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This research approaches the problem of debris mitigation at high altitudes by leveraging

naturally occurring perturbations. These perturbations include effects due to solar radiation pres-

sure and effects due to third body gravitation. Solar radiation pressure can be used for a variety

of high altitude orbits beyond where atmospheric effects dominate. For third body effects, they

impact the work discussed in medium Earth orbit where luni-solar resonances affect the stability of

the region. These instabilities cause trajectories to increase in eccentricity on the order of decades

to centuries.

This research is broken up into four main goals. The first goal studies the averaging tools

used in this research. Doubly averaged solutions provide rapid computation power for studying

orbits over long time-spans but can lead to a degradation of the solution. This goal characterizes

the uncertainties of this model in the unstable regime they are used in. The second and third

goals relate to the instability of medium Earth orbit. The second goal studies the graveyard orbit

approach, placing satellites in a disposal orbit at their end-of-life, and the long-term behavior of

debris in these orbits. The third goal deciphers whether it is feasible or not to target these regions

of instability for an atmospheric reentry to depopulate the orbits. The final goal involves using

solar sailing for end-of-life debris mitigation at high altitudes. Similar to how satellites in low Earth

orbit use drag sails to depopulate the orbit, the solar sail could be deployed at end-of-life to change

the orbit and achieve an atmospheric reentry for high altitude orbits.
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Chapter 1

Motivation and Introduction

1.1 Debris Mitigation at High Altitudes

Overcrowding and debris in the Earth’s orbital regime pose the greatest threat to our space

faring capabilities. With every new satellite that orbits Earth, there is an increased chance of

collision which can destroy the satellite and, depending how catastrophic it is, create a greater

debris field in orbit and potentially initialize a “Kessler syndrome” like growth in debris [24, 49].

So far three major collisions have happened in low Earth orbit (LEO) increasing the number of

avoidance maneuvers that functioning satellites like the International Space Station make each year

[32].

The Earth’s orbital environment has special zones that are unique and irreplaceable. Geosyn-

chronous orbit (GEO) is crucial for military and commercial communications and medium Earth

orbit (MEO) is home to the world’s global navigation satellite systems (GNSSs) including the US’s

global position system (GPS). Unlike in LEO, in GEO and MEO, a satellite’s location is the most

important characteristic, and avoidance maneuvers can inhibit its functionality, making it of utmost

consequence to mitigate these risks before collisions happen.

Another unique issue for these high altitude orbits is that they do not experience atmospheric

drag perturbations. In LEO, drag can eventually degrade orbits, causing satellites to reduce altitude

and thus burn up in the atmosphere and remove themselves from orbit. Satellites in GEO and MEO

do not have drag’s natural decaying return time and remain in or near their original orbits without

planned action.
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1.1.1 Geosynchronous Orbit

In 1997, US Space Command and later the Inter Agency Space Debris Coordination Com-

mittee (IADC) recommended a disposal orbit for retired satellites in GEO 300 km in altitude above

the nominal orbit [46, 13]. This disposal orbit, often referred to as a graveyard orbit, was developed

to ensure old satellites and pieces from old satellites would not interact with functioning satellites

in GEO.

A NASA study of the following year found that only a quarter of satellites were able to

achieve this orbit [1]. In more recent years, studies have shown that one third of retired satellites

do not have enough fuel to reach this graveyard orbit [6, 51]. It is imperative that satellite operators

take an active role in depopulating orbits after they have finished their missions. It would be more

effective if they could use naturally occurring perturbations, such as solar radiation pressure (SRP),

rather than rely on an end-of-life fuel reserve.

1.1.2 Medium Earth Orbit

Satellite orbits in the GNSS regime are subject to destabilizing resonances from the Moon

and Sun which make finding stable graveyard orbits difficult. Over centuries, the satellites will

drift along resonances and into chaotic orbital regions and surrounding operational constellations.

Once in these regions, a common occurrence is for the satellite to eventually suffer a growth in

eccentricity which drops its periapsis, causing it to reenter the Earth’s atmosphere [83].

Early work on these resonances were analytically expressed by Ely and Howell [27] and were

focused around station keeping of GPS orbits [26, 48]. Jenkin et al. discussed collision risks for

disposed upper stages [44] and disposal orbits for Block IIF satellites [43]. Chao et al. pointed

out that for orbit lifetimes as short as 40 years non-operational GLONASS satellites could migrate

into the operational GPS zone [19]. Gick proposed that the targeting of argument of perigee might

be essential to achieving stable orbits for GPS Satellite disposal [35]. This targeting of argument

of perigee is a technique Alessi et al. studied for GNSS orbits in general [9]. This work has been
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mainly to study how nominal satellites behave in this orbital regime. Long-term studies of how

high area-to-mass ratio objects, like the work in GEO and the Laplace plane [29], are still needed.

In more recent years, European programs Stardust and RedShift mapped out and defined

these destabilizing zones and identified them as possible reentry targets for satellites at the end-

of-life [85, 23]. Rosengren et al. mapped out the resonances for the differing semi-major axes

including an extensive study of proposed Galileo disposal orbits [86]. Alessi et al. performed

extensive numerical simulations mapping out the dependence of long term orbit stability on a

variety of orbital parameters, and, in so doing, identified the chaotic nature of these orbits [7].

1.2 Research Goals

1.2.1 Thesis Statement

This research aims to provide debris mitigation techniques for high altitude or-

bits. This includes using eccentricity growth due to luni-solar resonance structure

to achieve atmospheric reentry, understanding the stability of potential graveyard or-

bits in medium Earth orbit, and using solar sailing for direct reentry or targeting a

specified orbit to lower reliance on end-of-life fuel reserve.

1.2.2 Research Goal 1 - Validation and Formulation of Doubly Averaged Method

At the foundation of this research is using averaging methods to study long term behavior

of objects in GNSS orbital regimes. The use of averaging techniques can significantly speed up

integration times (on the order of one million times faster); however, these methods lead to degraded

precision. This research goal is to understand how well the doubly averaged method can characterize

the behavior in the unstable regime of MEO. We statistically analyze the performance of the doubly

averaged solution in a short reentry case which will be a surrogate for the highly chaotic dynamics

observed in the region.
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1.2.3 Research Goal 2 - Stability of MEO

This research goal is to preemptively consider the effects due to SRP in the dynamics of

high area-to-mass ratio (HAMR) objects that may inhabit MEO. Previous simulations of chaos in

MEO focus on studying nominal satellite area-to-mass ratios. In reality, space debris can often be

characterized as HAMRs. These objects can be produced by shedding events like the ones seen

of mylar in GEO as well as battery explosions and satellite collisions that have been observed

elsewhere. Thus, when considering the stability of the regime for a possible graveyard orbit, it is

important to include analysis of varying area-to-mass ratio objects or varying effects due to solar

radiation pressure. We seek to understand the effects combining luni-solar resonances and solar

radiation pressure in medium Earth orbital regime, in comparison to work done in LEO and GEO

on resonance structure with SRP [8, 16].

1.2.4 Research Goal 3 - Targeting Regions of Chaos

Because one of the hallmarks of chaos is sensitivity, it is important to understand how pre-

cisely one needs to target an orbit in these chaotic regimes to ensure impact at some point in the

future [55]. If we are to target specific orbital parameters for reentry, we need to also understand

its neighborhood and the likelihood of that satellite reentering or following a non reimpacting tra-

jectory near to its initial conditions. In this goal, we study the sensitivity of these chaotic orbits

due to changes in their initial conditions thus determining how accurately a satellite must hit a

targeted orbit to achieve reentry, potentially decades in the future.

1.2.5 Research Goal 4 - Utilizing Solar Radiation Pressure

Technologies are being developed which can attach simple solar sails to defunct satellites or

can deploy sails at end-of-life. Solar sails have been typically thought of as planar designs but as this

application calls to the use of defunct satellites, we will explore current research on the spherical-

or balloon-style sail as Lücking et al. have proposed [56] and Alessi et al. has incorporated in a

GNSS debris mitigation architecture [9].
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We focus on leveraging averaged solutions to satellites subject to strong SRP forces to take

advantage of the secular effects in Earth’s orbit. This goal utilizes the averaged rotating solution

to derive general trends on how the perturbation effects change in eccentricity and inclination

depending on the orientation between the Sun and Earth. We demonstrate how the control of the

maximum plane change or eccentricity change can be realized just by the choice of sun-relative

node when the sail is furled at high altitudes.



Chapter 2

Methodology and Background

2.1 Dynamical Model

The dynamical models used in this research are defined as follows. The three forms of

equations we will be using are the full numerical solution, integrated using Cartesian coordinates,

and singly- and doubly-averaged equations, integrated using Milankovitch elements.

2.1.1 Full Numerical Solution

The dynamics of this system are modeled using Newton’s Equation with a point mass Earth

and a perturbing force from solar radiation pressure (SRP), Earth’s oblateness (J2), and third body

effects from the Sun and Moon. The accelerations due to these forces are defined as

r̈ = −µe
r3
r + aSRP + aJ2 + aMoon + aSun (2.1)

where µe is the gravitational parameter of Earth (constants are listed in Table 2.1), r represents

the position vector of the satellite from the Earth, and r is its magnitude.

2.1.1.1 Third Body Perturbation

The acceleration due to the gravitational forces of a perturbing body are exhibited by

ap = −µp
( r − dp
|r − dp|3

+
dp
|dp|3

)
(2.2)
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where µp is the perturbing body’s gravitational parameter; in the case of this research, it is either

the Sun or the Moon. The position relative to the perturbing bodies is denoted by dp. The Moon’s

and Sun’s positions were taken from NASA SPICE ephemeris data1 .

2.1.1.2 Earth’s Oblateness

The perturbing acceleration due to the oblateness of the Earth is characterized by

aJ2 =
3µJ2r

2
e

2r4
{[1− 5(r̂ · p̂)2]r̂ + 2(r̂ · p̂)} (2.3)

where J2 is the second degree zonal gravitational coefficient and re is the radius of the Earth. The

polar axis of the Earth is represented by p̂.

Previous work by Daquin et al. shows how including higher order harmonics, up to the

fifth zonal harmonic, does not change the behavior of the region [23]. The influence due to higher

order harmonics is small because of the limited lifetime of these trajectories at low periapsis radii.

Through our own simulations, we found that numerical deviations due to higher order harmonics

are less than the assumptions made by averaging and therefore are not included in the analysis for

this thesis.

2.1.1.3 Solar Radiation Pressure

The perturbing acceleration due to solar radiation pressure is defined by

aSRP = −P0η(1 + ρ)

d2
S

d̂s (2.4)

The solar pressure constant is described as P0. The distance between the Sun and the satellite

(or more roughly the Earth) is ds, and d̂s is the unit vector from Sun to Earth.

The other variables relate to the satellite’s properties. The ratio of reflectivity, ρ, describes

one of the material properties of the surface of the satellite, specifically how the Sun’s light is

1 Kernel DE430 and DE431
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reflected and varies between 0 and 1. The area-to-mass ratio, η, also affects how strongly the

satellite is influenced by SRP and is computed as η = area
mass

m2

g .

Table 2.1: Constants

µe 398600.44km3/s2

µm 4902.799km3/s2

µs 132712440000km3/s2

J2 0.0010826269
re 6378.1370km
ds 149, 568, 020km
dm 384, 400.00km

P0 108 kgkm3

s2m2

η m2/kg

2.1.2 Orbit Averaging

Averaging in this paper will be discussed two ways: singly and doubly. Singly-averaged so-

lutions are averaged over the satellite’s or object studied’s orbit. Doubly-averaged solutions are

averaged over the orbit of the perturbing body in addition to the satellite. Thus, the perturb-

ing forces that can be doubly-averaged in our study are solar radiation pressure and third body

gravitation which are averaged over the Sun’s and Moon’s orbits.

2.1.2.1 Milankovitch Elements

The forms of the averaged solutions will be in terms of the scaled Milankovitch elements

which are defined as

e =
1

µ
ṽH − r̂ (2.5)

h =
r̃v
√
µa

(2.6)
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We use dyadic notation which denotes the cross product in the form of a dyad [96]:

ã = ax(ẑŷ − ŷẑ) + ay(x̂ẑ − ẑx̂) + az(ŷx̂− x̂ŷ) (2.7)

The eccentricity vector is e and the scaled angular momentum vector is h. Since we are

focused on gravitational and SRP perturbations formulated as conservative forces, the semi-major

axis will be constant on average in general, thus validating our use of the scaled Milankovitch

elements. The velocity vector is denoted by v, angular momentum by H, position vector by r, and

semi-major axis by a. Together these vectors define eccentricity, inclination, argument of periapsis,

and longitude of the ascending node. The scaled Milankovitch elements also exhibit two constraints

e · h = 0 and e · e+ h · h = 1.

