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Atmospheric drag is the largest nongravitational perturbing force acting on low altitude low

Earth orbit (LEO) satellites and debris, and the modeling and estimation of drag effects is a lim-

iting problem in the prediction of their orbits over time. The primary sources of uncertainties in

drag modeling are introduced due to the atmospheric density and the drag-coefficient. On top of

the stochastic variations in atmospheric density, which drive the magnitude of the drag force, there

are systematic variations in the drag coefficient due to satellite specific factors and atmospheric

conditions. These include satellite attitude shifts, variations in ambient atmospheric parameters

such as temperature, molecular composition, and the satellite wall temperature. Thus, even with

increasing accuracy of semi-empirical models for the atmospheric density, there remain model un-

certainties and time variations in the effective coefficient of drag that affect the satellite’s motion,

which are not captured using the standard constant drag coefficient model. Though physics-based

models of the drag-coefficient can be used to calculate the time-variations in the drag-coefficient,

a gap in knowledge of input parameters across orbital regimes and space weather conditions limits

their use in operational orbit determination.

This work develops new estimation-based methods to capture the time variations in the

drag-coefficient due to attitude changes and orbital motion using Fourier-series expansions. Before

implementing these high-fidelity models of drag, a thorough analysis of aliasing effects in estimates

of nongravitational force coefficients due to arbitrary truncation of geopotential models is carried

out. This allows an informed choice of geopotential degree and order during orbit determination.

Improvement in the orbit determination and prediction of simulated and real satellites is demon-

strated with the proposed Fourier models. A framework to invert physical parameters from the

Fourier coefficient estimates is developed to provide better constraints on physics-based models of



iii

the drag-coefficient.

Atmospheric densities derived from satellite tracking data are used in calibration of atmo-

spheric models that are in turn used for orbit determination as well as scientific studies of the Earth’s

atmosphere. But the derived densities are subject to biases in the assumed drag-coefficient. An

important goal of this work is to break out of this circular problem and provide a way to esti-

mate atmospheric densities unbiased by the drag-coefficient. Leveraging the physics of the problem

and the Fourier coefficient models, a method to estimate accurate local atmospheric densities at a

sub-orbital cadence is developed and reduction in density biases is shown using simulated and real

tracking data. Lastly, the new drag-coefficient models are applied to analytical theories of orbital

motion in an atmosphere.
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Chapter 1

Introduction

1.1 Earth’s debris environment

In 1957, with the launch of Sputnik 1, a new era began for humanity—the space age. Since

then, satellite technology has permeated almost every aspect of our lives, revolutionizing the way

modern society functions. The protection of our world’s collective space assets is a shared interest

of all of humanity.

As with the discovery of any new resource, swift utilization without a lot of thought dedicated

to sustainability, due to the seeming abundance of given resource, was what happened to outer space

as well. In the nearly 65 years following the launch of the first satellite, we have added around

23000 objects that are more than 10 centimeters in size [106]; and that is just the number of

objects that are being tracked and cataloged for collision avoidance purposes. Fig. 1.1 shows

the rapidly growing total number and mass of objects in Earth orbit officially cataloged by the

US Space Surveillance Network. With the object population in certain low Earth orbit (LEO)

belts reaching a critical spatial density [57], accurate real-time monitoring as well as prediction

of satellite positions into the future has emerged as a problem of utmost importance for orbit

maintenance and collision avoidance. The relevance of tracking accuracy is underscored by the

2009 collision between a derelict Kosmos and an active Iridium satellite. In recent years, with

the launch of mega-constellations of commercial satellites such as SpaceX’s Starlink, the number

of near misses that would increase the debris population by thousands of more objects has been

quickly rising, especially in the absence of traffic rules, communication protocols between different
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satellite operators and the potential lack of transparency regarding conjunction events [2]. Along

with active debris remediation strategies and developing policies regarding norms of behaviour in

space, improving tracking accuracy of space objects is necessary to prevent catastrophic collisions

of active maneuverable satellites.

(a) (b)

Figure 1.1: (a) Monthly number of objects in Earth orbit, (b) Monthly mass of objects in Earth
orbit officially cataloged by US Space Surveillance Network as of 5 Jan 2021; figure courtesy NASA
Orbital Debris Quarterly news [83]

1.2 Satellite drag environment

The modeling of perturbing forces acting on a satellite is a key component of orbit deter-

mination and prediction. Atmospheric drag is the largest perturbing force for low altitude LEO

satellites and uncertainty in its parameters remains the foremost contributor to prediction errors in

this orbit regime [44]. Even though high-fidelity non-conservative force models used in conjunction

with empirical accelerations meet current requirements in terms of orbit fit residuals, the prediction

accuracy may still degrade rapidly due to inherent assumptions in the modeling and estimation of

force parameters such as the drag coefficient [84].

Drag is one of the three atmospheric forces acting on the satellite, the other two being lift

and side forces. The lift and side force coefficients are usually an order of magnitude smaller than

the drag coefficient [25] and can be ignored as a first approximation without significant loss in
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accuracy. The drag force (adrag) acting on a satellite is given by

adrag = −1

2
ρCd

Aref
m

v2
r û, (1.1)

where ρ is the atmospheric neutral density, Cd is the drag coefficient, vr is the relative velocity

of the satellite w.r.t the atmosphere, û is the unit vector in the relative velocity direction, m is

the mass of the satellite and Aref is the reference cross-sectional area. Considering the mass and

relative velocity of the satellite with respect to the atmosphere to be known and combining the

drag coefficient and the reference cross-sectional area, the primary uncertainties in the drag force

are introduced due to density and drag coefficient models. It should be noted here that this work

is concerned with the drag force on satellites due to the neutral atmosphere. Charged particles

in the ionosphere can induce an ionospheric drag on satellites that may become important when

very high precision is required for the orbit determination process [11]. The key issues remaining

in upper atmospheric drag modeling are discussed in detail in Thayer et al. (2021) [125].

In most of the orbit determination applications, the drag coefficient is estimated as a constant,

similar to the cannonball model for the radiation coefficient in solar radiation pressure (SRP) [60].

But the drag coefficient is a highly variable quantity, the value of which is governed by the physics

of gas-surface interactions in orbit. The systematic variations in drag coefficient are driven by

satellite specific factors such as attitude shifts which change the angle of the flow with respect

to the surface and satellite wall temperature, as well as atmospheric conditions such as molecular

composition and ambient temperature. It is important to take a look at the state-of-the-art drag

coefficient models to understand the existing issues with drag coefficient calculations.

1.3 Current state of upper atmospheric density models

The Earth’s upper atmosphere or thermosphere, around 100-1000 km above the Earth’s

surface, is a dynamic system with variations resulting due to interactions with the Sun as well

as the lower atmosphere. The upper atmospheric density is primarily driven by space weather

drivers—solar and geomagnetic activity; both the solar extreme ultraviolet (EUV) radiation and
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the interactions of particles from the Sun with the geomagnetic field inject energy into Earth’s

atmosphere. A high solar activity or higher number of solar particles entering the geospace causes

heating and subsequent expansion of the atmosphere to higher altitudes leading to an increase in

the thermospheric density and therefore, satellite drag. This complex dependence of the density

on space weather has been historically captured in thermospheric models such as the widely used

NRLMSISE-00 [93] in satellite operations through F10.7 and Ap proxies for the solar and geo-

magnetic activity respectively. But the space weather effects on the atmospheric density are not

fully captured by these proxies which introduces errors in the density output of these models. The

use of newer solar and geomagnetic indices has reduced the density uncertainties in the JB2008

atmospheric model compared to MSIS and Jacchia models [125].

Figure 1.2: Interaction of the geospace with the Sun; figure courtesy NOAA

In the last two decades, there have been significant advances in atmospheric density modeling,

thanks to the measurements from instruments onboard satellites such as CHAMP (2000-2010),

https://www.swpc.noaa.gov/phenomena
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GOCE (2009-2012) and GRACE (2002-2017) complementing orbital decay data and ground-based

measurements [25, 29]. Estimates of atmospheric densities from satellite data not only allow the

calibration of semi-empirical atmospheric density models used in orbit determination but provide

invaluable insights into the evolution of Earth’s atmosphere [30] and its causes such as anthropogenic

factors [50]. A key science goal identified by the National Research Council decadal survey for solar

and space physics [20] is to analyze changes in our planetary environment and identify underlying

causes. The derivation of decadal changes in the thermospheric densities using satellite data forms

an important component in achieving that goal. Therefore, any biases in the derived densities have

far reaching consequences from both engineering and scientific perspectives. One of the primary

biases is introduced in the inversion of atmospheric densities from satellite data as a result of

simplifying assumptions pertaining to the drag coefficient [29].

Atmospheric densities can be derived from satellite drag primarily through two approaches -

accelerometers and orbit tracking data; both are directly affected by the error in the drag coefficient

used in the inversion. With the accelerometer data from satellites such as CHAMP and GOCE

being available to the scientific community, the discrepancy between the densities derived from

satellites and existing atmospheric models have become more evident. GOCE densities had to be

rescaled by a factor of 1.25 to match the High Accuracy Satellite Drag Model (HASDM) [7, 26].

Corrections to HASDM [117] are made in real time from observed drag effects on satellites but

the derived densities are again ambiguous to a factor of the drag coefficient being used, though

the calibration satellites are supposed to have stable ballistic coefficients. Using more realistic

drag coefficients, it was estimated that the Jacchia 71 model (based on measurements using a drag

coefficient of 2.2) overestimates density by nearly 23% and the MSIS 90 model by 15% [12, 78]. It

is important to be able to separate the density variations from the drag-coefficient variations while

estimating the satellite drag.
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1.4 Current state of drag-coefficient modeling

Since closed-form solutions of drag coefficient were derived by Cook [19] for simple shapes at

the advent of space age, it has been long estimated as a constant in the orbit determination process,

also known as the cannonball model [60]. But the drag coefficient can vary significantly in orbit due

to its dependence on satellite specific factors such as satellite orientation with respect to atmospheric

flow and ambient parameters such as molecular composition and temperature. Earlier, the errors in

atmospheric density model overshadowed the errors due to drag coefficient in orbit determination.

But with reduction in orbit determination errors due to atmospheric density, improved models of

the drag coefficient have become necessary.

Until a few years back, most of the research in drag coefficient modeling focused on the

development of gas-surface interaction models (GSIMs) that are based on actual physics that govern

the atmospheric flow around the satellite [19, 80, 79]. But estimates of the parameters that are used

in these models are strongly dependent on the solar-atmospheric coupling [81] and are available

only for specific atmospheric conditions and altitudes [88, 77]. Advances towards the use of GSIMs

for a larger subset of orbital regimes and ambient conditions have been made possible as a result

of models proposed for parameters such as energy accommodation coefficient that characterizes

the energy of flow emitted from the satellite wall [96, 71, 95, 132, 131]. The second important

area of research has been focused on utilizing numerical methods for drag coefficient modeling.

Numerical methods such as test particle Monte Carlo (TPMC) and direct simulation Monte Carlo

(DSMC) [5] are more accurate than analytical GSIMs since they can account for factors such

as overshadowing and multiple reflections, but unfortunately suffer from a large computational

burden. The resolution of this problem has been found in machine-learning techniques that use

numerical methods to generate data for ‘training’ computationally tractable models [71, 72, 119].

These resultant models are functions of a selected input parameter set which is dependent on

satellite properties and orbital regime, and therefore specific to the satellite under consideration.

In particular, response surface models (RSM) developed in such a manner have been shown to
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improve orbit prediction for GRACE [72] and provide better density estimates from accelerometer

data onboard CHAMP and GRACE [73].

In order to ensure a transition from a cannonball model to these higher-fidelity models for

the general orbit determination community, some pertinent issues need to be addressed. One of

the drawbacks of using such models across the LEO regime is that they are not generic but have

to be developed for individual satellites. The other issue common to most drag coefficient models

is that input parameters to these models are not always known accurately. One possible solution is

to use semi-empirical models developed for parameters such as energy accommodation coefficient

[96, 71] in conjunction with response surface models. Even then, other parameters such as the

angular spread of the remitted flow still remain unknown. In addition, inputs to these models such

as concentrations of different atmospheric species will carry biases of the atmospheric density model

used to calculate them.

The issue of observability of input parameters is encountered while incorporating high-fidelity

drag coefficient models in the filtering methodology for orbit determination. Many of these input

parameters change over time in orbit and cannot be estimated in the filter since they are not directly

observable. Therefore, unless accurate models are available for the input parameters across all

orbital regimes and satellite shapes, developing a physics-based drag coefficient model applicable

for all LEO altitudes is difficult. Consequently, many real satellites still utilize the cannonball

model, i.e., estimate the drag coefficient as a constant, in orbit determination applications. This

calls for a modeling approach that can condense the physics associated with the drag coefficient

into observable quantities that can then be estimated in a filter. Estimation-based empirical models

of the drag coefficient can potentially capture frequencies associated with periodic variation of the

drag coefficient in orbit due to repeating attitude and ambient parameters. The estimates of free

parameters associated with such models can provide information that can ultimately be used to

improve the input parameter space of machine-learning models. They can also provide better orbit

determination performance than the standard cannonball model that assumes the drag coefficient

to be a constant with minimal implementation overhead.
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1.5 Thesis statement and outline

The importance of accurate modeling of the drag-coefficient in orbit determination and at-

mospheric density inversion from drag data and the current need for a framework to estimate

time-variations in the drag-coefficient from satellite tracking data leads us to the following thesis

statement.

Thesis: Advances in drag coefficient modeling, specifically development of models whose

parameters can be estimated through satellite tracking data, will lead to improvements in

dynamic orbit prediction of all low Earth orbit (LEO) satellites and knowledge of gas-surface

interaction (GSI) parameters. In addition, they will be useful in removing biases in current

thermospheric density models introduced during the process of density inversion from satellite

drag.

The primary focus of this thesis is developing a high-fidelity drag-coefficient model for further

applications. In order to understand the nature of drag-coefficient dependence on various satellite

and orbit factors, the physics of gas-surface interactions need to be studied. Chapter 2 discusses the

GSIMs that are used to calculate the drag-coefficient variations in this work. Processing of satellite

tracking data in a filtering framework requires careful consideration of various aspects such as

the filtering method, time systems, coordinate systems and force models. An outline of satellite

orbit determination relevant to this thesis is provided in chapter 3. Unmodeled forces in the filter

dynamics are absorbed by the parameters being estimated. Arbitrary truncation of gravitational

force models can corrupt drag and solar radiation pressure (SRP) coefficients leading to larger

than anticipated errors in orbit prediction. A thorough understanding of these effects is required

before implementing high-fidelity models of drag-coefficient as discussed in chapter 4. Chapter 5

details the derivation of estimation-based models that capture higher-order frequencies in the drag-

coefficient using Fourier series expansions. Improvements in orbit determination and prediction

are demonstrated with the developed models using simulated cases with increasing complexity
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and real tracking data. A framework to obtain better constraints on a given GSIM from the

estimates of drag-coefficient variations is developed in chapter 6. Drag-coefficient estimates and

subsequent derivation of GSIM parameters are dependent on the atmospheric model being used.

Any improvements in drag force modeling will require better estimates of both drag-coefficient and

density. But due to the nature of the drag-force, the orbit determination filter cannot distinguish

between biases in the drag-coefficient and density. Leveraging the developments of chapters 5

and 6 and existing work in literature [135], a method to decorrelate density and drag-coefficient

biases is presented in chapter 7. The Fourier-series models proposed here allow a time-varying

representation of the drag-coefficient in analytical theories of orbital motion in an atmosphere.

Chapter 8 re-derives the widely used King-Hele theory [51] to allow for drag-coefficient variation.

1.6 Contributions

The main contributions of this work are summarized below

• Quantified aliasing effects of higher-order gravitational harmonics into nongravitational

force coefficients and mapped out required geopotential truncation orders across the LEO

altitude regime.

• Developed estimation-based Fourier drag-coefficient models that can capture time-variations

in the drag-coefficient due to attitude and orbital motion and a framework to incorporate

them in the orbit determination methodology.

• Demonstrated improvements in orbit determination and prediction on simulated and real

tracking data with the developed drag-coefficient models.

• Performed a comprehensive observability analysis to understand the specific Fourier coef-

ficients that can be estimated for the different models and various satellite shapes.

• Derived closed-form solutions for the nominal Fourier coefficients for the diffuse reflection

incomplete accommodation (DRIA) model of drag-coefficient; this allows an understanding
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of what frequencies are non-zero in orbit given the satellite shape and material properties.

• Developed a framework to invert GSIM parameters from estimated Fourier coefficients that

can potentially be used to constrain GSIM uncertainties across the LEO regime.

• Developed a method to estimate local atmospheric densities, unbiased by the drag-coefficient,

by leveraging the Fourier drag-coefficient models and GSIMs.

• Demonstrated improvements in filter density model corrections using simulated and real

tracking data.

• Derived a modified analytical theory of satellite orbital motion in an atmosphere with

time-varying drag-coefficient.
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Chapter 2

Gas-surface interaction models (GSIMs)

This chapter provides the details of the GSIMs that have been used in this work. Numerous

GSIMs have been proposed in literature for predicting the drag coefficient of simple shapes. A

comprehensive review on the subject can be found in Livadiotti et al. (2021) [58] and Prieto et al.

(2014) [99]. This work uses two GSIMs to calculate the drag-coefficient variations in orbit. The

exact nature of the GSIMs used does not significantly affect the developments in this work since

the models proposed in subsequent chapters estimate higher-order variations in drag coefficient

through empirical parameters from tracking data. Both the GSIMs used in this work attempt to

account for a fraction of the satellite surface being covered by atomic oxygen (contaminated) with

the rest of the surface being clean. The first model [77] does this by using a linear combination

of a diffuse reflection complete accommodation model for the contaminated fraction and a quasi-

specular model for the clean fraction. The second model [131] assumes a diffuse reflection incomplete

accommodation (DRIA) for the clean surface.

2.1 Sentman-Schamberg model

The first model is a linear combination of Sentman’s model [113] for diffuse reflection and

Schamberg’s model [111] for specular reflection. The choice of these two models is based on the

availability of closed form analytical expressions of drag coefficients for the geometries considered

and the estimates of parameters used in these expressions from satellite measurements [88, 81].

Sentman’s model considers the random thermal motion of the ambient atmosphere which becomes
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a crucial factor in improving the accuracy of the estimated drag coefficients as demonstrated by the

comparison of density data from CHAMP and HASDM [122]. But Sentman’s model is based on

the assumption of a purely diffuse reemission. The nature of reemission is determined by surface

contamination. From laboratory measurements it is known that as surface contaminants decrease,

the energy accommodation also decreases and the quasi-specular nature of the reemission increases

[110, 42]. Harrison and Swinerd (1996) [43] performed multiple satellite analyses using the Nocilla

model [86] for reemission to conclude that the reemission is in a direction halfway between specular

and diffuse at 800-1000 km altitudes. Though it is known that at lower altitudes with higher surface

contamination, the reemission is nearly diffuse and it becomes quasi-specular for higher altitudes,

the transition is not well defined or modelled. Instead of using two separate models for the two

regimes, we attempt to model the transition using a linear combination of models [77] applicable for

the two types of reemission. The fraction assigned to each model uses the semi-empirical satellite

accommodation model (SESAM) [96]. The two models are described below.

2.1.1 Sentman’s model for diffuse reflection

Sentman’s model of gas-surface interaction is based on the assumption of completely diffuse

reemission. Outside this assumption, it is an exact theory and makes use of the Maxwellian velocity

distribution function to compute the force due to impingement and reemission of the particles. It

incorporates the thermal motion of the particles along with the bulk velocity.

The drag-coefficient for a spherical object can be calculated as follows-

Cd =
4s4 + 4s2 − 1

2s4
erf(s) +

2s2 + 1√
πs3

e−s
2

+
2
√
π

3
r, (2.1)

and the drag-coefficient of a flat plate with one side exposed to the flow inclined at an angle

ψ with the incident velocity vector is given by,

Cd =
A

Aref
(
e−γ

2s2

s
√
π

+ γZ(1 +
1

2s2
) +

γ

2
r(γ
√
πZ +

1

s
e−γ
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where Z = 1 + 2√
π

∫ γs
0 e−t

2
dt, γ = cosψ, s is the molecular speed ratio, r is the velocity ratio

between the incident and reemitted particles, Aref is a reference area and A is the actual area of

the plate.

The molecular speed ratio is defined as the ratio of the bulk speed and the most probable

speed of the gas molecules,

s =
Vi√
2RT
M

, (2.3)

where R is the ideal gas constant, M is the mean molar mass and T is the ambient temper-

ature.

Ideally, the drag coefficients of individual molecular species should be calculated separately

and summed up. But the error in calculating the drag coefficients with a mean molecular mass is

only ∼ 0.1% [131] for lower altitudes. This approximation degrades in accuracy with increasing

atmospheric temperatures and as the shape becomes more slender and elongated.

The bulk velocity (Vi) is the velocity of the satellite relative to the incident flow stream.

An accurate analysis would demand taking into account complex atmospheric dynamics but a fair

assumption is to take the velocity relative to the co-rotating atmosphere,

Vi = v − ωe × r, (2.4)

where v refers to the inertial velocity of the satellite, ωe is the angular velocity vector of Earth

given by [0, 0, 7.292× 10−5] rad/s and r is the position vector of the satellite in the inertial frame.

The maximum observed deviations from this assumption are of the order of 40 % leading to a drag

uncertainty of 5% [82].

The ratio of velocities of reemitted and incident particles r (note that the reemission velocity is

the most probable velocity) in Eq. 2.2 can be calculated from the energy accommodation coefficient

and is given by [25],

r =

√
1

2
[1 + α(

4RTw
V 2
i

− 1)], (2.5)
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where Tw denotes the satellite wall temperature and α denotes the energy accommodation coeffi-

cient.

Sentman’s model is a fairly accurate representation of the gas surface interactions in the

lower altitudes (150 km-300 km) [77] based on the evidence of diffuse reemission stated earlier.

But the assumption of a completely diffuse reemission degrades its accuracy for application in

higher altitudes where the energy accommodation is lower and the reemission has an increasing

quasi-specular component. Since the parameters for quasi-specular reemission can be difficult to

determine, we use a specular reemission model in conjunction with Sentman’s diffuse model to

approximate the quasi-specular component.

2.1.2 Schamberg’s model for specular reflection

Schamberg’s model of gas surface interaction is based on hyperthermal assumption, i.e. it does

not take into account the thermal motion of the particles and uses a simple analytical representation

of the incident stream. The reflection law is given by,

cosψr = cosv ψi. (2.6)

where ψi and ψr are the incident and reflected flow angles respectively, and v is a parameter that

decides the nature of reemission. This law is well able to explain the laboratory observations

before the 1960s which were based on clean surfaces [48]. For specular reflection, v = 1 and for

diffuse reflection, v =∞. Quasi-specular reemission is represented by intermediate values of v. An

analytical expression is possible only for the limiting cases of specular and diffuse reemission. The

analytical expression for the case of specular reemission using the same notation used for Sentman’s

model is given by [19],

Cd = 2
A

Aref
γ[1 + rrms(2γ

2 − 1)], (2.7)

where rrms refers to the ratio of reemission and incident velocity given by [53],

rrms =
Vr
Vi

=

√
1 + α(

3RTw
V 2
i

− 1). (2.8)
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The expression given by Eq. 2.8 is different from Eq. 2.5 since Sentman’s model uses most probable

(mp) velocity for reemission while Schamberg’s model uses root mean square (rms) velocity.

Cook’s formula (Eq. 2.7) does not account for tangential drag at grazing incidences and

can lead to significant deviation from the true drag coefficient when large parallel surfaces are

present. Kopenwallner [53] suggested adding the drag contribution due to thermal motion at

grazing incidences, given by

Cd,thermal =
1

s
√
π
. (2.9)

But this drag contribution does not become zero even when the plate is facing away from the flow

[25]. To account for this fact, we have made a slight modification to Schamberg’s model for specular

reemission, as follows,

Cd = 2
A

Aref
γ[1 + rrms(2γ

2 − 1)] +
A

Aref

e−γ
2s2

s
√
π
. (2.10)

The second term comes from Sentman’s model and represents the drag contribution due to thermal

motion. At grazing incidence, it reduces to Eq. 2.9 while it rapidly decreases to zero as γ moves

away from zero. It is important to keep in mind that only the first term should be set to zero,

when the plate is facing away from the flow.

2.1.3 Linear combination

In order to estimate the drag coefficients accurately, both the diffuse and specular components

should be taken into account. This work uses a linear combination of both the models as suggested

by Moe and Moe (2005) [77] with the diffuse part being represented by Sentman’s model and the

specular part being represented by Schamberg’s model. The energy accommodation coefficient is

assumed to be constant at a height for a given solar and geomagnetic activity level. In reality

it varies with the orientation of the plate [94]. But this assumption is justified while modelling

a ‘cuboid-like’ shape as the variations due to orientation of different plates with respect to the

flow average out. The fraction assigned to each model can be calculated using the semi-empirical

satellite accommodation model (SESAM) [96, 95]. The model assumes that a fraction of the surface
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is covered by oxygen which exhibits diffuse reflection. Even though SESAM is used to calculate

an effective accommodation coefficient, this work uses an effective drag coefficient instead with the

adsorbed sites exhibiting diffuse reemmission while the clean part of the surface exhibiting specular

reemmission [131]. The fraction of diffuse reemission is calculated as,

f =
KlPO

1 +KlPO
. (2.11)

where Kl is the Langmuir parameter and PO is the partial pressure of oxygen. The Langmuir

parameter is a function of the incident kinetic energy which is in turn dependent on the eccentricity

of the orbit. The value of the parameter is taken to be 1.44×106Pa−1 for this work which is derived

by Walker et al.[131] for the diffuse reflection with incomplete accommodation (DRIA) model. The

value was obtained by fitting the data for spherical and randomly tumbling satellites but the same

value has been used in this work for other shapes and attitude profiles as well. The particular value

taken here does not significantly affect the analysis since the GSIM is used simply to model the

truth for the simulations or generate the initial values for estimation with real tracking data. The

partial pressure of oxygen from the ideal gas equation is given by

PO = nOTkB, (2.12)

where nO is the number density of oxygen and kB is the Boltzmann constant. The drag coefficient

is then calculated by assuming the accommodation coefficient of adsorbed sites to be 1 which ex-

hibit a diffuse reflection, i.e., the accommodation coefficient for Sentman’s model is taken to be

1. The accommodation coefficient for Schamberg’s model is derived by using Goodman’s model

which is based on clean surfaces [41]. Goodman’s model was constructed to explain the labora-

tory experiments on clean surfaces and hence works well for quasi-specular reemission [77]. The

accommodation coefficient is given by,

αs =
Ksµ

(1 + µ)2
, (2.13)

where µ is the mass ratio between the atmospheric species and surface molecule. In this

work, the mass of the surface molecule is assumed to be 65 amu while the mean molecular mass of
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the incoming atmospheric flow is satellite-position dependent. Ks is the substrate coefficient, also

known as the Langmuir constant, that depends on the distribution of the incident particles [71].

For a sphere, the incident particle distribution is approximately cosine and Ks = 2.4. For a plate

perpendicular to the flow, the incident particle distribution is unidirectional and Ks = 3.6. For an

inclined plate, the accommodation coefficient is given by,

αs =
Ksµ cosψ

(1 + µ)2
. (2.14)

Denoting the drag-coefficient calculated by Sentman’s model as Cd,diffuse and Schamberg’s model

as Cd,specular, the drag coefficient value is given by,

Cd = fCd,diffuse + (1− f)Cd,specular, (2.15)

where Cd,diffuse and Cd,specular are calculated using Eqs. 2.2 and 2.10.

2.1.4 Modified Diffuse Reflection Incomplete Accommodation (DRIA) model

Walker et al. (2014) [131] developed a drag-coefficient model by linearly combining drag-

coefficients based on clean surfaces and satellite surfaces completely covered by atomic oxygen,

utilizing a Langmuir isotherm. They built on the work by Pilinksi et al. (2013) [96] by assuming

that the fraction of the surface covered by atomic oxygen exhibits diffuse (cosine) reflection with

complete accommodation while the clean part of the surface exhibits diffuse reflection with partial

accommodation. They computed the Langmuir parameter for three gas-surface interaction models -

diffuse reflection incomplete accommodation (DRIA), Cergignani-Lampis-Lord (CLL) and Maxwell

model. The DRIA model is another name for Sentman’s model given by eqs. 2.1 and 2.2. The

total drag-coefficient is modeled by Walker et al. (2014) [131] as,

Cd,T = fCd,ads + (1− f)Cd,s, (2.16)

where Cd,ads is the drag-coefficient for the surface covered by an adsorbate, assumed to

exhibit diffuse reemission with complete accommodation (α = 1), Cd,s is the drag-coefficient based
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on molecular beam experiments on clean surfaces, computed using Goodman’s formula for energy

accommodation coefficient (Eq. 2.14) and f is calculated using eq. (2.11). Therefore, Cd,ads =

Cd|(α=1) and Cd,s = Cd|(α=αs). Note that both Cd,ads and Cd,s are calculated using Sentman’s

model, eqs. 2.1 and 2.2, depending on the satellite shape. The difference between the two is only

in the accommodation coefficient used.



Chapter 3

Satellite orbit determination

This chapter reviews the different aspects of satellite orbit determination that are used in

this work. The estimation algorithms are outlined in section 3.1. Sections 3.2 and 3.3 discuss the

conversions between different time systems and coordinate frames. In section 3.4, modeling of the

different forces acting on the satellite and their implementation in the filter are reviewed.

3.1 Estimation methods

3.1.1 Batch processor

In this estimation method, a batch of data is processed in an iterated non-linear least squares

filter in order to obtain an estimate of the initial state which can then be propagated for the given

duration to obtain the subsequent state estimates. A discussion of the steps that are necessary

to understand the implementation of the batch algorithm are discussed next. The details of the

algorithm can be found in Born et al. [124].

Solving the normal equations to obtain the initial state estimate (x̂0) lies at the heart of

the batch algorithm. When apriori information is available in the form of state estimate (x̄0) and

covariance (P̄0), the normal equations are given by

Λx̂0 = N , (3.1)

where Λ is the inverse of the covariance matrix and N is the normal matrix,

Λ =

l∑
i=1

[H̃iΦ(ti, t0)]TR−1
i H̃iΦ(ti, t0) + P̄−1

0 , (3.2)



22

N =

l∑
i=1

[H̃iΦ(ti, t0)]TR−1
i yi + P̄−1

0 x̄0, (3.3)

where H̃i is the measurement Jacobian, Ri is the measurement covariance matrix and yi is the

predicted measurement residual vector, each at time instant ti, Φ(ti, t0) is the state transition

matrix (STM) which maps the state deviation from time t0 to ti and l is the total number of

measurements available. Multiplying the measurement Jacobian at each time instant by the STM

maps it to the initial time since we are trying to estimate the initial state vector in Eq. 3.1. The

STM history can be generated by numerically integrating the following differential equation,

Φ̇(t, t0) = A(t)Φ(t, t0), (3.4)

where A(t) is the dynamics Jacobian matrix. The initial conditions for the equation are Φ(t0, t0) =

In×n, where I is the identity matrix with dimensions corresponding to the number of states (n).

The inverse of Λ in Eq. 3.1 can be computed using Cholesky decomposition [124]. Equation 3.1 is

iterated until x̂0 stops changing.

The state vector estimated in the filter comprises of the position (r) and velocity (v) of

the satellite, and any parameters being estimated (p) such as the drag-coefficient. The dynamics

Jacobian is then given by

A =


∂v
∂r

∂v
∂v

∂v
∂p

∂a
∂r

∂a
∂v

∂a
∂p

∂ṗ
∂r

∂ṗ
∂v

∂ṗ
∂p

 . (3.5)

Here, a is the total acceleration of the satellite and p is the vector of parameters to be estimated.

With the number of parameters to be estimated as np, the Jacobian matrix therefore can be

simplified as

A =


03×3 I3×3 03×np

∂a
∂r

∂a
∂v

∂a
∂p

∂ṗ
∂r

∂ṗ
∂v

∂ṗ
∂p

 . (3.6)

The main disadvantage with a batch filter is that process noise cannot be easily added to
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account for unmodeled dynamics. A sequential filtering method such as a Kalman filter allows for

that.

3.1.2 Extended Kalman filter (EKF)

In a Kalman filter, observations are processed sequentially and a correction to the reference

trajectory is generated at each instant. Whereas in a conventional Kalman filter (CKF), corrections

are estimated to a reference trajectory integrated offline, in an extended Kalman filter (EKF), the

differential equations for the reference trajectory are reinitialized each time a new state is estimated.

This reduces the linearization errors by keeping the reference trajectory from diverging too far away

from the truth. At any time step, tk, the state estimate X̂k and the covariance of the estimate P̂k

can be computed from the estimates at the previous time instant (X̂k−1, Pk−1) as

(1) Propagate the estimated state from tk−1 to tk.

Ẋ∗ = F (X∗, t), X∗(tk−1) = X̂(tk−1), (3.7)

Φ̇(t, tk−1) = A(t)Φ(t, tk−1) Φ(tk−1, tk−1) = I, (3.8)

P̄k = Φ(tk, tk−1)Pk−1Φ
T (tk, tk−1) +Qk, (3.9)

where Qk is the process noise matrix and depends on the nature of the noise being added.

The addition of process noise in EKF is discussed in chapter 7.

(2) Compute predicted measurement residuals and the measurement Jacobian.

yk = Yk − h(X∗
k , tk), (3.10)

H̃k =
∂h(X∗

k , tk)

∂Xk
, (3.11)
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(3) Update the predictions with the new measurements.

Kk = P̄kH̃
T
k [H̃kP̄kH̃

T
k +Rk]

−1, (3.12)

X̂k = X∗k +Kkyk, (3.13)

Pk = [I −KkH̃k]P̄k. (3.14)

3.2 Time systems

The processing of satellite tracking data requires conversions between different time systems.

For example, GPS measurements are usually in GPS time which need to be converted to UTC such

as for frame rotation and density calculation. The different time systems relevant to this work are

defined below

(1) GPS Time (GPST) - A continuous time scale without leap seconds, defined by the GPS

control segment and used as the basis for GPS measurements and post-processed satellite

ephemerides in .sp3 format. The GPS epoch is 0h UTC Jan 5th to 6th 1980.

(2) Universal time (UT) - The time standard tied to Earth’s rotation. There are multiple

versions of UT of which Coordinated Universal Time (UTC) and UT1 are relevant for this

work. UT1 is proportional to Earth’s rotation angle with respect to distant quasars and is

the same everywhere on Earth. UTC is the primary time scale used for civil time-keeping

on Earth. It is an atomic time scale kept within 0.9 seconds of UT1 and is derived from

TAI. Time zones are defined as offsets from UTC.

(3) International Atomic Time (TAI) - A continuous reference time scale used as the basis for

UTC. TAI is a statistical time derived from multiple high-precision atomic clocks in various

countries.
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(4) Terrestrial Time (TT) - A time system defined by the International Astronomical Union

(IAU) as a basis for astronomical measurements made from the surface of Earth.

(5) Barycentric Dynamical Time (TDB) - A relativistic astronomical time scale accounting for

time dilation when calculating ephemerides of celestial objects and differing from TT by

less than 2 milliseconds in a periodic manner. This is the time scale used for calculating

planetary ephemerides.

(6) Greenwich Mean Sidereal Time (GMST) - Hour angle of the average position of the Vernal

equinox measured from the Greenwich Meridian.

(7) Earth rotation angle (ERA) - Rotation angle of the Earth measured from a non-moving

origin on the celestial equator called the Celestial Intermediate Origin (CIO) instead of the

equinox.

(8) Julian date (JD) - The number of fractional days since 12h, Jan 1, 4713 BC in Universal

Time.

(9) Modified Julian date (MJD) - A modified version of JD shifting the epoch to 0h Nov. 17,

1858.

The conversions between the different time systems defined above are outlined in table 3.1 and

further explanation on the time conversions is given below [118].

Table 3.1: Time frame conversions

From To Conversion

GPST TAI +19 s

TAI UTC -LeapSeconds

TAI TT +32.184 s

UTC UT1 +dut1

TT TDB +0.001658 sin(g + 0.0167 sin g)

JD MJD -2400000.5
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In order to go from TDB to TT, g can be computed by

g =
2π(357.5280 + 0.985600280(JD − 2451545))

3600
. (3.15)

LeapSeconds are the leap seconds periodically added to UTC to keep within 0.9 ns of UT1. The

difference between UT1 and UTC is given by dut1. The values of both LeapSeconds and dut1

are published as IERS Bulletins (https://www.iers.org/IERS/EN/Publications/Bulletins/

bulletins.html).

ERA and GMST can be calculated as follows [91]

ERA = 2π(0.7790572732640 + 1.00273781191135448Tu), (3.16)

where Tu = JD − 2451545 is the Julian date past J2000 epoch.

GMST = ERA+
π

648000
(0.014506 + 4612.156534t+ 1.3915817t2 − 0.00000044t3 − 0.000029956t4

− 0.000000036800t5),

(3.17)

where t = (JD − 2451545)/36525 centuries in TT from J2000 epoch.

3.3 Coordinate frames

Satellite orbit determination requires the use of multiple coordinate frames at different steps

of the process. For example, the attitude of the satellite is generally specified between the body

frame and local orbital frame of the satellite. The observations are usually in an Earth-fixed frame

while the integration of the force dynamics is in an inertial frame. There are different flavors of all

these frames that are in use by different satellite operators. The main frames used in this thesis

are discussed in this section.

The body-fixed frame of the satellite is a frame fixed w.r.t the satellite body, with the origin

usually at the center of mass. The axes of the frame are defined w.r.t reference points on the

satellite. For example, the body x-axis may point towards the front solar panel and the z-axis

https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
https://www.iers.org/IERS/EN/Publications/Bulletins/bulletins.html
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may point towards the GPS antenna face while the y-axis completes the right-handed coordinate

system.

A local orbital frame is attached to the satellite body, with origin at satellite center of mass,

but not fixed w.r.t it. The frame rotates with the satellite orbital motion. There are multiple types

of local orbital frame that can be used such as the local vertical local horizontal (LVLH) frame and

the Radial-Tangential-Normal (RTN) frame. For example, the axes of LVLH frame are: Z-axis

points towards −r, i.e., center of the Earth, Y -axis points opposite to the orbit normal or negative

of the angular momentum vector, −h, and X-axis completes the right-handed coordinate system.

An Earth-centered Earth-fixed (ECEF) frame is attached to the rotating Earth with origin

at the center of the Earth, i.e., a body-fixed frame for Earth. The two most common realizations of

ECEF frame are the World Geodetic System (WGS-84) and the International Terrestrial Reference

Frame (ITRF). They are identical to each other for all practical purposes.

An Earth-centered inertial (ECI) frame, to a close approximation, is an inertial frame with

origin at the center of the Earth. The X-axis points towards the Vernal Equinox, the Y -axis is 900

east in the equatorial plane and the Z-axis points towards the North Pole. The frame is not strictly

inertial in the sense that the equatorial plane and the Vernal Equinox are in slight motion due to

precession and nutation effects. At best, a “pseudo-inertial” frame can be achieved by referring the

frame to the equator and equinox at a particular epoch. The most commonly used realization of

the ECI frame is the J2000 or EME2000 frame defined at the J2000 epoch, 12:00 TT on 1 January

2000 (or JD 2451545). The conversion from ITRF to J2000 frame uses the precession matrix (P ),

nutation matrix (N), polar motion matrix (W ) and sidereal time matrix (R), with the rotation

matrix given by,

RI
E = [P (t)][N(t)][R(t)][W (t)]. (3.18)

The reader is referred to Vallado (2007) [128] for further details. In this work, the MATLAB

codes by Vallado [128] are used for the frame conversions between J2000 and ITRF.
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3.4 Force models

The motion of a satellite in the gravitational field of Earth is affected by different perturbing

forces acting on it. The relative magnitude of the forces is dependent on the satellite altitude as well

as satellite characteristics such as the area-to-mass ratio for non-conservative forces. Based on the

required accuracy of the application and availability of force model parameters, individual forces

can be added to the filter dynamics. The force models that are used in this work are discussed in

brief below.

3.4.1 Non-spherical gravity

The perturbation force due to the non-spherical distribution of mass in a central body is most

commonly modeled using a spherical harmonics formulation for the geopotential, given by [49]

U =
GMe

r

∞∑
n=0

n∑
m=0

Rne
rn
P̄nm(sinφ)(C̄nm cos (mλ) + S̄nm sin (mλ)). (3.19)

where G is the universal gravitation constant, Me and Re are the mass and the mean equatorial

radius of the Earth respectively, P̄nm are the normalized associated Legendre function of degree n

and order m, C̄nm and S̄nm are the normalized spherical harmonics coefficients, and r, φ and λ are

the radial distance from the center of mass of the Earth, the geocentric latitude and the longitude

of the satellite respectively. The acceleration due to the geopotential in ECEF frame is given by

the first partial of the potential,

r̈|E = ∇U. (3.20)

The partial of the gravitational acceleration w.r.t the position, required for implementation in the

filter, can be obtained by taking a second partial of the geopotential. Here, we use Cunningham’s

method [21] derived for the fully normalized spherical harmonics coefficients by Hesar (2016) [45].

The partials can be computed in the inertial frame as follows

r̈|I = RI
E r̈|E , (3.21)
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∂r̈

∂r

∣∣∣∣
I

= RI
E

∂r̈

∂r

∣∣∣∣
E

(RI
E)T . (3.22)

Note that the partials w.r.t the velocity are zero since the acceleration is independent of the satellite

velocity. There are various high-fidelity geopotential models available in literature that derive the

spherical harmonics coefficients to different degrees and order. In this work, Earth Gravitational

Model 2008 (EGM2008) [89] is mostly used unless stated otherwise. Though the model is available

up to a degree and order of 2159, a much lower degree/order needs to be used for orbit determination

purposes. The choice of the order of truncation can significantly affect the estimated states and

needs to be chosen with care. This is explained in more detail in the next chapter.

3.4.1.1 Third-body forces

The orbital motion of an Earth orbiting satellite is affected by the gravitational field of other

celestial bodies. The relative magnitude of the forces depends on the mass of the perturbing body

and distance from Earth. The primary perturbing bodies for LEO satellite motion are the Sun and

the Moon. The third-body acceleration acting on a satellite in an ECI frame is

athird = GMj

(
sj − r
|sj − r|3

− sj
|sj |3

)
, (3.23)

where j = 2, 3, refer to the Moon and Sun with masses Mj and position vector w.r.t geocenter sj .

The partial of the acceleration w.r.t the satellite position vector is as follows

∂athird
∂r

= −GMj

(
1

|r − sj |3
I3×3 − 3(r − sj)

(r − sj)T

|r − sj |5

)
. (3.24)

3.4.2 Atmospheric drag

The acceleration due to atmospheric drag was discussed in section 1.2. Approximating the

relative velocity vector due to the co-rotation of the atmosphere (vr = v − ω × r), the partials of
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the acceleration w.r.t the position and velocity are given by

∂adrag
∂r

=−
CdAref

2m

∆ρ

∆r
r̂vrv

T
r +

CdArefρ

2m
(v̂rvr + vrI3x3)[ω̃e]

− 1

2
ρ
Aref
m

v2
r û
∂Cd
∂r

,

(3.25)

∂adrag
∂v

= −
CdArefρ

2m
(
vrv

T
r

vr
+ vrI3×3)− 1

2
ρ
Aref
m

v2
r û
∂Cd
∂v

. (3.26)

where ∆ρ
∆r = approximate change in density with altitude, taken as difference of density values

every 1 km of altitude and [ω̃e] is the skew symmetric representation of the angular velocity of Earth

given by

[z̃] =


0 −z3 z2

z3 0 −z1

−z2 z1 0

 . (3.27)

For precise applications, the atmospheric winds might need to be taken into account in the relative

velocity vector with wind models such as the the horizontal wind model (HWM) [28, 27]. The

partials of the drag-coefficient w.r.t the position and velocity are zero for most applications but

some of the drag-coefficient models developed in this work are dependent on the orbital states,

as discussed in chapter 5. The partial of the acceleration w.r.t the higher-fidelity models of drag-

coefficient are also discussed in that chapter.

