lander to reach the surface for

first and second impact. Two minima were identified, both located around −1/16π and around

7/8π. Although there is no clear reason to think the minima should be exactly separated by π, this

opposition is worth noting. It should also be noticed that these two situations correspond to almost

perfect conjunction or opposition of the secondary, the primary and the initial position. The two

minima were not identical, and the −1/16π was clearly better, with an impact after t0 + 3995 s

compared to 7/8π that had a first impact registered at t0 + 4475 s. Based on this computation,

and as the longitude of the deployment location was very close to 0, it was concluded that placing

the secondary at −1/16π from the longitude of the deployment location was ideal – at least for a

preliminary study.

Using the energy criterion, it was determined that 1 cm/s was the minimum speed allowable.

Because the uncertainty on velocity was still set at 3 cm/s, the nominal speed was set at 4 cm/s.
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However, the deployment now occurs in a position quite unfavorable to the Conley criterion. Thus,

to guarantee the speed lies with the green zone of the “clocks” identified in Chapter 2, its nominal

value was increased to 5 cm/s. The velocity was oriented, still, in the direction of π+χs. Then, the

position uncertainty was reduced to 15 m, as the other numbers used were absolutely not viable for

such a deployment. It is important to note that the proximity with the surface forces the spacecraft

to have an appropriate GNC. This deployment is very hard and it should not be expected from

any mission. Thus what is presented here is not a scenario for any spacecraft anymore: the craft

needs to be designed for these maneuvers and to have sufficient abilities. However, note that the

numbers given are still far from being unfeasible, especially regarding the accuracy on speed, and

the proximity with the surface should give a much better precision to any altitude measurements.

It was observed that if the lander had a coefficient of restitution of 0.65, the landing would

often failed – with success rates barely above 30%. The lander coefficient of restitution was then

lowered to 0.50 which places an additional constraint on the lander design. But, as aforementioned,

this mission is most difficult. Still, such a coefficient is achievable with appropriate designs as was

already shown in 2001[71]. Finally the stochastic model was fully functional – but it does not

impact significantly the deployment results.

Yet, deploying from the lowest energy saddle point was difficult. To guarantee a nominal

altitude of 28m (which would guarantee an altitude of at least 13m in 99.97% of cases), the lander

could not be released within the ridge line limit, it had to be deployed 15m behind the ridge

line. The success rate, in that situation, would not go beyond 83%, mostly due to the lander

never reaching the surface as it would not verify Conley’s criterion and would be deflected by the

equilibrium point structure at low speeds. If the speed was increased then the impacts would occur

but the lander would bounce back in orbit.

The second lowest energy saddle point has more energy (although the levels are very com-

parable) but is further from the surface. The lander must be deployed outside the asteroid inner

realm, but only by 6 m, which proved much more favorable to Conley’s criterion, for the same

5 cm/s speed. Thus, the deployment occurs from the second lowest saddle point.
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Table 4.9: Specific parameters to the deployments on 1999 KW4 Alpha

Parameter Symbol Value

Secondary longitude - 11/16π

Position (saddle frame) r0 (+6, 18, 0) m

Velocity direction (saddle frame) θ π + χs

Velocity magnitude (saddle frame) v0 4 cm/s

Altitude - 28 m

Position uncertainty (3σ) δr0 15 m

Velocity uncertainty (3σ) δv0 3 cm/s

Max time before impact tmax
i 4 h

Max time before rest tmax
r 12 h

The results were finally satisfying with 100% of impacts, 99.1% of grounding and 99.0% of

landing. The one trajectory that was grounded and that did not land is shown in blue on Fig 4.10.

As the other 9 trajectories that failed to land, it bounced very high after the first impact and orbited

the body several times. Contrarily to the other 9 trajectories, it was lucky enough to re-impact

under 12 h, but it could not stop before the 12 h mark. Interesting 2 other trajectories had the

same fate but their second impact happened much earlier, albeit in a totally different location on

the asteroid, and they were then successful. It should be noted that, when the speed is decreased

the rate of impacts, and thus the success rate, plummets.

Table 4.10: Results of the deployments to 1999 KW4 Alpha

Rate of impact 100.0%

Rate of grounding 99.1%

Rate of landing 99.0%
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The landing time distribution is very flat, a direct confirmation of the sensitivity of the

problem to the initial conditions. If most trajectories have stopped under 3 h, some lasted much

longer. The average landing time is then at 2.74 h and its standard deviation is at 2.10 h. The

landing spread figures two outliers at about 1400 m distance (almost the antipode) but shows an

average at only 24 m which is promising for targeting.