2.1.2.2 Singly-Averaged

Singly-averaged solutions are derived from the disturbing function of the perturbation and

are averaged over the mean anomaly of the satellite. These results are put into terms of the

Milankovitch elements through the Lagrange planetary equations, referenced in Appendix A. This

thesis will only discuss the results which are written along with their derivations by Rosengren et

al. [87].

Third Body The third body gravitational perturbations in terms of the Milankovitch

elements are Equations 2.8 and 2.9.

˙̄hp =
3µp
2nd3

p

d̂p · (5ee− hh) · ˜̂dp (2.8)

˙̄ep =
3µp
2nd3

p

(
d̂p · (5eh− he) · ˜̂dp − 2h̃ · e

)
(2.9)
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Earth’s Oblateness The oblateness of the Earth is characterized in terms of singly-

averaged dynamics as Equations 2.10 and 2.11.

˙̄h20 = −3nC20

2a2h5
(p̂ · h)˜̂p · h (2.10)

˙̄e20 = −3nC20

4a2h5

((
1− 5

h2
(p̂ · h)2

)
h̃+ 2(p̂ · h)˜̂p

)
· e (2.11)

Solar Radiation Pressure Solar radiation pressure is expressed in singly-averaged dy-

namics in Equations 2.12 and 2.13.

˙̄hsrp = −3

2

√
a

µ

P0η(1 + ρ)

d2

˜̂
ds · e (2.12)

˙̄esrp = −3

2

√
a

µ

P0(1 + ρ)η

d2

˜̂
ds · h (2.13)

2.1.2.3 Rotating Singly-Averaged Formulation for Solar Radiation Pressure

In addition to averaging over the mean anomaly of the satellite, the rotating solution changes

frames. We use a rotating frame oriented along the Sun-body line, pointing from the Sun to the

Earth. Therefore, the vector d̂ rotates about the Earth’s orbit normal ẑ as the body revolves

around the Sun at the rate of change of the true anomaly of the Earth about the Sun. The full

derivation can be found in Appendix A.

Then the solution can be found as:

er(ψ)

hr(ψ)

 = Φr(ψ − ψ0)

e0r

h0r

 (2.14)



11

Φr = cosψI6×6 + (1− cosψ)×

 cos2 Λẑẑ + sin2 Λd̂d̂ − sin Λ cos Λ(ẑd̂+ d̂ẑ)

− sin Λ cos Λ(ẑd̂+ d̂ẑ) cos2 Λẑẑ + sin2 Λd̂d̂



+ sinψ

− cos Λ˜̂z sin Λ
˜̂
d

sin Λ ˜̂d − cos Λ˜̂z


(2.15)

where the SRP parameter is defined as

tan Λ =
3(1 + ρ)P0η

2VlcHs
(2.16)

or

tan Λ =
3η(1 + ρ)P0

2

√
a

µEµSaS(1− e2
S)

(2.17)

where Vlc is the local circular speed of the orbiter, Hs is the magnitude of the Sun’s angular

momentum, and Ts is the Earth’s orbital period about the Sun.

This simpler propagation of the variation due to SRP follows the SRP period, ψ, from 0 to

2π radians. The value ψ is the true anomaly of the Earth’s orbit about the Sun scaled by the SRP

parameter, ψ = νS/ tan Λ.

Here we note that the state transition matrix Φr is a 6 × 6 orthonormal matrix and thus

ΦT
r = Φ−1

r . We note that the matrix Φr can be split into a block form

ΦeeΦeh

ΦheΦhh

 that we will used

in Chapter 6.

The SRP parameter, Λ, varies between 0 to π/2 radians. Therefore the solution has two

limiting cases for both of the extremes, Equations 2.18 and 2.19.

For Λ = 0

Φr = cosψI6×6 + (1− cosψ)×

ẑẑ 0

0 ẑẑ

+ sinψ

−˜̂z 0

0 −˜̂z

 (2.18)
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For Λ = π/2

Φr = cosψI6×6 + (1− cosψ)×

d̂d̂ 0

0 d̂d̂

+ sinψ

0
˜̂
d

˜̂
d 0

 (2.19)

2.1.2.4 Doubly-Averaged

Perturbing forces due to third body effects and SRP can be averaged over the perturbing

body’s orbit in addition to the satellite’s in the singly-averaged solution. This is done by a similar

method as the singly-averaged solution. However, instead of averaging over the satellite’s mean

anomaly, the functions are averaged over the Sun’s and Moon’s mean anomaly. The only pertur-

bations that can be doubly-averaged are solar radiation pressure and third body gravitation.

Third Body The doubly-averaged third body gravitational perturbations in terms of the

Milankovitch elements are Equations 2.20 and 2.21.

˙̄̄
h = − 3µp

4na3
ph

3
p

Ĥp · (5ee− hh) · ˜̂
Hp (2.20)

˙̄̄e = − 3µp
4na3

ph
3
p

(
Ĥp · (5eh− he) · ˜̂

Hp − 2h̃ · e
)

(2.21)

where ap is the semi-major axis of the perturbing body, hp is the scaled angular momentum

of the perturbing body, and Ĥp is the unit vector of the angular momentum of the perturbing

body.

Solar Radiation pressure The doubly-averaged equations of solar radiation pressure

used in this paper is the most recent model derived by Rosengren and Scheeres [88].

˙̄̄
hsrp = −2π(1− cos Λ)

Ts cos Λ
˜̂
Hs · h (2.22)

˙̄̄esrp = −2π(1− cos Λ)

Ts cos Λ
˜̂
Hs · e (2.23)
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2.1.3 Short-Period Corrections

When using averaging theory, it is important to use the true average when integrating the

orbital elements. In the singly-averaged case, the equations are all averaged over the satellite’s

mean anomaly or one orbit. Thus, when propagating the orbital elements, the simulations cannot

use the initial elements as the full solution does but must use the average of the elements over one

orbit as well, referred to as a short period correction. Figure 2.1 shows the variations of each of the

orbital elements for an eccentric GPS orbit and how the short period correction adjusts the initial

conditions.
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Figure 2.1: Orbital element variation of a highly eccentric GPS orbit over one orbital period
compared to short period corrections.

Figure 2.1 shows that there are not large corrections for the short period effects over the

satellite as they are all on the order of 10−4. All of these variations are small and do not result in

noticeable deviation from the final results.

In the doubly-averaged case, the equations of motion are averaged over not only the satellite’s

orbit but also the orbit of the perturbing bodies. Therefore, the solution is sensitive to variations
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about the mean elements not only of the satellite, but of the perturbing bodies as well. Similar

analysis to Figure 2.1, Figure 2.2 shows how large these variations are and whether they impact

the solution enough to require a short period correction.
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Figure 2.2: Orbital element variation of the perturbing bodies compared to short term corrections.

Figure 2.2 shows large variations in the orbital elements of the perturbing bodies. These

variations are about 2 orders of magnitude larger than the satellite’s variations and can have

a large impact on the solution if the perturbing bodies’ orbits are not initialized from the true

average over the orbit and rather the orbit’s initial conditions at the epoch.

In addition to the periodic variation, a secular drift can be seen in Figure 2.2b which shows

a trend in right ascension of the ascending node, RAAN. This is the regression of the lunar node

which has a period of 18.6 years. This behavior is important when modeling the Moon’s influence

on the solution. Therefore, when calculating the angular momentum in Equations 2.20 and 2.21,

the time variation of the Moon’s RAAN is included as a constant rate of regression.

To perform the corrections of the perturbing bodies, we run a simulation similar to Figure

2.2 from the epoch until one year. We use this corrected orbital elements to then construct the

angular momentum vectors of the Sun and inclination of the Moon. The RAAN of the Moon is

taken to be the initial value and is varied by its period.
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2.2 The Chaotic Dynamics of Medium Earth Orbit

The chaotic behavior of the medium Earth orbit region has been a topic of research for many

years. Most recently, Rosengren et al. make the compelling argument for this behavior to be

caused by luni-solar effects [83]. They outline how the region is too high for semi-secular effects

caused by the apsidal precession rate from the Earth’s oblateness and Sun’s apparent mean motion

resonance. The inclination-dependent critical inclination resonances have pendulum like behavior

too “well-behaved” to be a marker of this chaos [21, 42]. Lastly, they argue tesseral resonances

occur over too narrow a window of semi-major axes (tens of kilometers) to describe the behavior

we see in MEO. Rosengren et al. argue that these effects must be the result of the regression of

the lunar node.

2.2.1 Analytical Description

The full derivation for the analytical representation of these resonances can be found in

previous work [83, 84, 37]. We will only highlight the final result for the construction of the

resonance map and illustration of the behavior we are studying.

Resonances occur when the combination of secular precession frequencies is zero.

ψ̇2−2p,m±s = (2− 2p)ω̇ +mΩ̇± sΩ̇2 ≈ 0 (2.24)

where Ω̇2 is the regression of the lunar node and is equal to −0.053°/day and ω̇ and Ω̇ are the linear

precession rates due to the Earth’s oblateness and are equal to

ω̇ =
3

4
J2n

(
re
a

)2 5 cos2 i− 1

(1− e2)2
, Ω̇ = −3

2
J2n

(
re
a

)2 cos i

(1− e2)2
(2.25)

where J2 is the second zonal harmonic, n is the mean motion of the orbit, re is the radius of the

Earth, e is the eccentricity of the orbit, i is the inclination of the orbit and a is the semi-major axis

of the orbit. Therefore, these resonances are dependent on the orbital parameters, a, e, and i.
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Figure 2.3 shows the resonance map for the GPS semi-major axis (the maps appear similarly

for the other GNSS systems studied). The regions where the resonances cross are close to where

instabilities can be found resulting in eccentricity growth. When the separation between the res-

onances is close to their libration widths, the critical angles of the resonances switch erratically

between libration and circulation which results in chaotic behavior of the trajectory. It has been

found that satellites in initially circular orbits would eventually drift to these regions, although the

time scales involved can be centuries long [83].

10 20 30 40 50 60 70 80 90

Inclination (degrees)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

E
c
c
e
n
tr

ic
it
y

GPS a=26600km

Figure 2.3: Map of luni-solar resonances for varying p,m, and s (integers that define the resonance
between the different frequencies) of the GPS semi-major axis. The straight line is where s = 0.

2.2.2 Numerical Simulations

The analytical representation helps locate the chaotic regions we are studying and indicate

the overall varying behavior of the satellite. However, when trying to describe the paths of specific

orbits, it falls short. This is because the analytical description only accounts for semi-major axis,

eccentricity, and inclination. In reality, there are more degrees of freedom to the problem including

the initial epoch (or location of the third bodies), RAAN, and argument of perigee of the satellite.

There is also the nature of chaotic trajectories’ sensitivity to initial conditions. As time progresses,

a trajectory can be confounded with a neighboring trajectory. This underscores the need for

numerical studies for statistical analysis.
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Figure 2.4 shows numerical simulations for varying inclinations and eccentricities at the GPS

semi-major axis for an argument of perigee of 30° and a RAAN of 120° at the J2000 epoch. The

mean anomaly in this orbital regime does not result in large fluctuations for the initial orbital

elements (on the order of ×10−4), and therefore we do not institute a specific mean anomaly or

any short period correction due to averaging. The time until Earth reentry, or time until collision,

depicts how strong the secular growth in eccentricity is, with shorter times representing stronger

eccentricity growth. It is shown with the resonance map in Figure 2.3 that the crossing resonances

do not exactly line up with the chaotic regions. Although the crossing resonances are in the vicinity

of the areas of instability and give a good general idea of the location, numerical simulations provide

more concrete data on where the possible reentry orbits occur. This result emphasizes the need to

study all the varying degrees of freedom of this problem, the orbital parameters, a, e, i,Ω, ω, and

the epoch.

2.2.3 Sensitivity due to Ω and ω

Previous work by Alessi et al. illustrated how the chaotic behavior of this region changes with

variables other than eccentricity and inclination [7]. This section is dedicated to understanding how

the other orbital parameters affect changes in the instabilities of the regime.

Figure 2.5 shows how the argument of perigee and RAAN affect the chaotic behavior for a set

inclination and eccentricity predicted to collide with Earth in 63 years by Figure 2.4. The chaotic

dependency on (ω,Ω) is shown by the fractal structure of the eccentricity map. In this case of the

GPS orbital regime, the eccentricity needs to be about 0.76 for the satellite to reenter the Earth’s

atmosphere.

The map illustrates how the growth in eccentricity is dependent on the two parameters.