3.4.3 Solar Radiation Pressure (SRP)

Solar radiation pressure (SRP) is the force exerted by the solar photons impinging on a

satellite surface. The most commonly used SRP model for orbit determination is the cannonball

model given by

aSRP = −Ps
CrAr
m

(
AU

|rs|

)2

fsr̂s, (3.28)

where Ps = 4.56 µPa is the solar radiation pressure at 1 AU distance, rs is the satellite to Sun

position vector, Ar is the cross-sectional of the satellite exposed to the Sun, Cr is the SRP coefficient

and fs is the shadow factor [82]. Similar to Cd, Cr accounts for the momentum exchange between
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the solar photons and the satellite surface. The cannonball SRP model assumes that the satellite

maintains a constant orientation w.r.t the Sun. A higher-fidelity panel model for SRP was developed

for the GRACE satellites which sums up the SRP force acting on each surface as follows

aSRP = −Ps
Cr
m

(
AU

|rs|

)2

fs

N∑
k=1

Ak cos θk[(1− ρk)r̂s + 2(
δk
3

+ ρk cos θk)n̂k]. (3.29)

where Ak are the areas of the satellite surfaces with n̂k as the unit vectors in the satellite body

frame, θk are the angles that the sun vector makes with the surface unit vectors, δk and ρk are

the diffuse and specular reflectivities of the surfaces respectively. In order to use this high-fidelity

model, optical properties of the surfaces need to be known. The SRP coefficient is estimated in the

filter as a scaling factor to the SRP force. The partials of acceleration w.r.t the position are given

by

∂aSRP

∂r
= Ps

CrAr
m

AU2fs

(
1

|rs|3
I3×3 − 3rs

rTs
|rs|5

) N∑
k=1

Ak cos θk[(1− ρk). (3.30)

The partial of the acceleration w.r.t the SRP coefficient is given by

∂aSRP

∂Cr
= −Ps

m

(
AU

|rs|

)2

fs

N∑
k=1

Ak cos θk[(1− ρk)r̂s + 2(
δk
3

+ ρk cos θk)n̂k]. (3.31)

The partials can be similarly computed for the cannonball model.

3.4.4 Tidal forces

The gravitational force of the Sun, Moon and other planets acts in a differential manner on

different faces of the Earth, which causes a deformation of the Earth’s surface. The perturbations

induced in the geopotential due to the deformations in the solid Earth are called solid Earth tides

and those in the ocean surfaces are called ocean tides. It is important to clarify the three types of

spherical harmonic coefficients associated with any geopotential model before proceeding—mean-

tide, zero-tide and conventional tide-free. The total external geopotential in the vicinity of Earth is

a sum of Earth’s own gravitational potential in the absence of any other perturbing bodies (tide-free

geopotential), the tidal gravitational potential of the perturbing bodies (external tidal potential)

and the perturbations in the tide-free geoptential due to the deformations on Earth’s surface caused

by the presence of the external bodies (tide-induced geopotential).
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The external tidal potential requires further explanation. For two bodies orbiting around the

system barycenter, such as the Earth-Moon system, the gravitational acceleration of the Moon on

Earth approximately balances out the centrifugal force at the geocenter. But at any other point

on the surface of the Earth, the slight difference between the gravitational and the centrifugal

acceleration gives rise to tidal accelerations. More details can be found in Wengel (1997) [134].

The external tidal potential as well as the tide-induced perturbations in the geopotential

have permanent and periodic parts. When the periodic part of the external tidal potential and

the tide-induced geopotential are removed from the total gravitational potential near Earth, the

mean-tide potential is obtained. On removing the permanent part of the external tidal potential

from the mean-tide potential, the zero-tide potential is obtained. Note that the zero-tide potential

is purely the geopotential (tide-free + permanent part of the tide-induced geopotential). If the

permanent part of the tide-induced geopotential is removed, a conventional tide-free geopotential

is obtained. Usually for orbit propagation, either the zero-tide or the tide-free geopotential is used

and the periodic parts of the tidal potential are added using the steps outlined below. Only the

tidal perturbations due to the Sun and Moon are considered. Understanding the nitty-gritty of

tidal perturbations can be quite complex. Therefore, an algorithmic description to compute the

tidal perturbations for orbit propagation is attempted below. For further explanation, the reader

is referred to the IERS document [91].

3.4.4.1 Solid Earth Tides

The solid Earth tides can be most easily added to the perturbed geopotential through ad-

ditions to the spherical harmonic coefficients by using parameters called Love numbers, knm, for

tides of degree n and order m in spherical harmonics. There are three types of love numbers,

k0
nm and k±nm due to the effects of ellipticity and coriolis force due to Earth’s rotation on the tidal

deformations.

(1) The changes in degree 2, 3 and 4 spherical harmonic coefficients are evaluated due to the
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frequency-independent nominal Love numbers k0
2m, k0

3m and k+
2m respectively.

∆C̄nm − i∆S̄nm =
k0
nm

2n+ 1

3∑
j=2

GMj

GMe

(
Re
rj

)n+1

P̄nm(sinφj)e
−imλj , (3.32)

where i refers to the unit imaginary number, j = 2, 3 refer to the Sun and Moon with

associated masses Mj , body-fixed geocentric latitude φj and geocentric east longitude from

Greenwich λj , and n = 2, 3. The effect on degree 4 spherical harmonic coefficients can be

evaluated as follows

∆C̄4m − i∆S̄4m =
k+

2m

5

3∑
j=2

GMj

GMe

(
Re
rj

)3

P̄2m(sinφj)e
−imλj , (3.33)

The Love numbers are tabulated in appendix C.

(2) The frequency-dependent contributions to the perturbation in spherical harmonic coeffi-

cients, ∆C̄2m and ∆S̄2m, are computed next. The contribution to ∆C̄20 are as follows

∆C̄20 =
∑
f

[Aip cos θf −Aop sin θf ]. (3.34)

For the higher-order terms, m = 1, 2,

∆C̄2m − i∆S̄2m = ηm
∑
f

[Aip + iAop]e
iθf , (3.35)

where η1 = −i, η2 = 1, Aip and Aop are in-phase and out-of-phase amplitudes of the

corrections for the frequency dependence of the nominal Love numbers. The argument θf

is a function of the particular tidal frequency being considered and can be computed using

integral combinations of a few basic angular arguments. There are multiple variations of

these basic angular arguments, depending on the convention being used. Here, Doodson’s

convention is being used to compute the tidal frequencies. The Doodson arguments are

given by

β1 = τ = GMST + π − s: Greenwich hour angle of the Moon plus 12 hours

β2 = s = F + Ω: Mean longitude of the Moon
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β3 = h = s−D: Mean longitude of the Sun

β4 = p = s− l: Longitude of the Moon’s mean perigee

β5 = N ′ = −Ω: Negative of the longitude of the Moon’s mean ascending node on the

ecliptic

β6 = ps = s−D − l′: Longitude of the Sun’s mean perigee

The Doodson arguments are functions of the fundamental arguments of lunisolar nutation

- mean anomaly of the Moon (l), mean anomaly of the Sun (l′), mean elonagtion of the

Moon from the sun (D), Ω and F = s−Ω. The computation of the fundamental arguments

is outlined in appendix C.

The tidal frequencies can then be computed using their Doodson number identifiers (n)

multiplied with the Doodson arguments described above, i.e., θf = nTβ. All five digits in a

Doodson number after the first one, are biased by +5; therefore 5 should be subtracted from

them before multiplication by the Doodson arguments. For example, a Doodson number

n = 125, 755 would give θf = 1β1 − 3β2 + 0β3 + 2β4 + 0β5 + 0β6.

If a tide-free geopotential is being used, then the solid Earth tidal perturbations on the

spherical harmonic coefficients can computed by summing up the effects of steps 1 and 2

and adding them to the nominal values of the respective coefficients.

(3) If a zero-tide geopotential is being used, then the C̄20 already contains the permanent

part of the tide-induced potential. Therefore, using eq. (3.32) to compute the frequency-

independent tides adds the permanent part twice. This can be remedied by adding the

following contribution to C̄20

∆C̄20 = (4.4228× 10−8)(0.31460)k20. (3.36)
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3.4.4.2 Ocean Tides

The perturbations due to ocean tides on the spherical harmonic coefficients can be calculated

as follows

[∆C̄nm − i∆S̄nm](t) =
∑
f

−∑
+

(C±f,nm ∓ iS
±
f,nm)e±θf (t), (3.37)

where the geopotential harmonic amplitudes, C±f,nm and S±f,nm, corresponding to the tide constituent

f are given by ocean tide models. In this work the FES2004 ocean tide model [63] is used.

The total tidal perturbations are the sum of solid earth and ocean tides. Since the tidal

perturbations are being added to the spherical harmonic coefficients, the partials of the acceleration

w.r.t the position are accounted for in the partials of the geopotential with the new perturbed

coefficients.

3.4.5 Relativistic correction

The post-Newtonian relativistic correction terms due to the curvature of the four-dimensional

space-time is given by

ar = −GMe

r2

((
4
GMe

c2r
− v2

c2

)
r̂ + 4

v2

c2
(r̂.v̂)v̂

)
. (3.38)

The partials of the acceleration w.r.t the position and velocity are as follows

∂ar
∂r

=
GMe

c2r3

((
16
GMe

r
− 3v2

)
r̂r̂T + 4(r̂.v)vr̂T −

(
4
GMe

r
− v2

)
I3×3 + 4vvT

)
, (3.39)

∂ar
∂v

=
GMe

c2r3
(2rvT − 4vrT − 4(r.v)I3×3). (3.40)

3.5 Chapter summary

In this chapter, we discussed the various aspects that are relevant for satellite orbit determina-

tion. Consistency in time and coordinate systems is very important for accurate orbit determination

and prediction, therefore care must be taken in their implementation. High-fidelity modeling of the

forces acting on the satellites becomes important when estimating physical parameters such as the
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atmospheric density as will be discussed in chapter 7. Ignoring certain forces can corrupt the values

of estimated parameters and cause them to be non-physical. This aliasing effect is analyzed in the

next chapter in the context of geopotential truncation before implementing high-fidelity models of

drag.



Chapter 4

Gravitational force model aliasing with non-gravitational force coefficients

The estimation of non-conservative force coefficients during orbit determination has been a

long standing problem in the field of space situational awareness. The errors in the estimates of drag

and SRP coefficients obtained during orbit determination have been attributed to the assumption of

a constant value; therefore, various high-fidelity models have been proposed to capture the variation

of these coefficients and improve the accuracy of their estimates [69, 122, 94, 72, 103]. But in many

cases, errors in the estimates of these coefficients are introduced due to fundamental controllable

factors that are independent of the physics of these forces. Specifically, unmodeled forces in the

filter cause the estimated states and parameters, including these force coefficients, to diverge from

their true values. In other words, the filter tries to compensate for the unmodeled dynamics by

adjusting the estimated states and parameters [3]. The effect of introducing errors in estimated

states and parameters due to the presence of unmodeled dynamics in the filter is referred to as

aliasing [1]; not to be confused with the homonymous effect in signal processing. Therefore, even

with high-fidelity estimation-based models of these coefficients, the estimates will still be inaccurate

if there are other unmodeled effects in the filter. An apparently good orbit fit (minimization of

residuals) is possible in such a case; however, the prediction accuracy will degrade rapidly.

This chapter quantifies the corrupting effects of unmodeled dynamics in the filter, intro-

duced due to an arbitrary truncation of the gravitational field, on estimates of the drag and SRP

coefficients in the LEO regime and demonstrates that these errors can be easily remedied. The

geopotential is truncated at a degree n and order m in orbit determination models for computational



38

reasons. From here on, ‘order’ will refer to both degree and order since this work primarily deals

with a ‘square’ gravitational field for which degree is equal to order, unless otherwise stated. The

order of truncation has generally been based on the diminishing contribution of higher order terms

towards orbit propagation [127, 4]. Even though the averaged effects of the higher order geopoten-

tial terms on the orbit propagation are comparatively small [105], the instantaneous acceleration

due to these terms can be higher than the dominant drag and SRP forces to a significantly larger

order. As a result, the ignored gravitational acceleration aliases into the estimated drag and SRP

coefficients. Consequently, the effective contribution of the unmodeled geopotential to orbit predic-

tion accuracy is much larger than anticipated purely due to propagation. Therefore, the suggested

truncation orders of the geopotential [4, 127, 109] for orbit determination and prediction in LEO do

not hold when the drag and SRP coefficients are being estimated. For example, Roscoe et al. [109]

showed that propagation errors due to geoptential truncation almost plateau by order 30. Vallado

[127] analyzed propagation errors for higher orders of truncation (up to order 70) while noting that

the results would be qualitatively similar for orbit determination and propagation. While that is

true if only initial states are being estimated, the prediction errors are greatly amplified when the

estimated states include force-coefficients, due to aliasing effects. Barker et al. [4] recognized that

solve-for parameters such as ballistic coefficient and SRP coefficient are affected by resonances at

particular orders but the effect of truncation on the coefficient estimates was not quantified. The

maximum order of truncation recommended by them was 30 which we show to be insufficient to

obtain accurate estimates of force-coefficients. In addition, previous studies on gravitational field

truncation effects on orbit determination and prediction utilized state-of-the-art geopotential mod-

els of that time. These models such as the World Geodetic System 1984 (WGS-84) global gravity

model [24] were available up to much lower order (order 180 for WGS-84 global gravity model)

compared to the current models such as Earth Gravitational Model 2008 (EGM2008; order 2159)

[89]. Since the coefficients for the same order can be widely different for each of these models, the

contribution of higher order terms towards orbit propagation needs to be re-evaluated.

The correlation of the truncated geopotential with the drag and SRP coefficients has been
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hinted at [4, 84] but the current literature (within the confines of the author’s knowledge) lacks

a comprehensive study mapping out these correlations across LEO altitudes. As pointed out by

the National Academy of Engineering [84], “in the current orbit determination process, any errors

caused by the omission of high-degree and high-order gravity terms will be non-physically absorbed

into terms such as the ballistic coefficient, even though they minimize the residuals and result

in state estimations that are satisfactory to current requirements.” The same study also points

out that the current special perturbations (SP) catalog, i.e. the catalog maintained by using

full numerical integration to generate ephemerides for the satellites, utilizes a medium fidelity

(36x36) geopotential. In this work, it is demonstrated that truncation at this order introduces

significant errors in the cannonball drag and SRP coefficient estimates that ultimately leads to

poor orbit prediction accuracy in LEO altitudes. The emphasis of this study is on reducing the

orbit determination and prediction errors due to aliasing of drag and SRP with the gravitational

force since increasing the fidelity of the gravitational field does not require any additional modeling

efforts or lead to any significant increase in computational complexity. Based on this philosophy, an

order 90 geopotential is suggested at 350 km and order 50 at 850 km in order to obtain prediction

accuracy up to 10 m for a three-day prediction arc.

4.1 Chapter outline

This chapter analyzes the correlations between higher order gravitational forces and the

non-conservative forces of SRP and atmospheric drag in the low-altitude LEO regime, 350-850

km. Before the aliasing effect in orbit determination is discussed in detail, the issue is illustrated

through a simple two-dimensional kinematic example in section 4.2. In section 4.3, the simulation

setup for the analysis is described. This study has been carried out using the EGM2008 global

gravity model. As discussed earlier, the coefficient values can differ depending on the gravity

model used. As a result, the aliasing errors will be slightly different for other models. But instead

of quantifying the exact aliasing errors for each gravity model, the results are presented here for

a representative model. The differences between different competing models are not large enough
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to affect the aliasing errors significantly (see appendix B). Section 4.4 compares the instantaneous

and average acceleration magnitudes of the forces. Understanding how the acceleration magnitudes

compare to each other provides an idea of the amount of aliasing error introduced in the coefficients.

In section 4.5, the aliasing error in the drag and SRP coefficients is analyzed as a function of

the geopotential truncation order. This section introduces a parameter, the ratio of projected

unmodeled gravitational acceleration and non-gravitational acceleration, that can be used to predict

the trend of aliasing errors with truncation order.

The correlations between the forces will vary as the orbital conditions change. In particular,

the gravitational field experienced by a satellite in near-polar orbit is different from a near-equatorial

orbit because of the dominance of different gravitational harmonics in the two regimes. The mag-

nitudes of drag and SRP also depend on factors such as the satellite area-to-mass ratio and solar

activity level. Therefore, a sensitivity analysis is carried out to analyze changes in the aliasing

error trends with these factors in section 4.6. For orbit propagation, using a non-square gravity

potential can be beneficial over a square gravity field [4, 127]. This is because higher order zonal

terms (m = 0) can have a significantly larger contribution to orbit propagation than higher order

tesseral (m < n) and sectorial (m = n) terms. Section 4.7 analyzes if this holds true when drag

and SRP coefficients are being estimated. In order to aid the selection of geopotential truncation

order in the low-altitude LEO regime, estimation errors in the drag and SRP coefficients as well

as the corresponding prediction errors are mapped out over an altitude range of 350-850 km as a

function of geopotential truncation order in section 4.8. These maps can serve as tools in selecting

the geopotential truncation order for orbit determination and prediction in the low-altitude LEO

regime. Finally, the results of the aliasing errors obtained through simulations are corroborated

using real GPS data from the Gravity Recovery and Climate Experiment (GRACE) satellite in

section 5.4.
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4.2 Effects of unmodeled dynamics

In this section, the effect of unmodeled dynamics on estimated parameters is demonstrated

through a simple two-dimensional example. The purpose of this example is to illustrate two key

points that form the basis for this study - Unmodeled dynamics in the estimator not only affect the

estimated states but also any estimated parameters that in turn serve to increase the prediction

errors, and unmodeled accelerations alias into estimated coefficients of forces that are acting in

the same direction. Since they do not affect the covariance of the estimated states, it continues

to shrink with the availability of more information to the estimator. On the other hand, the

deviation of the estimated states from their true values can keep on increasing, leading to the issue

of filter divergence. When the unmodeled dynamics are unknown or cannot be modeled due to

computational reasons, any one of the several techniques that approximate them with the addition

of process noise in one form or another can be utilized [124]. But as pointed out by McMahon and

Scheeres [69], using process noise to fit the data inflates the uncertainties around the estimated

states and certainly cannot compensate for prediction errors. Therefore, if there’s a possibility of

using a higher-fidelity model to reduce their effects on estimated states and parameters, such as in

the case of the gravitational field, it is preferable over the addition of process noise. The setup

Figure 4.1: Graphical representation of kinematic example



42

for the example is depicted in Fig. 4.1. Two mutually perpendicular constant accelerations (ax

and ay) are acting on the particle. The unmodeled dynamics in the estimator will be introduced

through errors in these accelerations. An additional acceleration acts in the x-direction and depends

linearly on time with a constant force coefficient denoted by K. The states to be estimated are

the initial positions and velocities (x0, ẋ0, y0, ẏ0) and the force coefficient K. This example will

demonstrate that errors in the accelerations will be absorbed by the estimates of the initial states

and the estimated force coefficient. The analytical solution for the states is given by

ẋ(t) = ẋ0 + axt−K
t2

2
, (4.1)

x(t) = x0 + ẋ0t+ ax
t2

2
−Kt3

6
, (4.2)

ẏ(t) = ẏ0 + ayt, (4.3)

y(t) = y0 + ẏ0t+ ay
t2

2
. (4.4)

A batch least-squares estimator [124] is used to process position measurements along x and y

directions, available at t = 0,∆t, 2∆t, ...l∆t; l > 2 for the information matrix to be invertible. The

measurement time-spacing is related to the total duration of measurements (length of data-arc, T )

and number of measurements as ∆t = T
l . The normal equations in eq. (3.1)-eq. (3.3) are used

to solve for the state estimate. The measurement Jacobian (H̃(tk)) and state transition matrix

(Φ(t0 = 0, tk = t)) for this example are given by

H̃ =

1 0 0 0 0

0 0 1 0 0

 , (4.5)
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Φ(0, t) =



1 t 0 0 −t3/6

0 1 0 0 −t2/2

0 0 1 t 0

0 0 0 1 0

0 0 0 0 0


. (4.6)

If the only errors in the estimator are in the initial states (δx0, δẋ0, δy0, δẏ0) and the force

coefficient (δK), it can be shown that the state estimates are obtained within the measurement

noise [69]. But if there are errors in the dynamics model, δax = ax,t − ax and δay = ay,t − ay,

estimation errors are introduced in the state estimates due to the unmodeled dynamics. In order

to calculate the estimation errors using eq. 3.1, the measurement residuals in eq. 3.3 are given by

y(t) =

δx0 + δẋ0 − δKt3/6

δy0 + δẏ0

+

εx
εy

+

δaxt2/2
δayt

2/2

 . (4.7)

The first two columns denote the residuals due to errors in the initial states and parameter

being estimated, and the measurement noise respectively while the third column is the residual due

to unmodeled dynamics. Assuming zero information on the initial states (X̄0 = 0, P̄−1
0 = 0), the

state estimates can be calculated by substituting eqs. 4.5-4.7 in eq. (3.1) (the superscript ˆ denotes

estimated states and subscript t denotes true values)



x̂0

ˆ̇x0

ŷ0

ˆ̇y0

K̂


=



x0,t

ẋ0,t

y0,t

ẏ0,t

Kt


+



εx

εẋ

εy

εẏ

εK


+



δax(l−2)(l−1)T 2

6l(9l−4)

−5δax(3l−2)(3l+1)T
12(18l2+l−4)

1
12δay

(l−1)
l T 2

− δayT
2

35δaxl2

(18l2+l−4)T


. (4.8)

The first two columns on the right hand side indicate the sum of the true initial states and the

weighted sum of measurement errors, i.e., the solution that would have been obtained in the absence

of unmodeled dynamics. The third column is the error added to the solution due to the unmodeled
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dynamics. Of particular significance is the estimated force coefficient K̂, that ends up absorbing

errors only in ax. If the measurement errors are ignored, the aliasing error in the force coefficient

K can be written from Eq. 4.8 as,

K̂ = Kt +
35δaxl

2

(18l2 + l − 4)T
. (4.9)

The aliasing error in the force coefficient due to the unmodeled dynamics adversely affects predicted

states. If the prediction error in x(t) without unmodeled dynamics, i.e., purely due to measurement

noise, is given by δx(t) and the additional prediction error due to unmodeled dynamics is given by

δxu(t), the overall prediction error can be computed as follows,

δxp(t) = xp,t(t)− x̂p(t)

= δx(t) + δxu(t)

= δx(t)− δax(l − 2)(l − 1)T 2

6l(9l − 4)
+

5δax(3l − 2)(3l + 1)T

12(18l2 + l − 4)
t+ δax

t2

2
+

35δaxl
2

(18l2 + l − 4)T

t3

6
.

(4.10)

Similarly, the error in y is given by,

δyp(t) = δy(t)− 1

12
δay

(l − 1)

l
T 2 +

δayT

2
t+ δay

t2

2
. (4.11)

Eq. 4.10 clearly indicates the additional error introduced due to unmodeled dynamics. The im-

portant point to be noted here is that in the absence of aliasing error in K given by Eq. 4.9,

the prediction error due to the unmodeled dynamics would have been smaller since the last term

would have been zero in Eq. 4.10. It is instructive to understand the implications of this example

by visualizing the prediction error due to unmodeled dynamics, both with and without aliasing

error in K (Eq. 4.9). Assuming measurement noise to be zero, i.e., δx(t) = 0, and δax = 10−8

m/s2, δay = 10−8 m/s2, l = 8640 and T = 86400 s, the errors in the state estimates are given

in Table 4.1. The error in the state estimates in x are smaller than in y even though the unmod-

eled accelerations are equal in both directions. The filter adjusts all the estimated states in order

to compensate for the unmodeled dynamics. Since there are more states being estimated in the

x-direction, the estimation errors are reduced in x and ẋ0 compared to y. The prediction errors
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in both the directions are plotted in Fig. 4.2. The figure clearly demonstrates the degradation in

prediction due to aliasing errors. The prediction errors are higher in the presence of unmodeled

dynamics when a force coefficient is being estimated.

State (error) Value

x0 (m) 1.382

ẋ0 (m/s2) -1.8e-4

y0 (m) 6.220

ẏ0 (m/s2) -4.3e-4

K (m/s3) 2.25e-13

Table 4.1: State estimation errors due to un-

modeled dynamics

Figure 4.2: Prediction errors in x and y-

directions due to unmodeled dynamics

A few important points can be noted from this analytical example. First, only the dynamics

error in the x-direction (δax) affects the estimated force coefficient K, with no effects from δay.

Therefore, only the dynamics errors acting in the same direction as the force coefficient affects its

estimate. Second, the prediction errors due to unmodeled dynamics are larger for xp(t) compared

to yp(t) due to errors introduced in the coefficient K, even if δax = δay. Therefore, even if the

effects of δax on x̂0 and ˆ̇x0 are small enough to be neglected, the prediction errors are amplified

due to the introduction of additional unmodeled dynamics through K̂ that has a cubic growth

with time. Due to aliasing effects, the errors in predicted states in the presence of unmodeled

dynamics are larger than expected when force coefficients are estimated. It should also be noted

from eqs. 4.10-4.11 that with increasing length of the data-arc, the errors in initial positions and

velocities increase while the error in the estimated force coefficient decreases. On the other hand,

the estimation errors are relatively insensitive to the number of measurements in the data-arc.

From this example, an analogy can be derived for orbit determination, with ax and ay repre-

senting gravitational acceleration and the unmodeled errors in them similar to ignored higher orders
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of the geopotential while K stands for a non-gravitational force coefficient such as drag or SRP.

The example sets the context for this study by emphasizing the importance of reducing unmodeled

dynamics (higher order gravitational force) in the filter, especially when force coefficients (drag and

SRP coefficients) are estimated.

4.3 Simulation setup

In this section, the details of the dynamics model, measurements and filtering methodology

used in the study are provided. The true and filter dynamics models in the simulations use the

forces summarized in Table 4.2. In the simulations, the geopotential model is taken as EGM2008

and the atmospheric density model is taken as NRLMSISE-00 [93]. The gravitational field is

truncated at order 200 for the truth because the force magnitude due to higher orders is negligible

as compared to drag and SRP in the altitude regime considered (350-850 km). For example, the

average acceleration magnitude of all the gravitational harmonics above order 200 is 10−14 m/s2

in the drag-direction and 10−12 m/s2 in the SRP-direction, compared to 10−7 m/s2 for drag and

10−8 m/s2 for SRP. Also many geopotential models are available up to order 180, such as GRACE-

derived models [107]. JPL’s DE-430 ephemerides are used for the positions of Sun and Moon

[32]. The state vector being estimated in the filter consists of the satellite position, velocity, drag

True dynamics Filter dynamics

200x200 Geopotential Truncated geopotential

Cannonball atmospheric drag
Cannonball atmospheric drag,

Cd is estimated

Cannonball SRP
Cannonball SRP,
Cr is estimated

Third-body forces of Sun and Moon Third-body forces of Sun and Moon

Table 4.2: Forces used in the true and filter dynamics models. EGM2008 is used for the geopotential

coefficient and radiation coefficient. The initial orbital elements are given in Table 8.1. The orbits

are assumed to be circular and variation of the coefficients in orbit is ignored. This allows the

analysis of errors introduced in the coefficients purely due to unmodeled gravitational force. The
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area-to-mass ratio of the satellite is taken as 0.04 m2/kg for both drag and SRP forces, unless

otherwise stated.

GPS position and velocity measurements are assumed to be available every 10 s with noise

standard deviations of 1.5 m and 0.5 cm/s respectively in each coordinate. A batch estimator is

used to process a data arc of 1 day and the orbits are then predicted for the next three days. The

initial errors and standard deviations in the position and velocity are assumed to be 10 m and 0.1

m/s in each coordinate. The initial standard deviation around the coefficients is assumed to be 0.1

while no initial error is considered.

Element Value

e 0

i 900

Ω 00

u 00

Table 4.3: Initial orbital elements of the satellite in study

4.4 Acceleration order of magnitude analysis

In this section, a comparison of higher order gravitational field, drag and SRP accelera-

tion magnitudes is presented. The correlations between a truncated gravitational field and non-

conservative forces exist because the unmodeled geopotential has components along the direction of

these non-conservative forces. The filter then tries to compensate for the dynamics error introduced

due to the truncated geopotential by adjusting the free parameters; the drag and SRP coefficients.

In order to compare the acceleration magnitudes, the unmodeled gravitational acceleration is pro-

jected along the relative velocity direction in eq. (1.1) and the satellite-Sun direction in fig. 7.8.

gdrag(t) = {g200×200(t)− gm×n(t)}.û(t), (4.12)

gSRP (t) = {g200×200(t)− gm×n(t)}.r̂s(t). (4.13)
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where g200×200 is assumed to be the true gravitational acceleration. Fig. 4.3 compares the amplitude

spectra of gdrag and gSRP (truncated at order 150) with those of drag (adrag) and SRP accelerations

(aSRP ), respectively, at 350 km. It can be seen that at higher frequencies, the amplitudes of

projected gravitational accelerations are comparable to the drag and SRP acceleration even for a

truncation order of 150. The instantaneous projected acceleration errors are then averaged over

Figure 4.3: Spectra of projected unmodeled gravitational accelerations, drag and SRP accelerations
at 350 km altitude

one day, i.e., the length of the estimation data-arc, to obtain the average projected gravitational

acceleration errors as follows,

ḡdrag =
1

Tavg

∫ Tavg

0
gdrag(t)dt, (4.14)

ḡSRP =
1

Tavg

∫ Tavg

0
gSRP (t)dt. (4.15)

where Tavg denotes one day. Similarly, the drag and SRP acceleration magnitudes are averaged over

a day (ādrag and āSRP ). The average and root-mean-square (RMS) of the instantaneous acceleration

errors are plotted in Fig. 4.4 at 350 km and 850 km as a function of truncation order. Since the

drag and SRP acceleration magnitudes are independent of the geopotential truncation, they are

represented as constant lines in Fig. 4.4. Note that the gravitational acceleration error curve plots

the difference between the accelerations due to a 200x200 gravitational field and a gravitational
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field truncated at an order specified by the x-axis projected along velocity or sun direction. It is

observed that the average gravitational acceleration errors projected along the velocity and Sun

directions do not monotonically decrease with the truncation order. This is consistent with the

observations of Barker et al. [4] that groups of higher order tesserals can have cancelling effects at

low truncation degrees in lower altitudes. At 350 km, the average drag is an order of magnitude

larger than the gravitational acceleration error along velocity direction for a 10x10 field and the

difference in magnitude increases for higher truncation orders. However, the RMS values of the

projected gravitational error are larger than drag until order 90. Similarly, the average SRP is larger

than the projected gravitational error after order 60 but the RMS value is lower even at order 100.

A similar scenario but with different truncation orders is seen at 850 km. Even though the average

gravitational errors become smaller than average drag and SRP at relatively low truncation orders,

the instantaneous acceleration errors are comparable until a much higher truncation order. This

is the primary reason for the aliasing of unmodeled gravitational accelerations into the estimated

drag and SRP coefficients, discussed in the next section.

(a) (b)

Figure 4.4: Comparison of average and RMS values of gravitational acceleration errors with drag
and SRP accelerations at (a) 350 km and (b) 850 km.
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4.5 Coefficient estimates

In this section, the aliasing errors introduced in the coefficient estimates are analyzed as a

function of geopotential truncation order and their consequence on orbit prediction is studied. The

truth and filter dynamics models from section 4.3 are used to estimate the satellite states and

the coefficients of drag and SRP in a batch estimator. The truncation order of the geopotential

is varied in the estimator dynamics model and the difference between the true and estimated

coefficients noted. The relative errors in the drag coefficient estimate (∆Cd = Cd−Ĉd
Cd

) and the SRP

coefficient estimate (∆Cr = Cr−Ĉr
Cr

) are plotted in Fig. 4.5 (a) and (b) for altitudes 350 km and

850 km respectively. The coefficient errors exist because of unmodeled gravitational acceleration

along drag and SRP directions; therefore the ratio of the average accelerations (rdrag =
ḡdrag
ādrag

and

rSRP = ḡSRP
āSRP

) are also plotted in Fig. 4.5. It can be seen that the relative error in the coefficients

closely follows the trend of the acceleration ratios. At 850 km, the trends are similar until a certain

order and then the coefficient errors plateau. This can be explained by the relationship between

the maximum possible estimation accuracy of a force coefficient and the contribution of the force

towards orbit propagation. Since the filter adjusts the estimated states based on direct or indirect

measurements of the satellite position and velocity, the estimation accuracy of a force coefficient is

determined by the sensitivity of the orbit propagation to it. With the orbit being more sensitive to

drag at 350 km than at 850 km, the drag coefficient can be estimated to a higher relative accuracy

given a high truncation order. The SRP coefficient trends can be similarly explained. The relative

error in the coefficients appears quite high for low truncation orders. At 350 km, ∆Cr is much

larger than ∆Cd; while at 850 km, they are similar at any given truncation order, as governed by

the acceleration ratios.

For orbit determination and prediction, it is important to determine the sensitivity of the

orbit propagation to errors in the force coefficients. This allows us to quantify the significance of

the coefficient errors based on their effects on orbit propagation. From Fig. 4.5, it seems that

the truncation order at 350 km is governed by the SRP coefficient since the relative error is much
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higher for SRP than drag at any order. But it should be kept in mind that the SRP acceleration

is almost an order of magnitude smaller than drag at that altitude as seen in Fig. 4.4. Therefore,

a smaller relative error in drag compared to SRP might be more significant for orbit prediction.

The overall effect of the errors introduced in these coefficients towards orbit propagation should

determine the truncation order of the geopotential. To analyze the effect of a certain relative

error on the orbit accuracy, a sensitivity analysis is performed. The drag and SRP coefficients are

perturbed individually and the orbit is propagated for three days. The position error RMS value

with respect to the orbital altitude is plotted in Fig. 4.6 (a) and (b) for Cd and Cr respectively.

Note that when one coefficient is perturbed, the other is kept constant and that Cr is perturbed by

a hundred times higher relative error than Cd. It can be seen that the effect of ∆Cd is higher than

∆Cr at all altitudes. The contribution of ∆Cr to the position error increases slowly with altitude

since SRP does not change significantly in a low LEO regime while the contribution of ∆Cd drops

exponentially because of atmospheric density. Fig. 4.6 can be used to determine the minimum

geopotential truncation order at 350 and 850 km. For example, at 350 km, a 0.1 % error in Cd

results in a position error RMS of 10 m at the end of three days as seen in Fig. 4.6 (a). From Fig.

4.5 (a), in order to reach a 0.1 % , i.e. 10−3 relative error, a minimum order of 90 is required. It

should be noted that the errors in Fig. 4.6 are purely due to propagation with no other error than

the coefficients. In an actual orbit determination scenario, the errors will be much higher since the

estimated initial state will have errors and both the coefficients will be perturbed from their true

values along with any other modeling errors.

4.6 Sensitivity analysis

In this section, the sensitivity of the aliasing effect to several factors is analyzed. The variation

of the non-conservative forces depends on factors such as the solar activity level that change the

state of the atmosphere and area-to-mass ratio (AMR) that determines the magnitude of the force

acting on the satellite. Some factors such as orbital elements also govern the gravitational force

acting on the satellite. The extent of correlations between the forces can change according to these
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(a) (b)

Figure 4.5: Relative errors in the drag and SRP coefficient estimates as a function of the truncation
order of the geopotential in the filter at (a) 350 km and (b) 850 km.

conditions. In addition, factors such as the length of the data-arc can change the aliasing errors

in the estimated states and parameters even though they do not affect the forces. Therefore, it

is valuable to understand how the trend of estimation error in the coefficients changes with these

factors. Specifically, the change in the truncation order required to obtain a certain accuracy in

the estimated coefficients due to these factors needs to analyzed. In the following discussions, the

parameters are changed in both the true and filter dynamics models, i.e., there’s no dynamics

mismodeling other than gravitational force.

4.6.1 Orbit inclination

As seen in the previous sections, the correlations are highly dependent on the altitude of the

satellite since it changes the relative magnitude of the forces. Since the drag coefficient changes

with altitude and therefore, eccentricity of the orbit, a constant cannonball coefficient will not

suffice for a highly eccentric orbit. It becomes non-trivial to analyze the aliasing into the drag

coefficient estimate in such a case since there’s no ‘true’ cannonball drag coefficient. The aliasing

effect with high-fidelity models of the drag coefficient would be more appropriate in that case. In

this study, the correlations are studied only for a circular orbit, for which orbital inclination is an



53

(a) (b)

Figure 4.6: The sensitivity of orbit propagation to errors in (a) drag coefficient and (b) SRP
coefficient.

important governing factor that determines the nature of the forces, especially gravitational force.

Until now, all the analyses have been carried out for a polar orbit. The drag and SRP coefficient

estimation errors as a function of geopotential truncation order for a near-equatorial orbit with

an inclination of 150 and a polar orbit at 350 km are plotted in Fig. 4.7 (a). Fig. 4.7 (b) plots

the maximum prediction error at the end of three days, obtained by propagating the initial state

estimate forward. The error trends are similar for both the inclinations but ∆Cd is smaller for the

near-equatorial orbit than the polar orbit. This is because, near the equator, the altitude from the

surface is smaller than at the poles for the same semi-major axis. Therefore, the drag force is larger

due to the increased density leading to a decrease in the ratio of the average accelerations (rdrag)

that governs ∆Cd as seen in section 4.5. Even though the drag coefficient has a smaller relative

error for the near-equatorial orbit, the prediction errors are quite similar for both the orbits since

the orbit propagation is proportionately more sensitive due to an increased drag force.

4.6.2 Solar activity level

The atmosphere is highly sensitive to the solar activity level, and atmospheric density can

change by orders of magnitude in response to a change in the same. During times of high solar
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(a) (b)

Figure 4.7: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days for two orbital inclinations at 350 km.

activity, expansion of the atmosphere leads to an increased density at all altitudes. This changes

the relative magnitude of drag with respect to gravitational force, i.e. the correlation between the

forces. On the other hand, SRP is relatively unaffected since the change in the total solar irradiance

is only 0.1-0.2 % in a solar cycle [133]. Therefore, for different solar activity levels, the error in the

drag coefficient can change by almost an order of magnitude while the radiation coefficient error

remains almost the same as seen in Fig. 4.8 (a). For a higher solar activity level, the magnitude

of atmospheric drag force is larger. As rdrag decreases, the drag coefficient relative error decreases

as discussed in section 4.5. But this does not lead to a decrease in the prediction error as seen in

Fig. 4.8 (b), due to an increased sensitivity of the orbit to the drag coefficient.

4.6.3 Area-to-mass ratio (AMR)

The magnitude of the non-conservative forces acting on the satellite is directly proportional to

the AMR in the direction of that force. The estimation errors in the coefficients are plotted for three

AMRs in Fig. 4.9. The figure also shows the maximum prediction errors at the end of three days.

The relative error in the coefficients scale inversely with the AMRs since the average acceleration

ratios (rdrag and rSRP ) decrease with increased AMR. But as discussed for orbit inclination and
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(a) (b)

Figure 4.8: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days at 350 km during high solar activity (F10.7 = 200 s.f.u) and low
solar activity (F10.7 = 65 s.f.u)

solar activity level, even though the relative error is smaller for a higher magnitude force, the

sensitivity of the orbit propagation to the coefficient is larger. This can be seen in the position

error plot where the error curves are similar for all the AMRs.

4.6.4 Data-arc length and number of measurements

In section 4.2, one of the points illustrated by the example was that the aliasing error in

the coefficients decreases with a larger data-arc length. On the other hand, it was the opposite

for the aliasing error in the initial position and velocity. In order to verify if the same holds true

for unmodeled gravitational acceleration in orbit determination, several arc-lengths between 0.05

days and 10 days of measurements is processed with an order 50 gravitational model in the batch

estimator. Fig. 4.10 plots the coefficient errors, the initial state errors and the maximum error

at the end of three days of prediction with respect to the length of the data-arc. After an initial

increase in error, the errors in the coefficients decrease with longer data-arcs until a certain point

while the errors in the initial position and velocity keep increasing. The prediction error initially

follows the drag coefficient error trend but gradually flattens out for longer data-arcs. Therefore,
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Figure 4.9: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days at 350 km for three satellite area-to-mass ratios (units: m2/kg)

a trade-off lies between errors in the initial states and force coefficient errors when increasing the

length of the data-arc in the presence of unmodeled dynamics. In section 4.2, it was also seen

that the estimation errors are insensitive to the number of measurements if the length of data-arc

is kept constant. In other words, increasing the number of measurements per unit time, i.e., the

temporal measurement density, does not change the estimation errors. This is numerically tested

by increasing the number of measurements in a 1-day data-arc in the batch estimator with an

order 50 gravitational model. As seen in Fig. 4.11, the errors don’t change with the number of

measurements.

4.7 Non-square gravitational field

In this section, the effects of higher order tesseral terms on the coefficient relative errors are

analyzed. It has been pointed out in literature that a non-square geopotential can sometimes be

more beneficial for orbit propagation than a square geopotential [127, 4], i.e. higher-degree zonal

terms have more contribution towards the propagation than higher order tesseral terms. In order to

investigate if the same holds true for the aliasing effect with drag and SRP coefficients, geopotential

model order is fixed at 40 and the degree is increased from 40 to 90 in the filter. Fig. 4.12 plots the
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Figure 4.10: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days of prediction (right) at 350 km with respect to the length of the
data-arc.

coefficient relative errors and maximum prediction error as a function of the zonal degree truncation.

It can be seen that even though the maximum prediction error keeps decreasing until order 70 and

then reaches a steady state, the errors in the coefficients increase slightly. Therefore, the advantage

of increasing the geopotential degree is limited for a low truncation order. Next, all the zonal terms

(i.e. until degree 200) are included and the tesseral terms are truncated in the filter gravitational

field model. The relative errors in the estimated coefficients are plotted in Fig. 4.13 as a function

of the tesseral order truncation. The relative error in the SRP coefficient becomes almost constant

after order 50 but the drag coefficient error keeps decreasing. The maximum prediction error also

does not seem to reach a steady state and keeps decreasing for higher tesseral orders. Therefore,

a non-square field does not seem to be advantageous when drag and SRP coefficients are being

estimated.

4.8 Coefficient Error Maps

In this section, the relative errors in drag and SRP coefficients are mapped out across the

low-altitude LEO regime. In section 4.5, it was observed that in order to obtain a certain accuracy
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(a) (b)

Figure 4.11: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days of prediction (right) at 350 km with respect to the temporal density
of measurements.

in the coefficient estimates, the required geopotential truncation order is dependent on the satellite

altitude. Based on the analyses detailed in the preceding sections, it is proposed to select the

truncation order for an orbital regime based on the error introduced into the coefficients at that

particular altitude and consequently their effect on orbit propagation. In order to aid the selection

process, drag and radiation coefficient estimation error maps are constructed in the altitude range

of 350-850 km at every 50 km with truncated gravitational field models. It should be noted that

the true drag coefficient increases with altitude while the true SRP coefficient remains the same.

The coefficient relative error percentages are plotted in Figs. 4.14 (a) and (b). From the drag

coefficient error map, it is apparent that the relative errors are much larger at higher altitudes. But

as pointed out in section 4.5, the orbit propagation is more sensitive to errors in the drag coefficient

at lower altitudes. Therefore, an inaccurate drag coefficient has a more significant effect on the

orbit propagation at lower altitudes. This is demonstrated by the maximum propagation error at

the end of three days corresponding to the relative errors in each coefficient in Figs. 4.14 (c) and

(d). It should be noted that the only error in propagation is due to an inaccurate coefficient (drag

or SRP) from Fig. 4.14(a) and (b). From Figs. 4.14 (c) and (d), it is evident that even though



59
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Figure 4.12: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days at 350 km with tesseral terms fixed at order 40

the relative error in the SRP coefficient is higher than in the drag coefficient at lower altitudes, the

errors in orbit propagation are dominated by the latter.