The longitude latitude map may surprise the reader by the sharp northern and eastern borders

of the main landing basin. Although it remains technically an artifact of the faceted model, theses

borders have a real meaning. The equatorial ridge is, dynamically, a wall of very steep slope. But,

moving away from this wall towards southerner regions, the slope becomes very flat and allows the

lander to stop. This wall is the northern border of the longitude latitude map. The western border

is similar although not as steep. A facet located at this longitude has a higher slope than what

would allow the pod to stop because of rolling resistance. When the pod reaches it, it is quickly

stopped because of the local amended gravity, and it reverses course.

The exact shape of the landing basin is not very important, but the fact that very sharp

borders exist is. On 1999 JU3, the facets were very large and the asteroid was very slowly rotating.

Here, the facets are small enough to represent local a topography that may not be the actual one,

but may very well be representative of the real one. And because the amended gravity is so low,

the slopes can quickly vary from one location to the next, which makes this landing basin structure

very relevant.

4.3.2 Beta

Beta may be formed by accretion of particles leaving the primary through shedding processes.

Thus, for this deployment, the stochastic model is only partially on: the bounces have diffusivity

but the possible rocks cannot be impacted during contact motion and therefore do not hinder the

motion of the lander at the surface.

For a deployment on Beta, the rules established in this work for strong manifolds in binary

systems are followed: the deployment occurs within the secondary’s inner realm, close to the
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Figure 4.10: MonteCarlo simulations of a deployment to 1999 KW4 Alpha from 28m altitude.
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equilibrium point L2, and the speed should be as low as possible as there is no need to stray from

the unstable manifold. Notice that the deployment on Beta is done by relaxing the accuracy on the

position back to 50 m, and setting the coefficient of restitution back to its nominal value e = 0.65.

However, it was decided to deploy only from −25 m from L2 on the x̂-axis (where −50 m would

have been preferred ) to see if it would impact the results: it does not. But, beyond 1.5σ, the

lander may be deployed from a region where Conley’s criterion is more constraining. Hence, a

slightly more energetic configuration at 4 cm/s nominal speed was imposed, rather than selecting

the lowest speed possible (3 cm/s).

Finally, please note that the location of L2 was not computed with the full polyhedron model

but with an ellipsoidal gravity field model for Alpha and Beta. Indeed, it is unlikely that, during

a real mission, the gravity field of both bodies would be known to very good accuracy. Thus, by

simplifying the computation of L2, the situation emulates partial gravity knowledge from the GNC.

In practice, the difference between the location of L2 with the ellipsoid model or the polyhedron

model is less than ten meters. Yet it still represents another difficulty that the strategy overcomes:

no matter where the equilibrium really is, Conley’s direction is the same. Depending on the believed

accuracy of the estimated gravity field, and thus the location of L2, one may want to deploy at

different nominal initial speeds, to guarantee Conley’s criterion as much as deemed necessary.

Unsurprisingly, the results are excellent with 100% success rate. The reason of this success

is that this situation is dynamically very simple: every trajectory that verifies Conley’s criterion

will impact, and every trajectory that impacts will dissipate more than enough energy to close the

zero-velocity surfaces not only at L1 but also at L2.

Fig 4.10 shows the details of this fully successful deployment. The impacts location are mostly

occurring on the side facing L2. Low-energy trajectories impact on the +ŷ part (right),whereas

high energy impacts occur on the −ŷ part (left). The blue trajectory shown is a very low-energy

trajectory, that follows closely the unstable manifold.

The longitude latitude map shows clear patterns only some of which are relevant. The

tendency to land around the 0◦ longitude is completely relevant when one studies the shape of
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Table 4.11: Specific parameters to the deployments on 1999 KW4 Beta

Parameter Symbol Value

Position (saddle frame) r0 (-25, 50, 0) m

Velocity direction (saddle frame) θ π + χs

Velocity magnitude (saddle frame) v0 4 cm/s

Altitude - 437 m

Position uncertainty (3σ) δr0 50 m

Velocity uncertainty (3σ) δv0 3 cm/s

Max time before impact tmax
i 4 h

Max time before rest tmax
r 12 h

Table 4.12: Results of the deployments to 1999 KW4 Beta

Rate of impact 100.0%

Rate of grounding 100.0%

Rate of landing 100.0%

Beta. In fact Beta presents a dimple at the 0◦ longitude. When the lander finds itself in an area

going from -20◦ to 10◦ longitude, it is drawn towards this dimple. Similarly the northern region

around 20◦ latitude has high slope (around 15◦). It is not impossible to stop there but is is unlikely

thus why very few trajectories end there, the lander often continuing its path until higher latitudes

are reached.