There are more stable orbits surrounding a RAAN of π. These inferences allow us to survey the

space for instabilities later in this research.
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Figure 2.4: Numerical simulation of dynamics for varying inclination and eccentricity at the GPS
semi-major axis with an overlay of the resonance map shown in Figure 2.3. The colorbar represents
the reentry time of the satellite. The simulations were capped at 500 years so solutions showing
that reentry time may have never reentered. Results are consistent with Daquin et al. [23]

.
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Figure 2.5: Maximum eccentricity achieved within 200 years from an initial condition of 0.35
eccentricity and inclination of 57.5°. The colorbar of the figure is the maximum eccentricity.

2.3 Lyapunov Exponents

Lyapunov exponents are often used as indicators of chaotic behavior as they measure the

exponential growth of the deviation between neighboring solutions: a positive exponent indicating

an unstable trajectory and a negative exponent indicating a stable one. These exponents are

calculated using a modified Benettin algorithm [75].

Instead of letting the solution deviate from the initial point over the entire arc, the Benettin

method for solving Lyapunov exponents normalizes the deviation after each time. This means

that while the other methods find the supremum over the entire arc, the Benettin method has

several smaller arcs; these values are calculated over which are all summed together to solve for the
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Lyapunov exponent for the particular point. Figure 2.6 shows a schematic of the algorithm similar

to Kuznetsov [54].

Figure 2.6: Normalization of the deviation using the Benettin algorithm.

The algorithm is defined as

µ =
1

MT

M∑
i=1

ln‖∆xi‖ (2.26)

where M is the number of intervals the deviation is normalized for. T is the time span for each

interval.

We have slightly adjusted this equation to take the supremeum over the arc and normalize by

that value.

µ =
1

MT

M∑
i=1

sup ln
‖∆xi‖
‖∆xi0‖

(2.27)

This exponent will be used to quantify the chaotic nature of the trajectories in the subsequent

chapters.



Chapter 3

Research Goal 1 - Validation of Doubly Averaged Method

Over long time-spans, we find that singly-averaged dynamics can follow the full solution well

even in these highly chaotic regions while the doubly-averaged solution does not follow as precisely

[74]. With our focus on long-term behavior, we are not concerned with the exact state, but rather

the general trends in orbit evolution. This research seeks to understand the statistical significance

in these deviations. We will examine how close neighboring solutions follow precise solutions of the

dynamics. By determining if the doubly-averaged solution captures general trends in the chaos, we

can validate it as a tool.

Averaging techniques have been used to study long time-span simulations in this region for

decades. Chao et al. used a semi-analytic orbit propagator to investigate this region. Through older

investigations of geosynchronous orbits (GEO) of 100 years, they validated this method against a

full numerical orbit integration tool [18]. Chao et al. further validated that integrator in the GNSS

regime by bounding the eccentricity growth and running the results with and without solar ra-

diation pressure [19]. Celletti et al. validated their expanded semi-analytical model of luni-solar

perturbations by comparing results with a Newtonian model for two cases with varying eccentrici-

ties. Those two cases were of one of a libration region and one of resonant island in which both cases

mirrored the results of their averaged model [17]. Daquin et al. similarly studied the region using

semi-analytical models of the perturbations [23]. The focus of their validation of the models was

on the degree to which the perturbation was studied rather than the characterization of averaging

itself.
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None of the previous methods included doubly-averaged formulations. The use of the doubly-

averaged solution enables a significant computational speed-up, about 1.6 million times faster than

the full model (eight times faster than the singly-averaged model) and can characterize the chaotic

trends in the GNSS region. However, there is some degradation of the solution as additional

averaging is introduced into the model. The solution starts to wander from the secular behavior

of the singly and full toward the end of the simulation. Therefore, it is important if we want to

use doubly-averaged methods, that we rigorously analyze their performance and their degree of

confidence.

The particular models used in this thesis are derived by Rosengren and Scheeres [87, 88]

described in Chapter 2. These dynamical models were used to study HAMR objects in the Laplace

plane in GEO and about small bodies. Previously, the results of these papers were compared to

equations of motion for their validation. However, the degree of accuracy of the averaged models

was never fully described. In this chapter, we will study how well these models compare to the

other averaging methods and the Newtonian model, referred to as the full numerical solution.

To study the performance of the doubly-averaged model, we will utilize Monte Carlo analysis

previously implemented by Park et al. [69, 70]. Park et al. used this statistical analysis to quantify

uncertainty due to averaging techniques. These were only singly-averaged perturbations and used

in hybrid with full numerical simulations to more rapidly study nonlinear environments. We will

use the general principals of these papers in which the uncertainties are studied by perturbing a set

of initial conditions around the true initial condition and using the expected values and standard

deviations of the set to characterize the group.

This chapter is organized as follows. The chapter discusses two cases: one studying a satellite,

a nominal area-to-mass ratio object, in a highly chaotic region and the other studying a piece of

debris, a HAMR object, in a highly chaotic region. This will involve determining the highly

chaotic region and analyzing it using a distribution of solutions. This analysis will include a way

to characterize a single point and a way to characterize a set of points, providing differing levels

of accuracy required to achieve each. Because HAMR objects are so heavily influenced by solar
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radiation pressure, we will also provide additional analysis that we have conducted to help the

previously derived doubly-averaged model perform better. Then, there is a brief discussion of

HAMR objects beyond the area-to-mass ratio case we focus on, an outer layer of Multi-Layer

Insulation (MLI). The chapter finishes with an example application of a Gaussian distribution with

the limitations discussed in the results and illustrates how the final probability density functions

compare.

3.1 Performance of Varying Area-to-Mass Ratio Types

This chapter will study two different cases of area-to-mass ratios. The first case examined is

of a nominal satellite. The satellites in this region are relatively dense having area-to-mass ratios

about 0.02 m2/kg [31]. For this case, we use an average ratio of reflectivity of 0.5. In addition to

studying how well a satellite representative of that region is propagated using averaged dynamics,

we also study a HAMR object. HAMR objects can inhabit orbits from varying events including

but not limited to a collision, an explosion, or mylar shedding. The area-to-mass ratio we study

is representative of an outer layer of MLI, multi-layer insulation, and is 6 m2/kg [30]. This area-

to-mass ratio is high enough so that the SRP acceleration is of similar magnitude to the third

body attractions which makes this case interesting for study in MEO. We will also include a brief

discussion of some cases where an even higher area-to-mass ratio is used.

3.1.1 Nominal Area-to-Mass Performance

We computed a fifty year simulation using the full numerical model and the two averaged

models. All the simulations were integrated using a RKF (Runge-Kutta-Fehlberg) order 7/order 8

method in Matlab on a Quad-Core Intel Core i5 processor [28]. Integrating using the full numerical

equations took 135 hours for this trajectory compared to the singly-averaged equations which took

1.28 seconds and the doubly-averaged equations which took 0.16 seconds, Table 3.1. These results

clearly indicate how orbit averaging is able to compute trajectories much more rapidly. They

also show when computing many trajectories, the doubly-averaged solution provides even faster
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computation times allowing for quick surveys of a large variation of initial conditions.

Table 3.1: Integration Time Comparison

Full Numerical Singly-
Averaged

Doubly-
Averaged

Doubly-Averaged
with Singly SRP

Nominal
Area-to-Mass

135 hr 1.28 sec 0.16 sec -

High
Area-to-Mass

143 hr 1.36 sec 0.08 sec 0.29 sec

The resulting averaged integrations track the simulation accurately until the 40 year mark

as shown in Figure 3.1 where the doubly-averaged begins to deviate from the singly-averaged and

full integration at the end of the simulation. The singly-averaged solution makes a good proxy for

the full numerical model, and is used for that purpose in our analysis. The analysis of how well the

doubly-averaged equations match the dynamics will be explored in Section 3.2.
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Figure 3.1: Simulations of varying models for a nominal area-to-mass ratio
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3.1.2 HAMR Performance

Similarly, a fifty year simulation of a HAMR object results in varying computation times

per model. In this case, we use four different integration methods. Because SRP is a large con-

tributing perturbation in HAMR objects, in addition to the fully doubly- and fully singly-averaged

methods, we include a fourth method, a doubly-averaged third body computation with a singly

SRP computation. Like all the integrations in this chapter, the simulations were integrated using

a RKF (Runge-Kutta-Fehlberg) order 7/order 8 method [28]. Integrating using the full numerical

equations took 143 hours for this trajectory compared to the fully singly-averaged which took 1.36

seconds, the fully doubly-averaged which took 0.08 seconds, and the doubly with singly SRP which

took 0.29 seconds, Table 3.1.

The resulting integration does well at tracking the simulation until the 20 year mark as shown

in Figure 3.2.
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(b) Last 10 years of the simulation

Figure 3.2: Simulations of varying models for a high area-to-mass ratio

This performance is notably worse than the nominal area-to-mass ratio case in Figure 3.1, as

expected given the significantly larger perturbation effects on a HAMR object. However, using the
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doubly with singly-averaged SRP model gives performance that is comparable to the singly and

full solution. The fully doubly-averaged and doubly-averaged with singly-averaged SRP model’s

performance will be further defined and investigated Section 3.3.

3.2 Nominal Satellite

This section will explore the long term propagation of a nominal area-to-mass ratio object

in the medium Earth orbit regime. First, we will pick a case to study that is representative of a

highly chaotic trajectory. Then, we will look at how well the doubly solution can match a single

true solution and how well it will track a distribution of solutions similar to analysis presented by

Pellegrino et al. [76].

3.2.1 Targeted Region

Because the aim of this research goal is to see how doubly-averaged dynamics characterize

chaotic behavior, the specific region chosen is one known to be highly chaotic. It is an orbit at the

GPS semi-major axis with an eccentricity and inclination shown to have a short Earth reentry time.

The threshold for atmospheric reentry was chosen to be a perigee below 122 km or at the GPS

semi-major axis an eccentricity of about 0.76 [68]. This region was chosen by sampling eccentricity

and inclination space of a GPS semi-major axis. For each eccentricity and inclination pair, 14

different right ascension of the ascending nodes and argument of perigees were sampled to assure

the target picked in eccentricity and inclination space is independent of those parameters.

Table 3.2: Targeted Orbital Parameters

a e i Ω ω Reentry Time

26560 km 0.400 57.5° 5.5 rad 2.8 rad 30.8 years

The specific orbit, Table 3.2, was chosen for its fast reentry time and similarly chaotic neigh-

boring trajectories (shown as the large blue area in the center of each of the plots in Figure 3.3).
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Figure 3.3: Choosing a target. (a) Comparison of chaotic regions independent of Ω and ω. Each
point is the smallest collision time of 14 different Ω and ω (196 cases). (b) The varying reentry
time for e=0.4 and i=57.5° in ω and Ω space.

3.2.2 Capturing a Single Solution

To understand at what level the doubly-averaged dynamics captures the dynamics of the

singly-averaged, we perturbed the initial conditions of the doubly-averaged and compared how

the final results relate to the singly-averaged. This is done by perturbing with a white uniform

distribution of a certain percentage of the initial conditions and then integrating using both a singly-

averaged integrator for the non-perturbed solution and a doubly-averaged for both the perturbed

set and non-perturbed solution. The only quantities perturbed are the initial conditions. This

amounted to 1000 Monte Carlo runs for each scattering. The time until atmospheric reentry, also

denoted as time until collision, is used as the parameter to determine how well the chaotic dynamics

were captured.

By analyzing a distribution of solutions, we can create a case in which the true solution is

encapsulated in the doubly-averaged set. This method quantifies to what degree of certainty the

doubly-averaged solution can describe the true dynamics [69, 70].

The first results shown are for a distribution where the initial conditions are perturbed by

0.125% of their original value (with a mean deviation of 0). For each of the simulations, all six



28

initial conditions were perturbed at the same time.

For the 0.125% variation, the resulting trajectories had a range of orbit reentries between 30.6

and 31.1 years, graphs shown in Appendix B. This corresponds to about six months between the

shortest and longest reentry times. The true solution of 30.8 years is within this threshold. To avoid

any biasing due to outliers, the standard deviation is used as a descriptor for the distribution instead

of the maximum and minimum. The standard deviation thus requires a tighter requirement than

meeting the threshold of being within the maximum and minimum of the set. The final distributions

are not necessarily going to be Gaussian but the standard deviation is still a useful parameter to

remove any outliers in the set.