Finally, it is important to look at the overall errors introduced in orbit determination and

prediction due to the aliasing effects since they govern the selection of the geopotential truncation

order. Fig. 4.14 (e) and (f) depict the maximum prediction error of the estimated states at the

end of three days and the total RMS of orbit determination and prediction position errors. The

trends are very similar to Fig. 4.14 (c) and (d), which is expected since the orbit determination

and prediction errors are driven by the aliasing effects. It is evident that a larger truncation order

is needed at lower altitudes compared to higher altitudes. For example, a truncation order of 80 at

350 km would yield an error magnitude similar to that obtained by a truncation order of 40 at 850

km. It should be noted that the orbit determination and prediction errors here are purely due to

aliasing effects and do not account for unmodeled errors in other parameters such as density that are

present in an actual orbit determination scenario. Therefore, these errors should be kept small by

selecting an appropriate geopotential truncation order. The truncation order selection is suggested

to be such that the maximum prediction error at the end of three days is less than 10 m for all

higher orders. This translates to order 90 at 350 km and order 50 at 850 km. It should be noted that
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Figure 4.13: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days at 350 km with all the zonal terms included

the recommended truncation orders are smaller than the maximum meaningful expansion order of

the geopotential model, defined as the order after which the truncation errors are equal or smaller

than the intrinsic uncertainty of the model as governed by the standard deviation of the spherical

harmonic coefficients [31]. The maps in Fig. 4.14 can be referenced for selecting geopotential

truncation order across the low LEO altitude regime according to the level of accuracy needed for

specific applications.

4.9 Corroboration using real data

In this section, the aliasing errors in the non-gravitational force coefficients are analyzed

for real data. The analyses using simulated data in the previous sections revealed the extent of

aliasing errors due to higher order gravitational accelerations. In a real orbit determination scenario,

these errors will get coupled with other unmodeled dynamics such as uncertainties in atmospheric

density. Moreover, the drag and SRP coefficients will vary due to changes in attitude and ambient

parameters. But for the purpose of our analyses, the coefficients are estimated as constants in orbit

determination.

The twin GRACE satellites are at 890 inclined orbits initially launched at around 485 km,
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(c) (d)

(e) (f)

Figure 4.14: (a), (b) Error maps of coefficients; (c), (d) Error maps of errors in propagation due to
individual coefficient errors; (e), (f) Total orbit prediction errors
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decaying to around 300 km five years after launch. Precision orbit data (POD) or Level 1B naviga-

tion data for GRACE B satellite, available through GeoForschungsZentrum Potsdam Information

System and Data Center (GFZ ISDC) (ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/JPL/

INSTRUMENT/RL02/, last access: Dec 3, 2019) are used as the truth for this work. GPS measure-

ments are generated by adding Gaussian noise with standard deviation 1.5 m in all three position

coordinates and 0.5 cm/s in all three velocity coordinates. The same forces as Table 4.2 are used to

process the real data but densities and reference cross-sectional areas derived by Mehta et al. [73]

are used instead of NRLMSISE-00 in order to reduce the uncertainties due to atmospheric density.

A one-day data arc from March 24, 2007 is processed in the batch estimator and the orbit is pre-

dicted for the next three days. In order to compute the errors in the drag and SRP coefficients,

‘true’ constant values for the coefficients are needed. Since there are no ‘true’ cannonball drag

and SRP coefficients due to their time-varying nature in orbit, the relative errors at each order

of geopotential is calculated with respect to the estimates obtained with an order 200 geopoten-

tial. The coefficient estimates obtained in this manner are essentially free of aliasing errors due to

gravitational field and therefore serve as a baseline for comparison purposes. However, it is also

possible to obtain a cannonball estimate of the coefficients based on physics of the gas-surface and

photon-surface interactions. Due to the significant efforts by researchers in accurate modeling of

non-conservative forces acting on GRACE [25, 73, 15, and others], estimates of time-varying drag

coefficients as well as optical properties of the satellite surfaces have been reported in literature.

Mehta et al. [73, 72] have derived time-varying estimates of the drag coefficient using response

surface modeling to interpolate results of Test Particle Monte Carlo (TPMC) simulations. A can-

nonball physics-based estimate that serves as the reference truth for calculating aliasing errors in

the drag coefficient can then be obtained by averaging the time-series. The cannonball estimate of

the SRP coefficient requires a bit more analysis since the actual SRP force doesn’t align with the

Sun-satellite direction at all times unlike the cannonball model. The SRP force for GRACE can be

calculated using eq. (3.29). Using the specifications for each panel given by Cheng et al. [15], the

true SRP force can be calculated at each point in the orbit. The cannonball estimate at time t can

ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/JPL/INSTRUMENT/RL02/
ftp://isdcftp.gfz-potsdam.de/grace/Level-1B/JPL/INSTRUMENT/RL02/


63

be obtained by projecting Eq. 3.29 and Eq. 7.8 along the Sun-satellite direction and taking their

ratio, as follows,

Cr,t(t) =
aSRP, GRACE .r̂s

aSRP .r̂s
. (4.16)

Note that the scale factor Csrp in Eq. 3.29 is taken as 1 and the reference area in Eq. 7.8 is taken

as 2.24 m2. The time-series of the physics-based drag coefficients calculated by Mehta et al. [73]

and SRP coefficient values obtained by Eq. 4.16 for March 24, 2007 along with their mean values

(cannonball estimates) are plotted in Fig. 4.15.

(a) (b)

Figure 4.15: Time-series of coefficients obtained by physics-based models of (a) Drag [73]; (b) SRP

The aliasing errors in the drag (∆Cd) and SRP (∆Cr) coefficients along with the correspond-

ing prediction errors for GRACE are then obtained by truncating the geopotential at different orders

in the estimator. Fig. 4.16 plots the error in estimated coefficients and the prediction error. Here,

prediction error refers to predicted measurement residuals. The coefficient errors are calculated

both with respect to the estimates obtained using an order 200 geopotential and the physics-based

cannonball estimates. The errors in coefficients obtained by both the methods are consistent with

each other until a certain order. Afterwards, the errors with respect to the physics-based truth

plateau. This is expected since the cannonball estimates obtained by averaging the physics-based

coefficients contain errors due to uncertainties in the models and the averaging process itself. On
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the other hand, comparison with the estimates obtained by using order 200 geopotential as the

truth essentially nullifies all other sources of error except the geopotential truncation. The results

point to an important fact: at lower geopotential truncation orders, estimating the coefficients can

be worse than using nominal physics-based models even with the uncertainties associated with the

latter. It can be seen that the trends of the coefficient relative errors and the prediction errors

are similar to Fig. 4.14, thus serving as a verification for the simulations. The prediction error

plateaus to a larger value than Fig. 4.14 (e) due to the presence of other unmodeled errors such as

atmospheric density that limit the prediction accuracy.

(a) (b)

Figure 4.16: (a) Relative error in the estimated coefficients; (b) Maximum error in the predicted
orbits at the end of three days for GRACE

4.10 Chapter summary

In this chapter, the correlations between higher order gravitational forces and the dominant

non-conservative forces in the low-altitude low Earth orbit (LEO) regime, i.e., atmospheric drag

and solar radiation pressure (SRP) are analyzed. The primary issue with the current method of

geopotential truncation based only on orbit propagation errors is that simply considering the con-

tribution of the higher order harmonics towards orbit propagation is not sufficient. The unmodeled

gravitational harmonics alias into the free parameters being estimated in the filter, i.e., the drag
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and SRP coefficients, due to the presence of ignored gravitational force components along the drag

and SRP directions. This leads to higher prediction errors than expected solely from the contri-

bution of unmodeled gravitational force towards orbit propagation as demonstrated analytically

with a simple two-dimensional example. The aliasing errors in the force-coefficients are sensitive to

factors such as area-to-mass ratio, solar activity and orbit inclination but the prediction errors are

relatively unaffected. With larger data-arc lengths, the errors in the estimated coefficients decrease

while they increase in the estimated initial states even though the prediction error plateaus. A

short data-arc is not recommended in lower altitudes where the orbit is highly sensitive to errors

in the drag coefficient.

Based on the results obtained, it is recommended to account for aliasing errors in estimated

non-gravitational coefficients while selecting the geopotential truncation order. Relative error maps

for the drag and SRP coefficients are presented to serve as a reference while selecting the trunca-

tion order in the low-altitude LEO regime. These maps aid the selection of the order based on the

amount of orbit determination and prediction error that can be tolerated due to aliasing effects.

Since additional errors due to unmodeled forces and parameters such as density are present in

an actual orbit determination scenario, it is suggested to reduce the errors due to aliasing effects

by selecting an appropriately high truncation order based on the error maps. In order to obtain

errors less than 10 m at the end of a three-day prediction arc, an order 90 geopotential should

be selected at 350 km and 50 at 850 km for the ideal scenario considered here without additional

sources of unmodeled dynamics and measurement errors. For an actual orbit determination sce-

nario, the aliasing errors will be distributed among additional parameters being estimated, such as

sensor biases. This may result in different truncation orders than the ones recommended, but the

qualitative trends should still hold. Due to these factors, the errors will be higher at the suggested

orders of truncation, as demonstrated by the GRACE data analysis. Processing of GRACE data

with truncated geopotential models in the estimator serves to corroborate the extent of aliasing

errors revealed through simulations. It is observed that estimating force-coefficients with a low or-

der geopotential can potentially be worse than simply using their averaged nominal physics-based



66

values without estimating them, depending on the uncertainties associated with the physics-based

models. Application of the high-fidelity drag-coefficient models developed in the next few chapters

to real data should consider the truncation of the geopotential in the filter.



Chapter 5

Estimation-based approach to drag-coefficient modeling

In chapter 1, we discussed the problem with estimating the drag-coefficient as a constant

during orbit determination as well as remaining issues with physics-based models of drag-coefficient.

A model that can estimate the time-variations in the drag-coefficient from tracking data will lead

to better orbit prediction and derivation of physical parameters related to the drag force.

In this chapter, Fourier-series based expansion models are proposed to develop corrections to

the standard cannonball model of the drag coefficient of an arbitrary object. Fourier-series models

have been used to develop improved approximations of the solar and thermal radiation coefficients

[69, 68, 47, 46]. The governing principle of this approach is that any continuous periodic function

can be represented by an infinite sum of sines and cosines. The main advantage of this modeling

approach is that Fourier coefficients are orthogonal to each other and can be easily estimated in

the filter. Moreover, accurate knowledge of gas-surface interaction parameters is not required since

the Fourier coefficients estimated during the orbit determination process capture the variations in

the drag coefficient governed by these parameters. In fact, the estimates of the Fourier coefficients

can be used to provide insights into the variation of gas-surface interaction (GSI) parameters in

orbit since each coefficient is associated with a certain frequency of variation.

Four different Fourier models are proposed based on the drag coefficient dependence on:

attitude of the satellite and orbit-dependent parameters. As the orientation of the atmospheric

flow vector changes w.r.t the different satellite surfaces, the drag coefficient varies. When using the

cannonball model, this change in orientation is usually accounted for by taking the instantaneous
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cross-sectional area of the satellite as the reference area in Eq. 1.1. But the drag coefficient is not a

simple scaling of the cross-sectional area; it is a more complicated function of the orientation of the

flow vector w.r.t the different satellite surfaces. We propose a spatial Fourier expansion of the drag

coefficient in the body frame of the satellite with the arguments as the azimuth and elevation of

the atmospheric flow vector in the body frame. This method, called the body-fixed Fourier (BFF)

model, can be used only for satellites whose attitude profiles are known, as is mostly the case

with functioning satellites. Though this modeling approach responds to changes in the satellite

orientation, it still averages out the variation of the drag coefficient due to ambient parameters,

similar to the cannonball model. The second proposed approach remedies this by carrying out

a temporal Fourier expansion in the orbit frame of the satellite with the input as the argument

of latitude. This approach, called the orbit-fixed Fourier (OFF) model, can capture the periodic

components in the drag coefficient variation that are commensurate with the orbital period.

Next, we propose a generic model combining the body-fixed and orbit-fixed approaches called

body-orbit double Fourier (BODF) model. The BODF model contains terms corresponding to

variations in both orientation and periodic variations in the orbit and therefore is of higher fidelity

than the individual body-fixed and orbit-fixed models at any particular order. But because of

cross coupling terms between the two arguments, the number of coefficients rapidly increase for

higher orders. Along with more computations associated with a higher number of coefficients to be

estimated, the orbit determination accuracy can potentially deteriorate with higher orders because

of over-fitting with too many free parameters in the filter. One possible fix for the problem is

neglecting terms with contributions under a certain threshold but that is specific to the shape

model of the satellite and the physics of drag coefficient variation. A more general simplified

approach is to neglect all the cross-coupling terms, leading to a body-orbit summation (BOS)

model. It should be noted that among the proposed models, only the OFF model does not require

any attitude information and thus can be applied to space objects with unknown attitude profiles.
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5.1 Chapter outline

The models are tested using simulation cases with different attitude profiles and orbital

regimes. For each case, a reference trajectory and true measurements are generated, with drag

coefficients modeled using a standard GSIM. A batch least squares estimator is then used to process

the measurements with the proposed drag coefficient models incorporated in the filter. The obtained

state estimates are then propagated forward to obtain the predicted orbit. Finally, the prediction

performance of the proposed models is compared to the cannonball model. In all the drag models,

the reference area is considered to be constant. But the performance of the models is also compared

to the cannonball model when the reference area is taken to be the instantaneous cross-sectional

area as discussed in the preceding paragraph. Section 5.2 details the Fourier-series models and

presents a derivation of the quantities that are required to implement the models in a filter. The

simulation framework and the example cases are discussed in section 5.3. The application to real

tracking data from satellites is discussed in section 5.4.

5.2 Development of Fourier drag-coefficient models

In the dynamics model of an orbit determination filter, the drag-coefficient can be modeled

as

C̃d = Cd,nom(t) + ∆Cd, (5.1)

where Cd,nom(t) is a time-varying nominal model of the drag coefficient based on the physics of the

problem and ∆Cd is the remaining error in the drag coefficient value that needs to be estimated in

the filter. Examples of models that can provide nominal values of the drag coefficient in orbit are

the flat plate model with a particular GSIM [25] and RSM [72]. In general, most satellite operators

take Cd,nom(t) to be zero and estimate ∆Cd as a constant, with a GSIM potentially providing the

initial value for the estimate. We propose to expand ∆Cd as a Fourier series in terms of satellite

attitude and orbital motion and estimate the Fourier coefficients in the filter. Such a method

makes it possible to estimate higher-order variations in the drag coefficient error while using a
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high-fidelity nominal value for the drag coefficient. If the nominal model closely represents the

true drag coefficient variation and the density errors are small, the estimated Fourier coefficients

will ideally go towards zero. Therefore, this approach also allows us to evaluate the accuracy of

physics-based drag coefficient models.

5.2.1 Body-fixed Fourier (BFF) model

It can be seen from chapter 2 that the drag coefficient is strongly dependent on the angle

between the flow unit vector and the area vector of the satellite face and hence the attitude of the

satellite. If the attitude of satellite is known, as is mostly the case with functioning satellites, the

drag coefficient variation with attitude can be potentially estimated during the OD process. The

unit vector of the flow can be expressed in terms of an azimuthal angle (θ) and elevation angle (φ)

in the body frame as (Fig. 5.1),

û = cosφ cos θx̂b + cosφ sin θŷb + sinφẑb. (5.2)

Therefore, the drag coefficient now becomes a function of θ and φ which allows us to expand the

Figure 5.1: Flow unit vector in body frame

drag coefficient as a double Fourier series around θ and φ. The double Fourier series expansion is
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given by, [98]

Cd =
∞∑
m=0

∞∑
n=0

λmn(Āmn cosmθ cosnφ+ B̄mn sinmθ cosnφ

+ C̄mn cosmθ sinnφ+ D̄mn sinmθ sinnφ).

(5.3)

The Fourier coefficients become the parameters to be estimated during the OD process instead of

the drag coefficient. In order to implement the model in the filter, initial estimates (nominal values)

of the coefficients and the standard deviation around them are required. The initial estimates can

be calculated using the following formulae,

Āmn =
1

π2

∫ π

−π

∫ π

−π
Cd cosmθ cosnφdθdφ, (5.4)

B̄mn =
1

π2

∫ π

−π

∫ π

−π
Cd sinmθ cosnφdθdφ, (5.5)

C̄mn =
1

π2

∫ π

−π

∫ π

−π
Cd cosmθ sinnφdθdφ, (5.6)

D̄mn =
1

π2

∫ π

−π

∫ π

−π
Cd sinmθ sinnφdθdφ. (5.7)

The value of λmn is given by,

λmn =



1
4 , m = n = 0

1
2 , m > 0, n = 0, or, n > 0,m = 0

1, m > 0, n > 0.

(5.8)

The integration can be carried out numerically in order to compute initial estimates of the coef-

ficients. To calculate the integrals, a GSIM is selected for CD along with a shape model for the

satellite. The drag-coefficient model doesn’t necessarily have to be analytical. For example, direct

simulation Monte Carlo (DSMC) [5] can be used to compute the drag-coefficient for varying θ and

the resultant drag-coefficient profile can be parameterized in the Fourier series. Alternatively, for
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simple shapes, the satellite can be assumed to comprise of multiple flat plates and the analytical

drag-coefficients of individual plates can be summed up to arrive at the total drag-coefficient for

the satellite [25]. The resultant drag-coefficients of the satellite can then be integrated over the

angle of variation of the velocity vector in the body frame using eqs. 5.4 - 5.8 to compute the initial

estimates of the Fourier coefficients.

Once the nominal coefficients and their covariance have been computed, the coefficients for

the selected order can be added to the state vector to be estimated. It is important to note that

since the series is truncated at an arbitrary order, the coefficients will absorb contributions from

the higher neglected orders. This is advantageous since a sufficiently low order Fourier series is able

to capture the variation in drag coefficient as will be demonstrated by the results. This reduces the

computational complexity of the filter. In order to estimate the Fourier coefficients, the following

partial derivatives are required. The partial derivatives of the model with respect to the position

and velocity are zero since the model is dependent solely on the attitude that is assumed to be

given.

∂Cd
∂r

= 0 (5.9)

∂Cd
∂v

= 0 (5.10)

The partials of the drag coefficient, and therefore the drag force, with respect to the Fourier

coefficients are given by

∂adrag
∂Amn

=
∂adrag
∂Cd

∂Cd
∂Amn

= −1

2
ρ
Aref
m

v2
r û cosmθ cosnφ

(5.11)

∂adrag
∂Bmn

= −1

2
ρ
Aref
m

v2
r û sinmθ cosnφ (5.12)

∂adrag
∂Cmn

= −1

2
ρ
Aref
m

v2
r û cosmθ sinnφ (5.13)
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∂adrag
∂Dmn

= −1

2
ρ
Aref
m

v2
r û sinmθ sinnφ. (5.14)

where the factor λmn from Eq. 5.8 is absorbed into the coefficients, with Amn = Āmnλmn. For

m = n = 0, the Fourier model reduces to cannonball model and only Eq. 5.11, with the cosine

terms equal to 1, remains.

In many satellites, the dominant attitude variation with respect to the atmospheric flow is

around a single axis and any variations around other axes can be effectively neglected for the pur-

pose of drag coefficient computation. For example, the relative velocity vector effectively varies

around the axis of angular momentum for an inertially stabilized satellite if the variation due to

the co-rotating atmosphere is neglected. It is shown in subsequent sections that the drag coefficient

variation due to the co-rotating atmosphere can be effectively ignored without any practical detri-

ment to the orbit prediction accuracy. In such cases where the variation of the relative velocity

vector is effectively around a single axis, the BFF model reduces to a single Fourier series around

the angle of rotation (θ) as

Cd =
∞∑
n=0

(An cosnθ + Bn sinnθ). (5.15)

where the coefficients are given by,

An =
1

π

∫ 2π

0
Cd cosnθdθ, (5.16)

Bn =
1

π

∫ 2π

0
Cd sinnθdθ, (5.17)

for n > 0 and,

A0 =
1

2π

∫ 2π

0
Cddθ, (5.18)

and B0 = 0 for n = 0.
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It is possible to derive closed-form expressions for the body-fixed Fourier coefficients of a flat

plate for the DRIA model. The velocity vector (V̂ ) is assumed to rotate around y-axis in the body

frame for simplicity, with the angle of rotation to the x-axis denoted by θ. Note that a body frame

can always be defined in this manner if the velocity vector is assumed to rotate around a single

axis. The angle of the vector normal to an arbitrarily inclined plate (n̂) with y-axis in the body

frame is denoted as β. The projection of the normal vector in the x-z plane (n̂v) makes an angle δ

with the x-axis. Fig. 5.2 depicts a graphical representation of the scenario. The angle β and δ can

be calculated from the known unit normal vector in the body-frame as follows

cosβ = n̂.ŷ (5.19)

tan δ =
n̂.ẑ

n̂.x̂
(5.20)

In order to carry out the Fourier expansion of the GSIM, the cosine of angle between n̂ and

V̂ , i.e., γ is required. Using the cosine rule in the spherical triangle formed by n̂, V̂ and n̂v,

γ = cos (θ − δ) cos (
π

2
− β) + sin (θ − δ) sin (

π

2
− β) cos

π

2

= C cosψ

(5.21)

where ψ = θ − δ and C = sinβ. The Fourier expansion is carried out around the angle of

rotation of the velocity vector, θ. To analytically integrate Eqs. 5.16, 5.17 and 5.18 with Cd given

by Eq. 2.2, a few integrals are required as evaluated in appendix A. Using these integrals, the

cosine Fourier coefficients for a single plate with the DRIA model can be computed. For the ith
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plate inclined at an angle ψi to the velocity vector, the Fourier coefficients are given by-

an,i =
1

2π

∫ 2π

0
Cd cosnψidψi

=
1

2π

∫ 2π

0

Ai
Aref

[
e−γ

2
i s

2
i

si
√
π

+ γi{1 + erf(γisi)}
(

1 +
1

2s2
i

)
+
ri
√
π

2
γ2
i {1 + erf(γisi)}+

ri
2si

γie
−γ2i s2i

]
cosnψidψi,

(5.22)

an,i =

Ai
2πAr

[
2
√
π

si
e−

s2i C
2
i

2 I0 + 2

(
1 +

1

2s2
i

)
×
√
πC2

i sie
− s2i C

2
i

2 (I0 − I1) +
riC2

i π
3/2

2

]
, n = 0,

Ai
πAr

[(
1 +

1

2s2
i

)
Ciπ +

riπ

12
siC3

i e
− s2i C

2
i

2

×(9I0 − 8I1 − I2) +
riCiπ
2si

e−
s2i C

2
i

2 (I1 + I0)

]
, n = 1,

Ai
πAr

[
2
√
π

si
e−

s2i C
2
i

2 I1 +

(
1 +

1

2s2
i

)√
πC2

i sie
− s2i C

2
i

2

×
(

3I0 − 2I1 − I2

3

)
+
riC2

i π
3/2

4

]
, n = 2,

Ai
πAr

[
2
√
π

s
e−

s2i C
2
i

2 Ik +

(
1 +

1

2s2
i

)√
πC2

i sie
− s2i C

2
i

2

×
(
Ik − Ik+1

2k + 1
+
Ik−1 − Ik

2k − 1

)]
, n = 2k, k ∈ Z+ − 1,

Ai
πAr

[
riπ

2
siC3

i e
− s2i C

2
i

2

(
Ik − Ik+1

2k + 1
+
Ik+1 − Ik+2

2(2k + 3)

+
Ik−1 − Ik
2(2k − 1)

)
+
riCiπ
2si

e−
s2i C

2
i

2 (Ik+1 + Ik)

]
, n = 2k + 1, k ∈ Z+.

(5.23)

where Ik is the modified Bessel function of the first kind and Ik = Ik(− s2C2
2 ) is implicit. The

sine coefficients can be computed by replacing cosnψ by sinnψ. All the integrals turn out to be 0.
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Therefore,

bn,i =
1

2π

∫ 2π

0
Cd sinnψidψi

=
1

2π

∫ 2π

0

Ai
Aref

[
e−γ

2
i s

2
i

si
√
π

+ γi{1 + erf(γisi)}
(

1 +
1

2s2
i

)
+
ri
√
π

2
γ2
i {1 + erf(γisi)}+

ri
2si

γie
−γ2i s2i

]
sinnψdψi

= 0.

(5.24)

In order to compute the Fourier coefficients w.r.t θ, it should be recognized that eqs. 5.23

and 5.24 are the Fourier coefficients w.r.t ψ. Therefore,

Cd,i =
∞∑
n=0

(an,i cosnψi + bn,i sinnψi)

=

∞∑
n=0

(an,i cosn(θ − δi) + bn,i sinn(θ − δi))

=
∞∑
n=0

(an,i cosnδi cosnθ + an,i sinnδi sinnθ)

=
∞∑
n=0

(An,i cosnθ + Bn,i sinnθ).

(5.25)

where

An,i = an,i cosnδi (5.26)

and

Bn,i = an,i sinnδi (5.27)

are the Fourier coefficients of the ith plate w.r.t the angle of rotation of the velocity vector.

Eqs. 5.23, 5.26 and 5.27 can be used to analytically calculate the Fourier coefficients of the DRIA

model for a flat plate with one side exposed to the flow. The Fourier coefficients of both the

adsorbate (Cd,ads) and substrate (Cd,s) are calculated separately using Eqs. 5.23 and 5.24 that are
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then combined using the orientation-independent fraction (f) using Eq. 2.16 to obtain the total

Fourier coefficients for the DRIA model. Note that the closed-form expressions are possible for the

substrate under the simplifying assumption that the accommodation coefficient does not depend

on the inclination of flow to the plate, i.e., Eq. 2.13 is used instead of Eq. 2.14 to calculate the

substrate accommodation coefficient.

In order to obtain the total drag-coefficient for the satellite, the drag-coefficients of the

individual plates are summed up as follows,

Cd =
N∑
i=0

Cd,i

=

N∑
i=0

∞∑
n=0

(An,i cosnθ + Bn,i sinnθ)

=

∞∑
n=0

[(

N∑
i=0

An,i) cosnθ + (

N∑
i=0

Bn,i) sinnθ]

=

∞∑
n=0

[An cosnθ + Bn sinnθ],

(5.28)

where An =
∑N

i=0An,i and Bn =
∑N

i=0 Bn,i are the total Fourier coefficients of the satellite.

In order to validate the analytical Fourier coefficients, the drag-coefficient of an inclined plate is

calculated using the DRIA model as well as its BFF expansion with the analytical coefficients. The

dependence of the accommodation coefficient on the angle of incidence of the flow is accounted

for in the DRIA model (Eq. 2.14) while in the Fourier model, the accommodation coefficient is

assumed to be independent of the angle (Eq. 2.13). As seen in Fig. 5.3, the drag-coefficients are

nearly identical with the two models.

5.2.2 Orbit-fixed Fourier (OFF) model

Along with being strongly dependent on the attitude of the satellite, the drag coefficient

is also a function of ambient parameters like temperature and mean molecular mass as seen in

chapter 2. The ambient parameters exhibit a long-period variation along with being dependent

of the location of the satellite along its orbit. Therefore, as the satellite orbits from dayside to
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Figure 5.2: Velocity vector and normal vector of an arbitrarily inclined plate in the body frame
(left); the same scenario depicted from the perspective of the plate (right)
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Figure 5.3: Drag-coefficient of an inclined plate using DRIA model and its BFF expansion

nightside and back, the drag coefficient exhibits a short period oscillation corresponding to the

orbital motion of the satellite superposed on a long period oscillation corresponding to the rotation

of atmosphere. The period of the short period oscillation is equal to the orbital period of the

satellite while the period of the long period oscillation is approximately one day. There are some

additional frequencies observed in the drag coefficient corresponding to the lat-long variation of

the ambient parameters. The amplitude of the short period oscillations dominates over the others.
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The short-period variation due to the ambient parameters is tied to the altitude variation of the

satellite as it orbits around the oblate Earth. The dominant effect of the altitude variation is on the

fraction of diffuse reemission. For highly eccentric orbits, the drag coefficient variation is significant

due to large changes in altitude. In this case, using a body-fixed Fourier model is not advantageous

since these variations are independent of the attitude of the satellite. These periodic variations can

be tied to the orbit itself. The Fourier expansion of the drag coefficient around the argument of

latitude of the satellite (u) in its orbit is written as,

Cd =

∞∑
n=0

(Ān cosnu+ B̄n sinnu). (5.29)

The nominal coefficients can be found by numerically integrating the chosen GSIM over an

orbit. The order of magnitude of the standard deviation for the coefficients is taken to be the same

as that of the nominal values.

The orbit-fixed model, unlike the body-fixed model, depends on the position and velocity of

the satellite since the argument of latitude depends on the satellite state. Therefore, the derivative

of the drag coefficient with respect to the position vector is given by

∂Cd
∂r

=

∞∑
n=0

(Ān
∂ cosnu

∂r
+ B̄n

∂ sinnu

∂r
). (5.30)

Similarly, the partials with respect to the velocity vector can be written. The partials of the model

with respect to the position and velocity can be derived by expressing the trigonometric functions

of the argument of latitude in terms of the satellite states.

cosu = r̂.n̂ (5.31)

where n̂ denotes the unit nodal vector and r̂ is the unit position vector. The unit nodal vector

is defined as the unit vector pointing from the center of the Earth towards the intersection point

between the satellite orbit and the equator during ascension. The derivative of the expression with

respect to the position vector is given by,

∂ cosu

∂r
= n̂T

(
I3×3 − r̂r̂T

r

)
+ r̂T

∂n̂

∂r
(5.32)
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The nodal vector can be expressed in terms of the angular momentum vector (h) and the unit

vector along the z-axis of the J2000 frame (ẑ) as,

n̂ =
ẑ × h
|ẑ × h|

(5.33)

where h = r × v. Taking the derivative of the nodal vector in terms of the position vector and

substituting in Eq. 5.32

∂ cosu

∂r
= n̂T

(
I3×3 − r̂r̂T

r

)
+ r̂T [˜̂z][ṽ]

(
n̂n̂T − I3×3

|ẑ × h|

)
(5.34)

where [z̃] denotes the skew-symmetric tilde matrix operator, signifying a cross-product as given

by eq. (3.27). In order to avoid singularities associated with the derivative of the sine term, it is

expressed as follows

sinu =
rz

r sin i
(5.35)

where rz is the z-component of the position vector and i is the inclination. The derivative of the

expression with respect to r can be derived as,

∂ sinu

∂r
=
rẑT − rzr̂T

r2
csc i− rz csc i cot i

r|ẑ × h|
ẑT [I3×3 − ĥĥT ][ṽ] (5.36)

where ĥ is the unit vector along the angular momentum. The derivatives of Eqs. 5.32 and 5.35

with respect to the velocity can be similarly derived.

∂ cosu

∂v
=
r̂T [˜̂z][˜̂r]

|ẑ × h|
(I3×3 − n̂n̂T ) (5.37)

∂ sinu

∂v
=
rz csc i cot i

r|ẑ × h|
ẑT [I3×3 − ĥĥT ][r̃] (5.38)

In order to calculate the derivatives of the sines and cosines of multiple angles in Eq. 5.30, the

following recursion formulae are used

∂ cosnu

∂r
= 2

(
∂ cosu

∂r
cos (n− 1)u+ cosu

∂ cos (n− 1)u

∂r

)
− ∂ cos (n− 2)u

∂r
(5.39)

∂ sinnu

∂r
= 2

(
∂ cosu

∂r
sin (n− 1)u+ cosu

∂ sin (n− 1)u

∂r

)
− ∂ sin (n− 2)u

∂r
(5.40)
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∂ cosnu

∂v
= 2

(
∂ cosu

∂v
cos (n− 1)u+ cosu

∂ cos (n− 1)u

∂v

)
− ∂ cos (n− 2)u

∂v
(5.41)

∂ sinnu

∂v
= 2

(
∂ cosu

∂v
sin (n− 1)u+ cosu

∂ sin (n− 1)u

∂v

)
− ∂ sin (n− 2)u

∂v
(5.42)

The orbit-fixed model derived above is valid only for inclined orbits since the argument of

latitude is undefined for equatorial orbits. In the latter case, the true longitude is used and the

partials can be derived accordingly. The model can be essentially derived for any fast variable such

as the eccentric anomaly and true anomaly.

The derivatives of the drag acceleration w.r.t the Fourier coefficients can be computed in a

manner similar to Eqs. 5.11-5.14.

∂adrag
∂Ān

= −1

2
ρ
Aref
m

v2
r û cosnu (5.43)

∂adrag
∂B̄n

= −1

2
ρ
Aref
m

v2
r û sinnu (5.44)

5.2.3 Body-Orbit Double Fourier (BODF) model

In an actual space environment, the satellite drag coefficient will generally vary due to changes

in both satellite orientation as well as ambient parameters in the orbit. Additionally, there will be

errors in the density model used in orbit determination with variations that are potentially periodic

with the orbit. In order to capture variations due to both attitude and orbit dependent factors, a

combination of the body-fixed and orbit-fixed models is desired while retaining the orthogonality

of the Fourier coefficients. Now, An and Bn in eq. (5.15) are time-varying due to their dependence

on ambient parameters such as molecular composition and temperature that show variations on

diurnal, seasonal, annual and longer timescales. As a first approximation, we can ignore variations

on these timescales since most orbit determination data-arcs are in the order of a day. But as

discussed in the previous section, variations on orbital timescales can be significant for orbit deter-

mination and prediction. Therefore. re-writing Eq. 5.15 as a function of the argument of latitude
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to depict the dependence of body-fixed Fourier coefficients on the orbit, we get

Cd =
∞∑
n=0

(An(u) cosnθ + Bn sinnθ). (5.45)

During periods of quiet geomagnetic activity, these variations will be nearly periodic with the

orbit. This allowed us to carry out a Fourier expansion of the drag coefficient w.r.t the argument

of latitude in the previous section. Similarly, the body-fixed Fourier coefficients can be expanded

into a Fourier series w.r.t. the argument of latitude.

An(u) =

∞∑
m=0

(Amn cosmu+ Bmn sinmu). (5.46)

Bn(u) =
∞∑
m=0

(Cmn cosmu+ Dmn sinmu). (5.47)

Substituting Eq. 8.19 and Eq. 5.47 in Eq. 5.45,

Cd =

∞∑
m=0

∞∑
n=0

(Amn cosmu cosnθ + Bmn sinmu cosnθ

+ Cmn cosmu sinnθ + Dmn sinmu sinnθ)

(5.48)

This model, called the body-orbit double Fourier (BODF) model, can track variations in the drag

coefficient due to both attitude and orbital motion. The BODF coefficients can be obtained by

carrying out a Fourier expansion of the analytical BFF coefficients obtained in the previous section

as follows

Amn =
1

π

∫ 2π

0
An(u) cosmudu, (5.49)

Bmn =
1

π

∫ 2π

0
An(u) sinmudu, (5.50)

Cmn =
1

π

∫ 2π

0
Bn(u) cosmudu, (5.51)

Dmn =
1

π

∫ 2π

0
Bn(u) sinmudu, (5.52)
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for m > 0 and,

A0n =
1

2π

∫ 2π

0
An(u)du, (5.53)

C0n =
1

2π

∫ 2π

0
Bn(u)du, (5.54)

and B0n = 0, D0n = 0 for m = 0. The partials of the model with respect to the position and

velocity are then given by

∂Cd
∂r

=

∞∑
m=0

∞∑
n=0

(Āmn
∂ cosmu

∂r
cosnθ + B̄mn

∂ sinmu

∂r
cosnθ

+ C̄mn
∂ cosmu

∂r
sinnθ + D̄mn

∂ sinmu

∂r
sinnθ)

(5.55)

∂Cd
∂v

=

∞∑
m=0

∞∑
n=0

(Āmn
∂ cosmu

∂v
cosnθ + B̄mn

∂ sinmu

∂v
cosnθ

+ C̄mn
∂ cosmu

∂v
sinnθ + D̄mn

∂ sinmu

∂v
sinnθ)

(5.56)

with the partials of the trigonometric terms given by Eqs. 5.32-5.42.

5.2.4 Body-Orbit Summation (BOS) model

The number of the coefficients to be estimated in BODF model can grow very quickly for

higher orders. For order 2 BODF, the coefficients to be estimated are 25 compared to 5 for order 2

orbit-fixed and single Fourier body-fixed model. In order to reduce computations associated with

the model, some of the higher order terms can be neglected. A rigorous analysis of shape model

of the satellite and the nature of drag coefficient variation in the orbit can reveal higher order

coefficients that can be neglected for a specific satellite. A simpler generic approach is to neglect

all the cross-coupling terms between the body angle and the argument of latitude. In other words,

keep the order for u to be zero while considering higher orders for φ and vice-versa. This reduces

BODF to a sum of BFF and OFF models. The resulting body-orbit summation (BOS) model is
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given by

Cd = Ā0 +
∞∑
m=1

(Ām cosmu+ B̄m sinmu) +
∞∑
n=1

(C̄n cosnθ + D̄n sinnθ) (5.57)

The partials of the model w.r.t position and velocity are the same as for OFF model since the

body-fixed terms do not depend on position and velocity of the satellite.

5.3 Validation using synthetic data

Before the Fourier models can be implemented in an actual orbit determination process, it is

necessary to test them on simulated examples. In this section, a batch estimator is used to process

simulated GPS measurements sampled at every 10 s with Gaussian noise of 5 m in position and

1 mm/s in velocity. The initial estimates of the position and velocity are generated by adding

an error of 10 m and 0.01 m/s respectively to the generated truth. The standard deviations are

taken to be the same values. To calculate the initial estimates of the Fourier coefficients, the

Sentman-Schamberg model in section 2.1.3 is integrated using the Fourier integrals.

In order to compare the prediction performance of the Fourier models against the standard

cannonball model, the in-track error and the altitude error between the truth and prediction are

calculated. The in-track error for the estimated and predicted trajectory is found as follows.

δI = a|u− û| (5.58)

where a is the nominal semi-major axis and u and û are the true and estimated/predicted argument

of latitude respectively. The altitude error can be calculated as

δH = |r − r̂| (5.59)

where r and r̂ are the norm of the true and estimated/predicted position vectors respectively. A

data arc of 10 orbits is processed in the batch filter, unless otherwise stated, and the estimated

initial state is propagated for 50 orbits. Therefore, the orbit prediction is done for 40 orbits. In all

the results, order 0 refers to the standard cannonball model.
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5.3.1 Simulation scenario 1

Th purpose of the first simulation scenario is to analyze the performances of the BFF and

OFF models separately. Therefore, the drag-coefficient is assumed to vary either due to changes in

attitude or changes in ambient parameters. A simplified force model is used to generate the true

trajectory comprising of the two body force and atmospheric drag, therefore a = atwo−body+adrag.

In order to isolate the effects of atmospheric drag, other perturbation forces are not included.

NRLMSISE-00 is used to model the atmospheric density (ρ). There’s no dynamics mismatch in the

filter and only the position, velocity and Fourier coefficients are estimated. The standard deviation

of the Fourier coefficients is taken as their orders of magnitude. This is done so as to constrain

the magnitudes of the estimated coefficients and to prevent the filter from assigning arbitrarily

large values to them. This problem is frequently encountered in gravitational field estimation [112].

The same analytical model is used to compute the truth and nominal coefficients. To calculate

the nominal BFF coefficients, the ambient conditions need to be fixed at a point in time, which is

taken to be the first time instant of the simulation. Since the Fourier series is being truncated at a

low order for estimation, the nominal Fourier series does not capture the true drag coefficient. In

addition, arbitrary errors sampled from a Gaussian distribution with zero mean and the assumed

covariance are added to the nominal coefficients. The diagonal initial covariance matrix, can then

be easily formulated. Even though a relatively high-order Fourier series is needed to approximate

the true drag coefficient accurately (0.01 % relative error for order 20), most of the drag coefficient

variation can be captured by a few Fourier coefficients during the estimation process.

In order to evaluate the Fourier models, two satellites in different orbital regimes are taken

into consideration. The reported drag coefficients are normalized with a constant reference area of

0.36 m2 for case 1 and 24 m2 for case 2. All the cases considered are summarized in table 7.2.
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Case Attitude profile/test scenario Drag coefficient model

1.1 Nadir pointing Body-fixed Fourier

1.2 Random slewing Body-fixed Fourier

1.3 Randomly tumbling Body-fixed Fourier

2.1 Inertially stabilized Body-fixed Fourier

2.2
Inertially stabilized with
yaw maneuver

Body-fixed Fourier

2.3
Nadir pointing with
ambient parameter
variation

Orbit-fixed Fourier

Density mismatch
in cases 2.1 and 2.3

Body-fixed Fourier
and orbit-fixed Fourier

Table 5.1: Summary of simulation cases. Note that in all the cases other than 2.3, ambient
parameter variation is not considered i.e. the attitude and ambient parameter dependence of the
drag coefficient are considered separately

5.3.1.1 Case 1

A cubical satellite of mass 83 kg with a simple geometry at an altitude of around 600 km is

considered to analyze the performance of the body-fixed Fourier model. The initial orbital elements

in order to simulate the truth are given in table 5.2.

Element Value

a 6971 km

e 0

i 97.80

Ω 00

u 00

Table 5.2: Initial orbital elements of first candidate satellite to generate the reference trajectory

A simple shape model shown in fig. 5.4 is considered. The shape model is arbitrary and

assumed to be cubical with dimensions 60 cm x 60 cm x 60 cm is taken, with the nadir and

zenith face areas double the rest of the faces due to the presence of an antenna on the nadir face.

Shadowing and multiple reflections due to the antenna have not been considered. A diagonal inertia

matrix with principal values [3, 2.5, 5] kg.m2 is assigned. The satellite is assumed to be covered in

Gallium Arsenide panels except the nadir face which is assumed to be made of Aluminum. The
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average satellite wall temperature is taken to be 300 K [73]. The satellite wall temperature will

vary along the orbit but the constant value is justified since the sensitivity of the drag coefficient

to the outer wall temperature is substantially lower than the other parameters [64]. Three modes

of attitude stabilization are considered.

(1) Case 1.1 Nadir-pointing—An nadir-pointing satellite always has its leading face (positive

x in body frame) towards the flow. Therefore in a static atmosphere, the flow unit vector

would be perpendicular to the satellite leading face resulting in a constant drag coefficient.

The BFF model will be equivalent to the cannonball drag coefficient in this case. But since

the atmosphere is co-rotating with the Earth, there is a periodic variation of the flow angle

with the leading face which results in a small periodically varying component in the drag

coefficient. The winds in the atmosphere contribute towards a random component in the

drag coefficient variation and will be considered in the simulation scenario 2.

(2) Case 1.2 Random periodic slewing—It is assumed that the satellite performs random slew-

ing within a cone periodically, for say, imaging purposes. The satellite is taken to be

nominally nadir pointing while slewing within a cone of 300 every 10, 20 and 30 minutes.

The axis of the cone points towards the center of the Earth.

(3) Case 1.3 Randomly tumbling satellite—In order to study the performance of the Fourier

model in an extreme case, a randomly varying attitude profile is taken. In order to simulate

a separatrix motion, the angular velocity along the axis of intermediate inertia is taken to

be the maximum.