However, the striped pattern observable in the 0◦ longitude basin is an artifact of the facet

size. The facets are about 10-20 m of length. When the pod reaches the edge of a facet, it

temporarily flies off and only re-impact the next facet after having covered some distance. In the

meantime, the rolling resistance has not acted and thus the pod did not lose any speed. Thus the
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pod really only stops in the middle of the facets which explains the stripped pattern. If one were

to decrease the size of the facets the pattern would disappear. However the general shape of the 0◦

longitude basin would not be significantly affected. Indeed, when the pod flies off a facet interface,

what is lost in the continuous effect of the rolling resistance is given back by the impulse of rolling

resistance when the pod re-impacts the ground. So, the shape of the 0◦ longitude basin is valid in

general, and the reader should simply disregard its stripes.

Although this deployment may be the easiest one considered in this work, the landing time

is the most important, with an average of 3.9 h and 1.3 h of standard deviation. Here, more than

anywhere else, the dynamical system imposes itself to the surface motion complexities; it takes

time to travel from L2 to the surface (1.75 h) and to dissipate sufficient energy to finally come to

a stop. Finally, the essential insight that can be taken from the distribution of the landing spread

is that the aiming options are very limited in this situation.
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Figure 4.11: MonteCarlo simulations of a deployment to 1999 KW4 Beta from L2 (437 m altitude).



Chapter 5

Conclusions

This thesis has presented a strategy for the landing of scientific packages on asteroids. This

final chapter summarizes the devised methods, their results, and the future directions they lay

ahead.

5.1 The surface exploration of small bodies

The objective of this study was to provide the scientific community with the technical support

to enable a mission deploying one or several landers at the surface of an asteroid. The deployment

was considered in its dynamical and technical challenges.

Rather than struggling with the irregular gravity field that an asteroid exhibits, it was utilized

to design a simple deployment strategy in which the spacecraft releases the lander in the vicinity

of a saddle equilibrium point. If the saddle possesses a strong unstable manifold, this one is ridden

down to the surface by conforming to a simple criterion on the initial direction of velocity, Conley’s

criterion. If the saddle has only a weak manifold, quasi-conservation of inertial energy is used

in conjunction with this criterion to devise trajectories that will reach the surface. Ultimately,

such deployments are very robust to GNC or environment modeling errors because they use the

dynamical structure of motion to their advantage rather than fight it.

Understanding the complexity of surface interaction, the model was designed to include all

levels of detail that asteroid surfaces show and that realistic surface interaction needs. An asteroid

has a global shape that is rarely spherical and that defines its gravity field and the slopes that one
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can expect in such or such region. An asteroid also exhibits detailed topography, with monoliths,

hills, valleys, concavities, large boulders. These details are critical for studying the targeting

capabilities of the mission. Finally, surface interaction requires us to model finely the impacts

and the contact motion of the pod on a surface. Using experiments and simulations to analyze

and integrate the behavior of regolith, especially the resistance to rolling motion that the grains

generate on the ball, is key. This rolling resistance was defined, described, computed analytically,

measured in experiments and estimated with discrete elements method simulations.

Combining both understandings, of the astrodynamics and of the surface dynamics, practical

applications for the deployment of scientific package to asteroid surfaces were presented. Selected

cases were discussed in this thesis: Itokawa, 1999 JU3, and 1999 KW4 Alpha and Beta. Itokawa was

a pedagogical example, and showed how the strategy handled the strong manifold situation. 1999

JU3 was an actual mission design case study, especially interesting to the space agencies JAXA,

DLR and CNES, as Hayabusa 2 (JAXA) will deploy the lander Mascot (DLR/CNES) on 1999 JU3

in 2018-2019. Finally, 1999 KW4 was presented as it is the hardest target of all: a fast rotating

primary and an orbiting secondary. It was shown that the success rates of deployment would reach

99% on the primary and 100% on the secondary. These last two studies prove that a mission such

as BASiX[21, 67, 4] is completely feasible with today’s technology.