The standard deviation of the doubly-averaged distribution set does not encompass the final

reentry time of the singly-averaged solution. Thus, we increased the perturbed range of initial

conditions from 0.125% to 0.25%.
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Figure 3.4: The deviation of the initial conditions in terms of the magnitudes of the Cartesian
coordinates as compared to the final reentry times for a 0.25% initial distribution

The atmospheric reentry times for the 0.25% distribution range from about 30.6 to 31.4 years

as shown in Figure 3.4. This is approximately about nine and a half months between the minimum

and maximum reentry times. Figure 3.5 shows the distribution with their means and standard

deviations in terms of some of the orbital elements.
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Figure 3.5: The deviation of the initial conditions in terms of the orbital elements as compared to
the final reentry times for a 0.25% initial distribution.

In this case, the mean still comes to be about 30.95 years but the spread of results is much
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higher and thus the standard deviation also encapsulates the true solution of about 30.8 years.

Therefore, an initial distribution of 0.25% about the initial conditions produces a large enough

distribution to describe the true solution.

3.2.3 Capturing a Distribution

In each of the previous simulations, we ran a Monte Carlo analysis of the doubly-averaged

against a single solution. In order to understand the varying degrees of accuracy to study the

region, we will study the description of not only one single initial condition, but also a set of initial

conditions. In this analysis, we run Monte Carlo simulations of both the doubly- and singly-averaged

to see how the distributions compare. Because we expect a looser requirement on comparing sets in

contrast to a single point, we started our analysis at a smaller initial distribution. The distribution

that was able to fit the requirement was a 0.15% initial distribution.
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Figure 3.6: The deviation of solutions for a distribution of 0.15% of the initial conditions in terms
of the norms from the Cartesian coordinates compared to the final reentry times of the distribution.

Figure 3.6 shows that a larger swath of initial conditions results in a larger final spread of

reentry times. In this case, the final reentry times of both distributions overlap, singly from 30.6

years to 30.9 years and doubly from 30.6 years to 31.3 years.

Figure 3.7 shows how the standard deviations about the means of each distribution overlap.
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Figure 3.7: The deviation of solutions for a distribution of 0.15% of the initial conditions in terms
of the orbital elements as compared to the final reentry times

The standard deviations crossing achieves the threshold for the distributions matching and indicates
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that the dynamics could be characterized by the doubly-averaged solution for a 0.15% level of

precision when describing a set of solutions.

3.3 HAMR Objects

In addition to studying nominal area-to-mass ratios representative of satellites, we also stud-

ied area-to-mass ratios representative of space debris. Our base case will be of a 6 m2/kg object

consistent with the outer layer of MLI [30], hypothesized to be a common source of debris objects.

3.3.1 Corrections to the Doubly Averaged SRP Integration

Figure 3.8 shows how an object with an area-to-mass ratio of 5 m2/kg evolves with the singly-

averaged dynamics model of SRP, Equations 2.12 and 2.13, and doubly-averaged dynamics model

of SRP, Equations 2.22 and 2.23. This area-to-mass ratio was chosen because it is large enough

to easily visualize the solar radiation pressure perturbation and it is similar to the representative

debris case.

The doubly-averaged solution deciphers trends in the behaviors of the orbital dynamics.

This is best illustrated by inclination and RAAN over the five years. However, the doubly-averaged

solution is failing to capture the true average of the dynamics and is only propagating the trends

from the initial conditions.

Even though the doubly-averaged solution appears to not track the dynamics well, there are

some corrections we can employ to still utilize this much more rapid computation to quickly survey

the phase space for HAMR objects. The first will be a numerical correction of the initial conditions

to ensure the true average of the orbital elements is propagated forward in time. The second is a

quick analysis of the variation of the eccentricity on a number of arcs over the integration of the

solution. This will help give an understanding of the maximum around that average and therefore

whether the object reenters.



33

0 2 4
2.6558

2.6559

2.656

a

10
4

Singly Averaged

Doubly Averaged

0 2 4

0.4

0.45

0.5

E
c
c
e
n
tr

ic
it
y

0 2 4
0.95

1

1.05

In
c
lin

a
ti
o
n
 

(r
a
d
ia

n
s
)

0 2 4

5.4

5.45

5.5

R
A

A
N

 (
ra

d
ia

n
s
)

0 2 4

Time (years)

2.6

2.7

2.8

A
rg

 o
f 
P

e
ri
g
e
e

(r
a
d
ia

n
s
)

Figure 3.8: Five year simulation of dynamics due to SRP on a piece of debris in a GPS orbit

3.3.1.1 Numerical Correction

To ensure the doubly-averaged model tracks the shift in magnitude occurring over the period,

we will initialize the dynamics with a process similar to the short-period correction described in

Section 2.1.3. In the case of the short-period corrections, we were modifying the initial conditions

over the orbits that were averaged over: modifying the satellite’s initial orbital elements to the

average over its period and modifying the perturbing bodies’ orbital elements to the average over

their periods.

The correction discussed here is coming from a failure of the doubly-averaged formulation to

capture the perturbing dynamics due to SRP. The reason the formulation is failing to capture the

large changes in the orbital elements (eccentricity for example) is the doubly-averaged formulation

averages over the perturbing body’s orbit and, in the case of SRP, these changes in orbital elements

occur on a period close to that time frame, a year (the Earth’s orbit about the Sun). The actual
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periodicity in SRP dynamics is dependent on the strength of the SRP parameter, Equation 2.16.

In order to incorporate the behavior of the satellite that is averaged over in the doubly-

averaged formulation, we run the singly-averaged formulation for a period to capture it. Then we

reinitialize the initial conditions from the averages of this result. This will ensure when propagating

the doubly-averaged solution for HAMR objects that the shifts in eccentricity due to SRP are

incorporated. Although, in practice, adjustments can be made from simulations as short as one

year, Figure 3.9 shows variations for five years to further illustrate the dynamics.
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Figure 3.9: Five year simulation of dynamics due to SRP on a piece of debris in a GPS orbit with
numerical corrections

With the numerical correction, the doubly-averaged formulation better describes the long

term dynamics due to solar radiation pressure allowing long term dynamics to be more accurate.
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3.3.1.2 Variation of the Eccentricity

Understanding the long-term behavior of eccentricity is essential for studying the lifetimes of

objects. With the numerical corrections, the doubly-averaged model can incorporate the long-term

secular effects due to SRP (alongside the third body perturbations that result in the luni-solar

resonances). Because SRP causes large variations in eccentricity about its averaged behavior, it

is important to incorporate those extrema in addition to the averaged secular behavior of the

trajectories.

Realizing the full space in eccentricity the object is traversing can be done by dividing the

long-term simulations into shorter arcs. At the end of each arc, the trajectory is propagated for

a full SRP period with a simplified SRP model that only includes the averaged effect of SRP and

thus does not include gravitational perturbations. We use the rotating averaged SRP solution to

propagate the results for an SRP period shown in Equations 2.14 and 2.15 [96]. This method is

rapid and does not require integration by making use of the state transition matrix, Φr. Because

eccentricity is frame independent, the only added complexity of using this new frame is initialing

e0r and h0r in the correct frame, the rotating ecliptic frame.

3.3.1.3 Sensitivity of Initial Positioning

The nuances of the orientation set up in this frame will be discussed in more detail in Chapter

6. For the purposes of this chapter, they are briefly introduced to illustrate an ambiguity problem

that arises from using this equation to solve for minimums and maximums of the doubly-averaged

solution. Equation 3.1 transforms the vectors, e0 and h0, into the rotating ecliptic frame.

h0r = TRTEh0 (3.1)

e0r = TRTEe0 (3.2)
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where TE represents the transformation from the equatorial to the ecliptic and TR represents the

transformation from the inertial to the Sun-Earth line rotating frame and varies with the true

anomaly of the Earth about the Sun, νs, Equation 3.3.

TR =


1 0 0

0 cos νs sin νs

0 − sin νs cos νs

 (3.3)

However, the doubly-averaged formulation averages out the Earth’s position relative to the

Sun. Therefore, there isn’t a correct νs to solve the rotation matrix.

Although νs has been averaged over and there isn’t a correct value to associate with it,

there is information from the doubly-averaged model that can be used to correctly understand the

variation of the eccentricity at any point. Since the doubly-averaged model is always propagating

the average of the eccentricity, the variation of eccentricity should always have its mean equal to

the initial conditions (the output from the doubly-averaged solution). For different νs and initial

conditions, this might not necessarily be the case. However, we can apply a simple correction to

force the variation about the initial conditions.

From the set of solutions from ψ = 0 to 2π radians of Equations 2.14 and 2.15, we find a set

e(ψ), the magnitude of the eccentricity vector. The magnitude of the eccentricity vector is frame

independent so there is no “r” subscript on this term. Then we subtract that set by its mean and

add the initial eccentricity, Equation 3.4. This forces the mean to be the initial eccentricity instead

of the set’s initial mean.

e(ψ)corrected = e(ψ)− E(e) + e0 (3.4)

where E is the expectation operator, Equation 3.5.

E(e) =
1

2π

∫ 2π

0
e(ψ)dψ (3.5)
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An example of this operation is in Figure 3.10. The black line is the variation of eccentricity

over a period of 0 to 2π radians ψ from Equations 2.14 and 2.15. The initial vectors were transformed

from the equatorial into the rotating ecliptic frame as shown in Equations 3.1 an 3.2. For simplicity,

we use νs = 0 making Equation 3.3 an identity matrix, I3x3. The blue line shows the same set with

the correction applied in Equation 3.4. The red bar indicates the initial eccentricity and is not a

function of ψ.
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Figure 3.10: Map of eccentricity variations over an SRP period, ψ = [0 2π] radians (close to a
year) and the initial eccentricity for this case.

As Figure 3.10 shows, the initial eccentricity variation, the black line, does not have an

average equaling the initial condition, the red line. With the correction applied, the black line

shifts up to the blue line and now has a mean about the initial eccentricity. This makes the blue

line consistent with the assumptions made in using the doubly-averaged equations, that we are

propagating the mean of the eccentricity, and thus the initial conditions of the set we are checking

around are the mean of that set.

This operation won’t affect the amplitude or the degree of variation dependent on the orien-

tation, but it does take out the sensitivities if the initial conditions in that orientation are closer
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to the maximum or minimum rather than the true mean. Figure 3.11 shows how the maximum

eccentricity can vary without this correction as compared to how it varies with the correction. This

figure displays 100 different starting values of νs, or initial orientations, as compared to Figure 3.10

which only shows one, νs = 0.
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Figure 3.11: 100 different cases of νs. Maximum eccentricity for the non-corrected, yellow, set
along with their variation, black, and maximum eccentricity for the corrected set, green, with their
variation, blue.

It is apparent from Figure 3.11 that without the correction, or the “old maximum”, the set

can vary between the initial condition, 0.37, and 0.44 eccentricity. The correction narrows this set

of possible maximum eccentricities from 0.39 to 0.41, for this particular case.

To verify that this method of checking the variation, we compared two methods, one singly-

averaged integrated over a year, the other using the doubly-averaged initial conditions (applying

Section 3.3.1.1) and doing a maximum-minimum analysis with the correction described where

νS = 0. Instead of studying only one initial condition, we sampled 100 different initial eccentricities

and inclinations. The resulting difference between the maximums for the 10,000 set of initial
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conditions is shown in Figure 3.12.
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Figure 3.12: Difference between maximum from singly-averaged (truth) and maximum solved by
doubly-averaged with correction method for an SRP period (about a year)

Figure 3.12 shows how for the varying eccentricities, the maximum difference from the truth

using our described method does not get larger than 0.02 eccentricity. It is important to note

that the method described tends to underpredict the true value, indicated by the greater area of

negative difference. A consequence of this is that this method would likely predict longer reentry

times than shorter ones compared to the actual reentry.

3.3.2 Performance of Doubly-Averaged SRP

Instituting these corrections, we can now utilize the doubly-averaged solution in our analysis

of HAMR objects. Because we have instituted large corrections in the doubly-averaged model for

SRP, we will perform some additional analysis before we compare its performance in similar methods

as the nominal satellite case. This additional analysis will use Lyapunov plots to understand how
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well the doubly-averaged solution with the corrections can track general trends in the regime before

we hone in on a specific representative orbit.

3.3.2.1 Lyapunov Plots

(a) Doubly with singly SRP averaged simulation (b) Fully doubly-averaged simulation without
max/min analysis

(c) Fully doubly-averaged simulation with max/min
analysis

Figure 3.13: FLI maps of the same area to mass ratio with varying methods to determine the
reentry condition of the object. Magenta overlay indicates where the object reentered the Earth’s
atmosphere before the end of the simulation.

Figure 3.13 shows a fast Lyapunov indicator, FLI, maps for a GNSS region. This plots

the Lyapunov exponents (1/year) where high exponents indicate more chaotic behavior and low

exponents indicate more stable behavior, discussed in Section 2.3.