Due to the planes of symmetry in the satellite model, many of the Fourier coefficients turn

out to be zero. In particular, all the Bmn coefficients are zero. Dmn is always zero for the GSIM

considered here. For Amn, only the even elevation orders and multiples of four for the azimuthal

orders are non-zero. The difference between the order 20 BFF model and the GSIM is plotted in

fig. 5.5.
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Figure 5.4: Simplified shape model of the satellite in case 1 with the defined body frame

When the satellite is nadir-pointing, there’s a very small periodic oscillation in the drag

coefficient. The relative velocity vector varies in the range [−3.80, 3.80] in θ while in φ, the variation

is negligible. Therefore, the double Fourier series reduces to a single series in this case. As noted

before, the Fourier coefficients are zero for the azimuthal direction till order 4. Therefore, only the

order 4 Fourier coefficient for θ is estimated along with the order 0 (cannonball) coefficient in the

filter. The true drag coefficient, and the order 0 and order 4 drag coefficient estimates are plotted

in fig. 5.6 (left). As can be seen in the figure, the drag coefficient variation is very small due to the

atmospheric co-rotation. The in-track error and altitude error for the Order 0 (standard cannonball)

and Order 4 BFF models are plotted in fig. 5.6 (right). Since the drag coefficient variation due

to the atmospheric co-rotation is almost negligible, the improvement with Order 4 BFF model is

not significant. As can be seen in fig. 5.6, the order 4 Fourier drag coefficient oscillates around the

cannonball estimate and does not track the truth. The marginal improvement observed in this case

is due to a better fit to the measurements that leads to an improved initial state estimate.

A periodic random slewing of the satellite within a cone of 300 is considered as the second

attitude profile. Three different periods are considered for the variation - 10, 20 and 30 minutes

in order to see if the Fourier model is able to capture variations of different frequencies. The

drag coefficient variation for the 10 minute period slewing is plotted in fig. 5.7 (left). The drag

coefficient changes in sudden steps since the attitude is assumed to change in steps after every
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Figure 5.5: Difference in the drag coefficients between the Fourier model of order 20 and the physical
model for case 1

10 minutes. Within the period of 10 minutes, the small variation in drag coefficient is due to

the co-rotation of the atmosphere. In this case, the drag coefficient varies in both elevation and

azimuth. There are non-zero coefficients below order 4 which capture variations in elevation. But

as noted in the previous case, the coefficients below Order 4 are zero for the azimuth direction.

Therefore, when a BFF model of a smaller order is used to estimate the drag coefficient, the effects

of azimuth variation are absorbed in the non-zero coefficients corresponding to elevation. This

results in a degradation of performance compared to the standard cannonball model. This result

is quite interesting as it points out the significance of choosing the order of the Fourier model with

due care. An arbitrary order Fourier model chosen without any regards to the shape model of

the satellite and the attitude profile under consideration may actually degrade the performance

compared to the cannonball model as shown by this case.

With an Order 4 BFF model, there’s a significant improvement in the performance as shown

in fig. 5.7 (right). Such a trend is seen in all the frequencies considered. The improvement in

the performance with the order 4 model cannot be solely attributed to a better drag coefficient

modeling since the estimated drag coefficient does not accurately track the true drag coefficient at

all time instants as can be seen in fig. 5.7 (left). A better fit to the measurements which results in

an improved initial state estimate complements the better drag coefficient modeling in providing
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Figure 5.6: Case 1.1: True and estimated drag coefficient (left) and estimation/prediction errors
(right) with order 0 (standard cannonball) and order 4 BFF model for a nadir-pointing satellite.
The prediction errors are quite small since an idealized force model, with no mismatch in density
or ambient parameters, has been considered

an improved prediction performance.

The third attitude profile considered for analysis is that of a randomly tumbling satellite.

The initial Euler angles are taken to be 700 roll, 700 pitch and 700 yaw. The angular velocities along

the x, y and z axes are taken to be [0.1, 0.5, 0.1]0/s. An unstable separatrix motion is considered

with the angular velocity taken to be maximum around the axis of intermediate inertia. The drag

coefficient variation is plotted in fig. 5.8 (left). The drag coefficient seems to vary periodically due

to the planes of symmetry present in the shape model of the satellite. On closer inspection, it can

be seen that the drag coefficient does not exactly repeat with each oscillation.

The improvement obtained using a BFF model is negligible in this case as can be seen in

fig. 5.8 (right). For a randomly tumbling satellite, the drag-coefficient variations average out and

a cannonball model is sufficient for the drag-coefficient estimation.

5.3.1.2 Case 2

A satellite of mass 3850 kg with fairly complex geometry at an altitude of 407 km is considered

as the second case. The orbital regime is chosen due to the significant effects of drag experienced at
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Figure 5.7: Case 1.2: True and estimated drag coefficient for a satellite slewing within a cone of 300

every 10 minutes (left) and estimation/prediction errors (right) with order 0 (standard cannonball)
and order 4 BFF models for a satellite slewing randomly within a 300 cone every 10 minutes (first
row), 20 minutes (second row) and 30 minutes (third row)

such a low altitude. The initial orbital elements are given in table 5.3. The model, shown in fig. 5.9,

Element Value

a 6778 km

e 0

i 650

Ω 00

u 00

Table 5.3: Initial orbital elements of second candidate satellite for truth generation

is loosely based on NASA’s Global Precipitation Measurement (GPM) satellite [22]. It is assumed

that the satellite consists of two large solar panels with areas 16.45 m2. In order to maximize solar

power and minimize atmospheric drag, one solar panel is feathered to the flow while the other solar

panel tracks the Sun. The feathered solar panel always contributes towards the tangential drag

and hence it is added as a constant to the drag coefficient. The satellite bus is assumed to be fixed

to the tracking solar panel and hence inertially stabilized. The dimensions of the satellite bus and

solar panels are defined in fig. 5.9. Additional areas with values 1, 0.75, 1.5, 1.25 and 0.25 m2 are

added to the cuboidal faces in the +x, -x, +y, -y and +z directions to account for protrusions etc.

The mean molecular mass of the satellite wall is taken to be different for each surface due to the
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Figure 5.8: Case 1.3: True and estimated drag coefficient (left) and estimation/prediction errors
(right) with order 0 (standard cannonball) and Order 4 BFF models for a randomly tumbling
satellite

presence of different components on each side of the satellite. This is done in order to make the

model asymmetric. Two attitude profiles are considered—

(1) Case 2.1 Inertially stabilized—The satellite is assumed to be inertially fixed with one solar

panel always feathered to the flow. Therefore, the dominant variation of the flow direction

is in the elevation angle (φ).

(2) Case 2.2 Yaw maneuver—It is assumed that the satellite performs a 1800 yaw maneuver

with a duration of half an orbit.

In all the above cases, the dependence of drag coefficient on the ambient parameters has not been

considered. In addition to being a function of the satellite orientation, the drag coefficient has

an almost periodic variation due to its dependence on atmospheric parameters such as molecular

composition and temperature. The variation is not exactly periodic since the satellite is traversing

different regions of the atmosphere in each orbit due to the co-rotation of the atmosphere with the

Earth. But it serves as a close approximation during stable atmospheric conditions. During solar

flares and/or geomagnetic storms, the drag coefficient may vary significantly from one orbit to the

other and should be analyzed in further studies. The following case is therefore considered to test
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the OFF model

(1) Case 2.3 Ambient parameter variation - In order to account for the ambient parameter

variation, a nadir-pointing profile is considered and the atmospheric parameters used to

calculate the true drag coefficient are allowed to vary throughout the orbit.

The performance of the Fourier models will be affected by any errors in the atmospheric density

model used in the filter. A preliminary analysis of the performance of these models in the presence

of density mismatch is presented as the last case.

Figure 5.9: Simplified shape model of the satellite in case 2 with the defined body frame. The body

z-axis points towards the Sun

Most of the Fourier coefficients for this satellite are non-zero due to the asymmetrical shape

model in contrast to the previous one. For an inertially stabilized attitude profile, the drag coef-

ficient variation is essentially in the elevation direction. There’s a small variation in the azimuth

direction as seen in Case 1.1 but can be ignored without any loss in accuracy. Due to the absence of

planes of symmetry in this case, all the even Amn coefficients for both the directions are non-zero.

The drag coefficient is varies periodically as seen in fig. 5.10 (left). It is interesting to compare

the performance of the higher-order BFF models with the standard cannonball model when used

in conjunction with a varying cross-sectional area as is the standard in OD, i.e. Aref in eq. (1.1)

is taken to be the instantaneous cross-sectional area. It is evident from fig. 5.10 (right) that all

higher order body-fixed models perform better than the Order 0 model, even when the varying

cross-sectional area is used with the standard cannonball (represented by the cyan curve).
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Figure 5.10: Case 2.1: True and estimated drag coefficient (left) and estimation/prediction errors
(right) with order 0 (standard cannonball) and BFF models for an inertially stabilized satellite

If the satellite performs an attitude maneuver, a temporary aperiodic component is introduced

in the drag coefficient. In this case, there are dominant components of the drag coefficient variation

in both the azimuth and elevation directions in the body frame for the duration of the maneuver. An

example of a 1800 yaw maneuver with a duration of half an orbit is analyzed. The drag coefficient

variation is shown in fig. 5.11 (left). The maneuver takes place between the second and the third

orbit with a decrease in the drag coefficient during the maneuver. The BFF models track the drag

coefficient and respond to the change during the yaw maneuver. With the higher order models,

the secular as well as the short period errors are reduced as can be seen in fig. 5.11 (right). It is

interesting to note the significant change in the performance of the cannonball drag coefficient in

this case compared to the inertially stabilized attitude profile.

In all the above cases, these parameters were considered constant and the explicit dependence

of the drag coefficient on the attitude was studied. In order to analyze the variation of drag

coefficient solely due to ambient parameters, a nadir-pointing attitude profile with a constant-

direction relative velocity vector is considered. The nominal coefficients are arbitrarily assigned to

be 1 and the standard deviation around them is taken to be 10. In this case, the data for 18 orbits

i.e. a complete day is processed by the filter since the mean can be captured only with a minimum

of one day of data. The drag coefficient is shown in fig. 5.12 (left). It can be seen that along with a
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Figure 5.11: Case 2.2: True and estimated drag coefficient (left) and estimation/prediction errors
(right) with order 0 (standard cannonball) and BFF models for an inertially stabilized satellite
with a short duration yaw maneuver

periodicity of the drag coefficient in an orbit, there’s a superposed trend with a period of around 18

orbits (1 day). This period is due to the rotation of the Earth (and atmosphere). The OFF model

being dependent solely on the argument of latitude, cannot capture slowly varying periodic errors.

The relatively large amplitude orbital variation of the drag coefficient is mainly due to the altitude

variation as a result of Earth’s oblateness. The in-track and altitude errors for the higher order

Fourier models are shown in fig. 5.12 (right). The higher order models show a similar secular error

as the Order 0 model but the short period oscillations in the error are reduced. The improvement

for all the higher order models is nearly the same and therefore not distinguishable in the figure.

In real orbit determination scenarios, the atmospheric density model used in the filter will

generally not be perfect. Since the drag force contains a product of drag coefficient and atmospheric

density as seen in eq. (1.1) and the drag coefficient is the only parameter being estimated, any errors

in the atmospheric density model will be absorbed in the estimate of the drag coefficient in the

filter, in order to obtain the ‘best’ fit to the measurements [66]. In the case of a time-varying drag

coefficient model such as the Fourier models with multiple parameters, the density model errors are

absorbed by the parameters being estimated, i.e. the Fourier coefficients. As a result, the effective

drag coefficient estimate will diverge from its true value. Due to the presence of such model errors,
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Figure 5.12: Case 2.3: True and estimated drag coefficient (left) and estimation/prediction errors
(right) with order 0 (standard cannonball) and OFF models for a nadir-pointing satellite due to
periodic variation of ambient parameters

the orbit prediction accuracy can be significantly degraded even though an apparently ‘good’ fit

to the measurements is obtained. The degradation of orbit prediction accuracy will occur when

density model errors are present whether a constant cannonball drag coefficient model is used in the

filter or a time-varying model such as the Fourier model is used. It is important to analyze whether

the prediction performance of the Fourier models degrades more than the cannonball model.

The modelled atmospheric density will have errors from various sources that can then get

absorbed in the estimated Fourier coefficients. One of the primary sources of error in the different

density models are inaccurate space weather parameter forecasts. The predicted F10.7 and Ap

indices that are input to NRLMSISE-00 differ from the true values. The errors in F10.7 and Ap are

generally within± 20-40 SFU and 20 γ (10 Ap) respectively but the prediction becomes worse during

solar maximum and geomagnetically active conditions [129]. Therefore, a model-plant mismatch in

the atmospheric density model is introduced through the daily geomagnetic index (Ap) value. The

truth is simulated with Ap = 4 while in the filter, Ap = 40 is considered. The density difference

due to the mismatch is plotted in eq. (8.18). As can be seen in the figure on the right in eq. (8.18),

the density error is periodic, with higher order frequencies present in the error.

The performance of the body-fixed model in the presence of density errors is tested through
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case 2.1. All the parameters in the test case are kept the same except the Ap index which is taken as

40 in the filter density model for all the estimation runs discussed including the standard cannonball

i.e. order 0 model. The estimated drag coefficients, shown in fig. 5.14 (left), deviate significantly

from the true drag coefficient since the Fourier coefficients absorb the density errors. The estimated

drag coefficient oscillates to lower values than the true drag coefficient since the density model in

the filter is higher than the true density. The prediction errors of the higher-order Fourier models

are still significantly smaller than the cannonball model as shown in fig. 5.14 (right). But the

improvement in performance becomes less predictable in the presence of density errors since in this

case the order 4 Fourier model performs worse than order 2.

Figure 5.13: Density models in the truth and filter (left) and the difference between the densities
(right)

Similarly, the performance of the OFF model is tested in the presence of density errors

through case 2.3. The same density mismatch is introduced by taking Ap = 40 in the filter. As

expected, the estimated drag coefficients do not track the true drag coefficient as shown in fig. 5.15

(left). The performance of the higher order OFF models is plotted in fig. 5.15 (right). There’s a

significant improvement in the prediction errors with the higher order models over the standard

cannonball model, especially after order 1. The improvements with the higher order models is

related to the higher order frequencies present in the density error as seen in eq. (8.18). Since the

OFF model is tied to the satellite’s position in its orbit, the Fourier coefficients are able to absorb
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Figure 5.14: Density errors in case 2.1: True and estimated drag coefficient (left) and estima-
tion/prediction errors (right) with order 0 (standard cannonball) and BFF models for an inertially
stabilized satellite in the presence of density model errors in the filter

periodic errors in the drag force other than due to the drag coefficient variation. Specifically, the

model is able to reduce estimation errors resulting due to periodic errors in the atmospheric density.

Figure 5.15: Density errors in case 2.3: True and estimated drag coefficient (left) and estima-

tion/prediction errors (right) with order 0 (standard cannonball) and OFF models for a nadir-

pointing satellite due to variation in ambient parameters in the presence of density model errors in

the filter
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5.3.2 Simulation scenario 2

In the second scenario, realistic orbit determination scenarios are simulated by considering

perturbations due to third-body forces of Sun and Moon, Earth’s gravitational harmonics and

SRP. Variation in the drag-coefficient due to the coupled effects of changes in attitude and ambient

parameters is simulated. The forces considered for the true trajectory and the filter model are

given in table 5.4.

Table 5.4: Force models for truth and filter dynamics

Force Parameter True dynamics Filter dynamics

Geopotential Order and degree 10x10 10x10

Third-body forces
of Sun and Moon

Ephemerides JPL DE- 430 JPL DE-430

SRP Model Panel method
Cannonball,

Cr is estimated

Atmospheric drag

Density model NRLMSISE-00 NRLMSISE-00

Drag coefficient GSIM
Fourier model,
Coefficients are

estimated

Winds HWM-07 None

Attitude noise None N (0, 0.10)

A cuboidal satellite with mass 3400 kg with perigee altitude at 350 km is considered. The

initial orbital elements of the satellite are given in table 5.5. A box-wing shape model for the

satellite is considered, similar to case 2 in scenario 1.

In the last simulation scenario, the initial estimates of the coefficients were computed for the

different models which allowed us to neglect the coefficients whose initial estimates were zero. But

that assumes knowledge of the shape model and drag coefficient variation in orbit. In this scenario,

no apriori knowledge of the Fourier coefficients is assumed and therefore all the coefficients up to

the order considered are estimated. The coefficients are arbitrarily initialized to 1 and the standard

deviations are initialized to 10. The various cases for which the Fourier models are tested are
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Table 5.5: Initial orbital elements

Element Value

Apogee altitude 550 km
Perigee altitude 350 km

Eccentricity 0.012
Inclination 650

Argument of perigee 400

Right ascension of ascending node 00

True anomaly 00

Initial epoch 2017− 05− 29 00 : 00 : 00 UTC

summarized in table 5.6. It should be noted that the reference cross-sectional area in eq. (1.1) is

kept constant for all the cases and drag-coefficient models. Whereas the body-dependent models

such as BFF, BODF and BOS account for the varying cross-sectional area in the drag-coefficient,

the cannonball and OFF models do not. Therefore, while using OFF and cannonball models, the

drag equation does not account for the changing attitude. The cases considered in this scenario are

summarized in table 5.6.

Table 5.6: Summary of simulated cases

Cases Description

Nadir pointing
The body z-axis points

towards the center of Earth

Inertially stabilized The body z-axis tracks the Sun

Quasi-inertial stabilization
The body z-axis tracks the Sun
in light and points towards the

Earth center in shadow

Attitude maneuver
Quasi-inertial stabilization until

end of second day and nadir pointing
afterwards

Geomagnetic activity errors
Biases in the Ap indices that result
in density errors in the filter model

Solar activity errors
Biases in F10.7 indices that result

in density errors in the filter model

It is valuable to see which models fit the ‘true’ drag coefficient the most accurately in a least-
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squares sense. The Fourier models are fit to the simulated ‘true’ drag coefficients as a function of the

body angles and/or argument of latitude (depending on the model considered) using the nonlinear

least squares fit function in MATLAB. A one-day time profile of the ‘true’ drag coefficients for

the inertially stabilized case is considered, similar to the orbit determination scenario. The root-

mean-square (RMS) values of the fit are presented in table 5.7. The RMS values are progressively

smaller from OFF to BODF. For BODF, there’s a significant drop in the RMS value due to the

larger number of fitting parameters as compared to the other models that leads to overfitting. A

smaller RMS value for the fit does not imply that the performance for the model will be better in

orbit determination but it does give an estimate of how well the model can approximate the true

drag coefficient if the truth is available.

Table 5.7: RMS values for error between true and least-squares fit drag coefficients with different
Fourier models for the inertially stabilized case. The smallest RMS value is highlighted

OFF
Order 2

BFF
Order 2

BOS
Order 2

BODF
Order 2

RMS 0.234 0.225 0.211 0.122

1. Nadir pointing

The satellite is assumed to be nadir pointing. Therefore, the variation of relative velocity

vector in body frame is only due to co-rotation of the atmosphere and the eccentricity of the orbit.

Since the effect of the co-rotating atmosphere on drag coefficient is very small as seen in scenario

1, it can be neglected without any significant degradation in accuracy. The variation in velocity

vector due to the eccentricity of the orbit is even smaller (< 10) resulting in a negligible effect on

the drag coefficient. Therefore, the drag coefficient varies solely due to ambient parameters. The

performance of order 2 OFF model is compared to standard cannonball (order 0) in fig. 5.16. The

estimated and true drag coefficients are also plotted in the same figure.

The OFF order 2 model performs better than the standard cannonball model, resulting in a

50 % improvement in accuracy at the end of 3 days of prediction. But the errors are quite small

to begin with since the only dynamics error is in the drag and SRP coefficients, and due to upper
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atmospheric winds. It can be seen in fig. 5.16 that the estimated drag coefficient does not follow

the true drag coefficient very well. The improvement in performance is mainly because the model

provides a better orbit fit resulting in a more accurate initial state.

Figure 5.16: Nadir pointing: True and estimated drag coefficients (left) and in-track error (right).
Order 0 refers to cannonball model.

2. Inertially stabilized

The satellite attitude is considered to be inertially stabilized such that the solar panels are

tracking the sun. The variation of drag coefficient is due to the changing orientation with respect

to the atmospheric flow and ambient parameters. The performance of BFF and OFF models are

expected to be similar in this case since the rate of variation of the body angle is the same as that

of argument of latitude other than a phase difference. But since the argument of latitude is tied to

the orbit, its period varies with each iteration of the batch estimator as corrections are added to

the initial state. In contrast, the body angle variation remains the same. Therefore, the results for

BFF and OFF models are different as shown in fig. 5.17.

All the higher orders perform better than the standard cannonball model (order 0). Order 2

BODF performs the best, resulting in almost a 90 % improvement in the in-track prediction error

over cannonball. In order to understand the relative performances of the models, it is useful to

look at the error statistics of the estimated states for the different models. Table 5.8 lists the RMS

values of the post-fit residuals in the radial-tangential-normal (RTN) frame, the norm of the initial
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Figure 5.17: Inertially stabilized: True and estimated drag coefficients (left) and in-track error
(right). Order 0 refers to cannonball model. The estimation window is until the end of the first
day and the rest is prediction.

errors in the estimated states and the RMS values of the drag coefficient errors. As can be seen from

table 5.8, the overall prediction errors are an interplay between improvements in orbit fit, estimated

SRP coefficient and effective drag coefficient. Even though the OFF model provides the best

estimates of the initial position and velocity, better estimates of the drag coefficient are obtained

using the other models. It is difficult to conclude anything about the prediction performance of the

Table 5.8: RMS and norm of errors for inertially stabilized satellite. The smallest values for each
parameter are highlighted

Parameter
Error RMS/Norm

Order 0 OFF BFF BOS BODF

Post-fit
residuals

(m)

R 1.5804 1.5044 1.5041 1.5040 1.5039
T 1.7929 1.5148 1.5110 1.5106 1.5096
N 1.4996 1.4995 1.4995 1.4995 1.4995

Initial error
Position (m) 1.260 0.046 0.134 0.152 0.201
Velocity (m) 8.994e-4 4.804e-5 1.347e-4 1.670e-4 2.303e-4
Cr 1.15 0.13 0.19 0.01 0.03

Drag
coefficient

Total 1.11 0.91 0.86 0.84 0.88

models through the tabulated metrics due to the presence of other unmodeled dynamics in the filter

such as time-varying SRP and winds that affect the velocity magnitude. For example, even though
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the error in initial estimates of the states as well as the coefficient errors are higher for BODF

and BFF than BOS, the latter performs worse as seen in fig. 5.17. Therefore, in order to assess

the performance of the models in an idealized scenario with no unmodeled dynamics other than

drag-coefficient, the true SRP force is assumed to be known in the filter and Cr is not estimated.

The winds and attitude noise are also removed from the simulated truth. The in-track errors are

plotted in fig. 5.18. As seen in fig. 5.18, the prediction performance of the BFF and BODF models

Figure 5.18: Inertially stabilized: In-track errors for the different Fourier models with no unmodeled
dynamics in the filter other than drag coefficient

are similar in the absence of unmodeled dynamics other than drag coefficient. The advantage of

BODF is that it provides a better fit when other force parameters are being estimated in the filter.

Order 2 BOS still performs worse than BFF and BODF even though the error in the initial state

estimates and the RMS of drag-coefficient error is smaller for BOS (not presented here for the sake

of brevity). Why should the BOS perform worse when the overall errors in the drag acceleration are

smaller for the model? The answer lies in the process of integrating the dynamics itself. Consider

two time-varying arbitrary states x(t) and y(t) with their derivatives given by ẋ(t) and ẏ(t). The

states at any time are given by

x(t) = x0 +

∫ t

t0

ẋ(t)dt
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y(t) = y0 +

∫ t

t0

ẏ(t)dt (5.60)

where x0 and y0 are initial states. The error between the two states can be written as

(x(t)− y(t)) = (x0 − y0) +

∫ t

t0

(ẋ(t)− ẏ(t))dt (5.61)

The error between the two states is a function of the error between the acceleration integrals.

Therefore, even if the RMS of the error between the two accelerations is small, the error in the

propagated states can be large if the difference between the integrals of the accelerations is signifi-

cant. This provides a clue for the reason behind the prediction performance of BOS compared to

BFF and BODF. The integrated drag acceleration error is essentially an integral of the drag coef-

ficient error (∆Cd) weighted by the density (ρ(t)), square of the relative velocity (Vr(t)) and other

constant parameters. Even if the drag coefficient error is smaller for a model, the weighted sum may

not be. In other words,
∫ t
t0

∆Cd(t)dt being smaller for BOS does not imply
∫ t
t0

∆Cd(t)ρ(t)V 2
r (t)dt

is smaller as well. For fig. 5.18, the integral of the drag acceleration error in the relative velocity

direction (compared to the true acceleration) for BOS is 3.72×10−4 m/s2 compared to 1.87×10−4

m/s2 for BFF and BODF. Similarly for fig. 5.17, the integrated drag acceleration error for BOS is

7.65× 10−4 m/s compared to 7.16× 10−4 m/s for BFF and 5.49× 10−4 m/s for BODF.

3. Quasi-inertial stabilization

For many real satellites, the solar panels track the Sun when in light and become feathered to

the atmosphere in shadow to reduce drag effects. A similar scenario is simulated in this case where

the satellite is inertially stabilized in light and rotates gradually on entering shadow to become

nadir pointing. The performance of the Fourier models is similar to the previous case as seen in

fig. 5.19 though the in-track error difference between BFF and BOS is smaller.

The post-fit residuals, initial state errors, RMS of error in drag coefficient and integrated

drag-acceleration error are provided in table 5.9. The BFF model provides the most accurate drag

coefficient estimates while BOS provides the most accurate SRP coefficient estimates. From the

discussion in the last section, order 2 BODF performs the best as it has the smallest integrated
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Figure 5.19: Quasi-inertial stabilization: True and estimated drag coefficients (left) and in-track
error (right). Order 0 refers to cannonball model. The estimation window is until the end of the
first day and the rest is prediction.

drag acceleration error value as seen in table 5.9. Order 2 BFF performs slightly better than order

2 BOS even though the integrated acceleration error is larger for the former. From eq. (5.61) the

final error in the states is dependent on the initial state errors as well, which is smaller for BFF.

4. Attitude maneuver

Due to the large atmospheric drag effects of solar panels on a satellite orbit, they may

be kept feathered to the flow for specific periods [22]. This is simulated by assuming that the

satellite is quasi-inertially stabilized until the end of second day and then remains nadir pointing

on entering shadow for the rest of prediction period, i.e., an attitude maneuver is assumed to take

place outside the estimation interval. The estimated Fourier coefficients and therefore, the effective

drag coefficients remain the same as the previous case since there’s no change during the estimation

interval. But the predicted drag coefficients after day 2 change for the body dependent terms as

the orientation changes. The in-track errors until day 2 and for the complete prediction period are

plotted in fig. 7.3 and the predicted drag coefficients after the maneuver are plotted in fig. 5.21.

All the Fourier models perform better than the cannonball but the improvement with order

2 OFF is negligible in this case. Order 2 BODF performs better than order 2 BFF until day 2 and

the performance slightly degrades afterwards.
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Table 5.9: RMS and norm of errors for a quasi-inertially stabilized satellite. The smallest values
for each parameter are highlighted

Parameter
RMS/Error norm

Order 0 OFF BFF BOS BODF

Post-fit
residuals

(m)

R 1.5208 1.5177 1.5181 1.5175 1.5174
T 1.5505 1.5060 1.5030 1.5038 1.5003
N 1.5085 1.5085 1.5085 1.5085 1.5085

Initial error
Position (m) 0.365 0.088 0.086 0.113 0.174
Velocity (m/s) 5.562e-4 1.131e-4 4.033e-5 1.2387e-4 1.8874e-4
Cr 1.104 0.313 0.274 0.074 0.114

Drag
coefficient

Total 1.252 1.152 0.890 1.024 1.04

Integrated drag
acceleration error

Integrated 1.9e-3 1.3e-3 9.74e-4 8.92e-4 6.52e-4

Figure 5.21: Attitude maneuver: Predicted drag coefficients post-maneuver

As can be seen from table 5.10, order 2 BFF model provides the most accurate estimates for

drag coefficients pre and post-maneuver. But the integrated acceleration error is smaller for BODF

pre-maneuver, which is why it performs better than BFF. After the maneuver, the integrated

acceleration error is slightly larger for BODF.

The post-maneuver prediction is sensitive to the estimated Fourier coefficients and therefore,

their initial covariance. For example, constraining the covariance of the zeroth order term for all

the models to 1 leads to the prediction performance in Fig. 5.22. Whereas the BOS and BFF
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Figure 5.20: Attitude maneuver: In-track error until day 2 (left) and in-track error until day 4
(right). Order 0 refers to cannonball model. The estimation window is until the end of the first
day and the rest is prediction.

Table 5.10: Drag coefficient errors (RMS) and integrated acceleration errors for the different Fourier
models for a quasi-inertially stabilized satellite with an attitude maneuver

Parameter
RMS

Order 0 OFF BFF BOS BODF

Drag
coefficient

Pre-
maneuver

1.252 1.152 0.890 1.024 1.04

Post-
maneuver

1.408 1.279 0.750 0.856 0.886

Integrated drag
acceleration error

Pre-
maneuver

7.15e-4 4.86e-4 3.99e-4 3.94e-4 3.57e-4

Post-
maneuver

0.0125 0.0122 0.0073 0.0081 0.0074

models degrade in performance, the BODF shows a better prediction than Fig. 7.3. The estimated

Fourier coefficients are sensitive to the initial covariance in all test cases. But it is especially more

significant in this case because after the attitude maneuver, the body-fixed part of the resultant

drag-coefficient becomes constant at a larger error as depicted by the flatter portions of the curves

in Fig. 5.19. The sensitivity of the Fourier models to the initial covariance needs to be further

analyzed.

5. Density model errors

To simulate the effects of erroneous solar and geomagnetic activity indices in the density
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Figure 5.22: Attitude maneuver: In-track errors for the different Fourier models with a smaller
covariance for the zeroth order term

models on the performance of the Fourier models, biases are introduced individually in the indices

as follows.

The simulation duration is selected for a geomagnetically quiet period where the daily Ap

index for the four days is 3 or 4. In the filter density model, a constant bias is added to the Ap

indices for the four days of estimation and prediction. The analysis is carried out for both nadir

pointing and quasi-inertially stabilized attitude profiles. The maximum predicted in-track error for

both attitude profiles are plotted in Fig. 5.23.

It can be seen that all the Fourier models perform significantly better than the order 0 model.

Due to the periodic nature of Fourier models, the estimated Fourier coefficients absorb periodic

errors in density introduced by the Ap bias. Since the bias is introduced in both estimation and

prediction intervals, the density error trends remain the same throughout. As a result, the estimated

drag coefficient fits the dynamics well. But in reality, the current Ap index, i.e., the Ap index during

the estimation interval, will be known more accurately than the forecasted indices for the prediction

interval. Therefore, a bias is introduced in the indices, only during the prediction interval. As a

result, there are no errors in the density during the orbit determination interval and the estimated

drag coefficients do not respond to the Ap biases in the prediction. The performance of the models

for this case is plotted in Fig. 5.24. The maximum errors in Fig. 5.24 are much higher than Fig.
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5.23 due to the preceding reasons. The higher order models still perform better than order 0 but

the improvement is much smaller than Fig. 5.23 since the Fourier models cannot account for errors

in predicted values.

Figure 5.23: Maximum in-track prediction error as a function of bias in the Ap indices for nadir
pointing (left) and quasi-inertial (right) attitude profiles. The bias is introduced in both the OD
and OP intervals

The next case is selected for a period of solar minimum with the daily F10.7 values around 63-

67 SFU. A constant bias in all the forecasted indices is introduced. The performance of the different

models is compared in Fig. 5.25. Since NRLSMSISE-00 uses F10.7 index of the previous day, the

bias in daily F10.7 value affects the density model from the third day onward. But NRLMSISE-00

also uses an 81 day average of the F10.7 index centered on the current day. Therefore, the average

value is inaccurate for all the four days, with the error increasing for consecutive days of prediction

as more forecasted values are used to calculate the average. All the higher order Fourier models

perform better than the cannonball model.

5.4 Application to real data

In order to process real satellite measurement data with the Fourier models, a similar setup

as the simulations can be used. But a higher order gravity field is needed for an actual satellite.

Truncation of the gravity field at a low order and degree results in aliasing of the gravity field
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Figure 5.24: Maximum in-track prediction error as a function of bias in the Ap indices for nadir
pointing (left) and quasi-inertial (right) attitude profiles. The bias is introduced only in the OP
interval

with the non-gravitational force coefficients as discussed in chapter 4. Here, we simply take a ‘high

enough’ truncation degree and order (150× 150) of the gravity field in the filter model to minimize

these effects. An SRP force model higher in fidelity than the simulations is used where the force is

assumed to be acting along three mutually perpendicular directions known as three-constants model

[69]. Therefore, the state vector to be estimated consists of position, velocity, Fourier coefficients

and the three SRP constants.

5.4.1 Satellite with varying attitude

These models are applied to real data from a NASA satellite at 407 km. GPS and quaternion

data are available for the satellite for two time periods: Jan 1-6, 2017 and June 29- July 6, 2017.

The satellite consists of two large solar panels that track the Sun or are kept feathered to the flow

to reduce drag effects. One of the solar panels is canted at an angle to the satellite body. The

overall dimensions of the satellite are 5 m x 13 m x 6.5 m. The shape of the satellite is primarily

cuboidal but with multiple protruding and curved surfaces. A one-day data arc is processed in

the batch estimator and propagated for the rest of the available dataset. Predicted positions at

the GPS epochs are then generated using the propagated orbits. The position norm of the error
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Figure 5.25: Maximum in-track prediction error as a function of bias in the F10.7 indices for nadir
pointing (left) and quasi-inertial (right) attitude profiles.

between the actual GPS measurements and predicted positions is used to compare the performance

of the different Fourier models.

1. Dataset 1: June 29- July 6, 2017

In the first dataset, one solar panel is quasi-inertial for the first three days (two days of

prediction) and then becomes feathered to the atmosphere. The other solar panel remains feathered

to the atmosphere throughout. The body-dependent models are fixed to the rotating solar panel

in this case. In a real orbit determination scenario, there are unmodeled dynamics through various

sources such as atmospheric density and SRP. All these unmodeled dynamics are aliased in the

estimates of the Fourier coefficients. In the absence of ‘true’ drag-coefficients and initial states, the

only performance metrics are prediction errors and post-fit residuals. The prediction error at the

end of the three days and nine days are plotted in fig. 5.26. All the higher order Fourier models

perform better than the cannonball in this case. The BODF model reduces the prediction error by

almost 50 % at the end of 9 days. The RMS values of the post-fit residuals in the RTN frame are

given in table 5.11.

2. Dataset 2: Jan 1-6, 2017

In the second dataset, both the solar panels of the satellite are quasi-inertial, while the bus

is nadir pointing. Therefore, the body dependent models are fixed to the solar panels with the
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Figure 5.26: The error norm of predicted GPS positions for 3 days and 9 days; the estimation
window is not shown in the figure.

Table 5.11: RMS values of post-fit residuals in RTN frame for dataset 1

Parameter
RMS

Order 0 OFF 2 BFF 2 BOS 2 BODF 2

Post-fit residuals
(m)

R 5.7526 5.7259 5.7291 5.7259 5.7248
T 2.8488 2.8337 2.8474 2.8340 2.8314
N 2.7410 1.9962 1.9954 1.9961 1.9963

contribution of the bus being absorbed in the zeroth order coefficient. The prediction error at the

end of the one day and five days are plotted in fig. 5.27. For this dataset, the BFF and BODF models

show an improvement over cannonball model but the higher order OFF and BOS models perform

worse. Inspecting the RMS values of the post-fit residuals in table 5.12, the order 2 BOS and OFF

models actually provide a better fit than order 2 BFF and therefore, more accurate prediction in the

initial duration after the estimation arc. But as seen in section 5.3.2, smaller post-fit residuals do

not imply a better long-term prediction. The prediction performance is dependent on the integrated

drag acceleration error which cannot be computed due to the absence of a ‘truth’. The relative

performance of each model is dependent on the metric being used to evaluate the models. Note

here that the RMS values in the in-track direction are larger for dataset 2 than dataset 1 since

both the solar panels are quasi-inertial in this case leading to a higher drag force.
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Figure 5.27: The error norm of predicted GPS positions for 3 days and 5 days; the estimation
window is not shown in the figure.

5.4.2 GRACE data

POD from GRACE-B satellite in section 5.4 is processed in the batch estimator with different

density models to analyze the dependence of the Fourier models’ performance on density errors.

The satellite maintains a stable attitude w.r.t the local velocity vector, within 50. And as seen

for the nadir pointing case in section 5.3.1, the body-fixed models cannot capture changes in the

drag-coefficient for such small attitude changes. Therefore, only the OFF model is used in this case.

Four different density models/estimates as shown in fig. 5.28 are used in the filter - NRLMSISE-00,

JB2008, HASDM and estimates derived by Mehta et al. [73] by using RSM modeled drag-coefficients

[72]. There are significant discrepancies between the different density models that lead to differences

in the orbit determination and prediction errors as seen in fig. 5.29. The nominal drag-coefficient

in fig. 5.29 refers to the RSM drag-coefficients, i.e., the drag-coefficients are not estimated in this

case. The performance of the higher-order OFF corrections to the RSM model depends on the

density model being used - order 2 improves the prediction errors for JB2008 and HASDM but not

for the others. To obtain an improvement in the prediction errors with NRLMSISE-00, an order

8 model is needed (fig. 5.29 (c)) while an order 2 model with only the cosine coefficients suffices

for the Mehta et al. [73] densities (fig. 5.29(d)). It is evident that the estimated OFF coefficients
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Table 5.12: RMS values of post-fit residuals in RTN frame for dataset 2

Parameter
RMS

Order 0 OFF 2 BFF 2 BOS 2 BODF 2

Post-fit residuals
(m)

R 7.3482 5.7747 5.9454 5.7760 5.7596
T 7.5628 5.1512 5.4117 5.1441 5.1344
N 1.9603 1.9736 1.9916 1.9781 1.9559

are absorbing density model errors due to the high correlation of the model with the atmospheric

density. Therefore, for a higher-fidelity density, the magnitude of Fourier corrections are smaller as

seen in fig. 5.29 (b).

Figure 5.28: Densities used in the batch estimator to process GRACE POD

5.5 Chapter summary

In general, tracking the variations in the drag coefficient during the orbit determination

process is quite difficult due to its dependence on various satellite dependent and ambient param-

eters. Analytical models and numerical approaches provide important insights into the physics of

gas-surface interactions and are important in computing initial estimates of the drag coefficient.

But these approaches can be difficult to implement in operations due to observability issues and

computational load. Introduction of machine-learning techniques to the problem has resulted in

significant advances for post-processing applications. But further work needs to be done before
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(a) (b)

(c) (d)

Figure 5.29: (a) Orbit prediction error with different density and drag-coefficient models; (b) Magni-
tude of Fourier corrections for the different density models; (c) Prediction error with NRLMSISE-00;
(d) Prediction error with Mehta et al. derived densities [73]

such models can be implemented for operational use. Modeling the drag coefficient in terms of a

Fourier series provides a simple way of estimating the drag coefficient due to the orthogonality of

the Fourier coefficients.

Four different models are developed in this work to model the variations of the drag coefficient

due to 1) attitude shifts and 2) ambient parameter variation. The first model proposed is a Fourier

expansion of the drag coefficient in the body frame of the satellite. The body-fixed Fourier (BFF)

model consistently improves the position errors due to the attitude dependent variation of the drag
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coefficient, especially in cases where the attitude variation is significant. The order of the model

needs to be chosen with care depending on the shape of the satellite in order to expect improvements

in the performance. One limitation of the model is that it cannot respond to variations in the drag

coefficient due to factors other than the attitude, such as ambient parameters. The second model,

orbit-fixed Fourier (OFF) model, tied to the satellite’s orbital position, is introduced to address

this issue. In the inertially stabilized case, the BFF coefficients are close to the OFF coefficients

since the attitude varies at the same rate as the true anomaly. It is evident that the body-fixed

and the orbit-fixed models have advantages in different scenarios. The body-orbit double Fourier

(BODF) and body-orbit summation (BOS) models are developed to combine the advantages of the

BFF and OFF models to capture variations due to both attitude and orbit-dependent parameters.

Whereas the BODF model uses a double Fourier expansion and contains cross-dependent terms

between the body-fixed and orbit-fixed approaches, BOS is a truncation of the BODF by ignoring

such terms. The OFF model is the only one among the four that can be used to estimate the drag

coefficient for objects whose attitude profile is not known. But when the attitude profile is known,

the other models tend to perform better than the OFF model.

The four models are evaluated on different performance metrics that can be used to select the

model depending on the scenario. Whereas the orbit determination performance can be compared

based on the post-fit residuals and errors in the initial states and parameters, the orbit prediction

performance is tied to the integrated acceleration error. Both are correlated but one does not

necessarily imply the other. Due to the presence of a larger number of terms, BODF can provide

a better orbit fit in terms of post-fit residuals especially in the presence of other force parameters

being estimated. BODF also tends to provide the best integrated acceleration error leading to the

most accurate orbit prediction among all. The application of BODF to real data results in an

improvement of almost 50 % over cannonball model in the in-track prediction error at the end of 9

days of prediction. The BFF and BOS models provide the most accurate drag-coefficients among

the four. The BFF model has a similar integrated acceleration error and prediction performance

to BODF when only the states and the Fourier coefficients are being estimated in the filter in
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the absence of unmodeled dynamics other than drag coefficient. The BOS model provides an

orbit-fit and drag coefficients matching in accuracy with BODF and BFF and even exceeding

them in some cases, but tends to have a larger integrated acceleration error leading to a poorer

prediction performance. OFF does not perform as well as the other models for objects with varying

attitude. In terms of the number of estimated parameters for the same order and thus computational

complexity, BODF contains the maximum parameters followed by BOS, and then BFF and OFF

contain the same number of parameters. All the performance metrics have their own merit based

on the application and can serve as guidelines while selecting among the models to estimate the

drag coefficient in a filter. The best indicator for the prediction performance is the integrated

acceleration but it cannot be computed for actual orbit determination scenarios. In all test cases,

the model with the best prediction performance has the smallest post-fit residuals. But the same

cannot be said for the intermediate performing models. Therefore, it is difficult to accurately rank

the performance of all the models in real scenarios when predicting the satellite positions into the

future.

Any errors in the atmospheric density model will directly affect the drag coefficient model

used in the filter. A preliminary analysis of the performance of the Fourier models in the presence of

simplistic density errors due to a mismatch in the geomagnetic activity between the truth and filter

models demonstrates that the Fourier models still show an improved prediction performance over

the standard cannonball model even though the estimated drag coefficient does not track the true

drag coefficient. In fact, the orbit-fixed model can respond to periodic errors in the atmospheric

density model and shows a significant advantage in the presence of density errors. The analysis of

density errors presented in this work is highly simplified since in reality the density models will have

more complicated time-varying errors. In particular, during times of high geomagnetic activity, the

density can change in very short time scales. The prediction performance of the Fourier models with

real data indicates a better performance than the cannonball model or simply using a GSIM. But

the Fourier coefficients absorb errors in the density model and thus, are highly dependent on the

atmospheric model being used in the filter. It is evident that a method to simultaneously estimate
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the atmospheric densities is needed to obtain physically realistic values of the Fourier coefficients.

We develop such a framework in chapter 7.

An important goal of this work is to use the estimated Fourier coefficients to provide better

estimates of GSIM parameters and atmospheric densities. The drag-coefficient errors using the

different Fourier models are relatively large even though they are improved compared to the can-

nonball model. In this chapter, it has been assumed that all Fourier coefficients up to the assumed

order can be estimated from the given data-arc. But correlations between estimated coefficients

can impact their observability and hence the estimation errors [45]. The next chapter delves into

the inversion of GSIM parameters from the estimated Fourier coefficients.