When discussing the deployment of landers to asteroid surfaces with principal investigators

of exploration missions, the author of this thesis has generally heard the statement that deploying

a lander on an asteroid is too dangerous. The arguments were convincing: the mothership would

be jeopardized by the deployment, it would be too difficult to realize the operations of deployment,

it would be too risky programmatically for the mission. But these arguments were based on the

absence of studies of the problem. Now that studies have been and are conducted, the community

must realize that this challenge is well within our reach. Over the years, this work has been presented

at conferences and in peer-reviewed journals. It is hoped that the community has changed their

minds about asteroid landings: it is possible without any change to current spacecraft GNC, it is

safe for the lander and the mothership, it works. And it would yield unprecedented science return.
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5.2 Future directions

This study has provided the scientific community with the first comprehensive asteroid land-

ing simulator. Yet, this work is only preliminary: there are numerous areas of the simulator where

improvements are needed to accurately predict the trajectory of a lander.

The study of the astrodynamics could be refined to allow for more realistic deployment

conditions, especially on the GNC of the spacecraft. For having done simulations using solar

radiation pressure and solar tides and not witnessing any significant differences, the author of

this thesis does not think the model should focus on perturbating forces other than gravitational.

However, the gravitational forces could be modeled more accurately, e.g. non-homogeneous density.

But more importantly the fine study of the impact of gravity mismodeling on the robustness of the

strategy should be considered. This topic was briefly considered with the deployment on 1999 KW4

Beta, where the location of the equilibrium point was computed considering Beta as an ellipsoid

rather than a polyhedron. But this study and others were only qualitative and proved that the

strategy was robust enough only in this situation. What would happen to the much more difficult

deployments on 1999 KW4 Alpha?

Yet, the most important area of improvement undoubtedly lies in the modeling of the surface

motion. First, the simulator only handles spherical pods. If the features of a cube can be coarsely

emulated, it would be a great asset to expand the simulator to any shape: cube, cuboid, tetrahedron,

etc. However, one must not underestimate the challenges of such an expansion. A sphere has the

very convenient characteristic that contact dynamics always occur at a point and that the normal

force from the surface never contributes any work. With a cube, or anything exhibiting a flat face,

the numerical model has a singularity when detecting face-to-facet contact. When an edge or point

is in contact, the normal force yields a torque. When a face is in contact, the friction force acts only

on the area in contact, and may induce vertical torques. These are only a handful of the challenges

put on the numerical modeling of contact motion – the numerical architecture itself becomes much

more complex. But the results would be essential for the design of an asteroid lander.
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Secondly, although the stochastic model has been accurate enough for these studies, the

simulator should be enriched with an actual rock landscape generation. The stochastic model has

limitations: rocks are only considered during an impact or contact motion, but their presence

should be accounted for when the pod is moving at fast speed, a few tens of centimeters above the

surface. More generally, a bounce diffusivity and a random collision detection will never replace the

generation of an object that can be interacted with. In other words, the stochastic model generates

collisions, a better simulator would generate rocks. But, again, the reader should not be deceived by

the simplicity of this idea: it places incredible complications on the numerical architecture. Because

of the same memory and computation issues that led us to use a stochastic model, it would require

that the architecture creates rock as necessary, as it goes. It means that the randomization of the

rock generation need to be controlled and recreated if necessary. This general topic is nevertheless

mastered by the video game industry, and is referred to as “procedural generation”. The integration

of fully parametrizable procedural algorithms for rock generation would be the logical next step for

this simulator.

Finally, the interaction between regolith and the lander should be detailed. For now, all the

parameters (e, f , crr) are constant, and do not depend on the state of the pod. These parameters

should be varied for each collision, according to how regolith behaves to impact. For example, the

regolith might be very bouncy at low speed, may exhibit very little rolling resistance if the pod

is not rolling without slip, or even let the pod sink if the impact vertical velocity is large enough.

These features cannot be evaluated with the simulator, they should be studied through granular

mechanics theory, experiments and discrete element method simulations. The different coefficients

of the model would then be variable, and interpolated between estimated values on some relevant

space of parameters.

By improving the simulation of asteroid surface interaction, the mission design would be

facilitated. It would allow for more functional and bolder designs. At last, it would prepare for the

human exploration of asteroids. It would identify the potential dangers for astronauts as well as

provide an excellent basis for the design of efficient manned operations at asteroids.
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