In addition to the FLI map, Figure 3.13 shows the reentry cases for the same initial conditions,

analyzed using varying methods in which the magenta overlay indicates where the satellite reentered
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Earth’s atmosphere before the end of the 200 year simulation. The first case, the doubly averaged

third body with singly-averaged SRP simulation, will be the surrogate for the truth. The second case

uses the doubly-averaged analysis, incorporating the numerical corrections of the initial conditions

from Section 3.3.1.1. The fully doubly averaged model, b and c, appears to have consistency in

the predicted chaotic behavior (blue opposed to yellow) as compared to the doubly wth singly

SRP. The second case fails to fully encapsulate the reentry conditions (magenta) of the doubly

with singly. The third case, c, uses the doubly-averaged analysis with the same corrections as b

and also incorporates the maximum and minimum analysis. The third case more closely matches

the doubly-averaged with singly-averaged SRP and illustrates the importance of adding in the

maximum and minimum analysis.

With the corrections, the overall behavior of the chaotic effects are shown in the doubly-

averaged case to match the ones in the singly-averaged case. With the variation analysis, the

simulation can better detect when objects are reentering the Earth’s atmosphere before the end of

the simulation.

3.3.2.2 Targeted Region

Following Section 3.2 analysis of nominal area-to-mass ratios, we will also analyze how distri-

butions of singly- and doubly-averaged dynamics match for HAMR objects. Because the dynamics

of HAMR objects don’t exactly line up to the nominal area-to-mass ratio case, we will also start by

finding a highly chaotic solution for a HAMR object. Figure 3.14 shows the varying reentry times

for HAMR objects integrated for 100 years.

From Figure 3.14a, an eccentricity and inclination value were chosen to be 0.4 and 56° which

was a relatively low eccentricity region surrounded by fast reentering trajectories. Figure 3.14b

surveys the RAAN and argument of perigee trade space for those values; two cases were chosen

to understand the doubly-averaged dynamics behavior. Those two cases are Ω = 5.27 rad, ω =

2.86 rad and Ω = 5.5 rad, ω = 1.84 rad, Table 3.3. The first case was chosen for its surrounding

reentering trajectories while the second case borders some non-reentering solutions. Analyzing both
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Figure 3.14: Choosing a target. (a) Comparison of chaotic regions independent of Ω and ω. Each
point is the smallest collision time of 14 different Ω and ω (196 cases). (b) The varying reentry
time for e=0.4 and i=56°in ω and Ω space.

these types of cases will help solidify the more complex dynamics with both SRP and third body

effects.

Table 3.3: Targeted Orbital Parameters for HAMR Objects

Case a e i Ω ω Reentry Time

Case 1 26560 km 0.400 56° 5.3 rad 2.9 rad 24.2 years

Case 2 26560 km 0.400 56° 5.5 rad 1.8 rad 38.7 years

3.3.2.3 Capturing a Distribution

The first case for studying long-term dynamics simulations of a HAMR object is initial

conditions: e=0.4, i=56°, Ω = 302°, and ω = 164°. These initial conditions result in a nominal

reentry case of ∼24 years. This case is surrounded by similar reentering solutions in Figure 3.14b.

Figure 3.15 shows how the singly-averaged solution compares to the doubly-averaged solution

for this case. Figure 3.15a shows how the variation of eccentricity compares for the two sets given

the case. Because the doubly-averaged solution pauses and checks the variation about the mean

every few years to determine whether or not the solution reenters, the solution stops the integration

when the variation is large enough that the reentry condition has been met, e > 0.76. Similar to
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the previous method of detecting overlap in distributions (Section 3.2.3), Figure 3.15b shows a case

where the two sets of solutions were varied by 0.625%, the largest initial distribution before the

sets include non-reentering solutions.
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Figure 3.15: First case of a HAMR object with initial conditions e=0.4, i=56°, Ω = 302°, and ω =
164°. (a) The variation of eccentricity of singly dynamics as compared to doubly. (b) Comparison
of singly and doubly distributions’ reentry times and their respective changes in eccentricity for a
0.625% initial distribution

Although some of the reentry times match between the two sets, the distributions are not large

enough to have their standard deviations cross. Unfortunately, increasing the initial distribution

any larger than 0.625% of the initial conditions results in some of the solutions not reentering at

all and thus are unusable for our analysis.

The second case had the initial condition: e=0.4, i=56°, Ω = 320°, and ω = 105°. This

corresponds to an area that has a reentry of 39 years but is surrounded by differing types of

solutions in Figure 3.14b. Like the previous case, Figure 3.16 compares the two averaging methods.

In this case, Figure 3.16a shows how the two non-perturbed solutions’ eccentricity varies

with the 100 year simulation. The doubly-averaged solution begins to wander above the mean

value fairly early in the simulation but then quickly drops below. Therefore, it never captures the

reentry condition, which is met about 40 years into the simulation. Because the doubly-averaged

solution misses the reentry condition, its reentry time is greater than 100 years and thus greater
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Figure 3.16: Second case of a HAMR object with initial conditions e=0.4, i=56°, Ω = 320°, and ω =
105°. (a)The variation of eccentricity of singly dynamics as compared to doubly. (b) Comparison
of singly and doubly distributions’ reentry times and their respective changes in eccentricity for a
0.15% initial distribution

than 50 years off the nominal. Therefore, there is no variation about the initial conditions that could

reconcile the two sets. Figure 3.16b shows a 0.15% for reference notwithstanding the nonexistence

of a distribution that could describe the singly.

3.3.3 Using Singly SRP

The fully doubly-averaged solution is not robust enough to characterize the phase space

to the level of accuracy needed in our analysis for HAMR objects. To help alleviate some of

the shortcomings of the fully doubly-averaged analysis and maintain some of the computational

efficiency, for HAMR objects, we will explore an additional scenario alluded to in Section 3.1.2. This

scenario uses a doubly-averaged model for third body perturbations and a singly-averaged model

for the solar radiation pressure perturbation. Therefore, we only need to track the movements of

the Sun, a much slower period than the lunar period. This will allow the model to more speedily

calculate the third body trajectories where the short-period effects due to the bodies is not required

for a highly accurate solution. Nonetheless, it does incorporate the short-period effects due to the

Sun on SRP which has a large influence on the behavior of the perturbation.
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3.3.3.1 Capturing a Single Solution

We will analyze the doubly-averaged third body model with singly-averaged solar radiation

pressure similar to the analysis of a nominal area-to-mass ratio. The first set of solutions studied is

for the first SRP case, e=0.4, i=56°, Ω = 302°, and ω = 164°, with an initial condition distribution

0.3%. 1

A 0.3% distribution was large enough to encompass the actual solution with solutions varying

between 24.1 and 25.2 years, graphs in Appendix B. However, it was not large enough to encompass

the standard deviation of the set. Therefore, we increased the distribution from 0.3% to 0.5%

about the initial conditions which is shown in Figure 3.17. It should be noted that although the

distribution is bimodal and not Gaussian, the standard deviation is still a useful metric in this data

as it will remove any large outliers from the main distribution serving its purpose in this research

goal.
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Figure 3.17: The deviation of the initial conditions in terms of the magnitudes of the Cartesian
coordinates as compared to the final reentry times for a 0.5% initial distribution

This larger initial condition set has expanded the reentry time distribution to vary between

23 and 33 years. Figure 3.18 shows the solution set in terms of the orbital elements with the

standard deviation.

1 The asterisks in these graphs indicate that the doubly solution is using a singly SRP model
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Figure 3.18: The deviation of the initial conditions in terms of the orbital elements as compared
to the final reentry times for a 0.5% initial distribution

With the larger overall distribution, the 0.5% variation about the initial condition set’s stan-
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dard deviation encompasses the actual reentry time of 24.15 years.

The doubly-averaged solution with singly SRP is able to track the solution better in this case

than the fully doubly-averaged result, which is expected. In this case, the singly SRP is able to

compensate for the shortcomings of the previous model. However, the true test of the doubly with

singly SRP model is the second case where the fully doubly-averaged result was unable to predict

a reentry at all. This case was for an e=0.4, i=56°, Ω = 320°, and ω = 105°.

The initial distribution is 0.01% about the initial conditions to show a case with a small

distribution; the small distribution encompasses the true reentry time with a final distribution of

0.02 years or about a week. Because the doubly-averaged with singly SRP is so close to the truth

for this case, the two solutions are only off by 0.006 years. With the small variation in reentry

times, the standard deviation of the set does not encompass the true value.

Next we increased the set to vary 0.02% about the initial distributions.

Figure 3.19 shows that the larger distribution now varying about 16 days has a standard

deviation which encompasses the results.

3.3.3.2 Capturing a Distribution

To continue our analysis on the performance of the performance of the doubly-averaged with

singly SRP model, we studied how the two distributions would compare in similar methodology as

Section 3.2.3.

In congruence with the earlier HAMR analysis, we will examine the first case of e=0.4, i=56°,

Ω = 302°, and ω = 164°. Figure 3.20 shows how the reentry times vary in terms of the magnitudes

of the Cartesian coordinates for an initial distribution of 0.2% about the initial conditions.

The distributions overlap and the standard deviation for both sets of distributions overlap

as well. Figure 3.21 shows how the initial deviation of some of the orbital elements compare.

The second case studied is for an e=0.4, i=56°, Ω = 320°, and ω = 105°. Because the two

solutions are within weeks of each other the initial distribution is only varied by 0.0025% about the

initial conditions because significant overlap is expected even with an incredibly small distribution.
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Figure 3.19: The deviation of the initial conditions in terms of the orbital elements as compared
to the final reentry times for a 0.02% initial distribution

Figure 3.22 shows despite the initial distributions only varying by 0.0025% of the initial
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Figure 3.20: The deviation of the initial conditions in terms of the magnitudes of the Cartesian
coordinates as compared to the final reentry times for a 0.2% initial distribution

conditions we still see significant overlap between the two sets as expected.

Figure 3.23 shows these variations in reentry times in terms of the orbital elements. It is

also shown here with the standard deviations how much the two distributions overlap despite their

small size. This predominately comes from the doubly model only differing by only a couple of

days.

3.3.4 Varying Area-to-Mass Ratios

Area-to-mass ratios can vary up to as high as 110 m2/kg, a value representative of inner layers

of MLI [30]. The previous focus of 6 m2/kg (representing an outer layer of MLI) was especially

important because the effects due to solar radiation pressure and third body effects are on a similar

order for that area-to-mass-ratio. However, to fully understand how debris would act in this region,

it is important to also study higher area-to-mass ratios where solar radiation pressure would be

more dominant.

Figure 3.24 shows how increasing the area-to-mass ratio will not necessarily guarantee reentry

of these objects. Excluding the extremely high area-to-mass ratio case, there isn’t necessarily a

set threshold where all objects will enter within a year because of the other perturbations and the
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Figure 3.21: The deviation of solutions for a distribution of 0.2% of the initial conditions in terms
of the orbital elements as compared to the final reentry times

original orientation of the orbits. The initial conditions for this set of examples were the same as
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Figure 3.22: The deviation of the initial conditions in terms of the magnitudes of the Cartesian
coordinates as compared to the final reentry times for a 0.0025% initial distribution

the nominal area-to-mass ratio targeted region. These results are consistent with nominal GPS

orbits studied by Anselmo et al. [2].

3.4 Discussion

The doubly-averaged model proves to be an adequate model for analyzing highly chaotic tra-

jectories in MEO for nominal satellite area-to-mass ratios. For these objects, the doubly-averaged

solution still deviates from the singly-averaged solution but the resulting reentry times are close.

Through our analysis for the particular worst case initial conditions chosen, we have found a confi-

dence of 0.25% about the initial conditions for the model. The distribution of a set varied by 0.25%

had a standard deviation that encompassed the true solution. When characterizing a distribution

of solutions, the doubly-averaged model does not need the same level of accuracy. To describe a

distribution, we only need the initial conditions to be varied by 0.15%.

The HAMR objects did not fare as well with the doubly-averaged model. This was primarily

driven by the doubly-averaged model’s failure to capture eccentricity deviations in the solution.

Through several corrections, we demonstrated that we can not only track the true average but also

track the variation of eccentricity about the average. This shows remarkable improvements in the
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Figure 3.23: The deviation of the initial conditions in terms of the orbital elements as compared
to the final reentry times for a 0.0025% initial distribution

doubly-averaged model for HAMR objects but does not to track the true solution close enough for
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Figure 3.24: Varying area-to-mass ratios for up to 100 years showing the complex behavior of the
dynamics of the region (Except for the 100 m2/kg case which reaches an eccentricity of 1 in the
first ten years)
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the precision our Monte Carlo analysis requires.