Chapter 6

Inversion of gas-surface interaction model (GSIM) parameters

In the previous chapter, Fourier drag-coefficient models were developed that capture specific

frequencies of the time-varying drag-coefficient in an estimation framework. It was demonstrated

that supplementing the cannonball estimate (Order 0) with higher-order Fourier coefficient esti-

mates that govern orbit-dependent and attitude-dependent frequencies can improve orbit determi-

nation and prediction significantly. A body-fixed Fourier (BFF) model was developed to capture

attitude-dependence of the drag-coefficient while an orbit-fixed Fourier (OFF) model was developed

for the orbit-dependence of the drag-coefficient. The overall variation of the drag-coefficient due to

both attitude and orbit-related factors was modeled with body-orbit double Fourier (BODF) and

body-orbit summation (BOS) methods. In this chapter, a framework is developed to invert specific

GSIM parameters from the Fourier coefficients that are estimated as part of the orbit determina-

tion process. In order to derive meaningful information from the Fourier coefficient estimates, an

extensive analysis of the dependence of the Fourier coefficient estimates on the information content

of the tracking data-arc is required.

Observability analysis of a system forms an integral part of determining what parameters can be

estimated with the given information. There are two aspects associated with the effects of param-

eters on a system. First, whether a parameter has a non-zero effect on the dynamics distinct from

the effects of other parameters. Second, if the effects remain distinguishable when translated to

the measurement space. Observability analysis deals with the latter. Observability of a system has

been extensively explored in aerospace engineering systems through various observability matrix
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metrics. The commonly used binary test for observability based on the rank of the observability

matrix is defined for linear systems but can be extended to linearized systems such as the orbit

determination problem here. There are multiple other measures of observability that can be utilized

to understand the extent or ‘degree’ to which a parameter is observable. The degree of observability

can be determined by how close the observability matrix is to singularity through measures such as

condition number of the observability matrix [14, 38, 54], singular values of the observability matrix

[54, 35] and the cost function of the optimization algorithm [36]. Metrics such as the correlation

coefficient can be utilized to remove sets of highly correlated parameters [45] whose effects on the

measurements might be indistinguishable.

Even though these measures quantify the observability of the system, they don’t provide a direct

method to determine which states and parameters are observable. All the metrics can be evaluated

by removing combinations of parameters from the estimation set and then comparing the metric

values of the different subsets to determine which parameters are poorly observable. But it can

become quite cumbersome for systems with a large number of parameters. The concept of param-

eter identifiability [10], frequently encountered in environmental and biological systems, is useful

in determining what parameter subset should be estimated. Instead of deducing observability di-

rectly, the parameters can be ranked based on sensitivity of the measurements to the parameters.

Using orthogonalization methods on the measurement sensitivity matrix allows a ranking of the

parameters based on the norm of the sensitivity as well as the linear dependence of the sensitivity

vectors [16, 62, 61]. Another emerging approach to identifying parameters is the active subspace

method but it has not been considered in this work [18].

The observability of a system is intricately tied to the uncertainties of the estimated coefficients.

Adding more parameters to the estimation subset increases uncertainties of the estimated coeffi-

cients with a given data-arc according to the Information Dilution Theorem [33]. On the other

hand, ignoring parameters with large distinct effects on the measurements can lead to filter di-

vergence where the uncertainties of the estimated coefficients are small but the estimated errors

are large due to aliasing effects [101]. A consider covariance analysis can reveal the parameters
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that have a negligible effect on the uncertainties of the estimated coefficients [124]. In this work,

different observability metrics are used in combination with parameter-ranking methods based on

measurement sensitivities and consider covariance analysis to conclusively determine which Fourier

coefficients need to be estimated for different cases. From the reduced estimation set of Fourier

coefficients, information on the GSIM parameters is extracted.

6.1 Chapter outline

The chapter is organized as follows. Section 6.2 discusses the observability metrics that are

used to determine the estimation subset of the Fourier coefficients. The framework to invert GSIM

parameters from the estimated Fourier coefficients is developed in section 6.3. The application of

the observability methods to synthetic data with the ultimate goal of deriving useful estimates of the

GSIM parameters is discussed in section 6.4. The results as obtained in the controlled simulation

environment are discussed within the broader context in section 6.5. Section 6.6 summarizes the

chapter and states the key conclusions.

6.2 Observability metrics

Observability of a system is the property that determines whether the given states can be

uniquely estimated for the system with the available measurements. The metrics used to evaluate

the observability of the Fourier coefficients for all the models are outlined in the following sections.

In order to determine the order of truncation of the Fourier models, an observable set of Fourier

coefficients needs to be deduced. The next section describes the analysis tools that are used for

this purpose.

6.2.1 Observability matrix

The observability matrix of a linearized time-varying system can be constructed from the

measurement Jacobian and state-transition matrix (STM). A non-linear time-varying system with

constant parameters and no inputs can be described as follows
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ẋ(t) = f(x(t),p),

y(t) = h(x(t),p).

(6.1)

where x(t) ∈ Rnx×1 and p ∈ Rnp×1. The state and measurement Jacobians of the linearized

system are then given by

F (t) =

[
∂f(t)

∂x(t)T
,
∂f(t)

∂pT

]
,

H̃(t) =

[
∂h(t)

∂x(t)T
,
∂h(t)

∂pT

] (6.2)

All the derivatives follow the row notation. The STM allows the transformation of the

linearized states from one time to another as

Φ(t, t0) =


∂x(t)

∂x(t0)T
∂x(t)

∂pT

∂p

∂x(t0)T
∂p

∂pT

 =


∂x(t)

∂x(t0)T
∂x(t)

∂pT

0np×nx Inp×np

 (6.3)

It can be computed by numerically integrating the following differential equation [124]

Φ̇(t, t0) = F (t)Φ(t, t0), with Φ(t0, t0) = I (6.4)

The complete measurement sensitivity matrix for the data-arc can then be computed by

H =



H̃(t0)

H̃(t1)Φ(t1, t0)

...

H̃(tM )Φ(tM , t0)


(6.5)

Finally, the observability matrix can be calculated as

O = HTH (6.6)
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Incorporating the measurement noise and multiplying out the individual matrix blocks, the

stochastic observability matrix is given by [35]

O =

M∑
k=1

Φ(tk, t0)T H̃(tk)
TR−1H̃(tk)Φ(tk, t0) (6.7)

Note that the stochastic observability matrix is basically the Fisher information matrix as-

suming no apriori information. In this work, the states to be estimated are the position and velocity

coordinates of the satellite and the Fourier coefficients from GPS tracking data.

The binary test of observability is carried out by evaluating the rank of the stochastic ob-

servability matrix. If the matrix is full-ranked, all the states and parameters are observable. The

amount of deficiency in rank indicates the number of unobservable parameters in the system. The

numerical evaluation of rank depends on the machine precision and can lead to an incorrect result

due to numerical issues. A more accurate method of evaluating the rank is to calculate the singular

values. For the matrix to be full-ranked, all the singular values should be above the following

threshold [35],

sthreshold = max(si)× size(O)× eps (6.8)

where max(si) is the largest singular value of the observability matrix, size(O) is the size of

the observability matrix and eps is the machine precision.

6.2.2 Orthogonalization of the sensitivity matrix

The observability of a parameter for a given system with available measurements is intricately

tied to the measurement sensitivity matrix as seen in Eq. 6.6. In order for the observability matrix

to be full-ranked, the sensitivity matrix needs to be full column-ranked. There are two aspects that

are to be considered here. First, if the effect of the parameter on the measurements is negligible,

then the norm of the sensitivity vector corresponding to that parameter will be nearly zero. Second,

if the effect of multiple parameters are indistinguishable, then the corresponding sensitivity vectors
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are linearly dependent. In both cases, the measurement sensitivity matrix and therefore the observ-

ability matrix will be rank-deficient. The rank and singular values of the sensitivity matrix or the

observability matrix provide information on the linear dependence between sensitivity vectors but

they do not indicate which vectors should be removed from the matrix to improve observability. In

fact, even if the linearly dependent vector subset is somehow identified, there’s usually a choice on

which vectors should be removed from the subset in order to make the rest linearly independent.

This choice should be dictated by the norm of the individual sensitivity vectors. Measures such as

collinearity index [10] in conjunction with sensitivity norms can be used to manually remove lin-

early dependent vectors from the sensitivity matrix. This process can be automated by employing

a sequential orthogonalization method such as the Gram-Schmidt algorithm [16, 62] outlined as

follows. For the given data-arc, the total sensitivity vector corresponding to parameter pi is given

by

si =

[
dy(t0)T

dpi
,
dy(t1)T

dpi
, . . . ,

dy(tM )T

dpi

]T
(6.9)

This work is concerned only with the observability of the parameters and assumes that all the

states are observable. Therefore, the required sensitivity matrix is constructed by concatenating

the total sensitivity vectors corresponding to the parameters as follows

S = W1[s1, s2, . . . , snp ]W2 = W1HpW2 (6.10)

where Hp is the part of the total measurement matrix given by Eq. 6.5 corresponding to the

parameters, andW1 andW2 are diagonal scaling matrices. With the sensitivity matrix constructed

using Eq. 6.10, the sequential orthogonalization process can be carried out. The basic premise of

the method is selecting the vector with the largest norm at the current step and subtracting the

projections onto the selected vector from all other vectors. To illustrate, let si be the sensitivity

vector with the largest norm. Then, parameter i is ranked first. Therefore, q1 =
si
||si||

is selected
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as the first vector and the projection of all other vectors onto q1 is removed,

s̃j = sj − (qT1 sj)q1, j = {1, 2, . . . ,M} − {i} (6.11)

Now, the process is repeated for the new set of vectors with the cardinality decreased by

one. Therefore, at each step, the parameter with the largest sensitivity in the direction orthogonal

to the previously selected sensitivities is selected until all the parameters have been ranked. This

method can be represented in the form of QR decomposition of the sensitivity matrix with column

pivoting [61] as SE = QR, where E is the permutation matrix whose columns dictate the ranks of

the parameters, the columns of Q contain the selected directions at each step and R is an upper

triangular matrix with columns containing the projections of the sensitivities. A simple example

with 3 parameters and 3 outputs helps illustrate the form of the matrices [62, 61]. If the selection

order for the sensitivity matrix S = [s1, s2, s3] is 2, 3, 1, then the QR decomposition is given by

S


0 1 0

0 0 1

1 0 0

 =

[
q1 q2 q3

]

qT1 s2 qT1 s3 qT1 s1

0 qT2 s3 qT2 s1

0 0 qT3 s1

 (6.12)

Therefore, E contains the ranks of the parameters and the diagonal elements of R contains

the orthogonal fractions of the sensitivity vectors. The scaling matrices in Eq. 6.10 can change the

outcome of the method significantly. If W1 is selected to contain the inverse of the measurement

noise standard deviation in the diagonal and W2 is the identity matrix, then the sensitivity matrix

has a direct relationship with the stochastic observability matrix. But in this case, the ranking

assumes that all the nominal parameters have the same value. It is more appropriate to multiply

the sensitivities with the possible variation of the parameters, i.e., W2 contains the initial standard

deviations of the parameters in the diagonal. If the sensitivity to the parameters under the given

uncertainty is small, then the parameter should be ranked lower even if the sensitivity due to the

nominal value is relatively larger.

The QR orthogonalization method is used to assign ranks to the parameters on the basis of
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norm and linear dependence between them. In order to determine till what rank the parameters

should be estimated, the magnitude of the time dependent relative sensitivity vectors can be used.

The relative sensitivity vector is given by

sri (tk) = R−1dy(tk)

dpi
pi (6.13)

The norm of the relative sensitivity vector is akin to a ‘signal-to-noise ratio (SNR)’ for the

system. If the norm remains smaller than 1 for the given time-interval, the effect of the parameter

on the measurements is smaller than the noise level and can be ignored for the data-arc. This

metric can be used as a cut-off for estimating the ranked parameters.

6.2.3 Correlation coefficients

Even though the ranking of the parameters using QR orthogonalization takes into account

linear dependence between them, pairwise correlations can still exist among the highly ranked

parameters. This can be true for a parameter whose sensitivity is sufficiently large such that the

orthogonal component to a highly correlated parameter given by Eq. 6.11 still remains higher than

the other parameters. Therefore, it is worthwhile to check for pairwise correlations between the

ranked parameters. The correlation coefficient between two estimated parameters is given by

ρi,j =
σi,j
σiσj

(6.14)

where σi,j is the covariance of the coefficients i and j with their standard-deviations given

by σi and σj . For a high degree of observability, the correlation coefficients should be as close to

zero as possible. A correlation coefficient of ±1 implies a perfect correlation and the estimation

problem is ill-posed. The correlation coefficients can be easily calculated from the inverse of the

Fisher Information Matrix or the covariance matrix,

P = (

M∑
k=1

Φ(tk, t0)T H̃(tk)
TR−1H̃(tk)Φ(tk, t0) + P−1

0 )−1 (6.15)
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where P0 is the initial covariance. The correlation coefficient is given by

ρi,j = P (i, j)/
√
P (i, i)P (j, j). (6.16)

A structured covariance analysis can be used to remove highly correlated parameters from

the estimation subset [23, 87]. Here, a manual inspection of the correlation coefficients is carried

out to dictate the parameters that should be estimated.

6.2.4 Consider covariance analysis

A consider covariance analysis ascertains the effect of ignored parameters on the uncertainties

of the estimated parameters. Instead of ignoring the non-estimated coefficients, consider covariance

analysis recognizes the associated uncertainties and possible errors and quantifies their effects by

including the uncertainties in the error covariance matrix. Therefore, considered parameters are

assumed to be constant in the estimator and their apriori values and uncertainties are assumed

to be known [124]. If the covariance matrix of a batch estimator that ignores the non-estimated

parameters is Px, then the covariance of the estimator that considers the same parameters is given

by

Pxx = Px + PxcP
−1
cc P

T
xc (6.17)

where P cc is the assumed covariance of the considered parameters c and Pxc is the covariance

between the estimated states and considered parameters. In order for the non-estimated parameters

to be negligible, Pxx ≈ Px.

6.3 GSIM parameter inversion

The estimated Fourier coefficients contain information about the GSIM parameters. In the

cases where the Fourier coefficients can be analytically computed, the dependence of the Fourier

coefficients on GSIM parameters is made explicit in a functional form as seen in eq. (5.23). Even

in the absence of an analytical form, the dependence is evident through the integrals given by eqs.
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5.16-5.18. Therefore, it is possible to invert GSIM parameters from estimates of Fourier coefficients

within some uncertainty. The amount of uncertainty will depend on assumptions pertaining to the

atmospheric density and other non-estimated GSIM parameters as well as the error and covariance

of the estimated Fourier coefficients. Throughout this work, the atmospheric density is assumed to

be accurate. Therefore, the Fourier coefficients do not absorb any other errors in the dynamics. This

is, of course, not true in a realistic scenario and the errors in density model need to be accounted

for. But the purpose of this chapter is to provide a framework that allows the estimation of GSIM

parameters and provides a way to estimate atmospheric densities in the next chapter.

The GSIM parameters can be essentially divided into three categories - atmosphere-dependent

parameters (mean molecular mass and ambient temperature), satellite-specific parameters (surface

temperature) and fitting parameters (Langmuir constant). The satellite surface molecular mass,

which is ideally a satellite-specific parameter, ends up as a fitting parameter in the application

of most GSIMs. The uncertainties in atmosphere-dependent parameters are specific to the atmo-

spheric model used to compute the drag-coefficient. Instead of considering uncertainties in the

atmospheric model, the Fourier coefficients are considered to be specific to the atmospheric model

and time epoch of the analysis, i.e., they are biased to the atmospheric model used in the filter.

There’s relatively little sensitivity of the drag-coefficient to the surface temperature within physi-

cally reasonable bounds, therefore uncertainties in the parameter can be ignored. The uncertainties

in the surface molecular mass are ignored in this work and will be considered in the future. The

largest uncertainties are associated with the fitting parameters since they are derived by analyzing

data from specific satellites and are therefore inherently biased. For both DRIA and the semi-

empirical satellite energy accommodation model (SESAM) [96], the largest uncertainty is in the

Langmuir constant. Therefore, the Langmuir constant is inverted from the estimated Fourier co-

efficients assuming all other parameters are known. It should be noted that the fraction of atomic

oxygen coverage is not consistently sensitive to the Langmuir constant across the atomic oxygen

pressure range, as can be deduced from the nonlinearity of eq. (2.11). The sensitivity is significantly

higher in lower partial pressures, hence higher altitudes.
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The estimated Fourier coefficients can be used to constrain the value of the Langmuir adsor-

bate constant by using an iterative non-linear least-squares estimation scheme. In this method, the

estimated Fourier coefficients are the measurements and the Langmuir constant is the state to be

estimated. The vector of Fourier coefficients have the following functional relation to the Langmuir

constant.

Y = g(X) (6.18)

where Y = [A0,A1...An]T , [A0,A1...An]T , or a combination of both, depending on the se-

lected Fourier model, X = K and g = [g0, g1...gn]T , where gk is the function that relates the kth

Fourier coefficient to the Langmuir constant. This functional form is different depending on the se-

lected Fourier model. Therefore, the inversion method is detailed for each Fourier model separately

in the following sections.

6.3.1 OFF model

The Fourier coefficient dependence on the Langmuir constant for the OFF model can be

obtained as follows-

gk =
1

Mπ

∫ 2π

0

[
KPo

1 +KPo
Cd|(α=1) +

(
1− KPo

1 +KPo

)
Cd|(α=αs)

]
cos kEdE. (6.19)

where M = 2 for k = 0 and M = 1, ∀k > 0. The least-squares algorithm requires the

Jacobian of the measurement matrix. Therefore, g is linearized to obtain

G =

[
∂g1
∂K

,
∂g2
∂K

, ...
∂gn
∂K

]T
(6.20)

where the kth partial is given by

∂gk
∂K

=
1

Mπ

∫ 2π

0

[
Po

(1 +KPo)2

{
Cd|(α=1) − Cd|(α=αs)

}]
cos kEdE (6.21)
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Therefore, the partials are Fourier expansions of the term in the square brackets. The least-

squares estimate and its variance can then be found by iteratively solving the least-squares equation

x = (GTR−1
f G)−1GTR−1

f yf (6.22)

P = (GTR−1
f G)−1 (6.23)

where x is the error in the estimate of the Langmuir constant at the current iteration, yf

is the measurement residual at the current iteration and Rf is the measurement noise covariance.

The measurement noise covariance can be taken as the estimated covariance corresponding to the

Fourier coefficients post orbit determination. The process can be repeated iteratively with the new

estimate given by Kj+1 = Kj + x, with j being the current iteration, until x drops below a fixed

threshold.

6.3.2 BFF model

For the BFF model, the Fourier coefficients depend on the Langmuir constant from Eqs.

5.16-5.18 as follows-

gk =
1

Mπ

∫ 2π

0

[
KPo

1 +KPo
Cd|(α=1) +

(
1− KPo

1 +KPo

)
Cd|(α=αs)

]
cos kθdθ. (6.24)

where M = 2 for k = 0 and M = 1,∀k > 0. The analytical form derived in section ?? can

be substituted above,

gk =

[
KPo

1 +KPo
Ak|(α=1) +

(
1− KPo

1 +KPo

)
Ak|(α=αs)

]
. (6.25)

Therefore, the measurement Jacobian given by Eq. 6.20 can be obtained by evaluating the

partials as follows-

∂gk
∂K

=
Po

(1 +KPo)2

{
Ak(E)|(α=1) −Ak(E)|(α=αs)

}
. (6.26)
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An estimate of the Langmuir constant and its covariance can then be obtained by Eqs. 6.22

and 6.23.

6.4 Observability analysis results

To evaluate the observability metrics and the accuracy of inverted Langmuir constant for

the different Fourier models, elliptical satellite orbits are simulated. The simulation parameters

are provided in Table 8.2. An ideal scenario is considered with only the two-body gravitational

force and atmospheric drag acting on the satellite. A spherically symmetric exponentially decaying

atmosphere is assumed in the simulations so that non-periodic variations in drag-coefficient can

be neglected. The performance of the Fourier models for a realistic orbit determination scenario

has been previously demonstrated with synthetic and real data [100]. The true drag-coefficient is

simulated using the GSIMs described in section 2.1.4. As noted earlier, the Langmuir constant

is the most uncertain parameter in the GSIM considered here. In order to compute the initial

estimates of the Fourier coefficients, multiple sets of Fourier coefficients are computed for a range

of Langmuir parameters. The possible range of Langmuir parameter variation is selected on the

basis of the fraction obtained at 500 km. Walker et al. (2014) [131] compute the fraction to be

around 0.6 at 500 km. A conservative lower limit of around 0.1 and an upper limit of 0.99 is assumed

for the fraction at 500 km. This corresponds to the possible variation of Langmuir parameter in the

range [106, 108]. A spherical satellite is considered for the OFF model to remove any variations due

to attitude. Inertially stabilized symmetrical and asymmetrical cubical satellites are considered for

the BFF model.

Position and velocity measurements from a GPS receiver are assumed to be available to

the estimator every 10 seconds. The measurements are modeled by adding Gaussian noise with

standard deviations of 1.5 m and 0.5 cm/s respectively to the simulated orbital states in the Earth-

centered Earth-fixed (ECEF) frame. A nonlinear least-squares batch estimator is used to process

the measurements and obtain estimates of position, velocity and the Fourier coefficients.
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Table 6.1: Simulation parameters common for all the cases

Parameter Value

Orbital
elements

Hp 300 km
Ha 500 km
i0 650

Ω0 600

ω0 400

Satellite
parameters

m 500 kg
S 10 m2

Atmospheric
parameters

F10.7 150 s.f.u
ρ0 1.9417e-11 kg/m3

H 49.23 km

6.4.1 OFF model

For the ideal scenario considered in the simulation, all the sine coefficients are zero for the

OFF model. This is because the drag-coefficient is an even function of the eccentric anomaly since

the atmosphere is considered to be spherically symmetric. The variation of the drag-coefficient in

the orbit for the limiting values of K are plotted in fig. 6.1 (a). For all the intermediate values of K,

the drag-coefficients lie between the red and the black curves. The numerically computed Fourier

coefficients are plotted as a function of K in fig. 6.1 (b). The Fourier coefficients are most sensitive

to K for values smaller than around 2× 107. The higher order Fourier coefficients become smaller

as K increases since the drag-coefficient variation in orbit decreases for larger values of K. The

magnitudes of the even-order Fourier coefficients and the odd-order Fourier coefficients are seen to

be linear with the order in the logarithmic scale. Therefore, ‘Kaula-type’ rules [70], analogous to

gravitational coefficient estimation, can be derived separately for the even and odd-order Fourier

coefficients as follows-

|Ā2k| ∼ exp (a2kk + b2k), (6.27)
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Figure 6.1: (a) Variation of drag-coefficient in orbit for limiting values of the Langmuir adsorbate
constant; (b) Variation of OFF coefficients as a function of Langmuir adsorbate constant

where k ∈ Z+ for even-orders, and

|Ā2k+1| ∼ exp (a2k+1k + b2k+1), (6.28)

where k ∈ Z≥ for odd-orders. The best-fit curves are obtained for the average of the Fourier

coefficients distribution as a function of the Langmuir constant and plotted in fig. 6.2. These curve

can be used to dictate the initial covariance of the Fourier coefficients in the estimator. Note that

the exact curves are specific to the orbital parameters and satellite. The average value of the Fourier

coefficients for each order is computed and set to the initial estimates in the batch estimator and

the initial covariance is given by the ‘Kaula-type’ rules. In order to generate the true trajectory,

the true drag-coefficients are computed by assuming K = 106.

The first step is to determine if all the Fourier coefficients are observable if no prior infor-

mation is available on them. This can be determined by comparing the singular values of the

stochastic observability matrix to the threshold in eq. (6.8). The two smallest singular values and

the threshold are plotted in fig. 6.3. The smallest singular value is above the threshold for some

initial duration but then drops below it. Therefore, all the coefficients are not fully observable with

the given data-arc.
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Figure 6.2: (a) ‘Kaula-type’ rule for even-order OFF coefficients; (b) ‘Kaula-type’ rule for odd-order
OFF coefficients
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Figure 6.3: OFF model for a spherical satellite: Smallest singular values of the stochastic observ-
ability matrix

All the Fourier coefficients are ranked using the QR decomposition method in fig. 6.4. The

ranking follows the order of the coefficients monotonically. It should be noted that the assigned

ranks are highly dependent on the scaling matrices W1 and W2 that have been taken to be the

inverse of the measurement noise standard deviations and the initial standard deviations of the

Fourier coefficients. It can be seen that only the first four coefficients, until order 3, have an SNR

greater than 1. Therefore, the order of coefficients to be estimated should be cut-off at 3.
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Figure 6.4: OFF model for a spherical satellite: (a) Norm of the orthogonal fractions of the total
normalized sensitivity vectors; (b) Norm of the time-varying relative sensitivity vectors

The effects of ignoring higher-order coefficients on the uncertainty of the estimated states

are studied by a consider covariance analysis. At each truncation order of the Fourier series,

all the lower-order coefficients are estimated and the higher-order coefficients are considered, i.e.,

they are not estimated but their uncertainty is included in the estimation error covariance matrix.

The standard deviation of position, velocity and the zeroth-order coefficient are plotted in Fig.

6.5. For the position and velocity, the norm of the standard deviations across the coordinates is

calculated, i.e., σ =
√
σ2
x + σ2

y + σ2
z , where σx is the standard-deviation in the x-coordinate and so

on. The solid lines represent the standard deviations obtained by a batch estimator which ignores

the considered parameters and the dashed lines represent the standard deviations that includes the

effect of uncertainties of the considered parameters. If the considered parameters, i.e., higher-order

Fourier coefficients, have a negligible effect on the estimated states, then the two aforementioned

standard deviations for the estimated states will be nearly equal. For any truncation order of the

Fourier model, if the two standard-deviations of the estimated states are different, then it implies

that a few of the considered parameters have a non-trivial effect on the estimated states and should

be estimated. In Fig. 6.5, it can be seen that in order for the two standard deviations to be similar

for position and velocity each, the Fourier coefficients need to be estimated at least up to order 1.
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All higher order Fourier coefficients have a negligible effect on the estimated position and velocity.

In order for the standard deviations to be consistent for order 0 coefficient, which represents the

average drag-coefficient, the Fourier coefficients need to be estimated at least to order 2. It is

desirable to estimate coefficients to an order higher. Therefore, the Fourier coefficients need to be

estimated at least to order 3 which is consistent with the results from the QR decomposition and

SNR metrics.
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Figure 6.5: OFF model for a spherical satellite: Standard deviations assuming no errors in consider
parameters (solid lines) and consider standard deviations (dashed lines) for position, velocity and
zeroth-order Fourier coefficient

The standard deviations of the Fourier coefficients non-dimensionalized by their estimates

are plotted in Fig. 6.6 (a). The standard-deviation ratios of A0 and A1 coefficients decrease below

1 after a point. On the other hand, the standard deviations of the higher order coefficients change

much more slowly with more measurements. The correlation matrix for the Fourier coefficients

is mapped in Fig. 6.6 (b). The coefficients until order 2 are highly correlated that results in a

lower degree of observability for these coefficients. This can introduce errors in estimation if all the

coefficients until order 3 are estimated. But ignoring a correlated but highly sensitive coefficient

can also lead to estimation errors. If there are errors in the estimated coefficients resulting due to

correlations, ignoring A2 should be expected to improve the results since it has the least sensitivity

among the three. In order to figure out the combination of coefficients that results in the best
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estimation error, Monte Carlo simulations are carried out for the cases summarized in Table 6.2.
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Figure 6.6: OFF model for a spherical satellite: (a) Standard deviation of the Fourier coefficients;
(b) Correlation matrix for the estimated Fourier coefficients

Table 6.2: OFF model for a spherical satellite: Monte Carlo simulation cases

Case Estimated coefficients

1 A0

2 A0,A1

3 A0,A1,A2

4 A0,A1,A2,A3

5 A0,A1,A2,A3,A4

6 A0,A1,A3

7 A0,A2,A3

For each case in Table 6.2, 200 batch estimation runs are performed. The initial state and

Fourier coefficient errors are generated from the initial covariance and the measurement noise

from the measurement noise covariance for each run. The drag-coefficient is calculated using the

estimated Fourier coefficients and the RMS value of the drag-coefficient error is noted. The mean

and standard-deviation of the error RMS is plotted for each case in Fig. 6.7. The figure compares

the estimation errors for two scenarios - when the all the non-estimated coefficients are ignored in

the filter dynamics versus when they are modeled and kept constant at their nominal values. Note

that the errors in the nominal values of the non-estimated coefficients are generated from their
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nominal covariance for each run, i.e., the modeled higher-order coefficients contain errors. The first

thing that can be noticed from Fig. 6.7 is that the errors are smaller if the non-estimated coefficients

are modeled in the estimator for most of the cases. The drag-coefficient errors are equally large

for cases 1 and 7, i.e., not estimating A1 results in an inaccurate drag-coefficient estimate. But

not estimating any Fourier coefficient other than order 0 results in a large initial position error as

well, as seen in Fig. 6.7 (b). If all the coefficients are modeled, then estimating coefficients after

order 2 does not add further accuracy to the overall drag-coefficient whereas the order goes up

to 3 if the non-estimated coefficients are ignored. A slightly more accurate drag-coefficient with

a tighter error-bar is obtained for case 6 where A2 is not estimated. This is consistent with the

previously discussed expectation of improving the accuracy by not estimating the least-sensitive

correlated coefficient. Overall, the results indicate that the all the coefficients up to order 2 should

be estimated with all the higher-order coefficients being modeled.
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Figure 6.7: OFF model for a spherical satellite: Mean and 1σ error bars for (a) Drag-coefficient
error RMS values; (b) Norm of initial position error for the Monte Carlo cases

The least-squares method outlined in section 6.3 is used to estimate the Langmuir constant

from the estimated Fourier coefficients for true values of K = 106 and K = 108. No prior in-

formation on the Langmuir constant is assumed to be available. With the initial estimate of the

Langmuir constant assumed to be 107 for each case, and constraining the value of the constant to
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be positive for each iteration (it is set to 0 if the estimate obtained is negative at any iteration),

the final estimates and their standard deviations obtained are tabulated in 6.3. It can be seen

Table 6.3: OFF model: Estimation error and uncertainty for the Langmuir constant for two truth
cases

True value Initial estimate Final error Standard deviation

106 107 99.24 79.3
108 107 3.5× 105 3.17× 105

that the error in K is about 0.01% for K = 106 and 0.35% for K = 108. This is because the

variation of the Fourier coefficients with K becomes much smaller for K > 2× 106. Therefore, the

uncertainty in estimating K from the Fourier coefficients is larger in that range. If the estimated

Fourier coefficients are truncated at a smaller order, i.e., a subset of the Fourier coefficients are

estimated, then the accuracy with which the Langmuir constant can be estimated decreases. This

occurs because the ignored higher order coefficients alias into the estimated lower order coefficients.

The accuracy with which the Langmuir constant can be estimated from the Fourier coefficients at

lower truncation orders are given in Table 6.4 for the K = 106 case. From order 0 to order 1, there’s

an improvement of two orders of magnitude and the same from order 2 to order 3. In order for the

Langmuir constant to be consistent with the standard deviation, the Fourier coefficients have to be

estimated at least to order 3.

Table 6.4: OFF model for a spherical satellite: Estimation error and uncertainty for the Langmuir
constant for lower truncation orders of the estimated Fourier coefficients

Order Final error Standard deviation

0 −4.78× 106 516.8
1 3.05× 104 67.0
2 1.4× 104 78.2
3 −107.5 79.7
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6.4.2 BFF model

Unlike the OFF coefficients, the BFF coefficients are tied to the body frame and capture

variations in the drag-coefficient due to attitude. The OFF coefficients are slowly varying if there

are no variations in the attitude of the satellite and can therefore be considered constant in the

orbit determination process. But the BFF coefficients will have variations in the orbit due to

ambient parameters. Since the coefficients are estimated as constants in the estimator, there will

be a certain degree of mismatch between the true and filter dynamics. In order to compute the

initial estimates of the coefficients, the time-varying BFF coefficients are averaged over the orbit

weighted by the atmospheric density.

A symmetric cubical satellite with an inertially stabilized profile is considered as the first

case. All the six faces of the satellite are assumed to have the same properties such as area, surface

temperature and material. Therefore the Fourier coefficients with respect to ψ (an,i) for all the

plates are equal. It can be easily seen from Eqs. 5.26, 5.27 and 5.28 that only the fourth order

cosine coefficients for the satellite, i.e., A4k, k ∈ Z, are non-zero. The drag-coefficient and Fourier

coefficients for the limiting values of the Langmuir constant are plotted in Fig. 8.5. Note that only

the zeroth order coefficient is dependent on the Langmuir constant in this case. As made evident

by Eq. 5.23, only the odd-order coefficients after order 2 are dependent on the incident to reemitted

velocity ratio (ri). This is the parameter that differentiates the specular from the diffuse fraction

of the GSIM. Similar to Fig. 6.1, the drag-coefficient variation is larger for a smaller Langmuir

constant. Therefore, averaging errors in the Fourier coefficients will be larger for smaller values of

the parameter. In the estimator, only the non-zero coefficients, i.e., multiples of order 4 coefficients

are estimated. Therefore, for an order 30 Fourier model, there are only eight coefficients that need

to be estimated. The truth is generated by assuming K = 106. The two smallest singular values of

the stochastic observability matrix with the threshold are plotted in Fig. 6.9. It can be seen that

the observability matrix is full ranked and therefore, all the coefficients are observable.

The coefficients are ranked according to the QR orthogonalization of their non-dimensionalized
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Figure 6.8: (a) Variation of drag-coefficient in orbit; (b) Variation of BFF coefficients in orbit for
limiting values of the Langmuir adsorbate constant
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Figure 6.9: BFF model for a symmetrical satellite: Smallest singular values of the stochastic
observability matrix

measurement sensitivities. As can be seen in Fig. 6.10 (a), the coefficients are ranked monotoni-

cally. The non-dimensionalized sensitivity norm or the SNR in Fig. 6.10 (b) shows that only the

first and fourth order coefficients have an effect on the measurements greater than the noise. A

consider covariance analysis reveals the same result as the QR decomposition and SNR metrics.

From Fig. 6.11, the coefficients need to be measured at least to order 4 for the consider standard

deviations (dashed lines) and standard deviations assuming no errors in considered parameters
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Figure 6.10: BFF model for a symmetrical satellite: (a) Norm of the orthogonal fractions of the
total normalized sensitivity vectors; (b) Norm of the time-varying relative sensitivity vectors
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Figure 6.11: BFF model for a symmetrical satellite: Standard deviations assuming no errors in con-
sider parameters (solid lines) and consider standard deviations (dashed lines) for position, velocity
and zeroth-order Fourier coefficient

The standard deviations of the Fourier coefficients nondimensionalized by their estimated

values and the correlation matrix of the BFF coefficients are plotted in Fig. 6.12. Similar to the OFF

model, the uncertainty in only the first two orders decreases rapidly with more measurements. The

correlation between the zeroth and fourth order coefficients is high but the rest of the coefficients
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are not correlated. It is possible that estimating the zeroth and fourth order coefficients together

can result in a poor estimation performance. In order to analyze the errors that are introduced

in the estimates, Monte Carlo simulations similar to the OFF model are carried out for the cases

summarized in Table 6.5.
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Figure 6.12: BFF model for a symmetrical satellite: (a) Non-dimensionalized standard deviation
of the BFF coefficients ; (b) Correlation matrix for the BFF coefficients

Table 6.5: Monte Carlo simulation cases for BFF model for a symmetrical satellite

Case Estimated coefficients

1 A0

2 A0,A4

3 A0,A4,A8

4 A0,A4,A8,A12

5 A0,A8

The Fourier model in the estimator needs some attention. As in the OFF model case, the

higher order non-estimated coefficients can either be modeled or ignored. As discussed earlier,

the BFF coefficients are orbit-dependent and can be expanded into orbit-fixed coefficients given

by Eqs. 8.19 and 5.47. Therefore, the modeled coefficients in the estimator should consist of the

orbit-fixed part of the Fourier model as well. In other words, the complete BODF model is used in

the estimator but only the BFF coefficients summarized in Table 6.5 are estimated. The 3σ of the
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Fourier coefficients is taken as 50 % of their nominal values, i.e., the coefficients are assumed to have

a maximum of 50 % error. The drag-coefficient error RMS, initial position error norm and the RMS

of the measurement residual non-dimensionalized by the measurement noise standard deviation are

plotted in Fig. 6.13. The errors are plotted for ignored and modeled non-estimated coefficients

similar to the analysis for OFF model. As a reference, errors are also plotted for an ideal scenario

where the modeled OFF coefficients have no errors, i.e., the true OFF coefficients are modeled in

the filter. The first observation from the figures is that the errors for all cases are much higher

when the non-estimated coefficients are ignored as expected. Even though the drag-coefficient

errors are smaller when they are modeled, the standard deviation is larger since introducing errors

in higher-order modeled coefficients increases the range of variation of the estimated coefficients.

When the true OFF coefficients are modeled in the estimator, the errors as well as standard

deviations are small. It is interesting to see that for both modeled and ignored non-estimated

coefficients, the drag-coefficient errors are higher for case 2 than case 1, i.e., when both order 0

and 4 coefficients are estimated. But it does not necessarily mean a poorer estimation performance

since both the initial position error and the non-dimensionalized measurement residuals are lower

for case 2. It implies that in order to obtain a better overall orbit determination performance,

the drag-coefficient accuracy needs to be compromised. If the true OFF coefficients were known,

the drag-coefficient error decreases when order 4 coefficient is estimated. The non-dimensionalized

measurement residuals are similar whether the modeled OFF coefficients have errors or not which

shows that modeling the non-estimated coefficients provides a better orbit fit.

As seen in Fig. 8.5, only the zeroth order coefficient depends on the Langmuir constant. Even

though the overall drag-coefficient error is larger when order 4 coefficient is estimated, it is more

important to analyze the errors in the order 0 coefficient when inverting the Langmuir constant

from estimated Fourier coefficients. The errors in the order 0 coefficient for cases 1 and 2 are given

in Table 6.6. Estimating the order 4 coefficient improves the order 0 estimate when non-estimated

coefficients are modeled.

The results of the Langmuir constant inversion from the estimated Fourier coefficients are
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Figure 6.13: BFF model for a symmetrical satellite: Mean and 1σ error bars for (a) Drag-coefficient
error RMS values; (b) Norm of initial position error; (c) Non-dimensionalized measurement residual
RMS values for the Monte Carlo cases

Table 6.6: BFF model for a symmetrical satellite: Mean and standard-deviations of order 0 Fourier
coefficient for cases 1 and 2

Case Ignored Modeled

1 0.129± 5.1× 10−6 −0.026± 0.212
2 0.103± 4.8× 10−5 −0.019± 0.150

discussed in the next section where BODF coefficients are part of the estimation subset.

For a symmetrical satellite, the accuracy with which the Langmuir constant can be determined

is limited due to the absence of odd-order Fourier coefficients. It is instructive to find out if the
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accuracy is increased for an asymmetrical satellite for which the odd-order coefficients are non-zero.

A box-wing shape model for the satellite is considered. Two solar panels with an area of 13.5 m2

each are fixed to the satellite bus. The dimensions of the satellite bus are taken to be 1.5x2x2.5

m3. The body z-axis is perpendicular to the solar panels and the y-axis is parallel to solar panel

axis. Additional areas of 1, 0.75, 1.5, 1, 1.5, 0.1 m2 are added to the faces in +x, -x, +y, -y, +z

and -z directions to take into account asymmetry due to shape details such as protrusions etc. The

surface material properties are considered to be different for each panel [103].

The number of non-zero BFF coefficients is significantly increased for an asymmetrical satel-

lite. A tolerance of 10−5 is imposed on the coefficients that introduces a maximum of around 0.02

% error on the overall drag-coefficient. This results in 27 non-zero BFF coefficients that need to be

estimated for order 30. Note that the sinusoidal coefficients are non-zero for this case. Fig. 6.15

plots the smallest and the fifth smallest singular value of the stochastic observability matrix. It

can be seen that the fifth smallest singular value is barely above the threshold at the end of the

data-arc. Therefore, multiple coefficients are unobservable.

0 2 4 6 8 10 12 14

Orbits

10
-20

10
-10

10
0

S
in

g
u

la
r 

v
a

lu
e

s

Singular values of observability matrix

Figure 6.14: BFF model for an asymmetrical satellite: Smallest singular values of the stochastic
observability matrix

Fig. 6.15 plots the QR orthogonalization based ranks for some of the BFF coefficients.

The figure also plots the SNR metric of all the coefficients with SNR > 1. The metrics reveal

that {A0,A2,B1,A4} have the largest observable effects on the measurement. The rest of the
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coefficients whose SNR values are larger than 1 are ranked lower than coefficients with SNRs less

than 1. The non-dimensionalized standard-deviation of this subset of the BFF coefficients changes

by a discernible amount over the data-arc as shown in Fig. 6.16 whereas it changes much more

slowly for the other coefficients. The correlation matrix in Fig. 6.16 indicates a high correlation

between the A4 and A2 coefficients.
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Figure 6.15: BFF results for an asymmetrical satellite: (a) Norm of the orthogonal fractions of the
total normalized sensitivity vectors; (b) Norm of the time-varying relative sensitivity vectors
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Figure 6.16: (a) Non-dimensionalized standard deviation of the BFF coefficients ; (b) Correlation
matrix for the BFF coefficients
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Consider covariance analyses with estimation subsets given by the first six cases of Table

6.7 are carried out. The consider standard deviations and standard deviations assuming no errors

in consider parameters are plotted in Fig. 6.17. The two standard deviations for the order 0

coefficient become nearly equal after case 4. Similar to the previous case, Monte Carlo simulations

Table 6.7: Monte Carlo simulation cases for BFF model for an asymmetrical satellite

Case Estimated coefficients

1 A0

2 A0,A2

3 A0,A2,B1

4 A0,A2,B1,A4

5 A0,A2,B1,A4,A6

6 A0,A2,B1,A4,A6,A1

7 A0,A2,B1,A4,A6,A1,A3

8 A0,A2,B1,A6,A1,A3
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Figure 6.17: BFF model for an asymmetrical satellite: Standard deviations assuming no errors
in consider parameters (solid lines) and consider standard deviations (dashed lines) for position,
velocity and zeroth-order Fourier coefficient

are carried out for the cases in Table 6.7. The drag-coefficient error does not change much after

case 2 but there’s a very slight improvement from case 3 to case 4. The initial position error

converges after case 4 and the measurement residual ratio converges after case 3. Ignoring A4 due

to its high correlations with A2 results in a slight degradation in errors. Therefore, for this case,
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{A0,A2,B1,A4} should be estimated with all other BFF and OFF coefficients modeled.
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Figure 6.18: BFF model for an asymmetrical satellite: Mean and 1σ error bars for (a) Drag-
coefficient error RMS values; (b) Norm of initial position error; (c) Non-dimensionalized measure-
ment residual RMS values for asymmetrical satellite for the Monte Carlo cases

6.4.3 BODF model

In the previous section, the importance of modeling the OFF coefficients was seen from the

Monte Carlo simulations where ignoring the higher order coefficients introduced much larger errors

in the results. In this section, the BODF coefficients are added to the estimation subsets of the

two cases of symmetrical and asymmetrical satellites considered for the BFF model.
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On including the BODF coefficients, the number of coefficients with magnitude greater 10−5

increases to 78 for the symmetrical satellite. The observability matrix is rank-deficient as expected.

Fig. 6.19 ranks the coefficients based on the QR decomposition method. The SNR metric indicates

that A0,0, A0,1 and A4,0 have the largest observable effects on the measurements since all other

coefficients with SNR > 1 are ranked lower than coefficients with SNR < 1. The normalized

standard-deviations in Fig. 6.20 support this observation. Fig. 6.20 also points out the high

correlation between these three coefficients.
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Figure 6.19: BODF results for a symmetrical satellite: (a) Norm of the orthogonal fractions of the
total normalized sensitivity vectors; (b) Norm of the time-varying relative sensitivity vectors for a
symmetrical cube

A consider covariance analysis is performed for the cases in Table 6.8. Fig. 6.21 shows

that the consider standard-deviations and the standard-deviations assuming no errors in ignored

coefficients become consistent for case 3. Monte Carlo simulations performed for all the cases

validate this. It can be seen from Fig. 6.22 that the drag-coefficient error, initial position error

as well as measurement residual ratio converge after case 3. Therefore, for a symmetrical satellite,

estimating A0,0,A0,1,A4,0 is sufficient.

The estimated Fourier coefficients are inverted to determine the Langmuir constant. The

Langmuir constants are inverted from all the 200 Monte Carlo simulation run results and the mean
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Figure 6.20: BODF results for a symmetrical satellite: (a) Non-dimensionalized standard deviation
of the BODF coefficients ; (b) Correlation matrix for the BODF coefficients

Table 6.8: Monte Carlo simulation cases for BODF model for a symmetrical satellite

Case Estimated coefficients

1 A0,0

2 A0,0,A0,1

3 A0,0,A0,1,A4,0

4 A0,0,A0,1,A4,0,A4,1

5 A0,0,A0,1,A4,0,A4,1,A0,2

6 A0,0,A0,1,A4,0,A4,1,A0,2,A0,3

and uncertainties are plotted in Fig. 6.23. For cases 1 and 2, the errors are much larger than the

estimated uncertainty. After case 3, the errors are within the uncertainty bounds. After case 4, the

uncertainty slightly increases but the estimation errors decrease. Note that only the zeroth order

BFF coefficients (A00,A01,A02,A03) contain information on the Langmuir constant as discussed

earlier. The errors decrease from case 1 to 2 because the estimated zeroth-order BODF coefficient

is more accurate for case 2. The results indicate that even though it is sufficient to estimate the

case 3 set in terms of orbit-determination results, the error in the inverted Langmuir constant can

be further reduced by estimating the higher order coefficients, A02 and A03.

For the asymmetrical satellite, the number of coefficients for the BODF model is 118 on ex-
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Figure 6.21: BODF results for a symmetrical satellite: Standard deviations assuming no errors
in consider parameters (solid lines) and consider standard deviations (dashed lines) for position,
velocity and zeroth-order Fourier coefficient

cluding coefficients with magnitudes smaller than 10−5. Since the number of BFF coefficients remain

the same as section 6.4.2, with the addition of BODF coefficients to the subset, the observability

matrix remains rank-deficient. The non-dimensionalized sensitivity norm of all the coefficients with

an SNR greater than 1 are plotted in Fig. 6.24 (b). The rank of first few coefficients are plotted in

Fig. 6.24 (a). It can be seen that after A0,1, coefficients with SNR < 1 start getting ranked higher

than coefficients with SNR > 1. Therefore, it is reasonable to assume that coefficients ranked lower

than A0,1 may not need to be estimated. But some of the lower ranked coefficients with SNR >

1 are still included in subsequent analysis. The non-dimensionalized standard deviations of the

coefficients until A0,1 decrease more rapidly than the rest of the coefficients as shown in Fig. 6.25

(a). The correlations between the coefficients are not very high as indicated by Fig. 6.25 (b).

A consider covariance analysis with estimation subsets given by Table 6.9 shows that it is

sufficient to estimate the ranked coefficients until A0,1. This is verified through a Monte Carlo

analysis with the same cases. The results until case 4 are the same as Fig. 6.18. Fig. 6.27 shows

that a significant reduction in the drag-coefficient error as well as initial position error is achieved

from case 4 to case 5. The measurement residual ratio is also slightly closer to 1 for case 5.

Since the body and orbit angles vary at similar rates for an inertially stabilized satellite, it
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Figure 6.22: BODF results for a symmetrical satellite: Mean and 1σ error bars for (a) Drag-
coefficient error RMS values; (b) Norm of initial position error; (c) Non-dimensionalized measure-
ment residual RMS values for Monte Carlo cases

is possible that even though the drag-coefficient accuracy is improved for the BODF model, the

individual Fourier coefficients might have larger errors due to aliasing effects. But the estimation

errors for the coefficients in Table 6.10 prove that the Fourier coefficients have a higher accuracy

when they are estimated versus when they are not. Therefore, the overall improvement in the

drag-coefficient is due to the improvement in the estimation accuracy of the Fourier coefficients.

The Langmuir constant is inverted for all the Monte Carlo cases. As for the symmetrical

satellite, the error decreases for more higher-order coefficients in the estimation set whereas the
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Figure 6.23: BODF results for a symmetrical satellite: Error and uncertainty of the Langmuir
constant inverted from the estimated Fourier coefficients for the cases in Table 6.8
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Figure 6.24: BODF results for an asymmetrical satellite: (a) Norm of the orthogonal fractions of
the total normalized sensitivity vectors; (b) Norm of the time-varying relative sensitivity vectors
for a symmetrical cube for Monte Carlo cases

uncertainty in the inverted constant increases. The error and uncertainty converge after case 7.

Even though it is sufficient to estimate the coefficients in case 5 for orbit determination, a few more

higher-order coefficients should be estimated to obtain an accurate Langmuir constant.
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Figure 6.25: BODF results for an asymmetrical satellite: (a) Non-dimensionalized standard devia-
tion of the BODF coefficients ; (b) Correlation matrix for the BODF coefficients

Table 6.9: Monte Carlo simulation cases for BODF model for an asymmetrical satellite

Case Estimated coefficients

1 A0,0

2 A1,0,A2,0

3 A0,0,A2,0,B1,0

4 A0,0,A2,0,B1,0,A4,0

5 A0,0,A2,0,B1,0,A4,0,A0,1

6 A0,0,A2,0,B1,0,A4,0,A0,1,A6,0

7 A0,0,A2,0,A1,0,A4,0,A0,1,A6,0,A2,1

8 A0,0,A2,0,A1,0,A4,0,A0,1,A6,0,A2,1,B1,1

9 A0,0,A2,0,A1,0,A4,0,A0,1,A6,0,A2,1,B1,1,A2,3

Table 6.10: Estimation error in the BODF coefficients for an asymmetrical satellite

Coefficient
Estimation error

(Case 1)
Estimation error

(Case 6)

A0,0 0.112 0.011

A2,0 0.352 0.034

B1,0 0.003 4.079e-4

A4,0 0.070 0.036

A0,1 0.063 0.027

A6,0 0.0234 0.0228
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Figure 6.26: BODF results for an asymmetrical satellite: Standard deviations assuming no errors
in consider parameters (solid lines) and consider standard deviations (dashed lines) for position,
velocity and zeroth-order Fourier coefficient

6.5 Discussions

The observability analysis of Fourier drag-coefficient models using various metrics reveals that

when a model has a large number of non-zero coefficients, only a few need to be estimated while

the rest should be modeled, i.e., kept constant at their nominal values, in the orbit determination

process. For the orbit-fixed Fourier (OFF) model applied to a spherical satellite, there’s no attitude

dependence and therefore, the OFF coefficients can be considered constant. According to the

observability metrics, estimating the first three coefficients is sufficient for orbit determination. But

including the order 3 coefficient improves the accuracy of the inverted Langmuir constant, which

may be of future interest for improving gas surface interaction models (GSIMs). On the other hand,

the body-fixed Fourier (BFF) coefficients for a satellite with a changing attitude vary in orbit.

Therefore, estimating the BFF coefficients as constants leads to relatively large drag-coefficient

errors even though the post-fit residuals are minimized. On including just a few body-orbit double

Fourier (BODF) coefficients to the estimation set, leads to around a 50 % improvement in the

drag-coefficient accuracy compared to the BFF model for both the symmetrical and asymmetrical

satellites. For the symmetrical satellite, three coefficients (A0,0,A0,1,A4,0) need to be estimated
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Figure 6.27: BODF results for an asymmetrical satellite: Mean and 1σ error bars for (a) Drag-
coefficient error RMS values; (b) Norm of initial position error; (c) Non-dimensionalized measure-
ment residual RMS values for asymmetrical satellite for Monte Carlo cases

while for the asymmetrical satellite, five coefficients (A0,0,A2,0,B1,0A4,0,A0,1) need to be estimated,

in terms of orbit determination accuracy. Including a few more higher-order coefficients for both

the cases further improves the estimation error of the Langmuir constant. In all the cases, the

accuracy of the inverted Langmuir constant is drastically improved when using higher-order Fourier

coefficients as opposed to using only the zeroth-order coefficient. In order to apply the methods

on real data, certain assumptions pertaining to the current analysis will need to be re-evaluated as

summarized in Table 6.11.
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Figure 6.28: BODF results for an asymmetrical satellite: Error and uncertainty of the Langmuir
constant inverted from the estimated Fourier coefficients for the cases in Table 6.9

Assumptions Expected impact Mitigation

Accurate density
Density errors absorbed by
the estimated Fourier coefficients.

Estimate density correction
simultaneously.

Single space weather
condition

Observable coefficient set will
change for other space weather
conditions.

Carry out the analysis across
varying solar and geomagnetic
activities.

Error in single GSIM
parameter

Errors due to other GSIM
parameters will be absorbed by the
estimated Langmuir constant.

1. An uncertainty analysis
considering the errors in
other parameters.
2. Include other GSIM
parameters in the estimation.

No errors in other
force parameters

Any errors in other force
parameters such as solar radiation
pressure will be absorbed by the
Fourier coefficients.

Estimate other force
parameters, especially the solar
radiation pressure coefficient.

Table 6.11: Summary of assumptions made in this work, their expected impact on the results and
how they can potentially be mitigated

The methods developed in this work allow the estimation of GSIM parameter sets for any

given satellite. Instead of using GSIM parameters that have been determined using specific satellites

for particular space weather conditions, they can be estimated for the satellite in consideration. But

the estimates obtained are still biased to the atmospheric model used. Due to the correlated nature

of the density and drag-coefficient, any errors in the densities will be absorbed by the estimated
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drag-coefficient and vice-versa. Similarly, the Fourier coefficient estimates, and consequently the

GSIM parameter estimates, will absorb errors in the density model used in the filter. This is a

cyclical problem since density corrections that are calculated using orbital element changes absorb

errors from fitted or physical drag-coefficients. The final goal of this research is to leverage the

method developed here to obtain unbiased estimates of density and drag-coefficient. Wright and

Woodburn (2004) [135] proposed a method to simultaneously estimate density and drag-coefficient

during orbit-determination that was used by McLaughlin et al. (2011) [67] to arrive at CHAMP

and GRACE densities. Even though their method can estimate time-variations in the density

and drag-coefficient, the biases in the parameters still remain unresolved. In the next chapter, the

inversion framework developed here is leveraged to simultaneously estimate the drag-coefficient and

unbiased densities. Additionally, the use of other state-of-the-art GSIMs might be considered such

as non-DRIA models. The inclusion of other GSIM parameters, specifically the effective satellite

surface mass and quasi-specular lobe properties in the developed method might also be considered.

6.6 Chapter summary

Observability analysis using various metrics such as ranking of Fourier coefficients based on

QR orthogonalization, non-dimensionalized measurement sensitivity, correlation coefficients and

consider covariances was undertaken for the Fourier drag-coefficient models with the ultimate goal of

inverting the Langmuir constant from the estimated Fourier coefficients. Inversion of the Langmuir

constant from satellite tracking data is a step towards increasing the accuracy of current GSIMs

by providing better estimates of uncertain input parameters that feed into these models. Using

parameter ranking based on QR orthogonalization and the ratio of measurement sensitivity to

measurement noise standard deviation facilitates the selection of estimation subset. A consider

covariance analysis performed in conjunction verifies that the selected coefficients have the dominant

effect on filter uncertainties. The correlations in the selected estimation set are analyzed through

correlation coefficients. Finally Monte Carlo simulations are performed to validate the results. In

every case, the set selected through the observability analysis leads to the best orbit-determination
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fit in terms of overall drag-coefficient error, initial position error and post-fit residuals. For all the

drag-coefficient models, less than six coefficients need to be estimated and rest of the coefficients

modeled to obtain the best orbit-determination achievable. The estimated Fourier coefficients have

been shown to improve the accuracy of the inverted Langmuir constant, obtained via a least-squares

estimation method, by orders of magnitude compared to simply using the constant cannonball

estimate for the same. The framework presented here can be extended to invert other GSIM

parameters and to other GSIMs in general. The final aim of this research is to utilize this method

to obtain unbiased atmospheric densities by simultaneously estimating density and drag-coefficient

in the orbit determination process.



Chapter 7

Decorrelating density and drag-coefficient estimates

In the orbit determination process, the atmospheric density is usually modeled in the filter

using semi-empirical models calibrated with satellite data and the drag-coefficient is estimated

as a constant. But significant discrepancies exist between the current operational semi-empirical

density models [90] such as NRLMSISE-00 [93], JB2008 [6] and DTM-2013 [8] due to the differences

in calibration data as well as physics of the models. Any errors in the atmospheric density will

consequently get absorbed in the estimated states and the drag-coefficient, leading to errors in

predicted orbits.

In an ideal scenario, one would utilize an atmospheric density model that is calibrated real-

time using tracking data from multiple satellites such as the Air Force High Accuracy Satellite Drag

Model (HASDM) [117] in order to reduce errors due to atmospheric density and obtain physically

consistent values of the drag coefficient. But unfortunately, HASDM is not available to users outside

of the Department of Defense. The release of HASDM densities over the past twenty years as an

open-source dataset by Space Environment Technologies (SET) [126] has provided the research

community and non-governmental satellite operators access to the most accurate density data

available for satellite tracking purposes. The HASDM densities can be used to calibrate existing

semi-empirical density models or used more directly for orbit determination using a predictive

framework with a chosen input parameter space [56]. This will potentially result in a significant

increase in tracking accuracy and orbit predictions. But even then, more data needs to be ingested

in such a framework for use across different solar cycles and during times of higher geomagnetic
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activity. This is especially true since HASDM densities are available at a limited spatial and

temporal resolution (3-hourly intervals, 25 km altitude level, 100 × 150 latitude/ longitude grid)

which will not be sufficient to capture the high-frequency density variations during geomagnetic

storms.

Physics-based density models are better at capturing the thermospheric response to external

forcing but need to be calibrated with satellite observations of the thermosphere. Data-assimilation

methods for physics-based atmospheric models have been proposed to estimate the global atmo-

spheric density [65, 120, 121]. These methods combine the advantages of physics-based models in

their ability to account for the thermospheric dynamics and provide density forecasts, and indirect

measurements of the actual state of the thermosphere via data from accelerometers and satellite

orbit tracking. Though their computational complexity makes it difficult for them to be used for

real-time operational orbit determination, such methods can provide density estimates that can be

used to calibrate semi-empirical density models. The computational complexity of physics-based

models can be reduced by representing them with a smaller subset of parameters using reduced or-

der models [74, 75]. This technique has been used to demonstrate estimation of global atmospheric

density by assimilating measurements from accelerometers [76], two-line element (TLE) data [39],

and radar and GPS measurements [40]. All such data-assimilation methods are demonstrating sig-

nificant improvements in global atmospheric density estimates over existing semi-empirical density

models. But the obtained densities are uncertain to the ballistic coefficient estimated by the filter.

Moreover, real-time tracking data from multiple sources is required to provide density estimates

which may prove to be a hurdle for implementation in operational use. A method that can estimate

the local atmospheric density along the orbit simultaneously with the ballistic coefficient during

orbit determination is needed.

The simultaneous estimation of density and drag-coefficient is complicated due to their highly

correlated nature. In particular, biases in the density and drag-coefficient cannot be simultaneously

observed by the filter, and will be estimated as a lumped term. Therefore, the cannonball drag-

coefficient, estimated as a scale factor, not only averages out time-variations in the drag-coefficient
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due to attitude and ambient parameters but also absorbs time-averaged errors in the density model.

Wright et al. [135] proposed a method to simultaneously estimate the drag-coefficient and density

by modeling them as exponentially correlated Gauss-Markov processes. The drag coefficient is

assumed to have a much slower variation than the density which allows separation of the two.

This method provides a practical way to decorrelate the two parameters and has been used by

McLaughlin et al. [67] to arrive at densities derived using CHAMP POD. But the bias terms in the

density and drag-coefficient still cannot be estimated simultaneously, i.e., the estimate is accurate

only up to a constant bias. Moreover, time variations in the drag-coefficient due to attitude changes

are not accounted for.

The goal of this chapter is to provide a framework to estimate local atmospheric densities from

satellite tracking data at sub-orbital cadence with a reduction in bias contribution due to the drag-

coefficient. The time-variations in the drag-coefficient induced by changes in the satellite attitude

introduce frequencies in the drag force that are independent of density variations. These high-

order frequencies can be estimated in the filter that can then be used to calculate the bias term by

utilizing known physics of gas-surface interactions. We propose the use of Fourier series expansions

to estimate the time-variations in the drag-coefficient. The estimated Fourier coefficients contain

information on gas-surface interaction (GSI) parameters that govern the drag-coefficient variation

and can be used to invert specific uncertain parameters, as outlined in the previous chapter. But

the density was assumed to be perfectly known, and therefore, the estimated Fourier coefficients

absorbed any errors present in the density. The Fourier model for the drag-coefficient still might

lead to improvements in short-term orbit predictions if the estimated Fourier coefficients are able

to emulate the combined variations in the drag-coefficient and density error as shown in chapter 5.

But the Fourier coefficients themselves will not represent a true time series of drag-coefficient.

Therefore, the inverted GSI parameters will be physically inconsistent. But if the density error is

modeled as a Gauss-Markov process, the higher-order Fourier coefficients (except the bias term)

can be estimated simultaneously with the density corrections. The Fourier coefficients are then

used to invert uncertain GSI parameters. With a better constraint on the GSI model, a more
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accurate bias term can be calculated. Therefore, with high-frequency tracking measurements such

as GPS data, accurate local atmospheric densities along the orbit at a sub-orbital cadence can

be obtained. An improvement in the estimated densities and drag-coefficients with the proposed

method is demonstrated using synthetic data across different altitudes and space weather conditions.

A preliminary validation of the method is presented using precision orbit determination (POD) from

the Spire satellites.

7.1 Modeling density using a Gauss-Markov process

The dynamical model used in the estimation method can have structural errors as well as

errors in governing parameters. Whereas some parameters can be estimated within the filtering

framework, structural errors are more difficult to compensate for and can lead to filter divergence,

where the estimation error exceeds the covariance bounds. A common way to take them into

account in the filter is to model them as stochastic processes. The dynamics equation with noise

can be written as [124]

ẋ(t) = A(t)x(t) +B(t)u(t). (7.1)

The noise vector, u(t) is generally added to a subset of the states and is therefore of a

smaller dimension than the state vector. In State Noise Compensation (SNC), white noise with a

known covariance is used to compensate for the dynamics errors. Though SNC can prevent filter

divergence by expanding the covariance bounds, it cannot provide an estimate of the dynamics error.

The use of Gauss-Markov processes in the filter known as Dynamic Model Compensation (DMC)

allows the possibility of estimating the dynamics errors. A Gauss-Markov process is a correlated

Gaussian noise such that the probability density function at the current time (tn) depends only on

the probability density at the previous time instant (tn−1). A zeroth-order Gauss Markov process

(GMP0) is equivalent to SNC. The first-order Gauss Markov process (GMP1) is given by the
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first-order differential equation known as Langevin equation,

η̇(t) = −λη(t) + u(t), (7.2)

where E(u) = 0 and E[u(t)u(t + τ) = Qδ(τ)]. The GMP state, η(t), is augmented with the

state vector and estimated in the filter. The time constant or correlation time (1/λ) is a tuning

parameter and needs to be calibrated. The first order Gauss-Markov process has been shown to be

more accurate in compensating for errors in force models during orbit determination than simply

adding white noise [17].

For dynamics errors with periodic components, a second-order Gauss-Markov process (GMP2)

can prove to be more beneficial. The advantage of using a GMP2 over GMP1 has been demon-

strated for gravity error compensation and the possibility of modeling other orbit-dependent errors

such as atmospheric drag and solar radiation pressure using GMP2 was suggested [55]. In particu-

lar, using GMP2 to model the atmospheric density was suggested by Nievinski et al. [85] due to the

oscillatory nature of the parameter. In the following, a framework to model errors in atmospheric

density using a GMP2 is developed. The second order Gauss-Markov process can be represented

in the state-space form as

ẋ1

ẋ2

 =

 0 1

−ω2
n −2ζωn


x1

x2

+

 0

c1

w(t), (7.3)

where E(w) = 0 and E[w(t)w(t + τ) = qδ(τ)]. The natural frequency of the process (ωn),

the damping factor (ζ) and the strength of the white noise (c1 with q = 1) are tuning parameters

that need to be calibrated. The calibration process can be performed by fitting the covariance of

sample data for the modeled state to the autocovariance function of the GMP2. For example, in

the case of density estimation, the sample data can be obtained from satellite missions GRACE

and CHAMP or datasets such as the SET HASDM database [126]. The autocovariance function is
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given by [55]

ψnn(τ) =
qc2

4ω3
nζ

exp (−ζωn|τ |)(cosβ|τ |+ ζωn
β

sinβ|τ |), (7.4)

where β = ωn
√

1− ζ2. The covariance of the data samples can be fit to Eq. 7.4 with c,

ζ and ωn as the fitting parameters. The fitting process is detailed in Leonard et al. [55]. The

fitting process doesn’t always converge on the correct tuning parameters and some trial and error

is usually required, since significant differences between density models can be observed depending

on the ambient conditions. An adaptive DMC to correct for the tuning parameters using tracking

data can potentially provide a better solution [116] and will be considered in future work.

In the filter, x1 and x2 are both estimated and the correction to the modeled density is

given by x1. In addition to modeling the density correction using a GMP2, a GMP0 correction

to the density with noise standard deviation c2 is estimated as well. The next section details the

implementation of the algorithm in the filter.

7.1.1 Filter implementation

In this section, the implementation of the DMC algorithm in an extended Kalman filter

(EKF) is outlined. The framework is presented for GMP2 but GMP1 can be similarly implemented

in the filter. The augmented state vector to be estimated is composed of the satellite position

(r) and velocity (ṙ), parameters (p) such as the Fourier drag-coefficients and the GMP states for

density correction,

X =

[
rT ṙT pT x1 x2 x3

]T
, (7.5)

where x3 is the GMP0 correction and p ∈ Rm×1. The time derivative of the state vector is

then given by

Ẋ =

[
ṙT r̈T ṗT x2 −ω2

nx1 − 2ζωnx2 0

]T
. (7.6)
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The density in the filter (ρ) at any time instant is given by

ρ = ρmod(1 + x1 + x3), (7.7)

where ρmod is the nominal density from an atmospheric model such as NRLMSISE-00 or

JB2008 being used in the filter. Note that the corrections are normalized by the nominal density

for numerical stability. The dynamics Jacobian is then given by

A(t) =



03×3 I3×3 03×m 0 0 0

∂r̈
∂r

∂r̈
∂ṙ

∂r̈
∂p

∂r̈
∂x1

0 ∂r̈
∂x3

∂ṗ
∂r

∂ṗ
∂ṙ

∂ṗ
∂p 0 0 0

01×3 01×3 01×m 0 1 0

01×3 01×3 01×m −ω2
n −2ζωn 0

01×3 01×3 01×m 0 0 0


. (7.8)

The partial of the acceleration with respect to the DMC parameters can be calculated by

taking the derivative of the drag acceleration. The partial can be calculated by using eqs. 1.1 and

7.7,

∂r̈

∂x1
=

∂r̈

∂x3
= −1

2
ρmodCd

Aref
m

v2
r û, (7.9)

The process noise matrix Qk+1 can be obtained by integrating the following equation

Qk+1 =

∫ tk+1

tk

φ(t, tk)BaQaB
T
aφ(t, tk)

Tdt. (7.10)

Here Qa = I3×3 and

Ba =

0(6+m)×2

diag(c)

 , (7.11)

where c = [c1, c2]. Note that the measurement matrix does not depend on the DMC states.
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Since noise is added to the states, a smoothing algorithm is implemented to reduce the error

in the estimated states.

7.1.2 Iterated EKF with smoothing

One simple approach to obtain higher accuracy states in post-processing is improving the

past estimates by using the current filtered states and measurements. The smoothing problem is

that of finding an optimal estimate at time tk given measurements till time tj where j > k. Here

we follow the fixed-interval smoothing approach [37], i.e., using the complete data-arc to smooth

back to the past estimates. In order to implement this smoothing algorithm, the time histories of

the state transition matrix, the process noise matrix and the correction factor required to account

for the non-linearity of the EKF, need to be saved while forward filtering. The smoothing matrix

is given by

Sk = P+
k φ

T
k+1,kP

−
k+1. (7.12)

The smoothed state (Xs
k) and state covariance (P s

k ) at the kth instant given the smoothed

state at time instant k + 1 is given by,

Xs
k = X̂k + Sk(X

s
k+1 − φk+1,kX̂k − bk+1), (7.13)

P s
k = P+

k + Sk(P
s
k+1 − P−k+1)STk , (7.14)

where X̂k is the state estimate at the kth instant. The smoothing algorithm is initialized

with Xs
N = X̂N and P s

N = P+
N , where N is the number of measurements in the given data-arc.

The correction factor (bk+1)) is computed by integrating the following differential equation from tk

to tk+1.

ḃ(t) = A(t)b(t) + Ẋ(t)−A(t)X∗(t), (7.15)
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with b(tk) = 0, X∗(t) refers to the propagated state estimate and Ẋ(t) is given by eq. 7.6.

The states are smoothed back to the first time instant and the EKF with smoothing is run again

with the new initial state estimate. The filter is iterated until the initial state correction drops

below a certain threshold.

7.2 Simultaneous estimation of density and drag-coefficient

During orbit determination, the drag-coefficient is usually estimated as part of the state

vector since it is not accurately known apriori and its value can change in orbit. If the drag-

coefficient was constant, it would not be simultaneously observable with the density bias since

the filter would not be able to distinguish between two constant terms that exist in a product.

Any correction to one term can be easily compensated for by the other term. Therefore, with an

inaccurate constant drag-coefficient in the filter, the density can be estimated only up to a bias

using the algorithm in the previous section. But for a satellite with attitude variations, the drag-

coefficient will be time-varying as discussed in section 5.2.1. Using the BFF model outlined in that

section, the time-varying components of the drag-coefficient can be estimated simultaneously with

the density. The bias term (zeroth order Fourier coefficient, A0) still cannot be estimated due to the

observability problem, but the higher order Fourier coefficients can be estimated simultaneously

with the density corrections due to the attached time-varying attitude terms. The bias in the

drag-coefficient is primarily absorbed by the estimated density bias correction, modeled by the

GMP0. The estimated Fourier coefficients will also be affected but to a lesser extent since they

govern higher-order frequencies in the drag-coefficient variation that cannot be captured by the

zeroth-order term. In order to calculate the drag-coefficient bias term, the functional relationship

between the GSIM parameters and the Fourier coefficients represented by the integrals in Eqs.

5.16-5.17 can be utilized. A few GSIM parameters with the largest uncertainties can be inverted

from the estimated Fourier coefficients, as outlined in the previous chapter. Then these inverted

GSIM parameters can be used to calculate the zeroth-order term using Eq. 5.18. The filter is

re-initialized with the new value of the zeroth-order term, with estimates and covariances of the
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states from the previous iteration. A more accurate drag-coefficient bias term in the filter dynamics

leads to a reduction in the density bias. The simultaneous estimation algorithm (Fig. 7.1) can be

summarized as follows-

(1) Initial values of the Fourier coefficients are obtained using the filter density model and

GSIM parameter estimates.

(2) The Kalman filter-smoother is initialized using these Fourier coefficients. In the filter, the

zeroth-order Fourier coefficient or the bias term is kept constant while the higher-order

Fourier coefficients are estimated simultaneously with the satellite position and velocity,

density DMC states and any other parameters being estimated.

(3) The least-squares method outlined above is used to invert chosen GSIM parameters with

the highest uncertainties from the estimated Fourier coefficients. The inverted values of

the GSIM parameters are used to re-calculate the zeroth-order Fourier coefficient using Eq.

5.18.

(4) The Kalman filter-smoother is reinitialized with the new drag-coefficient bias term. All the

other states are reinitialized with the estimated values and covariances from the first iter-

ation, with the covariances slightly inflated. An improved estimate of the drag-coefficient

bias leads to a more accurate density estimation.

7.3 Validation using simulated data

The proposed algorithm is validated in this section using controlled simulation scenarios

before applying on real data. The performance of the method is tested on different altitude regimes,

space weather conditions and filter model errors to understand its limitations. The true trajectory

for all the cases is generated with a 10 × 10 geopotential (EGM-2008), a cannonball SRP model

and atmospheric drag with time-varying drag-coefficient modeled using the modified DRIA model,
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Figure 7.1: Summary of the algorithm

unless otherwise stated. Here, the fractional coverage parameter is assumed to be at a steady state

value since the orbits considered are nearly circular.

The densities from the SET HASDM database are used for the true density during periods

of nominally low to moderate geomagnetic activity. In order to implement the densities in orbit

determination, a gridded linear interpolation of the logarithm of the densities is performed over

latitude, longitude, altitude and time. The satellite is modeled on Spire [121] using a box-wing

shape. The attitude profile is such that it tracks the Sun in light and assumes the minimal drag

configuration in eclipse.

The performance of semi-empirical density models degrades during geomagnetic storms [9].

With the limited temporal resolution of the HASDM dataset, it cannot accurately capture the time

variations in density over short time-scales. Therefore, in order to simulate the density variations

during a geomagnetic storm, densities derived from the accelerometer measurements on-board

CHAMP by Mehta et al. [73] using their Response Surface Model (RSM) drag-coefficients are

used. In order to be consistent with the densities, orbital elements of CHAMP for the given time

epoch are used to simulate the true trajectory. The simulated cases are summarized in Table
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7.1. The symbols in the table stand for —rads is the velocity ratio for the surface covered by

atomic oxygen which is a function of the energy accommodation coefficient α and the satellite wall

temperature Tw, M is the mean molar mass of the ambient gases and T is the ambient temperature.

Table 7.1: Summary of simulated cases. The dashes indicate that the parameters are the same as
the previous column.

Case 1 2 3

Epoch Mar 23 2007 - Oct 29 2003
Daily
F10.7

72.5 - 279.1

Daily
Ap

10 - 204

Apogee/Perigee
altitude (km)

360/370 510/520 385/398

True density HASDM - RSM CHAMP
Nominal filter

density
NRLMSIS00 - HASDM

True Cd GSIM
parameters

f = 0.7 f = 0.5
f = 0.65, Tw = 450 K,
JB2008 for M and T

Filter Cd GSIM
parameters

f = 0.98 f = 0.98
f = 0.98, Tw = 300K,
NRLMSISE-00 for M and T

Inverted GSIM
parameters

f - rads

The estimated drag-coefficients and densities for the different cases are plotted in Fig. 7.2.

For all the cases, the tuning parameters used are —ωn = 0.0011, ζ = 0.5, c1 = 10−8 and c2 = 10−5.

The natural frequency is taken as the orbit angular frequency while the rest of the parameters are

chosen arbitrarily. It is apparent that there’s a significant discrepancy between the true and nominal

filter densities. NRLMSISE-00 consistently overpredicts the densities compared to HASDM for the

first two cases during times of low geomagnetic activity while HASDM densities are larger than

the CHAMP densities during the period of the 2003 Halloween storms. Part of the difference can

be attributed to the interpolation of the HASDM densities. For the first two cases, the estimated

drag-coefficients and densities after the second iteration track the truth quite well. The density and

drag-coefficient biases are reduced in the second iteration, as a better constraint on the fractional

coverage parameter is obtained from the Fourier coefficient estimates.
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The third case simulates a scenario where it is not obvious which GSIM parameters are the

most uncertain and should be inverted. The actual error is in the fractional coverage parameter and

wall temperature but the velocity ratio is inverted from the Fourier coefficients, i.e., if two different

GSIM parameters are able to model a given variation in the drag-coefficient. Though the estimated

densities track the truth (CHAMP) better than the nominal filter density (HASDM), the bias due

to the drag-coefficient is not greatly reduced as can be seen from the estimated drag-coefficient

plot. The estimated densities are also not able to track the high-frequency variations visible in

the truth. This is primarily because the tuning parameters are not well calibrated to model the

higher-frequency variations during the geomagnetic storm. If the damping ratio is reduced and

noise standard deviations increased (ζ = 0.09 , c1 = 10−4, c2 = 10−2), the estimated densities are

able to track the temporal variations better. But in this case, the Fourier coefficients diverge from

the truth, which subsequently increases the bias in the estimated densities. This happens because

the Fourier coefficient uncertainties are smaller than the noise introduced in the filter; therefore,

the corrections introduced are larger than the initial uncertainties. As seen in Fig. 7.3, it is better

not to estimate the Fourier coefficients in this case. The estimated densities still contain the bias

due to the drag-coefficient; it is just more difficult to estimate the bias due to the larger noise in

the filter.

There’s a possible solution around the problem —modify the tuning parameters between the

first and the second iterations. If low noise levels are used in the first iteration, more accurate

estimates of the Fourier coefficients can be obtained though the densities do not track the time-

variations well. After a better constraint on the bias is obtained from the Fourier coefficient

estimates, larger noise levels are introduced in the second iteration and the Fourier coefficients are

no longer estimated. The estimated densities with this modified method accurately track the truth

as seen in Fig. 7.3. It can be concluded from this example that the tuning parameters, especially

the noise levels should be selected based on the space weather activity. The mean and RMS values

of the drag coefficient and density error percentages, (truth− estimate)/truth, are given in Table

7.2. In all the simulated cases, the errors in drag-coefficient and density improve compared to
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initial estimates after the second iteration of the algorithm. The improvement in density with the

modified algorithm for case 3 is significant.

Table 7.2: Mean and RMS values of estimated drag-coefficient and density errors (%). The dashes
indicate that the values are the same as the previous column.

Case 1 2 3 3 (Modified)

Mean RMS Mean RMS Mean RMS Mean RMS
Drag-
coefficient
error

Initial 5.2 5.3 10.1 10.4 6.8 7 - -
Iteration 1 11.6 13.9 9.3 9.4 13.2 15.6 - -
Iteration 2 2.5 2.7 0.7 1.2 6.4 6.8 3.6 3.7

Density
error

Initial 31 38.9 52.2 63 32.4 46 - -
Iteration 1 13 17.4 24.4 56.7 22 32.7 - -
Iteration 2 8.5 12.7 19.3 51.3 16.9 25.3 7.4 10.3

7.4 Application to real data

7.4.1 Dataset

The algorithm is tested on POD for Spire satellites. The PODs were obtained (and made

available to us) by processing GNSS pseudorange and carrier phase measurements using the RTOrb

software in a Kalman filtering framework. The software considers non-spherical gravity up to degree

and order 120, third-body perturbations from Sun and Moon, atmospheric drag with MSISe-90 as

the density model and solar radiation pressure (SRP) with a cylindrical shadow model. Cannonball

drag-coefficient and SRP coefficient are estimated within each arc. The PODs obtained by RTOrb

have a precision of several centimeters in position and sub-mm/s in velocity and are mostly available

with a cadence of 1 s in data-arcs of 40-60 minutes. The attitude information of the satellites

is in the form of quaternions between the body and the orbit frame. The quaternions are not

uniformly available and can vary between a sample time of 10 s to 1000 s. For our application, the

quaternions are needed as frequently as possible since the Spire satellites make frequent attitude

maneuvers between an observing mode with the GNSS antennas aligned along-track and a power

mode where the solar flux on the solar panels is maximized. Therefore, only a small subset of the
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Figure 7.2: Drag coefficients and densities for (a), (b): Case 1, (c), (d): Case 2 and (e), (f): Case 3
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data can be used for our applications. The POD and attitude data from Nov. 7, 2018 for satellite

ID 83 is used in this work. The quaternions are interpolated to 1 s intervals using Spherical Linear

IntERPolation (SLERP) [115]. As can be seen in Fig. 7.4, the velocity vector varies significantly

and frequently in the x-y plane of the body frame. The variation out of the x-y plane is negligible.
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7.4.2 Force model

A high-fidelity force model is required to propagate the Spire satellite orbits to be able to

isolate the orbit determination residuals solely due to errors in atmospheric drag. The forces

considered in the dynamics model are given in Table 7.3. The initial state from the POD for a

given day is propagated with the different forces to analyze the relative contribution of each force

to the orbital states. The POD is assumed to be the “truth” to compare the propagated orbit to.

Table 7.3: Forces considered in propagation

Force Parameters

Non-spherical gravity
EGM-2008
80X80

Third-body forces
from Sun and Moon

DE-430 Ephemerides

Atmospheric drag

Density model - NRLMSISE-00,
JB2008, SET HASDM densities
Drag-coefficient- Cannonball,
Panel (DRIA)

Solid Earth and Ocean tides IERS 2010 Models [91]
Solar radiation pressure (SRP) Cannonball, Panel

Relativistic correction
Post-Newtonian correction
[82]

The norm of the propagated position errors (w.r.t the POD) is plotted in the upper tile of Fig.

7.5 (a) for the major perturbing forces with different density models for drag in the propagator. A

cannonball drag coefficient is used by averaging the predicted output from the DRIA model with

input parameter values of f = 1 and α = 0.93 [121] which results in a value of 0.23. The only

other forces considered are non-spherical gravity (80x80) and third-body forces. HASDM performs

a little better than JB2008 and both are significantly better than NRLMSISE-00, as expected. In

the lower tile of Fig. 7.5 (a), the higher-fidelity forces are added one-by-one to the force model

with HASDM as the density model. The addition of solid Earth tides and ocean tides leads to

around 30 m improvement in the position at the end of the day and SRP improves it further by

25-30 m. Both the forces are non-negligible when trying to isolate orbit errors due to variations in
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the drag-coefficient. Adding the relativistic corrections leads to a small improvement of around 2

m and changing the gravity field to order 120 improves the error by less than a m which is barely

discernible as shown in Fig. 7.5 (b).
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Figure 7.5: Propagation errors w.r.t POD: (a) Position errors with different forces added to the force
model, (b) RMS of propagation errors with addition of each high-fidelity force to the dynamics.

In Fig. 7.5, the drag-coefficient is considered to be constant in the force model. But as seen

in Fig. 7.4, the relative velocity vector varies significantly in the body frame of the satellite. The

propagation error with the drag-coefficient modeled using DRIA with different values of f and α

are compared in Fig. 7.6. From Fig. 7.6 (a), it would seem that drag-coefficient with f = 0 and

α = 0.93 would provide the most accurate drag-coefficient as the propagation errors are the smallest

with these parameters and HASDM as the density model. But the propagation errors depend on the

product of the density and drag-coefficient and it’s quite possible that this particular drag-coefficient

model is able to compensate for the lack of spatial and temporal resolution of HASDM densities to

result in better propagation errors even though the drag-coefficient itself is less accurate. This can

be seen from Fig. 7.6 (b) where the propagation error trends are quite different with NRLMSISE-00

as the density model and the same drag-coefficient values. The density and drag-coefficient values

from the different models are plotted in Fig. 7.7. Note that the drag-coefficients are calculated

with NRLMSISE-00 as the density model for the input ambient parameters to the DRIA model.
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Figure 7.6: Propagation errors w.r.t POD with all forces and different drag-coefficient models with:
(a) HASDM as the density model, (b) NRLMSISE-00 as the density model
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Figure 7.7: (a) Density values from different models, (b) Drag-coefficient values from different
models

In the propagation, the SRP force model is assumed to be known accurately. The available

satellite properties used in the panel SRP method are assumed to be accurate in the force model

with Cr = 1. But it is instructive to compare the orbit determination residuals for a cannonball

model and the given panel model with Cr being estimated in both cases to analyze if the given panel

model is indeed closer to the truth. Therefore, the POD are processed in a batch filter with all the
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high-fidelity force models included in the dynamics and run for the two SRP models. The initial

position and velocity, cannonball drag-coefficient and SRP coefficient are estimated with HASDM

as the density model.

The position and velocity measurement residuals, plotted in Fig. 7.8, are smaller for the

panel model. This can be further verified from Table 7.4 where the correction to the initial state

(which is taken to be the initial POD state) is smaller for the panel model. It is encouraging to

note that for either model, the estimated drag-coefficient value is pretty much the same, i.e., the

SRP errors don’t alias into the estimated drag-coefficient [101]. The panel model with Cr = 0.41

is considered in the force model for the density inversion method.
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Figure 7.8: Measurement residuals from batch processing of POD with two different SRP models

Table 7.4: Initial and final estimates from the batch estimator for the two SRP models

Parameter Initial
Final

Cannonball SRP Panel SRP

Norm of position
error w.r.t POD (m)

0 4.522 3.766

Norm of velocity
error w.r.t POD (m/s)

0 5.8e-3 5.0e-3

SRP coefficient 1 0.95 0.41
Drag-coefficient 0.23 0.262 0.259

The initial estimates of the Fourier coefficients are calculated using the analytical expressions
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for DRIA derived in the previous chapter. The standard deviations are calculated by considering

the extremities of the range of variation of the GSIM input parameters. The fraction of surface

covered by atomic oxygen (f) is assumed to vary from 0 to 1 and the accommodation coefficient

of the covered surface is varied from 0 to 1. It is important to note here that the drag-coefficient

and consequently, the BFF coefficients depend on ambient parameters that vary in the orbit.

Ideally, a second Fourier series expansion in the orbit frame would be carried out to capture the

periodic variations of the BFF coefficients as derived in chapter chapter 5. But the orbit-fixed

coefficients are highly correlated with density variations since both are dependent on similar sets

of parameters which makes it difficult for them to be estimated simultaneously. Therefore, only

the BFF coefficients are estimated in the filter as constants. The initial estimates of the body-

fixed coefficients are calculated by averaging the GSIM in the orbit. The initial values are also

dependent on the density model used to provide the GSIM parameter inputs such as the mean

molecular mass. The Fourier coefficients are calculated using both NRLMSISE-00 and JB2008 for

the input parameters to compare the dependence of the drag-coefficient on the density model. The

effective initial drag-coefficient is calculated from the Fourier coefficients using eq. 5.15. The relative

error introduced in the drag-coefficient due to averaging of the Fourier series expansion ((Cd,T −

Cd,f )/Cd,T , where Cd,T is the modified DRIA model and Cd,f is the orbit-averaged BFF drag-

coefficient) is plotted in Fig. 7.9 (a) for extremal values of the GSIM parameters with NRLMSISE-

00 as the density model. The relative error of the drag-coefficients calculated using JB2008 as the

density model w.r.t the drag-coefficients calculated using NRLMSISE-00 as the density model is

plotted in Fig. 7.9 (b). Both the averaging error and density model-dependent error are within

2 % when the accommodation coefficient is constant. But if the fractional coverage parameter is

assumed to be zero and the accommodation coefficient is modeled using Goodman’s formula, and

therefore dependent on the density model, the relative errors are larger since now an additional

parameter in the GSIM is tied to the density model.

The iterated EKF-smoother is run with the POD as measurements and NRLMSISE-00 as

the density model. The state vector consists of the position, velocity, SRP coefficient, the density
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Figure 7.9: (a) Averaging error in the drag-coefficient, (b) Density model-dependent error in the
drag-coefficient

GMP2 states and the Fourier drag-coefficients. Only the first and second order Fourier coefficients

are estimated while rest of the coefficients till order 30 are kept constant in the filter. The tuning

parameters for the GMP2 are found by fitting the autocovariance function in Eq. 7.4 to the error

between NRLMSISE-00 and HASDM and then modified further by trial and error. The smoothed

post-fit residuals after one iteration of the algorithm are less than a m in position as seen in Fig.

7.10 (a). But the estimated densities in Fig. 7.10 (b) are non-physical. The Fourier drag-coefficients

are non-physical as well. The estimates are clearly absorbing other periodic unmodeled dynamics

errors in the orbit due to the periodic nature of GMP2 modeling.