For HAMR objects, we implemented a third method to study the trajectories in this region.

This method involved using the doubly-averaged model to propagate results in third body pertur-

bations and using the singly-averaged model for solar radiation pressure. This method proves to

be faster than the fully singly and more accurate than the fully doubly. The doubly-averaged with

singly SRP for the less accurate chaotic case studied still only required an initial distribution about

the initial conditions to be 0.5%. For capturing a distribution’s results, the initial distribution only

has to be varied by 0.2% of the initial conditions.

(a) (b)

Figure 3.25: 10,000 Monte Carlo distribution simulation with the respective final pdf and histograms
of the orbital elements (a)Nominal satellite case (b) HAMR case where doubly is with singly SRP

To illustrate how well the doubly averaged solution would perform in practice, we applied the

limitations from our findings to Gaussian distributions. For our example GPS orbit, the constraints

would initialize the sigmas to be on the order of 50 km in position and 5 m/s in velocity. These

deviations are large but necessary to ensure the doubly distribution captures the singly solution in

this regime. This would model the typical uncertainties in terms of the initial means and sigmas

for a specific satellite or known object. Figure 3.25 shows the final distributions for the orbital

elements for two 200 year simulations. The first set of graphs is for a nominal area-to-mass ratio

satellite case with a 0.15% distribution and the second is for a HAMR object with a 0.2% initial
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distribution. These limits are consistent with the finding in this paper. In contrast, Figure 3.26

shows the same initial conditions with tighter initial uncertainty distributions on the order of 10

km and 1 m/s. The smaller initial distribution sets do not agree as well and the doubly is unable

to match the behavior of the singly averaged. Figure 3.27 shows how the reentry times for the

two distributions of the nominal area-to-mass ratio compare (the HAMR case is bimodal in reentry

times and not as easily understood from a probability density function).

(a) (b)

Figure 3.26: 10,000 Monte Carlo distribution simulation with the respective final pdf and histograms
of the orbital elements for an order smaller distribution than Figure 3.25 (a)Nominal satellite case
(b) HAMR case where doubly is with singly SRP

3.5 Conclusion

This research goal studied how well a doubly-averaged model can describe the highly chaotic

trajectories in the medium Earth orbital regime. Our primary focus was on two different area-to-

mass ratios, one representing a satellite in the region and the other representing a piece of debris

more susceptible to SRP perturbations.

For the satellite case, the doubly-averaged solution tracks the reentry of the debris very well.

Through a Monte Carlo analysis, we were able to put bounds on the confidence levels of that model

characterizing a reentry and characterizing a set of solutions’ reentries.
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(a) (b)

Figure 3.27: 10,000 Monte Carlo distribution simulation with the respective final pdf of the reentry
times for a nominal satellite (a) for a distribution at the limit of its performance 50 km and 5 m/s
(b) for a distribution of 10 km and 1 m/s.

The doubly-averaged solution had shortcomings in tracking a case for a high area-to-mass

ratio object. In this goal, we have demonstrated some key corrections that can be incorporated to

vastly improve the performance. These corrections allow for analysis in general trends, like a Fast

Lyapunov Indicator map, but still failed to characterize a specific solution or sets of solutions.

By using the singly-averaged model for solar radiation pressure in conjunction with the

doubly-averaged model for third body gravitation perturbation, we were able to better charac-

terize the solution of high area-to-mass ratio objects without sacrificing computation time the fully

singly-averaged model requires. The singly-averaged SRP model also shows significant improve-

ment in areas where the doubly-averaged SRP model fails. This could be a result of the cases

where the doubly-averaged SRP model fails to even predict a reentry or cases where SRP has a

more dominant effect and thus performance of the overall solution is greatly improved when that

case has a more robust model for SRP.

This chapter has demonstrated through rigorous analysis that semi-analytical methods can be

utilized in highly chaotic environments. The doubly-averaged formulation for third body gravitation

provides an accurate, although not exact, depiction of the chaotic regime of medium Earth orbit.
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Depending on the area-to-mass ratio and the level of fidelity required, we have shown two methods

for analyzing how solar radiation pressure can be studied in this environment. This thesis also

provides methods of using doubly-averaged dynamics for analyzing solar radiation pressure in any

environment.



Chapter 4

Research Goal 2 - Stability of Debris in MEO

Graveyard orbits are already a mitigation practice for debris at high altitudes, making them

an attractive potential solution to debris mitigation in medium Earth orbit. Because there are

known areas of chaotic behavior of the region, stable graveyard orbits are hard to find. Previous

research has looked at finding stable orbits by studying objects representative of the satellites in

the region, massive satellites (area-to-mass ratios of about 0.02 m2/kg). As noted in the previous

chapter, when objects with higher area-to-mass ratios inhabit the regime, the instability maps

change in structure compared to the nominal area-to-mass ratios (Figure 3.13). Therefore, when

considering a breakup event, it is important to incorporate the large variance in debris types a

fragment cloud contains to understand the long term stability of the orbits of the region.

This chapter will focus on understanding the long term behavior of two breakup events in

MEO. The first breakup event is what Johnson et al. characterize as a low intensity explosion,

representing an event like a battery exploding on a satellite in this orbital regime [47]. The second

event we will characterize is a high intensity explosion, representing an event like a collision between

two satellites with large relative velocities. By analyzing both types of events, we will be able to

understand how debris from breakup events will interact with the luni-solar resonances in this

orbital regime. This analysis will be crucial in determining whether a potential graveyard orbit

could be a viable solution for MEO, or whether if, after dynamic events in the region, the debris

interact with nearby unstable regions and are a potential hazard to functioning spacecraft in nearby

orbits.
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Before delving into the breakup events, the chapter will begin with the chaotic dynamics

of the region. This will be followed by the description of the two breakup events studied. The

analysis of the 200 year simulations will be broken into three parts. The first part will be dedicated

to studying the reentry behavior and maximum eccentricities of the fragments in each cloud. The

second part will be dedicated to understanding how much of the time fragments spend in their

orbits interacting with each of the nominal orbits of the regime. The third part will be dedicated

to deciphering larger trends based on right ascension of the ascending node, initial epoch, and

semi-major axis.

4.1 Fragment Cloud

NASA’s Orbital Debris Program Office provided the breakup fragment clouds for each of

the events discussed in this paper from their breakup model [47]. The first event discussed is a

low intensity event. This would be representative of an explosion or other type of breakup event.

This event is low energy and results in a small cloud of fragments about the initial conditions of

the original satellite. The other event modeled is a collision. Because the nominal orbits of these

objects are in a circular orbit, we modeled the collision event to be where the two satellites had

a difference of right ascension of the ascending node (RAAN) of π radians and collided at the

equator. Because all the constellations are heavily inclined, the collision is catastrophic, a relative

magnitude between the two objects close to six or seven km/s. This event results in a larger swath

of fragments, some which are no longer bound to Earth orbit and some which reenter immediately.

Table 4.1 shows the initial conditions for the events in terms of the orbital elements, semi-

major axis (a), eccentricity (e), inclination (i), argument of perigee (ω), RAAN (Ω), and true

anomaly (ν). For simplicity, each type of event (explosion and collision) uses the same initial

conditions. The impactor’s initial conditions for the collision event is the same as the parent

object’s described in Table 4.1 but is out of phase by π radians in RAAN and true anomaly.

The masses of each of the satellites were chosen based on the following iterations. Galileo

events are modeled after Galileo FOC satellites; GPS events are modeled after GPS Block IIF
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Table 4.1: Initial Conditions for Breakup events.

GNSS a (km) e i (deg) ω (rad) Ω (rad) ν (rad)

GPS 26559 0.003 55° 5 6 2π − 5

Galileo 29600 0.003 56° 5 6 2π − 5

GLONASS 25400 0.003 64.8° 5 6 2π − 5

satellites; GLONASS events are modeled after GLONASS-K satellites [99].

4.2 Eccentricity Evolution for Fragment Clouds

4.2.1 Galileo

In this section, we will detail how fragment clouds evolve with long-term simulations in the

Galileo constellation. The simulations were run for 200 years after each event. The mass of the

satellite is representative of a Galileo FOC satellite [99].

4.2.1.1 Breakup

The first event represents the low-intensity breakup. This produces a fragment cloud of

378,577 fragments. The fragments themselves are binned according to size with bin numbers of 1,

10 , and 100; the smaller fragments resulting in the larger binning groups.

Figure 4.1 shows the maximum eccentricity achieved over the 200-year simulation relative to

the object’s area-to-mass ratio. The three scatter plots are scaled differently depending on three

characteristics of the bin: number of objects, area of the object(s), and mass of the object(s) in the

bin.

It is not just high-area to mass ratio objects moving toward high eccentricities. Some more

massive objects start to inhabit the area. Many objects reach a maximum eccentricity to reenter

the Earth’s atmosphere, ∼ 0.78 depending on the exact semi-major axis of the object. Figure 4.2

shows the reentry times for the objects that achieve the threshold of a radius of periapsis less than

122 km (where the atmosphere can begin to cause heating [68]).
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Figure 4.1: Maximum eccentricity of objects produced in a Galileo low-intensity breakup event

Figure 4.2: Reentry time of objects from the frag-

ment cloud compared to a histogram of the num-

ber of non-reentered objects.

Before the end of the simulation (200

years), approximately 40,000 objects reentered

the Earth’s atmosphere. That is about 10%

of the total objects produced by the breakup

event. These objects did not reenter immedi-

ately following the breakup event. They in-

stead start to reenter close to 80 years after the

breakup occurred. Most of the objects reen-

tered are on an initially circular orbit despite

the distribution extending up to 0.2 eccentric-



62

ity that can be noticeably observed in Figure 4.2.

The final set of graphs correlates to the initial conditions of the fragments and their long term

behavior. Because stability of the region is described in eccentricity, inclination, and semi-major

axis, the fragments were also studied in terms of how their initial conditions compared to whether

or not the object reentered. The maps indicate regions of instability where resonance lines cross

[85].

For simplicity, we will examine the initial conditions in terms of initial eccentricity and

inclination where the resonances are drawn for the semi-major axis for Galileo. For completeness,

we also binned to specific values of semi-major axis but saw no noticeable difference in the final

results and did not include those graphs.

Figure 4.3 shows how close the resonance lines are to the debris cloud. A crossing resonance

group is within the extrema of the cloud. With the truncated Figure 4.3b, the crossing resonance is

noticeably luring above the bulk of the fragment cloud. However, we don’t see a particularly large

correlation to the resonance lines’ crossing, the region of expected instability, and the reentered

objects.
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Figure 4.3: Initial eccentricity by initial inclination (a) from 35° to 80° inclination (b) truncated to
53° to 61°
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4.2.1.2 Collision

A higher energy event is when two satellites collide. These satellites are representative of the

satellites in the regime and, as so, are massive. The impactor and parent object are modeled to

be the same type of satellite. The collision is not head on; it is consistent with two satellites in

near circular orbits with a RAAN separation of π(180°) which results in ∼ 112° collision due to the

inclination of the orbits.
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Figure 4.4: Maximum eccentricity of objects produced in a collision of Galileo FOC satellites

The data from the breakup cloud is similar to the previous session. The modeled collision

produces a fragment cloud of 1,115,000 pieces of debris, the impactor producing 511,000 pieces

and the parent producing 641,000 pieces. Approximately 55,000 pieces altogether reenter or are

ejected immediately following the collision leaving the rest to be studied by the long-term integra-
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tions. Figure 4.4 shows the maximum eccentricity each group of fragments achieve after a 200 year

simulation.

Figure 4.5: Reentry time of objects from the

fragment cloud compared to a histogram of the

number of non-reentered objects and already

entered.

Because the collision case is more catas-

trophic and results in more pieces of debris, there

are fewer large debris pieces as seen in the mid-

dle graphs (scaled by area) of Figures 4.1 and

4.4. There are some massive objects (≥ 1 kg)

that achieve high eccentricities particularly for

the parent satellite.

Figure 4.5 shows the reentry times (within

the 200-year simulation) for the fragment objects

that do not reenter immediately following the col-

lision, meaning that their initial conditions had a

radius of periapsis above the 122 km threshold.

Like the previous plot, these results are with a backdrop of the histogram of the non-reentered

objects. In this case, there is also a histogram of objects that had already reentered or had been

ejected.
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Figure 4.6: Initial eccentricity by initial inclina-

tion of objects produced in a collision of Galileo

FOC

Because the collision case produces more

objects with higher initial eccentricities, the reen-

try times reach as low a time as within the first

year of the event. The bulk of the objects with

more circular orbits don’t reenter until after 50

years.