Therefore, the density correction model is changed to a GMP1 instead with the time constant

taken as the orbital period. This improves the density estimates as well as the Fourier coefficient

estimates. The proposed method outlined in 7.2 is used to estimate the states with the velocity

ratio (rads) inverted from the Fourier coefficient estimates. The post-fit residuals and the estimated

densities from the two iterations are plotted in Fig. 7.11. The figure also shows the density

corrections when JB2008 is used as the nominal density model. It can be immediately noted that

the estimated densities after each iteration move closer to HASDM, i.e., the algorithm is able to

estimate the density bias. The error statistics for the density errors w.r.t HASDM, similar to Table
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Figure 7.10: (a) Smoothed post-fit residuals, (b) Estimated densities from the iterated EKF-
smoother

7.1, are given in Table 7.5. There’s an improvement of about 26 % after the first iteration and 29

% after the second iteration in the density bias with NRLMSISE-00 as the density model. With

JB2008 as the nominal density model, the percentage improvement increases to 44 % and 49 % after

two iterations respectively. It should be noted that the JB2008 densities are closer to the HASDM

densities to begin with. Although the estimated densities after both iterations are closer to the

HASDM densities, the post-fit residuals are worse than Fig. 7.10. Even between the iterations,

whereas the estimated density is closer to HASDM after the second iteration, the post-fit residuals

are worse. This hints that there are remaining unmodeled dynamics that are getting absorbed in

the estimated densities and Fourier drag-coefficients. But even with remaining unmodeled errors,

improved estimates of the density are still obtained, demonstrating the applicability of the method

in real scenarios.

7.5 Chapter summary

In this chapter, an algorithm to simultaneously estimate the density and drag-coefficient was

developed. A Gauss Markov process was utilized to model the density correction in the filter. For a

satellite with a constant drag-coefficient, the density and drag-coefficient bias cannot be estimated
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Figure 7.11: (a) Smoothed post-fit residuals and (b) Estimated densities from the iterated EKF-
smoother with NRLMSISE-00 as the nominal density model; (c) Smoothed post-fit residuals and
(d) Estimated densities from the iterated EKF-smoother with JB2008 as the nominal density model

Table 7.5: Mean and RMS values of estimated density errors w.r.t HASDM densities. Iteration 0
refers to the initial errors of the nominal density model.

Iteration NRLMSISE-00 JB2008

0
Mean 89.4 36.6
RMS 95.5 45.5

1
Mean 65.8 20.3
RMS 75.1 27.8

2
Mean 63.3 18.5
RMS 73.7 26.9
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simultaneously. But time-variations in the drag-coefficient due to a changing satellite attitude allows

the possibility of decorrelating the two. For a satellite with varying attitude, the time-variations

in the drag-coefficient are modeled using a body-fixed Fourier expansion. The higher-order Fourier

coefficients can be estimated simultaneously with the density corrections since the attitude-induced

drag-coefficient signal is independent of the density variations. A few uncertain GSIM parameters

are inverted from the estimated Fourier coefficients in a least-squares methodology utilizing the

functional relationship between them, and thereby providing a better constraint on the GSIM. The

bias term is then re-calculated using the new GSIM parameter estimates and the filter-smoother

is run again. Through simulations, the improvement in estimating the density and drag-coefficient

with this algorithm was demonstrated for both geomagnetically quiet and active conditions, dif-

ferent altitudes and errors in GSIM parameters. The bias in the drag coefficient and density was

reduced by more than 70 % in some cases. The algorithm was validated using POD from Spire satel-

lites. Even though the density correction modeled using a second-order GMP didn’t converge on

the truth, using a first order GMP allowed an improved estimate of the density. The NRLMSISE-00

density bias and error RMS w.r.t to HASDM are reduced by 26 % after the first iteration and 29

% after the second iteration whereas with JB2008 as the density model, the errors are reduced by

44 % and 49 % respectively. The poor density estimate with a GMP2 suggests unmodeled periodic

dynamics remaining in the filter which need to be further analyzed. Remaining errors such as

Earth albedo and infrared radiation pressure need to be modeled. Additionally, more dense data

is needed to improve the estimates. The method developed in this work can provide accurate local

atmospheric density estimates at a sub-orbital cadence and can therefore, be used as a data-source

in data-assimilation methods for density models.



Chapter 8

King-Hele theory for periodic orbit and attitude variations

The motion of satellites in an atmosphere is governed by parameters with complex time-

dependent profiles such as the atmospheric density and the drag-coefficient. A prediction of the

satellite states, the position and velocity or the orbital elements, can be most accurately obtained

by numerical integration of the equations of motion. But numerical integration is a computation-

ally expensive process and does not prove feasible for analysis of long-term evolution of the orbital

elements. A time profile of the semi-major axis and eccentricity evolution is required to obtain an

estimate of the satellite lifetime which is indispensable for mission design and maneuver planning.

Therefore, a closed-form analytical solution of the change in semi-major axis and eccentricity, i.e.,

orbit contraction, is essential. Fortunately, a closed-form solution is possible under some simplifying

assumptions regarding the atmosphere and was outlined by King-Hele (1964) [51] in his compre-

hensive treatise on the subject. Assuming an exponentially decaying atmosphere with constant

density surfaces at any altitude, expressions for changes in semi-major axis and eccentricity, aver-

aged over an orbital period, were derived for both spherically symmetrical and oblate atmospheres.

The integration of the Lagrange planetary equations led to separate series formulations for three

eccentricity regimes - circular, low eccentricity (e < 0.2) and high eccentricity (e > 0.2).

Several improvements to the original King-Hele formulation have been developed in the lit-

erature. Whereas King-Hele developed separate formulations for low and high eccentricity regimes

with an empirical boundary condition of e = 0.2 using heuristic methods for integration, Vinh et

al. (1979) [130] provided a rigorous analytic solution using Poincaré’s method for small parameters
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[97]. The singularities arising in classical orbital elements for nearly circular orbits were removed

by Sharma (1991) [114] by formulating the theory in non-singular elements. One of the weakest

assumptions in the original King-Hele formulation is the stationary and exponentially decaying

nature of the atmospheric density. The effect of diurnal and latitudinal variation of atmospheric

density on the orbital elements have been addressed by various authors [51]. The assumption of a

fixed scale height for the exponentially decaying density can introduce large errors as the distance

from the perigee increases. King-Hele (1964) [51] tried to address this approximation by assuming

a linear variation of scale height. More recently, significant advances were made in incorporating

a generic atmospheric model in the theory by fitting multiple exponentially decaying partial atmo-

spheres to the model [34]. Frey et al. (2019) [34] were also able to arrive at a variable boundary

condition for the eccentricity regime that was fixed by King-Hele at 0.2.

8.1 Proposed improvement to the original King-Hele theory

In the original King-Hele theory and all the modifications thereafter, the drag-coefficient

has been considered constant. This is partly because it is not possible to incorporate complex

physics-based drag-coefficients models in their original form in the King-Hele theory and obtain a

closed-form solution. But a parameterization of these models in terms of a high-frequency orbital

element such as true anomaly or eccentric anomaly can allow the drag coefficient to vary in the King-

Hele theory. In this work, the original King-Hele theory for a spherically symmetric atmosphere is

expanded upon by allowing the drag-coefficient to vary in time using the Fourier drag-coefficient

models. This extended King-Hele theory will not only be useful in improving lifetime estimates of

the satellite but also improve derivation of atmospheric densities from satellite decay data using

general perturbation methods since the drag-coefficient is assumed to be constant in such studies

[92]. The extended theory also reveals the value of the constant drag-coefficient that should be used

in the original King-Hele formulation to obtain an accurate approximation to numerical results.

Additionally, it can be combined with the other improvements outlined previously to obtain a

generalized analytical theory of satellite orbits in the presence of atmospheric drag. The inclusion



189

of drag-coefficient variation in the perturbation equations is an added layer of complexity that

improves the approximation to the true variation of the orbits.

8.2 Chapter outline

The analytical change in the semi-major axis, eccentricity and argument of perigee over an

orbital period with the proposed extension is derived in detail while noting that the other orbital

elements remain constant under the given assumptions. It should be noted that the OFF model

developed in 5 was expanded in terms of the argument of latitude while noting that it can be

derived for any fast variable in orbit. Here, the OFF expansion is done in terms of the eccentric

anomaly,

CD =

∞∑
n=0

(An cosnE + Bn sinnE). (8.1)

The transformation of the time variation of the drag-coefficient to eccentric anomaly simplifies the

integration of the Lagrange planetary equations as will be seen in section 8.3. In section 8.4, the

orbit-fixed Fourier (OFF) model is applied to the King-Hele theory and the orbital element changes

are derived for both low eccentricity and high eccentricity regimes. The drag-coefficient is assumed

to vary solely due to ambient parameters and the orientation w.r.t the atmosphere is assumed to be

constant. Section 8.5 carries out the procedure for the body-fixed Fourier (BFF) model for a nadir-

pointing and an inertially stabilized satellite where the drag-coefficient is assumed to vary solely

due to changes in orientation of velocity vector in the body-frame. But the drag-coefficient in an

actual scenario varies due to both the factors. An approximate method to capture the dependence

of the drag-coefficient on both the factors is provided. In section 8.6, it is demonstrated that the

higher-order Fourier coefficients do not contribute to the change in orbital elements for a circular

orbit under the assumptions of the King-Hele theory. The theory is validated using simulated

satellite trajectories in section 8.7. Finally, section 8.8 discusses and summarizes the developed

theory.
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8.3 Lagrange planetary equations for air drag

In this section, the Lagrange planetary equations for the classical orbital elements in terms

of the eccentric anomaly are repeated using King-Hele’s notation. The magnitude of the drag force

acting tangential to the orbit is given by

fT = −1

2
ρv2δ. (8.2)

The variation in velocity direction due to the rotating atmosphere is neglected since the angle

between the absolute velocity vector and relative velocity vector never exceeds ≈ 4◦ [103] but the

magnitude is accounted for in the drag-parameter that is assumed to be constant,

δ =
FSCd
ms

.

F is the wind-factor that accounts for the relative speed w.r.t the atmosphere, given by

F = (1− rp0w

vp0
cos i0)2.

The atmosphere in this theory is assumed to be symmetric and exponentially decaying with a

constant scale-height,

ρ = ρp0 exp {(rp0 − r)/H}. (8.3)

A closed-form analytical theory is possible for a higher-fidelity density model accounting for oblate-

ness of the atmosphere, day-night and solar activity variations, meridional winds and varying scale-

height [52, 34]. But the modified theory is developed for the simplest case in this work and can be

extended to incorporate other refinements.

Following King-Hele (1964) [51], the theory is derived for the semi-major axis (a), the focal-

length (x = ae) and the argument of periapsis (ω) of the satellite orbit. The orientation of the

orbital plane is affected by atmospheric rotation leading to time-variations in the inclination, right-

ascension of ascending node and argument of perigee. Whereas the inclination and right-ascension

vary solely due to atmospheric forces perpendicular to the orbit plane, the argument of periapsis

depends on the forces in the orbital plane. In this work, the forces perpendicular to the velocity
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direction are neglected. Therefore, the variation of inclination and right-ascension is considered to

be zero. The Lagrange planetary equations for semi-major axis and eccentricity expressed in the

tangential (T ) and orbit inward normal in the orbit plane (N) directions are as follows-

ȧ =
2a2v

µ
fT , (8.4)

ė =
1

v

{
2fT (e+ cos θ)− fN

r

a
sin θ

}
. (8.5)

For the argument of perigee, the derivation deviates a little from King-Hele, since the normal forces

due to atmospheric rotation are neglected here. The Lagrange Planetary equation for argument of

perigee expressed in the radial (r)-transverse (t) direction is given by King-Hele [51]

ω̇ + Ω̇ cos i =
1

e

√
p

µ

{
−fr cos θ + ft

(
1 +

r

p

)
sin θ

}
. (8.6)

The forces in the radial-transverse direction can be expressed in the tangential-inward normal

directions as [51]

fr =
1

v

√
µ

p
{fT e sin θ − fN (1 + e cos θ)}

ft =
1

v

√
µ

p
{fT (1 + e cos θ) + fNe sin θ} (8.7)

Substituting Eq. 8.7 in 8.6 and simplifying,

ω̇ =
1

ve

[
fT

{
sin θ +

r

p
(1 + e cos θ) sin θ

}
+fN

{
e+ cos θ +

r

p
e sin2 θ

}] (8.8)

The rate of right-ascension is neglected here, as discussed before. Considering only the drag force,

Eqs. 8.4, 8.5 and 8.8 can be re-written as,

ȧ = −a
2ρδv3

µ
, (8.9)

ė = −ρδv(e+ cos θ). (8.10)
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ω̇ =
−ρvδ

2e

[
sin θ +

r

p
(1 + e cos θ) sin θ

]
(8.11)

It is desirable to transform the time variable into eccentric anomaly as that simplifies the integration

of these equations. After transforming the time variable to eccentric anomaly, the final form of the

Lagrange planetary equations is [51]

da

dE
= −a2ρδ

(1 + e cosE)3/2

(1− e cosE)1/2
, (8.12)

dx

dE
= −a2ρδ

(
1 + e cosE

1− e cosE

)1/2

(cosE + e), (8.13)

dω

dE
= −aρδ

e

√
1− e2

(
1 + e cosE

1− e cosE

)1/2

sinE. (8.14)

In the original formulation [51], the equations are integrated over an orbital period by assuming δ

to be constant. This is modified by allowing the drag-coefficient to vary in orbit as a function of

the eccentric anomaly, i.e., δ = δ′Cd(E). The modified integrated equations are given by,

∆a = −a2δ′
∫ 2π

0

(1 + e cosE)3/2

(1− e cosE)1/2
Cd(E)ρdE, (8.15)

∆x = −a2δ′
∫ 2π

0

(
1 + e cosE

1− e cosE

)1/2

(cosE + e)Cd(E)ρdE. (8.16)

∆ω = −aδ
′

e

√
1− e2

∫ 2π

0

(
1 + e cosE

1− e cosE

)1/2

sinECd(E)ρdE. (8.17)

The density transformed to eccentric anomaly is given by,

ρ = ρp0 exp {β(a0 − a− x0) + βx cosE}. (8.18)

Substituting Eq. 8.18 in Eqs. 8.15-8.17,

∆a =− δ′a2ρp0 exp {β(a0 − a− x0)}
∫ 2π

0

[
(1 + e cosE)3/2

(1− e cosE)1/2

× Cd(E) exp (βx cosE)] dE

(8.19)
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∆x =− δ′a2ρp0 expβ(a0 − a− x0)}
∫ 2π

0

[(
1 + e cosE

1− e cosE

)1/2

×(cosE + e)Cd(E) exp (βx cosE)] dE

(8.20)

∆ω =− δ′a

e

√
1− e2ρp0 expβ(a0 − a− x0)}

×
∫ 2π

0

[(
1 + e cosE

1− e cosE

)1/2

sinECd(E) exp (βx cosE)

]
dE

(8.21)

To integrate these equations, the integrand (without the time-varying drag-coefficient) is expressed

as a power series expansion in e and truncated at the third order by King-Hele. A similar approach

is followed here after expressing the drag-coefficient as an analytical function in eccentric anomaly

using the Fourier models of chapter 5. An important point to note here is that the R.H.S of Eq.

8.14 is an odd function unlike Eqs. 8.12 and 8.13. Therefore, when it is integrated from 0 to 2π,

Eq. 8.14 should integrate to zero for a spherically symmetric, non-rotating atmosphere as noted by

King-Hele (1964) [51]. But since the drag-coefficient is considered time-varying here, the argument

of perigee variation can integrate to a non-zero value as will be demonstrated in subsequent sections.

8.4 Re-deriving the King-Hele theory using OFF model

The dependence of the drag-coefficient on eccentric anomaly in the OFF model is introduced

through input ambient parameters to the chosen drag-coefficient model such as the partial pressure

of oxygen and mean molecular mass that vary in the orbit. For an exponentially decaying spherically

symmetric atmosphere, they are dependent only on the altitude and therefore symmetric about E =

0, π. Therefore Cd(E) is an even function of eccentric anomaly and therefore the sine coefficients

reduce to

Bn = 0.

Note that this is, in general, not true for an arbitrary atmosphere. Since there is no odd component

to the drag-coefficient, the integrand in Eq. 8.21 is odd and therefore, the argument of perigee
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change is zero over an orbit. The following sections provide details of the derivation for low and

high eccentricities with the OFF drag-coefficient model. Note that the derivations are independent

of the gas-surface interaction model considered.

8.4.1 Low eccentricity regime, e < 0.2

For low eccentricities, Eqs. 8.19 and 8.20 can be integrated by expanding the integrands as

power series in e. The power series for the integrand in Eq. 8.19 truncated at order 3 is given by,

(1 + e cosE)3/2

(1− e cosE)1/2
= 1 + 2e cosE +

3

2
e2 cos2E + e3 cos3E + O(e4) (8.22)

Substituting for OFF Cd and 8.22 in Eq. 8.19 and rearranging,

∆a =− δ′a2ρp0 exp {β(a0 − a− x0)}
∫ 2π

0

[ ∞∑
n=0

(An cosnE

×(1 + 2e cosE +
3

2
e2 cos2E + e3 cos3E) exp (βx cosE)

]
dE

(8.23)

The following multiple angle formulae are used to integrate the equation,

cos2E =
1 + cos 2E

2
(8.24)

cos3E =
3 cosE + cos 3E

4
(8.25)

Substituting Eqs. 8.24 and 8.25 in Eq. 8.23,

∆a =Dc

∫ 2π

0

[ ∞∑
n=0

An cosnE(1 + 2e cosE +
3

4
e2(1 + cos 2E)

+e3 3 cosE + cos 3E

4
) exp (βx cosE)

]
dE

(8.26)

where Dc = −δ′a2ρp0 exp {β(a0 − a− x0)}. Using the following cosine product formula in Eq. 8.26,

cosA cosB =
cos (A+B) + cos (A−B)

2



195

∆a =Dc

∫ 2π

0

[ ∞∑
n=0

An{cosnE + e(cos (n+ 1)E + cos (n− 1)E)

+
3

4
e2

(
cosnE +

cos (n+ 2)E + cos (n− 2)E

2

)
+
e3

4

(
3

2
(cos (n+ 1)E + cos (n− 1)E)

+
cos (n+ 3)E + cos (n− 3)E

2

)
} exp (βx cosE)

]
dE

(8.27)

Now, the integral can be expressed as a sum of modified Bessel functions of the first kind with

imaginary argument,

In(z) =
1

2π

∫ 2π

0
cosnx exp (z cosx) (8.28)

Therefore, Eq. 8.27 is written as,

∆a =2πDc

[ ∞∑
n=0

An{In + e(In+1 + In−1) +
3

4
e2(In +

In+2 + In−2

2
)

+
e3

4
(
3

2
(In+1 + In−1) +

In+3 + In−3

2
)}
] (8.29)

where In = In(βx) is implicit. The derivation of ∆x follows similar steps. The integrand in Eq.

8.20 can be expanded as a power series in e. Truncating the power series at the third order and

substituting OFF Cd, Eq. 8.20 can be written as

∆x =Dc

∫ 2π

0

[ ∞∑
n=0

(An cosnE){cosE +
1

2
e(3 + cos 2E)

+
1

8
e2(11 cosE + cos 3E) +

1

16
e3(7 + 8 cos 2E + cos 4E)

+O(e4)} exp (βx cosE)dE
]

(8.30)

Carrying out the trigonometric simplifications outlined in Eqs. 8.23-8.29, the final form of Eq. 8.30

is

∆x =2πDc

[ ∞∑
n=0

An
{

1

2
(In+1 + In−1) +

1

4
e{6In + (In+2 + In−2)}

+
1

16
e2{11(In+1 + In−1) + (In+3 + In−3)}

+
1

32
e3{14In + 8(In+2 + In−2) + (In+4 + In−4)}

}] (8.31)
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Eqs. 8.29 and 8.31 calculate the change in semi-major axis and focal-length over an orbital period

for the modified King-Hele theory. Note that for n = 0, the equations reduce to the original forms

derived by King-Hele as follows since In = I−n,

∆a = 2πDcA0[I0 + 2eI1 +
3

4
e2(I0 + I2) +

1

4
e3(3I1 + I3)] (8.32)

∆x = 2πDcA0[I1 +
1

2
e(3I0 + I2) +

1

8
e2(11I1 + I3)

+
1

16
e3(7I0 + 8I2 + I4)]

(8.33)

For the original formulation, the drag-coefficient is assumed to be constant, denoted by A0 in Eqs.

8.32 and 8.33. The constant drag-coefficient can be assumed to be the zeroth-order order Fourier

coefficient (A0), the drag-coefficient evaluated at perigee or a weighted average of the orbital drag-

coefficient variation. The value that will approximate the results of the Fourier theory given by

Eqs. 8.15 and 8.16 can be calculated by equating the original King-Hele ∆a and ∆e to the Fourier

theory given by Eqs. 8.19 and 8.20 as follows,

Cd0

∫ 2π

0

(1 + e cosE)3/2

(1− e cosE)1/2
ρdE =

∫ 2π

0

(1 + e cosE)3/2

(1− e cosE)1/2

× Cd(E)ρdE

(8.34)

Cd0

∫ 2π

0

(
1 + e cosE

1− e cosE

)1/2

(cosE + e)ρdE =∫ 2π

0

(
1 + e cosE

1− e cosE

)1/2

(cosE + e)Cd(E)ρdE

(8.35)

A drag-coefficient that approximates both Eqs. 8.34 and 8.35 can be calculated by considering only

the density and the Fourier drag-coefficient inside the integral. This results in a weighted average

of the Fourier drag-coefficient as follows-

Cd0 =

∫ 2π
0 ρCd(E)dE∫ 2π

0 ρdE
(8.36)

Using Eqs. 8.18 and 8.28, an analytical form of the constant drag-coefficient can be found as

Cd0 =

∑∞
n=0 AnIn
I0

(8.37)
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8.4.2 High eccentricity regime, 0.2 ≤ e < 1

For large values of eccentricity, expanding the integrands in Eqs. 8.19 and 8.20 as a power

series in e is not appropriate. King-Hele (1964) [51] introduced the auxiliary variable λ to integrate

Eqs. 8.19 and 8.20 and carried out the following transformation of variables,

cosE = 1− λ2/z (8.38)

such that,

dE =

√
2

z(1− λ2/2z)
dλ (8.39)

where z = βx = ae
H , where z goes to infinity as e approaches 1. Replacing the integrals in Eqs. 8.19

and 8.20 from 0 to 2π by twice the integrals from 0 to π and substituting Eqs. 8.38 and 8.39,

∆a =2 exp (z)
√

2/zDc

∫ √2z

0

(1 + e− eλ2/z)3/2

(1− e+ eλ2/z)1/2
exp (−λ2)

×

√
1

(1− λ2/(2z))
Cd(λ)dλ

(8.40)

∆x =2 exp (z)
√

2/zDc

∫ √2z

0
(e+ 1− λ2/z)

(
1 + e− eλ2/z

1− e+ eλ2/z

)1/2

× exp (−λ2)

√
1

(1− λ2/(2z))
Cd(λ)dλ

(8.41)

The drag-coefficient in Eq. 8.1 needs to be first expressed in the new variable before substituting

in Eqs. 8.40 and 8.41. The following formulae for multiple angles are used for that purpose,

cosnE =

bn/2c∑
k=0

(−1)k
(
n

2k

)
sin2k E cosn−2k E (8.42)

sinnE =

b(n−1)/2c∑
k=0

(−1)k
(

n

2k + 1

)
sin2k+1E cosn−2k−1E (8.43)

where bn/2c denotes the floor function and
(
n
2k

)
denotes the binomial coefficient. Therefore, Eq.

8.1 can be expressed as

Cd(λ) =

∞∑
n=0

An

bn/2c∑
k=0

(−1)k
(
n

2k

){
λ2

z
(2− λ2

z
)

}k (
1− λ2

z

)n−2k
 (8.44)



198

since Bn = 0 as noted before. Substituting Eq. 8.44 in Eq. 8.40 and carrying out a power series

expansion in λ2/z,

∆a =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)
× 2k

[
(λ2/z)k +K1(λ2/z)k+1 +K2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ

(8.45)

where K1 and K2 are functions of the summation indices n and k, and the eccentricity e and are

given by

K1 =
1

4(1− e2)
[(−4n+ 6k + 1)− 8e+ (4n− 6k + 3)e2] (8.46)

K2 =
1

32(1− e2)2
[(4n− 6k)(4n− 6k − 6) + (4k + 3) + 16(4n− 6k

− 1)e+ {(4n− 6k)(−8n+ 12k + 4)− (8k − 50)}e2 − 16(4n

− 6k − 1)e3 + {(4n− 6k)(4n− 6k + 2) + (4k − 5)}e4]

(8.47)

Approximating the upper limit of the integral as ∞ since the integrand becomes very small as λ

becomes large and
√

2z > 6 [51], the integrals can be expressed as a sum of Gamma functions that

are given by ∫ ∞
0

λk exp (−λ2)dλ =
1

2
Γ

(
k + 1

2

)
(8.48)

Therefore, the final form of Eq. 8.45 is given by

∆a =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)
(
2

z
)k
[
Γ

(
2k + 1

2

)
+
K1

z
Γ

(
2k + 3

2

)
+
K2

z2
Γ

(
2k + 5

2

)] (8.49)



199

where D′c = exp (z)
√

2/z
(1 + e)3/2

(1− e)1/2
Dc. Similarly, the equation for ∆x can be derived by substitut-

ing Eq. 8.44 in Eq. 8.41 and carrying out a power series expansion,

∆x =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)
× 2k

[
(λ2/z)k +M1(λ2/z)k+1 +M2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ

(8.50)

where M1 and M2 are functions of the summation indices n and k, and the eccentricity e and are

given by

M1 =
1

4(1− e2)
[(−4n+ 6k − 3) + (4n− 6k − 1)e2] (8.51)

M2 =
1

32(1− e2)2
[(4n− 6k)(4n− 6k + 2) + (4k − 5) + 32e

− 2{(4n− 6k)(4n− 6k − 2) + (4k + 7)}e2 + 32e3

+ {(4n− 6k)(4n− 6k − 6) + (4k + 3)}e4]

(8.52)

The final form of Eq. 8.50 in terms of Gamma functions is as follows

∆x =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)
(
2

z
)k
[
Γ

(
2k + 1

2

)
+
M1

z
Γ

(
2k + 3

2

)
+
M2

z2
Γ

(
2k + 5

2

)]
.

(8.53)

For n = 0, the equations reduce to the original King-Hele formulation,

∆a =D′cA0

√
π

[
1 +

K1

2z
+

3K2

4z2

]
, (8.54)

where

K1 =
1

4(1− e2)
[1− 8e+ 3e2],

K2 =
1

32(1− e2)2
[3− 16e+ 50e2 + 16e3 − 5e4],

and,

∆x =D′c
√
πA0

[
1 +

M1

2z
+

3M2

4z2

]
, (8.55)
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where

M1 = − 1

4(1− e2)
[3 + e2],

M2 =
1

32(1− e2)2
[−5 + 32e− 14e2 + 32e3 + 3e4].

The density-averaged constant drag-coefficient derived for the low eccentricity regime can be

used for high-eccentricity regime as well.

8.5 Re-deriving the King-Hele theory using BFF model

In this section, the theory is developed for two attitude profiles for which φ can be expressed

as a function of the eccentric anomaly. Unlike the OFF model, Bn is not generally zero for BFF

since the drag-coefficient may not be symmetric about φ = 0, π. If the satellite shape is symmetric

about φ = 0, π, then Bn = 0.

8.5.1 Nadir-pointing profile

For a nadir-pointing profile, the angle between the velocity vector and the body axis is equal

to the flight path angle that can be expressed in terms of the eccentric anomaly as

cos θ =

√
1− e2

1− e2 cos2E
(8.56)

sin θ =
e sinE√

1− e2 cos2E
(8.57)

Using Eqs. 8.42, 8.43, 8.56 and 8.57 in Eq. 5.15,

Cd(E) =
∞∑
n=0

An

bn
2
c∑

k=0

(−1)k
(
n

2k

)(
e sinE√

1− e2 cos2E

)2k

×

(√
1− e2

1− e2 cos2E

)n−2k
+ Bn


bn−1

2
c∑

k=0

(−1)k
(

n

2k + 1

)

×
(

e sinE√
1− e2 cos2E

)2k+1
(√

1− e2

1− e2 cos2E

)n−2k−1



(8.58)

Low eccentricity regime
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Substituting Eq. 8.58 in Eq. 8.19 and noting that the integrand corresponding to Bn is an

odd function, the equation reduces to

∆a = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)(
e sinE√

1− e2 cos2E

)2k

×

(√
1− e2

1− e2 cos2E

)n−2k
(1 + e cosE)3/2

(1− e cosE)1/2
exp (βx cosE)dE

(8.59)

Expanding the integrand as a power series in e,

∆a = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[1 + 2 cosEe+ {k − n

2

+
1

2
(n+ 3) cos2E}e2 + cosE{2k − n+ (n+ 1) cos2E}e3]

× (e sinE)2k exp (βx cosE)dE

(8.60)

Truncating the series at O(e3), k can only be 0 and 1. Therefore, Eq. 8.60 can be written as,

∆a = Dc

∫ 2π

0

[ ∞∑
n=0

An{1 + 2 cosEe+ {−n
2

+
1

2
(n+ 3) cos2E}e2

+ cosE{−n+ (n+ 1) cos2E}e3}+
∞∑
n=2

−An
(
n

2

)
{sin2Ee2

+2 sin2E cosEe3}
]

exp (βx cosE)dE

(8.61)

The trigonometric powers can be written as

sin2E =
1− cos 2E

2
(8.62)

sin2E cosE = cosE − 1

4
(3 cosE + cos 3E) (8.63)

Using Eqs. 8.24, 8.25, 8.28, 8.62 and 8.63, Eq. 8.61 is given by,

∆a = 2πDc

∞∑
n=0

An
[
I0 + 2I1e+

{(
n+ 3

4

)
(I0 + I2)− n

2
I0

}
e2

+

{(
n+ 1

4

)
(3I1 + I3)− nI1

}
e3

]
−
∞∑
n=2

An
(
n

2

)[
(I0 − I2)

2
e2

+
(I1 − I3)

2
e3

]
(8.64)
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A similar procedure can be followed to derive ∆x. Substituting Eq. 8.58 in Eq. 8.20,

∆x = Dc

∫ 2π

0

(
(1 + e cosE)

1− e cosE

)1/2

(cosE + e) exp {βx cosE}

×
∞∑
n=0

An

bn2 c∑
k=0

(−1)k
(
n

2k

)(
e sinE√

1− e2 cos2E

)2k

×

(√
1− e2

1− e2 cos2E

)n−2k
 dE

(8.65)

Expanding the integrand as a power series in e,

∆x = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[cosE +

(
3 + cos 2E

2

)
e

+
1

4
cosE{5 + 4k − n+ (n+ 1) cos 2E}e2 +

1

8
(3 + cos 2E){1 + 4k

− n+ (n+ 1) cos 2E}e3](e sinE)2k exp (βx cosE)dE

(8.66)

Truncating the series at O(e3), k can only be 0 and 1. Therefore, Eq. 8.60 can be written as,

∆x = Dc

∫ 2π

0

[ ∞∑
n=0

An[cosE +
3 + cos 2E

2
e+

1

4
{(5− n) cosE

+
(n+ 1)

2
(cos 3E + cosE)}e2 +

1

8
[3{(1− n) + (n+ 1) cos 2E}

+{(1− n) cos 2E + (n+ 1)
(1 + cos 4E)

2
}e3]] exp (βx cosE)

+

∞∑
n=2

−An
(
n

2

)
[
(cosE + cos 3E)

4
e2 − (cos 2E +

1

4
cos 4E

−5

4
)
e3

2
] exp (βx cosE)

]
dE

(8.67)

Integrating the equation,

∆x =2πDc

[ ∞∑
n=0

An[I1 +
3I0 + I2

2
e+

1

4
{(5− n)I1 +

(n+ 1)

2

×(I3 + I1)}e2 +
1

8
[3{(1− n)I0 + (n+ 1)I2}+ {(1− n)I2

+(n+ 1)
(I0 + I4)

2
}e3]] +

∞∑
n=2

−An
(
n

2

)
[
(I1 + I3)

4
e2

−(I2 +
1

4
I4 −

5

4
I0)

e3

2
]

]
(8.68)

For a satellite with an arbitrary shape, ∆ω 6= 0 since Bn 6= 0. To derive ∆ω, it should

be noted that the even part of the drag-coefficient will integrate out to zero unlike ∆a and ∆x.
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Therefore, Eq. 8.21 can be written as,

∆ω = Dw

∫ 2π

0

[(
(1 + e cosE)

1− e cosE

)1/2

sinE exp (βx cosE)

∞∑
n=0

Bn

×


bn−1

2
c∑

k=0

(−1)k
(

n

2k + 1

)(
e sinE√

1− e2 cos2E

)2k+1

×

(√
1− e2

1− e2 cos2E

)n−2k−1

 dE

(8.69)

where Dw = −δ
′a

e

√
1− e2ρp0 exp {β(a0 − a− x0)}. On expanding the integrand as a power series

in e and truncating at order 3,

∆ω =2πDw

∞∑
n=0

nBn
[
I0 − I2

2
e+

I1 − I3

4
e2 +

1

4
{(n+ 1)

×2I1 − I4 − 1

4
− (n− 3)

I0 − I2

2
}e3

] (8.70)

For n = 0, Eqs. 8.64 and 8.68 reduce to the original King-Hele formulation given by Eqs.

8.32 and 8.33 while Eq. 8.70 reduces to zero. The average drag-coefficient that best approximates

the higher order Fourier theory given by Eqs. 8.64 and 8.68 can be calculated using Eq. 8.36 as

follows,

Cd0 =

∫ 2π
0 ρCd(E)dE∫ 2π

0 ρdE

=
1∫ 2π

0 exp(βx cosE)dE

∫ 2π

0
exp(βx cosE)

∞∑
n=0

bn
2
c∑

k=0

An

×(−1)k
(
n

2k

)(
e sinE√

1− e2 cos2E

)2k
√ 1− e2

1− e2 cos2E

n−2k

dE


=

1

I0

[ ∞∑
n=0

An{I0 +
n

4
(I2 − I0)e2}+

∞∑
n=2

An
2

(
n

2

)
(I2 − I0)e2

]
(8.71)

High eccentricity regime, 0.2 ≤ e < 1

Similar to the OFF model in high eccentricity regime, the eccentric anomaly is transformed

to the auxiliary variable λ. The flight path angle in the new variable is given by

sinφ = e

√
1− (1− λ2/z)2

1− e2(1− λ2/z)2
(8.72)
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cosφ =

√
1− e2

1− e2(1− λ2/z)2
(8.73)

The drag-coefficient in the transformed variable is given by

Cd(λ) =

∞∑
n=0

An

bn
2
c∑

k=0

(−1)k
(
n

2k

)(
e

√
1− (1− λ2/z)2

1− e2(1− λ2/z)2

)2k

×

(√
1− e2

1− e2(1− λ2/z)2

)n−2k
+ Bn


bn−1

2
c∑

k=0

(−1)k
(

n

2k + 1

)

×

(
e

√
1− (1− λ2/z)2

1− e2(1− λ2/z)2

)2k+1(√
1− e2

1− e2(1− λ2/z)2

)n−2k−1



(8.74)

Substitute Eq. 8.74 in Eq. 8.40 and carrying out a power series expansion in λ2/z,

∆a =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)

×
(

2e2

1− e2

)k [
(λ2/z)k + P1(λ2/z)k+1 + P2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ

(8.75)

where P1 and P2 are functions of the summation indices n and k, and the eccentricity e and

are given by

P1 = − 1

4(1− e2)
[(2k − 1) + 8e+ (4n− 2k − 3)e2] (8.76)

P2 =
1

32(1− e2)2
[(4k2 − 8k + 3) + 16(2k − 1)e+ (8n− 8k2

+ 16kn+ 50)e2 + 16(4n− 2k + 1)e3 + {(4(n− k)(n− k − 2)

+ 4nk − 5}e4]

(8.77)

Using Eq. 8.48,

∆a =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)(
2e2

z(1− e2)

)k [
Γ

(
2k + 1

2

)
+
P1

z
Γ

(
2k + 3

2

)
+
P2

z2
Γ

(
2k + 5

2

)] (8.78)
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To derive ∆x, substitute Eq. 8.74 in Eq. 8.41 and expand as a power series in λ2/z to obtain,

∆x =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)

×
(

2e2

1− e2

)k [
(λ2/z)k +Q1(λ2/z)k+1 +Q2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ

(8.79)

where Q1 and Q2 given by

Q1 = − 1

4(1− e2)
[(2k + 3) + (4n− 2k + 1)e2] (8.80)

Q2 =
1

32(1− e2)2
[(4k2 + 8k − 5) + 32e− 2(4k2 − 20n− 8kn

+ 7)e2 + 32e3 + {4(2n− k)(2n− k + 2) + 8n+ 3}e4]

(8.81)

Using Eq. 8.48,

∆x =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)(
2e2

z(1− e2)

)k [
Γ

(
2k + 1

2

)
+
Q1

z
Γ

(
2k + 3

2

)
+
Q2

z2
Γ

(
2k + 5

2

)] (8.82)

The change in argument of perigee can be similarly derived. Eq. 8.21 in the transformed

variable can be written as

∆ω =
4

z
exp (z)Dw

∫ √2z

0

(
1 + e− eλ2/z

1− e+ eλ2/z

)1/2

λ exp (−λ2)Cd(λ)dλ (8.83)

On substituting Eq. 8.74 and carrying out a power series expansion, the equation simplifies

to the following form

∆ω =4 exp (z)Dw

√
1 + e

1− e

∫ √2z

0

∞∑
n=0

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)

×
(

2e2

1− e2

) 2k+1
2 [

(λ2/z)
2k+3

2 +Wn(λ2/z)
2k+5

2

]
dλ

(8.84)
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where

Wn = − 1

4(1− e2)
[(2k + 1) + 4e+ (4n− 2k − 1)e2] (8.85)

The integrated change is given by

∆ω =2 exp (z)Dw

√
1 + e

1− e

∞∑
n=0

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)

×
(

2e2

z(1− e2)

) 2k+1
2
[

1

z
Γ (k + 2) +

Wn

z2
Γ (k + 3)

] (8.86)

The constant drag-coefficient to be used with the original King-Hele formulation has to be

re-derived for the high eccentricity regime in this case since Eq. 8.71 consists of a series truncation

in e. The drag-coefficient in the auxiliary variable is given by

Cd0 =
exp z

π
√

2zI0

 ∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)(
2e2

z(1− e2)

)k

×
{

Γ

(
2k + 1

2

)
+
CN1

z
Γ

(
2k + 3

2

)
+
CN2

z2
Γ

(
2k + 5

2

)}] (8.87)

where

CN1 = − 1

4(1− e2)
[(2k − 1) + (4n− 2k + 1)e2], (8.88)

CN2 =
1

32(1− e2)2
[(4k2 − 8k + 3)(1− e2)2 + 8ne2(3e2 − 2ke2

+ 2k + 1 + 2ne2)].

(8.89)

8.5.2 Inertially stabilized attitude

For an inertially stabilized satellite, the angle between the velocity vector and the body axis

can be computed from the velocity components in the perifocal frame. The sine and cosine of the

angle is given by

sin θ =
vP√

v2
P + v2

Q

=
sin θ√

1 + e2 + 2e cos θ
=

sinE√
1− e2 cos2E

(8.90)
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cos θ =
vQ√

v2
P + v2

Q

=
e+ cos θ√

1 + e2 + 2e cos θ
=

√
1− e2 cosE√
1− e2 cos2E

(8.91)

Substituting Eqs. 8.90 and 8.91 in Eq. 5.15 and using Eqs. 8.43 and 8.42,

Cd(E) =
∞∑
n=0

An

bn
2
c∑

k=0

(−1)k
(
n

2k

)(
sinE√

1− e2 cos2E

)2k

×

( √
1− e2 cosE√
1− e2 cos2E

)n−2k
+ Bn


bn−1

2
c∑

k=0

(−1)k
(

n

2k + 1

)

×
(

sinE√
1− e2 cos2E

)2k+1
( √

1− e2 cosE√
1− e2 cos2E

)n−2k−1



(8.92)

Low eccentricity regime, e < 0.2

Following the same procedure as the nadir pointing profile, only the An terms are considered

substituting Eq. 8.92 in Eq. 8.19 since the Bn terms integrate to zero,

∆a = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)(
sinE√

1− e2 cos2E

)2k

×

( √
1− e2 cosE√
1− e2 cos2E

)n−2k
(1 + e cosE)3/2

(1− e cosE)1/2
exp (βx cosE)dE

(8.93)

Expanding as a power series in e and truncating at order 3,

∆a = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[1 + 2 cosEe+ {k − n

2

+
1

2
(n+ 3) cos2E}e2 + cosE{2k − n+ (n+ 1) cos2E}e3]

× sin2k E cosn−2k E exp {βx cosE}dE

(8.94)

Unlike the nadir pointing profile case, the series cannot be truncated in k as there’s no ek in the

expression. The trigonometric powers have to be expressed in multiple angles to integrate the

equation. The following identities are used to express an arbitrary trigonometric power in multiple

angles,

sin2k E =
1

22k

(
2k

k

)
+

(−1)k

22k−1

k−1∑
j=0

(−1)j
(

2k

j

)
cos [2(k − j)E] (8.95)
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cosk E =
1

2k

(
k

k/2

)
+

1

2k−1

k/2−1∑
i=0

(
k

i

)
cos [k − 2i]E, k ∈ 2q, q ∈ Z≥

1

2k−1

(k−1)/2∑
i=0

(
k

i

)
cos [k − 2i]E, k ∈ 2q + 1, q ∈ Z≥.

(8.96)

To simplify the algebra, introduce the following notation.

pa =


1

2p

(
p

p/2

)
, p ∈ 2q, q ∈ Z≥,

0, p ∈ 2q + 1, q ∈ Z≥,
(8.97)

p
jS1 =


(−1)p/2

2p−1

p/2−1∑
j=0

(−1)j
(
p

j

)
, p ∈ 2q, q ∈ Z+,

0, p ∈ {0, 2q + 1}, q ∈ Z≥,

(8.98)

p
iS2 =


1

2p−1

p/2−1∑
i=0

(
p

i

)
, p ∈ 2q, q ∈ Z+,

0, p ∈ {0, 2q + 1}, q ∈ Z≥,

(8.99)

p
iS3 =


1

2p−1

(p−1)/2∑
i=0

(
p

i

)
, p ∈ 2q + 1, q ∈ Z≥,

0, p ∈ 2q, q ∈ Z≥,

(8.100)

Eqs. 8.95 and 8.96 can be represented using the notations in 8.100 as

sin2k E = 2ka+ 2k
j S1 cos [2(k − j)E] (8.101)

cosk E =


ka+ k

i S2 cos [k − 2i]E, k ∈ 2q, q ∈ Z≥,

k
i S3 cos [k − 2i]E, k ∈ 2q + 1, q ∈ Z≥.

(8.102)
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The following integrals are computed to integrate Eq. 8.94.

hn,k(l) =

∫ 2π

0
sin2k E cosn−2k+lE exp {βx cosE}dE

=

∫ 2π

0
(2ka+ 2k

j S1 cos [2(k − j)E])(n+l−2ka

+ n+l−2k
i S2 cos [(n+ l − 2k − 2i)E]) exp (βx cosE)dE

= 2π[(2ka)(n+l−2ka)I0 + (2ka)(n+l−2k
i S2)In+l−2k−2i

+ (n+l−2ka)(2k
j S1)I2(k−j) +

(2k
j S1)(n+l−2k

i S2)

2

× (In+l−2i−2j + In+l−4k−2i+2j)],

(8.103)

if (n+ l) ∈ 2q, q ∈ Z≥,

gn,k(l) =

∫ 2π

0
sin2k E cosn−2k+lE exp {βx cosE}dE

=

∫ 2π

0
(2ka+ 2k

j S1 cos [2(k − j)E])(n+l−2k
i S3

× cos [(n+ l − 2k − 2i)E])× exp (βx cosE)dE

= 2π[(2ka)(n+l−2k
i S3)In+l−2k−2i +

(2k
j S1)(n+l−2k

i S3)

2

× (In+l−2i−2j + In+l−4k−2i+2j)],

(8.104)

if (n+ l) ∈ 2q + 1, q ∈ Z≥.

Using Eqs. 8.103 and 8.104 to integrate Eq. 8.94,

∆a = Dc[
∞∑

l=0
n∈2l

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[hn,k(0) + 2gn,k(1)e+ {(k − n

2
)

× hn,k(0) +
1

2
(n+ 3)hn,k(2)}e2 + {(2k − n)gn,k(1) + (n+ 1)

× gn,k(3)}e3] +

∞∑
l=0

n∈2l+1

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[gn,k(0) + 2hn,k(1)e

+ {(k − n

2
)gn,k(0) +

1

2
(n+ 3)gn,k(2)}e2 + {(2k − n)hn,k(1)

+ (n+ 1)hn,k(3)}e3]]

(8.105)
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The derivation of ∆x follows a similar procedure. Substituting Eq. 8.92 in Eq. 8.20 and

considering only An terms,

∆x = Dc

∫ 2π

0

∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[cosE + (1 + cos2E)e

+
1

2
{(2 + 2k − n) cosE + (n+ 1) cos3E}e2 +

1

2
{(2k − n)

+ (2k + 1) cos2E + (n+ 1) cos4E}e3] sin2k E cosn−2k E

× exp (βx cosE)dE

(8.106)

Using Eqs. 8.103 and 8.104 to integrate Eq. 8.106,

∆x = Dc

 ∞∑
l=0
n∈2l

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[gn,k(1) + (hn,k(0)

+hn,k(2))e+
1

2
{(2 + 2k − n)gn,k(1) + (n+ 1)gn,k(3)}e2

+
1

2
{(2k − n)hn,k(0) + (2k + 1)hn,k(2) + (n+ 1)hn,k(4)}e3]

+

∞∑
l=0

n∈2l+1

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[hn,k(1) + (gn,k(0) + gn,k(2))e

+
1

2
{(2 + 2k − n)hn,k(1) + (n+ 1)hn,k(3)}e2 +

1

2
{(2k − n)

×gn,k(0) + (2k + 1)gn,k(2) + (n+ 1)gn,k(4)}e3]
]

(8.107)

The change in argument of perigee can be derived similarly as,

∆ω = Dw

∫ 2π

0

∞∑
n=0

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)
[1 + cosEe

+
1

2
{(n+ 1) cos2E − (n− 2k − 1)}e2 +

1

2
cosE{(n+ 1) cos2E

− (n− 2k − 1)}e3] sin2k+2E cosn−2k−1E exp (βx cosE)dE

(8.108)
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Integrating the equation, the final form is given by

∆ω = Dw

 ∞∑
l=0
n∈2l

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)
[gn,k+1(1) + hn,k+1(2)e

+
1

2
{(n+ 1)gn,k+1(3)− (n− 2k − 1)gn,k+1(1)}e2 +

1

2
{(n+ 1)

×hn,k+1(3)− (n− 2k − 1)gn,k+1(1)}e3] +
∞∑
l=0

n∈2l+1

bn−1
2
c∑

k=0

Bn(−1)k

×
(

n

2k + 1

)
[hn,k+1(1) + gn,k+1(2)e+

1

2
{(n+ 1)hn,k+1(3)

−(n− 2k − 1)hn,k+1(1)}e2 +
1

2
{(n+ 1)gn,k+1(3)− (n− 2k − 1)

×hn,k+1(1)}e3]
]

(8.109)

For n = 0, the equations for semi-major axis and focal-length reduce to the original King-Hele

formulation given by Eqs. 8.32 and 8.33 while the argument of perigee change reduces to zero.

The average drag-coefficient that best approximates the higher order Fourier theory given by Eqs.

8.105 and 8.107 can be calculated using Eq. 8.36 as follows

Cd0 =

∫ 2π
0 ρCd(E)dE∫ 2π

0 ρdE

=
1

I0

 ∞∑
l=0
n∈2l

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[hn,k(0) + {(k − n

2
)hn,k(0)

+
n

2
hn,k(2)}e2] +

∞∑
l=0
n∈2l+1

bn
2
c∑

k=0

An(−1)k
(
n

2k

)
[gn,k(0)

+{(k − n

2
)gn,k(0) +

n

2
gn,k(2)}e2]

]

(8.110)

High eccentricity regime, 0.2 ≤ e < 1

Similar to the nadir pointing case, the body angle in the transformed variable is given by

sinφ =

√
1− (1− λ2/z)2

1− e2(1− λ2/z)2
(8.111)

cosφ =

√
1− e2

1− e2(1− λ2/z)2
(1− λ2/z) (8.112)
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The drag-coefficient in the transformed variable is given by

Cd(λ) =

∞∑
n=0

An

bn
2
c∑

k=0

(−1)k
(
n

2k

)(√
1− (1− λ2/z)2

1− e2(1− λ2/z)2

)2k

×

(√
1− e2

1− e2(1− λ2/z)2
(1− λ2/z)

)n−2k
+ Bn


bn−1

2
c∑

k=0

(−1)k

×
(

n

2k + 1

)(√
1− (1− λ2/z)2

1− e2(1− λ2/z)2

)2k+1

×

(√
1− e2

1− e2(1− λ2/z)2
(1− λ2/z)

)n−2k−1

 .

(8.113)

Substitute Eq. 8.113 in Eq. 8.40 and carrying out a power series expansion in λ2/z,

∆a =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k

×
(
n

2k

)(
2

1− e2

)k [
(λ2/z)k + L1(λ2/z)k+1 + L2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ,

(8.114)

where L1 and L2 are functions of the summation indices n and k, and the eccentricity e and

are given by

L1 =
1

4(1− e2)
[(6k − 4n+ 1)− 8e+ (3− 6k)e2], (8.115)

L2 =
1

32(1− e2)2
[{4(2n− 3k)2 + 40k − 24n+ 3}+ 16(4n

− 6k − 1)e− (72k2 + 32k − 24n− 48kn− 50)e2 + 16(6k

+ 1)e3 + ((2k − 1)(18k + 5)e4].

(8.116)

Using Eq. 8.48,

∆a =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)(
2

z(1− e2)

)k [
Γ

(
2k + 1

2

)
+
L1

z
Γ

(
2k + 3

2

)
+
L2

z2
Γ

(
2k + 5

2

)]
.

(8.117)
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To derive ∆x, substitute Eq. 8.113 in Eq. 8.41 and expand as a power series in λ2/z to

obtain,

∆x =2 exp (z)
√

2/zDc
(1 + e)3/2

(1− e)1/2

∫ √2z

0

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)

×
(

2

1− e2

)k [
(λ2/z)k +N1(λ2/z)k+1 +N2(λ2/z)k+2

+O((λ2/z)k+3)
]

exp (−λ2)dλ,

(8.118)

where N1 and N2 given by

N1 = − 1

4(1− e2)
[(4n− 6k + 3) + (6k + 1)e2], (8.119)

N2 =
1

32(1− e2)2
[{4(2n− 3k)2 + 8(n− k)− 5}+ 32e− 2(36k2

+ 16k − 28n− 24kn+ 7)e2 + 32e3 + (36k2 + 40k + 3)e4].

(8.120)

Using Eq. 8.48,

∆x =D′c

∞∑
n=0

bn/2c∑
k=0

An(−1)k
(
n

2k

)(
2

z(1− e2)

)k [
Γ

(
2k + 1

2

)
+
N1

z
Γ

(
2k + 3

2

)
+
N2

z2
Γ

(
2k + 5

2

)]
.

(8.121)

The change in argument of perigee can be similarly derived by retaining the Bn terms,

∆ω =4 exp (z)Dw

√
1 + e

1− e

∫ √2z

0

∞∑
n=0

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)

×
(

2

1− e2

) 2k+1
2 [

(λ2/z)
2k+3

2 +WI(λ
2/z)

2k+5
2

]
dλ

(8.122)

where

WI = − 1

4(1− e2)
[(4n− 6k − 3) + 4e+ (6k + 3)e2] (8.123)

The integrated change is given by

∆ω =2 exp (z)Dw

√
1 + e

1− e

∞∑
n=0

bn−1
2
c∑

k=0

Bn(−1)k
(

n

2k + 1

)

×
(

2

z(1− e2)

) 2k+1
2
[

1

z
Γ(k + 2) +

WI

z2
Γ(k + 3)

] (8.124)
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The density-averaged drag-coefficient can be derived as follows

Cd0 =
exp z

π
√

2zI0

 ∞∑
n=0

bn
2
c∑

k=0

An(−1)k
(
n

2k

)(
2

z(1− e2)

)k
×
{

Γ

(
2k + 1

2

)
+
CI1
z

Γ

(
2k + 3

2

)
+
CI2
z

Γ

(
2k + 5

2

)}] (8.125)

where

CI1 = − 1

4(1− e2)
[(2n− 2k − 1) + (2n+ 2k + 1)e2], (8.126)

CI2 =
1

32(1− e2)2
[(4k2 + 16k + 3)(1− e2)2 + 4n(3e4 + 2ke4

+ 8e2 − 2k − 3) + (1 + e2)2n2].

(8.127)

8.5.3 Body-Orbit double Fourier (BODF) model

In developing the theory for the BFF model, the Fourier coefficients were assumed to be

constant in the orbit. But since the drag-coefficient is a function of ambient parameters, the body-

fixed Fourier coefficients are periodic functions of the eccentric anomaly. This allows the body-fixed

Fourier coefficients to be expressed as Fourier series expansions around the eccentric anomaly.

An(E) =
∞∑
m=0

(Amn cosmE + Bmn sinmE), (8.128)

Bn(E) =
∞∑
m=0

(Cmn cosmE + Dmn sinmE). (8.129)

Therefore, the body-orbit double Fourier (BODF) model expressed in terms of eccentric

anomaly is,

CD =
∞∑
m=0

∞∑
n=0

(Amn cosmE cosnφ+ Bmn sinmE cosnφ

+ Cmn cosmE sinnφ+ Dmn sinmE sinnφ).

(8.130)
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Since the sinusoidal orbit terms are zero under the assumptions of the theory, the drag coefficient

can be simplified to

CD =
∞∑
m=0

∞∑
n=0

(Amn cosmE cosnφ+ Cmn cosmE sinnφ). (8.131)

Instead of re-deriving the analytical change for the nadir-pointing and inertially stabilized cases, an

approximation is made for the drag-coefficient. The orbit-fixed terms are averaged over the orbit

weighted by the density to obtain more accurate body-fixed Fourier coefficients. Therefore, the

body-fixed Fourier coefficients can be written as

An0 =

∫ 2π
0 ρAn(E)dE∫ 2π

0 ρdE

=

∫ 2π
0 ρ

∑∞
m=0 Amn cosmEdE∫ 2π

0 ρdE

=

∑∞
m=0 AmnIm

I0
.

(8.132)

Bn0 =

∫ 2π
0 ρBn(E)dE∫ 2π

0 ρdE

=

∫ 2π
0 ρ

∑∞
m=0 Cmn cosmEdE∫ 2π

0 ρdE

=

∑∞
m=0 CmnIm

I0
.

(8.133)

The body-fixed Fourier coefficients calculated using Eqs. 8.132 and 8.133 can be used in the theory

developed in Section 8.5 for a more accurate computation of the change in the orbital elements.

8.6 Circular orbits

Under the assumptions of this work, the drag-coefficient variation due to ambient parameters

is zero at a constant altitude. Therefore, only the zeroth order coefficient remains in the OFF

model. The drag-coefficient can still vary due to attitude and therefore, the higher order BFF

coefficients are still non-zero. For the nadir pointing profile, φ = 0 and the Cd remains constant.

But for the inertially stabilized profile, φ = E. Therefore, the change in semi-major axis can be
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written from Eq. 8.15 as

∆a = −a2δ′
∫ 2π

0

(1 + e cosE)3/2

(1− e cosE)1/2

∞∑
n=0

(An cosnE + Bn sinnE)

× ρdE

= −2πa2δ′ρA0.

(8.134)

since density is constant for a circular orbit. Therefore, the higher-order Fourier coefficients do not

contribute to the change in orbital elements for an inertially stabilized profile in a circular orbit.

8.7 Validation results

The theory developed in Sections 8.4 and 8.5 is validated through comparisons with numerical

integration of simulated satellite trajectories. The satellite orbits are simulated under the assump-

tions of the King-Hele theory. Only the two-body and atmospheric drag forces are considered in

the dynamics. A spherically symmetric and exponentially decaying atmosphere is assumed with a

constant scale height. For the OFF model, a spherical satellite is considered such that there are no

variations in the attitude. For the BFF model, non-spherical satellites are considered with the only

variations considered in the drag-coefficient being due to attitude, unless stated otherwise. The

drag-coefficients are modeled using the diffuse reflection incomplete accommodation (DRIA) model

that linearly combines drag-coefficients based on clean surfaces and satellite surfaces completely

covered by atomic oxygen [131]. Note that the model is not valid for altitudes greater than 500

km. Since the variation of drag-coefficient is not well understood for higher altitudes, the DRIA

model is used for all altitudes. With future developments in drag-coefficient modeling for higher

altitudes, a different model can be used in the current framework with no changes to the devel-

oped theory. All ambient parameters are modeled using NRLMSISE-00 [93] as the atmospheric

model. The qualitative results are independent of the specific attributes of the atmosphere and the

satellite surface; therefore, the details have been left out. The errors between the analytically and

numerically computed changes in semi-major axis and focal length are compared for the Fourier

theory and the original King-Hele theory with three constant drag-coefficients - the zeroth-order
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Fourier coefficient, the drag-coefficient evaluated at perigee and the derived density-averaged drag-

coefficient, summarized in Table 8.1. The orbital elements and satellite parameters in Table 8.2

remain constant for all the cases.

Table 8.1: Nomenclature for the graphical results

Case Description

Fourier Cd Full Fourier theory developed here

KH: Averaged Cd
Original King-Hele formulation
with derived density-averaged Cd

KH: Perigee Cd
Original King-Hele formulation
with Cd evaluated at perigee

KH: Order 0 Cd
Original King-Hele formulation
with zeroth order Fourier coefficient

Table 8.2: Simulation parameters common for all the cases

Parameter Value

Orbital
elements

i0 65◦

Ω0 60◦

ω0 40◦

Satellite
parameters

m 500 kg
S 10 m2

8.7.1 Test cases for OFF model

A spherical satellite with perigee at 300 km and apogee at 500 km and 7000 km for low and

high eccentricity regimes respectively is considered for the OFF theory. The density parameters

at the perigee for both cases are ρp0 = 1.9417e− 11 kg/m3 and H = 49.23 km corresponding to a

mean solar activity level (F10.7 = 150 s.f.u). The drag coefficient for the low and high eccentricity

cases along with the Fourier coefficients are plotted in Fig. 8.1. The Fourier series approximates

the drag-coefficient at lower eccentricities more accurately than at higher eccentricities and the

Fourier coefficients decrease more rapidly for higher orders in the former. In the high eccentricity

case, the drag-coefficient from E = 40◦ to E = 320◦ does not affect the orbit since the altitude
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within that range is greater than 1000 km. For order 10, the number of coefficients evaluate to 11

for the OFF model.
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Figure 8.1: Diffuse reflection incomplete accommodation (DRIA) modeled drag-coefficient and
Fourier coefficients for the OFF model in the (a) low eccentricity regime; (b) high eccentricity
regime.

Time-profiles of the errors in the analytically computed change in semi-major axis and focal-

length compared to the numerical results are plotted in Fig. 8.2 for low and high eccentricities.

The figures depict errors for the Fourier theory as well as the original King-Hele theory with three

constant drag-coefficients. The error for the order 0 drag-coefficient is plotted separately as it is

much larger than the other errors. It can be seen that the results of the full Fourier theory and the

derived average drag-coefficient are similar though the full Fourier theory gives a more accurate

focal-length change in the low eccentricity regime. They both perform an order of magnitude better

than the perigee Cd.

The relative errors in the analytical semi-major axis and focal-length over a single orbital

period are computed for a grid of perigee and apogee heights with a constraint of 0.01 < e < 0.15 in

the low eccentricity regime and 0.25 < e < 0.75 in the high eccentricity regime to avoid truncation

errors. The errors are plotted in Fig. 8.3 and 8.4 for low and high eccentricity regimes respectively.

The performances of the full Fourier theory and the original King-Hele formulation with the derived
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Figure 8.2: Error between analytical and numerical changes in semi-major axis and focal length for
the the OFF model and the original King-Hele (KH) theory with three constant drag-coefficients
(density-averaged, perigee and order 0 Fourier) in (a) low eccentricity regime and (b) high eccen-
tricity regime

average Cd are similar to each other except for focal-length for low eccentricity regime. The relative

errors are largest for high perigees and apogees since the change in the orbital elements over an

orbital period is very small at such high altitudes. The relative errors for perigee Cd and order 0

Cd are worse throughout the grid.

8.7.2 Test cases for the BFF model

To validate the BFF model, a symmetric cubical satellite with equal properties for all the

six surfaces is considered with the perigee and apogee altitudes same as the previous case. The

drag coefficients for the nadir-pointing and inertially stabilized cases are plotted in Fig. 8.5. The

variation in the drag-coefficient for the nadir-pointing case is very small for the low eccentricity

regime since the flight-path angle is very small. On the other hand, the drag-coefficients for the

inertial case are similar for both eccentricity regimes since φ undergoes a complete rotation. For

a symmetric cubical satellite, only the cosine Fourier coefficients with orders that are multiples of

four are non-zero. All the sine Fourier coefficients are zero due to symmetry. For the order 20 BFF

model, the number of coefficients are 6 in this case.
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Figure 8.3: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for OFF model and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in low eccentricity
regime
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Figure 8.4: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for OFF model and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in high eccentricity
regime

The errors between the Fourier theory and the numerical results are compared with the orig-

inal formulation with the three constant drag-coefficients in Fig. 8.6 for low and high eccentricities.

The averaged Cd and the full Fourier theory have similar errors in the both the eccentricity regimes.
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Figure 8.5: Diffuse reflection incomplete accommodation (DRIA) modeled drag-coefficients for the
BFF model in the nadir pointing and inertially stabilized cases; (b) Fourier coefficients for the BFF
model.

This is also demonstrated by relative errors over a grid of perigee and apogee altitudes in Figs. 8.7

and 8.8. It should be noted that the variation of drag-coefficients is very small for a nadir-pointing

profile as seen in Fig. 8.5. In the high eccentricity regime, most of the variation is in higher alti-

tudes, which has a negligible contribution to the orbit. Therefore, the averaged and full King-Hele

theory are expected to perform similarly.

For the inertially stabilized case, the averaged Cd performs better than the full Fourier theory

for the particular perigee and apogee heights considered as shown in Fig. 8.9. Over a grid of perigee

and apogee altitudes, the full Fourier theory has a larger variation of relative errors in Figs. 8.10

and 8.11. But overall, it performs better than the averaged drag-coefficient; the errors for the full

theory are smaller for 65.7 % cases of the grid for semi-major axis and 77 % cases for focal-length

in the low eccentricity regime.

To test the theory for the argument of perigee change, an asymmetrical satellite is considered

with non-zero Bn. The satellite is considered to be of half-trapezoidal shape with one face inclined

at 45◦. All the six surfaces are considered to have different material properties such that the

satellite is asymmetric in the body frame. An order 30 BFF model is considered in this case with
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Figure 8.6: Error between analytical and numerical changes in semi-major axis and focal length for
the the BFF model and the original King-Hele (KH) theory with three constant drag-coefficients
(density-averaged, perigee and order 0 Fourier) in (a) low eccentricity regime and (b) high eccen-
tricity regime for a nadir-pointing satellite
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Figure 8.7: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for BFF model and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in low eccentricity
regime for a nadir pointing profile

54 non-zero coefficients. It should be noted that the magnitude of the coefficients decrease rapidly

with higher-orders and therefore many of the 54 coefficients can be ignored for most applications.

The semi-major axis, focal-length and argument of perigee errors for low eccentricity regime are
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Figure 8.8: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for BFF model and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in high eccentricity
regime for a nadir-pointing profile
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Figure 8.9: Error between analytical and numerical changes in semi-major axis and focal length for
the the BFF model and the original King-Hele (KH) theory with three constant drag-coefficients
(density-averaged, perigee and order 0 Fourier) in (a) low eccentricity regime and (b) high eccen-
tricity regime for an inertially stabilized satellite

plotted in Fig. 8.12. The full Fourier theory performs better than the averaged drag-coefficient for

95 % of the cases for semi-major axis but for 41 % of the cases for focal-length. For a constant drag-

coefficient, the argument of perigee change is zero. Therefore, 100 % relative errors are obtained
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Figure 8.10: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for BFF model and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in low eccentricity
regime for an inertially stabilized profile
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Figure 8.11: Relative error in analytically computed change in (a) semi-major axis and (b) focal
length compared to numerical results for BFF model in and original King-Hele (KH) theory with
three constant drag-coefficients (density-averaged, perigee and order 0 Fourier) in high eccentricity
regime for an inertially stabilized profile

with the original King-Hele formulation. With the full Fourier theory, the errors are less than 100

% for around 61 % of the cases. The results are not shown for high-eccentricity regime because the

change in argument of perigee over an orbit is negligible.
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Figure 8.12: Relative error in analytically computed change in (a) semi-major axis, (b) focal length
and (c) argument of perigee compared to numerical results for BFF model in and original King-Hele
(KH) theory with three constant drag-coefficients (density-averaged, perigee and order 0 Fourier)
in low eccentricity regime for a nadir-pointing asymmetrical satellite

The inertially stabilized case is more interesting since the argument of perigee change is larger

in this case due to larger variations in the drag-coefficient. The errors in the orbital elements are

plotted in Fig. 8.13. It is evident that the full Fourier theory performs better than the averaged

drag-coefficient for all the orbital elements. Similar to the nadir-pointing case, the argument of

perigee variation is negligible in the high-eccentricity regime and therefore, the results have not

been shown here.

8.7.3 Test cases for the BODF model

The asymmetrical satellite introduced for the BFF model is utilized to validate the BODF

model. Each of the 54 non-zero BFF coefficients are expanded in the orbit frame to order 10
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Figure 8.13: Relative error in analytically computed change in (a) semi-major axis, (b) focal length
and (c) argument of perigee compared to numerical results for BFF model in and original King-Hele
(KH) theory with three constant drag-coefficients (density-averaged, perigee and order 0 Fourier)
in low eccentricity regime for an inertially stabilized asymmetrical satellite

and then averaged. Therefore, the number of coefficients used in the derived theory remain 54.

The results of BODF are compared with BFF for which the Fourier coefficients are evaluated at

perigee. Figs. 8.14 and 8.15 plot the relative errors for the BODF model compared to BFF model

and constant drag-coefficients for low and high eccentricity regimes. The argument of perigee errors

are calculated only for the BODF model. It can be seen that in both cases, BODF has the highest

accuracy in maximum areas of the grid, followed by the averaged drag-coefficient except for focal

length in low eccentricity regime. Simply averaging the BFF coefficients weighted by density over

the orbit can improve the prediction performance over a constant set of BFF coefficients evaluated

at perigee.

The simulation results for BFF, OFF and BODF models clearly demonstrate that capturing
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Figure 8.14: Relative error in analytically computed change in (a) semi-major axis, (b) focal length
and (c) argument of perigee compared to numerical results for BODF model, BFF model with
coefficients evaluated at perigee and and original King-Hele (KH) theory with two constant drag-
coefficients (density-averaged and perigee) in low eccentricity regime for an inertially stabilized
profile

the periodic variation of the drag-coefficient in orbit can lead to improvements in predicting the

evolution of the orbital elements. For many of the cases, the density-averaged drag-coefficient

derived from the full Fourier theory is as accurate as the full Fourier theory. Therefore, if using

the original King-Hele theory, the density-averaged drag-coefficients derived in Eqs. 8.37, 8.71 and

8.110 should be used depending on the case. Most of the differences observed between the full

Fourier theory and the averaged drag-coefficient are due to the possible loss of fidelity during the

drag-coefficient averaging process. If the averaging was carried out using Eq. 8.35, the results for

the focal length would have been very close to the full Fourier theory for all cases. Similarly, if

the averaging had been carried out using Eq. 8.34, the results for semi-major axis would have

been similar to the full Fourier theory. Instead, the averaging is carried out using Eq. 8.36, i.e.,
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Figure 8.15: Relative error in analytically computed change in (a) semi-major axis, (b) focal length
and and (c) argument of perigee compared to numerical results for BODF model, BFF model with
coefficients evaluated at perigee and and original King-Hele (KH) theory with two constant drag-
coefficients (density-averaged and perigee) in high eccentricity regime for an inertially stabilized
profile

considering only the density in the analytical formula, which makes the most physical sense and is

the middle ground approach between the above two.

It should be noted that for periodic attitude profiles, such as the cases considered here, the

drag-coefficient variation due to both ambient parameters and attitude can be captured using OFF

model. But the theory developed here considers the BFF model separately since the BFF coefficients

are physically different from OFF coefficients and are fixed to the body-frame. Therefore, they don’t

have to be evaluated for different orbital parameters unlike the OFF coefficients.
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8.8 Chapter summary

This chapter addresses the problem with a constant drag-coefficient in the King-Hele theory

and derives a modified theory with a time-varying drag-coefficient. Under the assumptions of the

original King-Hele formulation for a symmetric exponentially decaying atmosphere with a constant

scale height, the drag-coefficient dependence on ambient parameters is periodic and can be expressed

as a Fourier series in the orbit-fixed frame. Similarly, the variation of the drag-coefficient with

orientation of the velocity vector in the body frame can be captured using a Fourier series expansion

in the body-frame. Using these two models, the King-Hele theory is extended to include the

variation of drag-coefficient in the averaging equations. An approximate framework is provided to

capture the dependence of the drag-coefficient on both body and orbit dependent factors. In the

original King-Hele theory and subsequent modifications, the constant drag-coefficient that should

be used is not explicitly stated since the variation of drag-coefficient is not considered. This

paper provides an analytical formula for the constant drag-coefficient that approximates the full

Fourier theory most accurately. The developed theory predicts secular changes in the argument of

perigee for an asymmetrical satellite with periodic attitude variations whereas the original King-

Hele formulation states the change to be zero under the assumptions of the theory. The simulation

results for the body-fixed Fourier (BFF), orbit-fixed Fourier (OFF) and body-orbit double Fourier

(BODF) models demonstrate that the predictions of orbital element evolution can be improved by

allowing the drag-coefficient to vary in the averaging integrals. The improvements can be orders of

magnitude depending on the constant drag-coefficient being used. This development can lead to

improvements in estimation of orbital lifetimes and derivation of densities from orbit decay data.

The theory developed for OFF model can be used for satellites with no variations in attitude or

whose attitude profiles are unknown. The BFF model with the Fourier coefficients averaged in the

orbit can be used for a general case with a known attitude profile.



Chapter 9

Conclusions and future work

In this dissertation, we developed a new approach to modeling the atmospheric drag effects

on the orbit of a LEO satellite. The drag force is the largest source of uncertainty in the orbit deter-

mination and prediction of LEO satellites, primarily due to modeling errors in the drag parameters

- density and drag-coefficient. The drag-coefficient is most commonly estimated as a constant in

the orbit determination, which not only averages out the time-variations in the parameter but also

absorbs errors in the density model. Physical models of the drag-coefficient allow a time-varying

representation of the drag-coefficient, rooted in the physics of gas-surface interactions but unfor-

tunately suffer from a gap in knowledge of the input parameters that feed into them. Therefore,

any atmospheric densities that are derived from satellite tracking data will absorb biases in the

drag-coefficients used in the inversion process. These orbit-derived densities then feed into the

calibration of climatological models, that are used in the investigations of Earth’s atmospheric evo-

lution. The densities also play an important role in calibrating semi-empirical atmospheric models

that are used in operational orbit determination. Therefore, errors in the drag-coefficient feed

into the density which further affects drag-coefficient estimates. This work proposes a method to

break out of this circular problem by utilizing the time-variations in the drag-coefficient induced

by attitude and orbital motion. We develop Fourier series expansion-based models to estimate

the higher-order frequencies in the drag-coefficient that are functions of ambient parameters and

satellite-dependent factors. This allows the complex physics of the gas-surface interactions to be

condensed into the observable Fourier coefficients that can be corrected during orbit determination
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using satellite tracking data.

This work is focused on improving the state-of-the-art of the atmospheric drag model for

orbit determination and prediction among other applications. In addition to the dynamical errors

introduced due to uncertainties in non-conservative force parameters, arbitrary truncation of the

geopotential without a careful consideration of the resulting aliasing effects into parameter estimates

can be detrimental to orbit prediction accuracy. Aliasing effects can mask any improvements in

modeling of non-conservative forces by rendering the estimates of force parameters non-physical

in the orbit determination process. The contribution of this work is in quantifying the aliasing

effects on the drag-coefficient and the solar radiation pressure coefficient across orbital altitudes

and studying their sensitivity to various factors such as space weather activity, orbital inclination

and length of data-arc. The aliasing effects are analyzed using real POD from GRACE satellite

and it is observed that estimating non-gravitational coefficients with a low order geopotential can

be worse than simply using nominal modeled values.

The primary contribution of this work is the development of the estimation-based drag-

coefficient models by carrying out Fourier series expansions of nominally chosen GSIMs in the

body and orbit frames of the satellite. The estimated Fourier coefficients provide a more accu-

rate representation of the drag-coefficient by capturing higher-order time variations in the drag-

coefficient. The most obvious application of this development is in improving orbit determination

and prediction of satellites. We demonstrate improved orbit predictions over the standard constant

drag-coefficient estimate by around 50 % with real data.

The Fourier coefficients can be used to provide insights into the physics of the gas-surface

interactions since they contain information on the GSIM parameters. The coefficients of each or-

der have an explicit functional relationship with different GSIM parameters as represented by the

Fourier integrals. This work derives analytical closed-form solutions of the body-fixed Fourier coef-

ficients for the Diffuse Reflection Incomplete Accommodation (DRIA) model. This allows a way to

calculate the subset of the Fourier coefficients that are dependent on a particular GSIM parameter.

We develop a method to invert GSIM parameters with large uncertainties from the Fourier coeffi-
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cient estimates; thus providing a better constraint on the GSIM. A thorough observability analysis

is carried out using multiple metrics to determine which Fourier coefficients can be estimated from

tracking data. For all the Fourier models and different satellite shapes, only a few coefficients need

to be estimated and some higher order coefficients need to be modeled.

One of the primary goals of this work is provide a way to estimate atmospheric densities

that are unbiased by the drag-coefficient. Leveraging the Fourier drag-coefficient models and the

framework to invert GSIM parameters from the Fourier coefficient estimates, an algorithm is devel-

oped to simultaneously estimate local atmospheric densities along the orbit and the time-varying

drag-coefficient for satellites with attitude variations. We demonstrate significant improvements

in the estimated densities over the nominal density model used in the filter with simulated and

real tracking data. In particular, an improvement of around 29 % is obtained in the filter density

estimates over NRLMSISE-00 w.r.t the High Accuracy Satellite Drag Model (HASDM) densities

for Spire satellite POD and 49 % over JB2008. This methods provides a practical approach to

decorrelate density and drag-coefficient biases and can be easily implemented in operational use.

Finally, the simple representation of the complex physics of gas-surface interactions using

empirical parameters lends the developed Fourier drag-coefficient models very well for analytical

theories of orbital motion in an atmosphere. All previous analytical formulations have assumed

a constant drag-coefficient in their derivations. We re-derive the original King-Hele theory with

a time-varying representation of the drag-coefficient using our Fourier models. We demonstrate

improvements in prediction of orbital elements with our modification, especially proving that the

argument of perigee undergoes secular changes for satellites with planes of asymmetry whereas the

original theory derives the change to be zero. The developed theory can be used for applications

such as preliminary mission analyses and deriving densities using TLE data.

The methods developed in this work can be further improved for implementation in opera-

tional use. A direct application of the study on aliasing effects is the quantification of these effects

for the special perturbations catalog that uses a 36 × 36 geopotential which we show to be inade-

quate when estimating nongravitational force coefficients. In this work, we inverted the fractional
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coverage parameter and velocity ratio from the Fourier coefficient estimates to better constrain the

DRIA model. The set of GSIM parameters that are the primary contributors to the drag-coefficient

uncertainty and can be estimated from the Fourier coefficients needs to be identified. Additionally,

other GSIMs with different scattering dynamics and energy/momentum transfer parameters should

be investigated since the drag-coefficient variation can vary significantly between different GSIMs.

In particular, it needs to be analyzed whether any particular GSIM lends itself better to the frame-

work of simultaneous density and drag-coefficient estimation. As observed in one of the simulated

cases in chapter 7, the density estimates are highly dependent on the tuning parameters, especially

the noise levels in the GMP process. It was shown that modifying the noise levels between iter-

ations may prove to be useful during times of higher geomagnetic activity. The particular tuning

parameters that should be used in the method should be analyzed. Machine-learning methods can

be applied to train the tuning parameters of the Gauss Markov process over varying satellite orbits

and atmospheric conditions using the SET HASDM database. Techniques such as adaptive DMC

can be used to dynamically change the noise levels during the filtering process. The validation of

the method done using Spire POD as measurements might introduce errors due to violation of the

uncorrelated white noise assumption in the Kalman filter. In future work, datasets with raw GPS

measurements should be utilized for validation of the method. The analytical theory developed

in this paper is independent of the underlying physical model for the drag-coefficient being used.

Therefore, future developments in drag-coefficient modeling can be used to improve estimates of

the Fourier coefficients, especially at higher altitudes, that can be then used in this theory to in-

crease fidelity of orbital element predictions. Moreover, the theory can be easily supplemented with

other modifications developed in literature such as extensions to accommodate generic atmospheric

density models and adapting the theory to non-singular elements, to provide a complete analytical

theory for a satellite in an atmosphere. Additionally, the averaged equations for OFF and BFF

models can be used in semi-analytical theories of satellite orbit propagation by considering the slow

variation of the Fourier coefficients due to their dependence on the semi-major axis and eccentricity

that will be addressed in future work.
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Appendix A

Integrals required for analytical BFF model

The following integrals are needed to compute the analytical BFF coefficients in chapter 6.
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nx

2
dx.

(A.1)

The integral is then given by

∫ 2π

0
e−γ

2s2 cosnψdψ =


2πe−

s2C2
2 Ik(− s2C2

2 ), n = 2k, k ∈ Z≥

0, n = 2k + 1, k ∈ Z≥,
(A.2)

where Ik is the modified Bessel integral of the first kind. Based on the above result and using

cosA cosB = 1
2(cos (A+B) + cos (A−B)), the following integral is computed,

∫ 2π

0
γe−γ

2s2 cosnψdψ =
πCe−

s2C2
2 [Ik+1(− s2C2

2 ) + Ik(− s2C2
2 )], n = 2k + 1, k ∈ Z≥

0, n = 2k, k ∈ Z≥.

(A.3)
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The next integral is computed as follows,

∫ 2π

0
erf(sγ) cosnψdψ =

∫ 2π

0
erf(sC cosψ) cosnψdψ

= [erf(sC cosψ)

∫
cosnψdψ]|2π0 −

∫ 2π

0
[
d

dψ
erf(sC cosψ)

∫
cosnψdψ]dψ

= [erf(sC cosψ)
sinnψ

n
dψ]|2π0 +

∫ 2π

0
[

2√
π
e−s

2C2 cos2 ψsC sinψ
sinnψ

n
]dψ

=
sC
n
√
π

∫ 2π

0
[e−s

2C2 cos2 ψ(cos (n− 1)ψ − cos (n+ 1)ψ)]dψ,

(A.4)

for n > 0. For n = 0,
∫ 2π

0 erf(s cosψ)dψ = 0. The final form of the integral can be evaluated

by using Eq. A.2,

∫ 2π

0
erf(γs) cosnψdψ =

2
√
π

2k + 1
sCe−

s2C2
2

[
Ik(−

s2C2

2
)− Ik+1(−s

2C2

2
)

]
, n = 2k + 1, k ∈ Z≥

0, n = 2k, k ∈ Z≥,

(A.5)

Using Eq. A.5, the following integrals can be computed.

∫ 2π

0
γ(1 + erf(sγ)) cosnψdψ =∫ 2π

0

C
2

[1 + erf(sC cosψ)][cos (n+ 1)ψ + cos (n− 1)ψ]dψ,

(A.6)

∫ 2π

0
γ(1 + erf(sγ)) cosnψdψ =

Cπ, n = 1

√
πC2se−

s2C2
2

[
Ik(− s2C2

2 )− Ik+1(− s2C2
2 )

2k + 1

+
Ik−1(− s2C2

2 )− Ik(− s2C2
2 )

2k − 1

]
, n = 2k, k ∈ Z≥

0, n = 2k + 1, k ∈ Z+,

(A.7)
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and,

∫ 2π

0
γ2(1 + erf(sγ)) cosnψdψ =∫ 2π

0
C2[1 + erf(sC cosψ)]

[
1

2
cosnψ +

cos (n+ 2)ψ + cos (n− 2)ψ

4

]
dψ,

(A.8)

∫ 2π

0
γ2(1 + erf(sγ)) cosnψdψ =

C2π, n = 0

C2π

2
, n = 2

0, n = 2k, k ∈ Z+ − {1}

√
πC3se−

s2C2
2

[
Ik(− s2C2

2 )− Ik+1(− s2C2
2 )

2k + 1

+
Ik+1(− s2C2

2 )− Ik+2(− s2C2
2 )

2(2k + 3)

+
Ik−1(− s2C2

2 )− Ik(− s2C2
2 )

2(2k − 1)

]
, n = 2k + 1, k ∈ Z≥

(A.9)
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Appendix B

Comparison of geopotential models for orbit determination

This chapter demonstrates that the differences between the different state-of-the-art geopo-

tential models are negligible for the purposes of the aliasing analysis in chapter 4 by analyzing orbit

determination and prediction results for GRACE-B satellite. The same data used in Section 5.4

is processed here. Nine geopotential models are chosen arbitrarily from the most recent models

in International Centre for Global Earth Models (ICGEM) database1 for comparison purposes -

XGM2019e [137], TIM R6e [136], IGGT R1C [59], Tongji-Grace02k [13], GGM05C [108], GGM05G

[107], GGM05S [107], EGM2008 [89] and GGM03S [123]. The initial state from the precision orbit

data is propagated using the gravitational models truncated at order 180 along with the other forces

in Section 5.4. The norm of the position errors between the propagated states and the precision

orbit data at the end of four days are plotted in Fig. B.1 (a) for all the gravitational models. Or-

bit determination is carried out using all the gravitational models, similar to Section 5.4, and the

estimated states are predicted for the next three days after the one-day data-arc. The prediction

errors are plotted in Fig. B.1 (b). It can be seen that both the propagation and prediction errors

are within a few meters of each other for all gravitational field models except propagation errors

for IGGT R1C. Therefore, the results of this work are not significantly affected by the choice of

the geopotential model and the qualitative trends hold for most other state-of-the-art models.

1 http://icgem.gfz-potsdam.de/tom_longtime

http://icgem.gfz-potsdam.de/tom_longtime
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(a) (b)

Figure B.1: (a) Error between propagated states and precision orbit data; (b) Error between
predicted states (propagated estimated states) and precision orbit data



Appendix C

Parameter values for computation of tidal perturbations

C.1 Fundamental arguments of nutation theory

The fundamental arguments of nutation theory required to compute the Doodson arguments

in section 3.4.4.1 can be calculated as follows

l = (134.96340251 + (1717915923.2178T + 31.879200T 2 + 0.051635T 3 − 0.0002447T 4)/3600)π/180

lp = (357.52910918 + (129596581.0481T − 0.553200T 2 + 0.000136T 3 − 0.00001149T 4)/3600)π/180

F = (93.27209062 + (1739527262.847800T − 12.7512T 2 − 0.001037T 3 + 0.00000417T 4)/3600)π/180

D = (297.85019547 + (1602961601.209T − 6.3706T 2 + 0.00659300T 3 − 0.00003169T 4)/3600)π/180

Om = (125.04455501− (6962890.543100T + 7.472200T 2 + 0.007702T 3 − 0.00005939T 4)/3600)π/180

C.2 Nominal Love numbers

Nominal Love numbers to be used in eq. (3.32) are given in

Table C.1: Nominal Love numbers

n m Re knm Im knm k+
nm

2 0 0.30190 0.0 -0.00089

2 1 0.29830 -0.00144 -0.00080

2 2 0.30102 -0.00130 -0.00057

3 0 0.093 - -

3 1 0.093 - -

3 2 0.093 - -

3 3 0.094 - -
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Table C.2: In-phase and out-of-phase amplitudes for corrections to k21 to be used in eq. (3.34).
The units of the amplitudes are 10−12

Doodson number Aip Aop
55,565 16.6 -6.7

55,575 -0.1 0.1

56,554 -1.2 0.8

57,555 -5.5 4.3

57,565 0.1 -0.1

58,554 -0.3 0.2

63,655 -0.3 0.7

65,445 0.1 -0.2

65,455 -1.2 3.7

65,465 0.1 -0.2

65,655 0.1 -0.2

73,555 0.0 0.6

75,355 0.0 0.3

75,555 0.6 6.3

75,565 0.2 2.6

75,575 0.0 0.2

83,655 0.1 0.2

85,455 0.4 1.1

85,465 0.2 0.5

93,555 0.1 0.2

95,355 0.1 0.1

Table C.3: In-phase amplitudes for corrections to k21 to be used in eq. (3.35) with m = 2. The
units of the amplitudes are 10−12. The out-of-phase amplitudes are zero.

Doodson number Aip
245,655 -0.3

255,555 -1.2
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Table C.4: In-phase and out-of-phase amplitudes for corrections to k21 to be used in eq. (3.35) with
m = 1. The units of the amplitudes are 10−12

Doodson number Aip Aop
125,755 -0.1 0.0
127,555 -0.1 0.0
135,645 -0.1 0.0
135,655 -0.7 0.1
137,455 -0.1 0.0
145,545 -1.3 0.1
145,555 -6.8 0.6
147,555 0.1 0.0
153,655 0.1 0.0
155,445 0.1 0.0
155,455 0.4 0.0
155,655 1.3 -0.1
155,665 0.3 0.0
157,455 0.3 0.0
157,465 0.1 0.0
162,556 -1.9 0.1
163,545 0.5 0.0
163,555 -43.4 2.9
164,554 0.6 0.0
164,556 1.6 -0.1
165,345 0.1 0.0
165,535 0.1 0.0
165,545 -8.8 0.5
165,555 470.9 -30.2
165,565 68.1 -4.6
165,575 -1.6 0.1
166,455 0.1 0.0
166,544 -0.1 0.0
166,554 -20.6 -0.3
166,556 0.3 0.0
166,564 -0.3 0.0
167,355 -0.2 0.0
167,365 -0.1 0.0
167,555 -5.0 0.3
167,565 0.2 0.0
168,554 -0.2 0.0
173,655 -0.5 0.0
173,665 -0.1 0.0
175,445 0.1 0.0
175,455 -2.1 0.1
175,465 -0.4 0.0
183,555 -0.2 0.0
185,355 -0.1 0.0
185,555 -0.6 0.0
185,565 -0.4 0.0
185,575 -0.1 0.0
195,455 -0.1 0.0
195,465 -0.1 0.0
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