For the collision event, the initial eccentric-

ity distribution varies a lot more and so does the

inclination, but the bulk of the fragments are still

within a few degrees of the inclination of the par-
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ent’s (and impactor’s) orbit.

Figure 4.6 shows that the bulk of the reentering objects are close to the initial inclination with

slightly more reentering at higher inclinations (rather than lower inclinations) of the distribution.

Because this event results in larger changes in energy, there are some major outliers in terms

of semi-major axis of the fragment cloud. Figure 4.7a shows that those major outliers are for higher

eccentricities, and the bulk of the cloud has semi-major axes consistent with the nominal orbit.
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Figure 4.7: Initial eccentricity by initial inclination (a) scaled by initial semi-major axis (b) with
resonance lines

Figure 4.7b shows how the resonance lines do not necessarily correlate to the reentry condi-

tions of the fragment cloud. This stresses the need for numerical studies like this one to understand

the stability of the region.

Figure 4.8 shows the same distribution in terms of initial eccentricity and inclination but

separates the distribution based on which object produced the fragment: impactor or parent. The

interesting features of this figure is that the parent object’s distribution favors reentries of higher

inclinations whereas the impactor’s distribution of reentries does not. The impactor’s distribution

of reentries follows the overall fragment distribution.
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Figure 4.8: Initial eccentricity by initial inclination where distributions are separated by parent
and impactor
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Figure 4.9: Initial argument of perigee and semi-

major axis

The main distinction from the two initial

distributions are from the direction of the orbits

or the argument of perigee vectors. They are

flipped in that a fragment in one distribution’s

argument of perigee will likely be the apogee in

the other distribution’s, Figure 4.9. The stabil-

ity of the region is known to be symmetric with

an argument of perigee, in that a difference in

π radians should not necessarily result in large

distinctions in the behavior of the satellite, [76].

This leads to the RAAN difference of π radians

as possibly the candidate in the differing behavior between the fragment clouds.
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4.2.2 GNSS Comparison

In the following section, we explore two additional constellations besides Galileo: GPS and

GLONASS. We will compare the behavior of the fragment cloud distributions to each other. All

the initial conditions can be found in Table 4.1.

Table 4.2 shows the properties of each of the different fragment clouds. GPS’s collision case

results in the largest number of fragments produced. All three of the explosions produced the same

number of fragments. These figures and the number of objects already reentered were generated

by the breakup model, and, though not a part of this research, help give context to the long-

term behavior seen in our study. Number of objects reentered and maximum eccentricity are also

included in this table but we will provide figures for more detailed analysis.

Table 4.2: Breakup Fragment Evolution

Collision Type GPS
Explosion

GPS
Collision

Galileo
Explosion

Galileo
Collision

GLONASS
Explosion

GLONASS
Collision

Number of Objects
in Cloud

378,577 1,202,690 378,577 1,152,871 378,577 881,082

Number of Already
Reentered or Ejected

Objects (% of
Distribution)

- 47,214
(3.9%)

- 53,934
(4.7%)

- 31,905
(3.6%)

Number of Reentered
Objects (% of
Distribution)

4,387
(1.2%)

140,617
(11.7%)

40,178
(10.6%)

209,294
(18.2%)

910
(0.2%)

97,040
(11.0%)

Mean of the Maximum
Eccentricity

0.093 0.296 0.457 0.455 0.421 0.378

Figure 4.10 shows the maximum eccentricity distributions for the explosion fragment clouds

after the 200-year simulation. Figure 4.10a is a violin plot; violin plots are akin to histograms

smoothed on their side where the largest distribution of the set is the widest part of the plot. They

provide good insight on the overall distribution of the fragments but unlike histograms their widths

do not necessarily correlate to an exact number of fragments. This is why Figure 4.10b is used to

provide additional insight.
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(a) (b)

Figure 4.10: Comparisons of maximum eccentricity of fragments for explosion events (a) Violin
plots (b) Histograms

The GPS fragment cloud appears to stay near the nominal circular orbit throughout the 200

years, most of the objects not achieving an eccentricity larger than 0.1. GLONASS appears to have

objects growing in eccentricity to about 0.5 but not quite achieving the very high eccentricities that

result in reentries. Galileo’s distribution in comparison is more uniform.

All three constellations achieve maximum eccentricities that result in reentries (e ≥∼ 0.75

depending on the constellation). Figure 4.11 shows the distributions of reentry times with the sets.

Galileo has the largest number of fragments reentering in the simulation. GLONASS only has a

few parts of the fragment cloud that reenter but some reenter in less than fifty years unlike the

other sets. GPS does not have a large number of reentering objects, and most reenter after 100

years.

Figure 4.12 shows the maximum eccentricities for fragments after a collision event. Again,

GPS has the most objects near its nominal orbit. The collision event does provide a larger distri-

bution of objects that reach higher eccentricities in general. For the GLONASS case we still see

the bump or large number of solutions settling near the 0.5 eccentricity. The Galileo case is still

the most uniformly distributed case.
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(a) (b)

Figure 4.11: Comparison of reentry times for explosion events (a)Violin plots (b) Histograms

(a) (b)

Figure 4.12: Comparison of maximum eccentricity of fragments for collision events (a)Violin plots
(b) Histograms

All of the constellations have maximum eccentricities that achieve reentry. Figure 4.13 shows

that the majority of the reentries occur shortly after the event if they have not already entered

within a few orbits of the event. The fragment cloud of Galileo has the most objects reentering

after those first few years with the most entering toward the end of the 200 year simulation. Both

GPS and GLONASS have objects that reenter in later years of the simulation but a much smaller

fraction of those that reenter in the initial few years.
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(a) (b)

Figure 4.13: Comparison of reentry times for collision events (a)Violin plots (b) Histograms

4.3 Loitering Time for Fragment Clouds

This section will explore how each of the fragment clouds evolved within the 200 year sim-

ulation. The nearby nominal zones are plus or minus 100 km from the nominal semi-major axis

of the orbit. This would amount to 26459-26659 km for GPS, 29500-29700 km for Galileo, and

25300-25500 km for GLONASS. The other constraint besides radius to determine if the satellite

was in the zone of the constellation is the latitude. The latitude of the satellite on its orbit must

be within the inclinations of each of the constellations, 55° for GPS, 56° for Galileo, and 63.4° for

GLONASS. These conditions comprise the shell that is considered near the nominal orbit zone of

each of the constellations.

Because the model integrates the Milankovitch elements, the position information of the

satellite is not included over the integration. To check whether the satellite is dipping in and out

of the nominal orbit shell, for each of the time steps of the integration, we propagate the orbit with

respect to true anomaly from 0 to 2π radians using Equation 4.1.

r =
a(1− e2)

1 + e cos ν
(4.1)
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The other condition is latitude, λ, which is calculated by Equation 4.2.

sinλ = sin i sin(ω + ν) (4.2)

If these conditions are met, the fragment piece is within the shell of the constellation and

considered a possible threat for the value ν. Using mean anomaly from the true anomaly values

that trigger the conditions, we determine the percent of the time the fragment’s orbit is interacting

with the nominal orbits of each of the constellations.

4.3.1 Explosion Events

The first event represents the low-intensity breakup. The properties of these events are listed

in Table 4.2.

4.3.1.1 GPS

The fragment cloud produced from a GPS satellite explosion is 378,577 fragments. No objects

reenter immediately following the event. The accumulated time spent in each of the nominal satellite

orbits is shown in Figure 4.14.

Because the event occurs in a GPS orbit, the fragments loiter in that region for the longest

amount of time. Some fragments remain in the area for the full 200 years of the simulation. Most

fragments only loiter for a total of twenty years in the region with the largest bin between two and

four years. The total number of fragments that loiter for any amount of time in the GPS regime

is 378,577 or all of the fragments. We also investigated how long the GPS fragments impacted

the nearby constellations of MEO. GLONASS has the second highest number of fragments that

reach its regime: 166,152 fragments. The longest accumulated time for the fragments of this region

is just over 40 years. Some fragments reach Galileo accounting for 79,702 fragments. The total

accumulated time in this region is not longer than 15 years.

Figure 4.15 shows when a few example pieces of debris interact with the GPS nominal orbit.

This figure shows how the percent of time near the GPS orbit changes throughout the 200 year
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Figure 4.14: Histograms of total accumulated loitering time per fragment for a GPS explosion event

simulation.
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Figure 4.15: Percent of the orbit that interacts with the GPS nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).
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Through these five example cases, it can be seen how the amount of time the objects dip in

and out of the shell varies but tends to drop off towards the end of the simulation. A few objects

appear to recircularize periodically early in the simulation. For a full picture of how the fragments

interact with each of the shells over the 200 years, we formulated a similar plot but took the average

of each fragment’s percent time loitering for each time step in Figure 4.16. The average, P̄ , was

taken by summing each of the fragment bins percent of time in each of the shells and dividing by

the total number of bins, n, as shown in Equation 4.3.

P̄ =
1

n

n∑
k=1

P (k) (4.3)
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Figure 4.16: Average percentage of time loitering of the GPS explosion fragment cloud for the 200
year simulation in each of the nominal constellation shells

From the general representations in Figure 4.16, the same trends are seen in the previous

figure; as the simulation progresses, fewer objects are interacting with either of the three shells.



74

This is most likely due to the increase in eccentricity of the orbits toward the latter parts of the

simulation. Like Figure 4.14, this graph shows that most of the fragments interact with the GPS

orbit they originated from. However, many fragments are still interacting with the other two

constellations even toward the end of the simulation.

4.3.1.2 Galileo

The fragment cloud produced from a Galileo satellite explosion is also 378,577 fragments.

No objects reenter immediately following the event. The accumulated time spent in each of the

nominal satellite orbits is shown in Figure 4.17.

Figure 4.17: Histograms of total accumulated loitering time per fragment for a Galileo explosion
event

Compared to the GPS case, much fewer objects spend an accumulated time in the nominal

orbit past 50 years. The fragments from a Galileo explosion only spend up to fifteen years total
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interacting with the GPS shell and nine years total interacting with the GLONASS shell. All

378,577 objects interact with the Galileo nominal orbit for some period of time. Of those objects,

341,926 interact with the nominal GPS orbit and 326,735 objects interact with the GLONASS

nominal orbit at some point. Because Galileo is in the most chaotic of the semi-major axes, this

fragment cloud seems to be showing more eccentricity growth and thus interacting with more orbits

but for less time.

Figure 4.18 shows when a few example pieces of debris interact with the Galileo nominal

orbit. It shows how the percent near Galileo orbit changes throughout the 200 year simulation.
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Figure 4.18: Percent of the orbit that interacts with the Galileo nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).

The fragments in this example spend much less time in the vicinity of Galileo’s nominal orbit

toward the end of the simulation, many reaching zero percent of time loitering close to 200 years

indicating they may have depopulated the orbit. To see the larger trends, we will explore how the

average of each of the fragments percent near orbit varies throughout the 200 year simulation in

Figure 4.19.

Most of the objects interact with the other two orbits around the 50 to 100 year mark. This

corresponds to a large enough eccentricity growth for fragments to reach the other orbits but not

too large that they spend so little time in them. The trends seen in Figure 4.18 are consistent with
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Figure 4.19: Average percentage of time loitering of the Galileo explosion fragment cloud for the
200 year simulation in each of the nominal constellation shells

the ones seen in the averaged results. The bulk of the time in the vicinity of the Galileo orbit is at

the beginning of the simulation and exponentially decays.

4.3.1.3 GLONASS

The final fragment cloud for the explosion case is also 378,577 fragments. None of the objects

reaches a reentry condition immediately following the breakup event and thus all are included in

our analysis. The accumulated time spent in each of the nominal satellite orbits is shown in Figure

4.20.

Like the Galileo case, most objects do not loiter in the nominal orbit of GLONASS for a total

of over 50 years. The objects then interact with GPS orbits the most since that constellation’s

semi-major axis is closest ot GLONASS’s. This amounts to 363,720 fragments. The Galileo orbit
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Figure 4.20: Histograms of total accumulated loitering time per fragment for a GLONASS explosion
event

interacts with 337,343 of the objects in the fragment cloud for up to six years total spent in the

vicinity.

Like the previous cases, Figure 4.21 shows the percent of time spent in the nominal GLONASS

orbit for a few fragments and when those interactions occur in the timescale of the simulation.

Most of the fragments dwindle in time spent near GLONASS after the first 100 years with

some dipping in and out of the constellation briefly close to the 200 year mark or the end of the

simulation. One object despite spending a large portion of its orbit in the GLONASS nominal

region for the early years of the simulation pretty rapidly decreases time spent as the simulation

progresses. To understand the general trends, we look at the average behavior of a fragment bin

over the 200 year simulation in Figure 4.22.

Figure 4.22 shows how most of the objects interact with the GLONASS nominal orbit at the
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Figure 4.21: Percent of the orbit that interacts with the GLONASS nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).
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Figure 4.22: Average percentage of time loitering of the GLONASS explosion fragment cloud for
the 200 year simulation in each of the nominal constellation shells
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beginning, but, unlike the Galileo case, many objects are still interacting with the nominal orbit

towards the end of the simulation. Because GPS is close to GLONASS, the increase in objects

in its vicinity is early in the simulation. Because GLONASS has more eccentricity growth than

the GPS case, the fragment cloud eventually reduces time loitering in the GPS orbits as well and

toward the end of the simulation increases time spent near the Galileo nominal orbit.

4.3.2 Collision Events

4.3.2.1 GPS

The first collision is one that occurs between two nominal satellites in GPS orbit. The

accumulated time spent in each of the nominal satellite orbit shells is shown in Figure 4.23.

Figure 4.23: Histograms of total accumulated loitering time per fragment for a GPS collision event

Most of the objects do not spend much more than a year of accumulated time in each of the

shells. The GPS shell has a few fragments that spend the entire simulation in the region. Most
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of the 1,146,521 pieces of debris that inhabit GPS do not spend more than a total of ten years

interacting with the shell. There are 922,819 fragments that reach the GLONASS shell, but the

total time spent in that regime does not amount to more than half the simulation. The Galileo

region interacts with 615,940 pieces of debris which results in a maximum of 35 years accumulated

for some fragments.
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Figure 4.24: Percent of the orbit that interacts with the GPS nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).

Figure 4.24 explores five example cases to see how the time interacting with the GPS orbit

shell evolves with the simulation. Most of the objects in the example pass in and out of the

GPS vicinity for the first 60 years and then tend to only briefly pass through, indicative of some

eccentricity growth. A few objects spend little time to begin with in the orbit representing some

of those initially highly eccentric orbits created by the event. The overall trends of the fragment

cloud are depicted by Figure 4.25.

The trends of when the fragments interact with the nominal GNSS orbits are similar to those

in Figure 4.16 except the percent of time loitering is smaller in these sets. This could be due to the

fact that more of the initial eccentricities of the fragments in this cloud are high and thus spending

a smaller fraction of their orbit lifetimes interacting with each of the regions.
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Figure 4.25: Average percentage of time loitering of the GPS collision fragment cloud for the 200
year simulation in each of the nominal constellation shells

4.3.2.2 Galileo

The accumulated time spent in each of the nominal satellite orbit shells is shown in Figure

4.26.

Like the GPS case, most of the fragments from the cloud only interact with the nominal

satellite shells for a very short fraction of time since the initial eccentricities of many of these debris

objects are high to begin with. The collision event interacts with its nominal satellite regime the

most (some objects remaining for the full 200 years). The other two are not far behind with 910,769

and 963,427 objects interacting with them for a total time of about fifteen years.

The behavior of a few fragments over the 200 year simulation is depicted by Figure 4.27.

Some objects only spend a small percentage of their time in the Galileo shell for the duration of

the simulation. Most objects seem to predominantly spend their time near the Galileo orbit in the
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Figure 4.26: Histograms of Total Accumulated Loitering Time per Fragment for a Galileo Collision
Event

first twenty years. There is an interesting case here with Fragment Bin 5 where the fragment most

likely recircularized around the 80 year mark and thus started increasing its interaction with the

nominal orbit before it eventually reentered at the 120 year mark. The average trends are shown

in Figure 4.28.

The fragment cloud interacts with the GPS and GLONASS shells much earlier in the simu-

lation than the cloud does in the explosion case. It also sustains these interactions up to 100 years

where it then reduces the overall interactions toward the end of the simulation. The cloud interacts

with the nominal Galileo orbit less than the explosion case’s cloud but shows similar trends of

exponentially reducing its interactions over the 200 years. This is likely due to the greater amount

of initially eccentric orbits but it is interesting to note that these orbits still require about a 100

years to become less of a threat to all three regimes.
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Figure 4.27: Percent of the orbit that interacts with the Galileo nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).
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Figure 4.28: Average percentage of time loitering of the Galileo collision fragment cloud for the 200
year simulation in each of the nominal constellation shells
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4.3.2.3 GLONASS

The final breakup event is a collision in GLONASS’s orbit. The accumulated times in each

of the nominal satellite shells are shown in Figure 4.29.

Figure 4.29: Histograms of total accumulated loitering time per fragment for a GLONASS collision
event

Most objects spend less than a year in all three shells. There are a few objects that linger near

GLONASS for the entirety of the simulation. There are 684,262 fragments that inhabit the GPS

orbits for some duration and the total time accumulated in that region for each of the fragments is

fifty years or less. The 520,767 fragments that reach Galileo spend an accumulated time of fifteen

years or less.

Figure 4.30 shows how a few fragments interact with the nominal orbit of GLONASS in

terms of percent of time interacting with the region and when those interactions take place in

the simulation. This group of fragments gives a wide variety of orbits evolving in the simulation.
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Figure 4.30: Percent of the orbit that interacts with the GLONASS nominal orbit over the 200 year
simulation for five example fragments (taken from five different bins of fragment initial conditions).

Fragment one represents an initially highly eccentric orbit that reenters the Earth’s atmosphere

relatively quickly. Fragments two and four represent more circular orbits that grow in eccentricity

over time. Fragments three and five represent orbits that recircularize late in the simulation and

eventually reenter. These examples are a select few fragments but the overall trends are depicted

by the average behavior of each of the fragments in Figure 4.31.

The general trends seem to reduce the percentage of loitering time to about half that of the

explosion case in the GLONASS region. The cloud also doesn’t exponentially decay like it does in

the explosion case; it goes through an evolution more closely mimicking the GPS cases where there

is a sustained time impacting the orbit (from 50 to 150 years) and then that drops off toward the

last fifty years of the simulation. The fragment cloud tends to impact GPS in a decreasing fashion

throughout the simulation. It impacts the Galileo shell increasingly until about 100 years and then

the amount of time spent in the region decreases for the last 50 years.
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Figure 4.31: Average percentage of time loitering of the GLONASS collision fragment cloud for the
200 year simulation in each of the nominal constellation shells in the case of a GLONASS collision
event

4.4 Varying Parameters of the Fragment Cloud

This section explores how varying initial conditions of the breakup cloud will affect the long-

term evolution of the cloud. Parameters such as RAAN and epoch have studied structure with

respect to argument of perigee. In varying these parameters, we can compare the fragment clouds

to the known architecture in the region. Semi-major axis is also included in the discussion as

a current debris mitigation practice at high altitudes, placing an object at a higher semi-major

axis or a graveyard orbit. Understanding how these clouds would propagate with respect to this

characteristic will help extrapolate this work to possible nearby graveyard orbits.



87

4.4.1 Varying RAAN

4.4.1.1 Known Structure in the Region

The areas of instability in MEO are known to have a structure with respect to RAAN. In

particular, Alessi et al. have demonstrated how these structures exist with respect to argument of

perigee [8]. We have replicated these results in Figure 4.32 for two cases. The first case, Figure 4.32a,

shows the variations in RAAN and argument of perigee for a stable base case of low eccentricity.

The second case, Figure 4.32b, is for an unstable base case of high eccentricity. This case was

examined in Figure 2.5. Islands of instability migrate from Ω = π radians to Ω = 0/2π radians for

the higher eccentricities. Both maps show a general trend of long skinny islands of stability from

from 2 to 2π radians along the inverse direction of argument of perigee.
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Figure 4.32: Argument of perigee structure vs RAAN

4.4.1.2 Explosions

Given the known structure of the region, we study how the variation of RAAN in the breakup

cloud matches the existing structure. We vary the breakup clouds in RAAN from 0 to 2π radians.

This will compare events occurring along different points of the equator. The base case is Ω = 5

radians. Each of these variations will be along the y-axis. The argument of perigee spread is
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determined after the event and is in the debris cloud structure varying from 0 to 2π radians

along the x-axis. Because there are many other variables including eccentricity and other orbital

parameters along with area-to-mass ratio that goes with the identity of each debris piece associated

with a particular argument of perigee, the structure should not exactly match. It should look more

like streaks associated with each debris piece with unstable behavior triggering higher eccentricities

along the variation of RAAN. Figure 4.33 shows these maps for the three explosion cases.

(a) GPS (b) Galileo

(c) GLONASS

Figure 4.33: Argument of perigee vs RAAN structure of objects produced in explosion events

The GPS structure seems to mimic the stable case in 4.32a while the other two, Galileo and

GLONASS, more closely match the unstable base case in Figure 4.32b. This is consistent with the

overall trends of the base cases of the two clouds where GLONASS and Galileo both have their



89

explosion cases reaching high eccentricities in the simulations as compared to GPS [78]. The graphs

don’t exactly match but the larger trends do, indicating the breakup clouds are heavily influenced

by the resonance structure of the region. The thin islands referenced in the known structure section

also exist in each of the maps in Figure 4.33.

The differing behavior between the clouds can also be seen in the overall trends of the

clouds with varying RAAN. Figure 4.34 shows the violin plots for the distributions of maximum

eccentricities of the debris in the breakup cloud. Because there are many violin on this graph, the

denser populations can be seen by the darker regions of the graph rather than their specific widths.

The white circles indicate the mean for each distribution set.

The base GPS case (which was a RAAN of 5 radians) had the most stable behavior in our

original analysis. However, the trends show that can change with varying RAAN. Galileo and

GLONASS show valleys around a little less than π radians consistent with the unstable base case

behavior. Even the GPS case has a small dip around a little less than π radians in its peak behavior.

Galileo fragment clouds appear to have the least consistency with varying RAAN.

To keep this chapter concise, instead of showing the distributions of the reentry times of all

the objects, we will just show the means on one plot since the number of solutions varies so much

between the constellations. The full distributions can be found in Appendix C. Figure 4.35 shows

the number of solutions reentered for each breakup cloud and the means of those reentry times.

Similar to the other figures, GPS and Galileo have a smaller number of reentering solutions

just under π radians and around 0/2π radians. Although GLONASS consistently has objects

reaching high maximum eccentricities, not many of these objects reach a high enough value to

reenter. Therefore, there are less objects that reenter in that constellation but they do reenter in

a shorter amount of time than the other two which hover about 20 years apart, GPS fragments

having on average longer reentry times.
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(a) GPS

(b) Galileo

(c) GLONASS

Figure 4.34: Maximum eccentricity of objects produced in explosion events

4.4.1.3 Collisions

In the case of collisions, there are two fragment clouds: one originating from the parent

satellite and one originating from the impactor satellite. These satellites collide along the equator.
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Figure 4.35: Reentry of objects in debris clouds compared to RAAN for explosions

Their resulting debris field profiles are opposite one another (Figure 4.9); this is important when

thinking about the characteristics of the higher energy particles in the debris field. In this section,

we will show the structure of the RAAN and argument of perigee graphs for each satellite separately

but then will show them together which will represent the total debris field of the event. This is

because the parent and impactor are separated by a RAAN of π radians so the combined forms will

be graphed in terms of the impactor RAAN (with the parent RAAN out of phase by π radians).

Figure 4.36 shows that the impactor satellites in each of the constellations follow the trends

in the unstable base case. Galileo has an interesting pocket of stability around an argument of

perigee of π radians possibly due to this part of the argument of perigee profile having the highest

energy. These maps were binned to remove any extremely high semi-major axes (objects about to

be ejected) to better understand the bulk of the cloud, but not every debris fragments’ behavior is

uniform along the argument of perigee profile.

The parent satellites show the opposite behavior for Galileo in Figure 4.37 because the higher

energy argument of perigees are around 0/2π radians. Interestingly, the GPS parent object’s

breakup cloud more closely matches the stable structure in line with the explosion breakup cloud’s

profile for GPS.
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.36: Argument of perigee vs RAAN structure of objects produced in a collision event for
the impactor set

Figure 4.38 shows how the full event’s structure appears in argument of perigee vs RAAN

space. In this case, the debris fragments are listed by impactor initial RAAN and corresponding

parent initial RAAN (impactor + π radians). The base case is an impactor around 2π radians.

Figure 4.39 shows how the maximum eccentricity distributions of the breakup clouds vary

with respect to RAAN. They are plotted on the graph with respect ot the impactor RAAN where

each distribution has the parent cloud out of a phase by π radians.

All three constellations show variations in their distributions due to the RAANs of the satel-

lites colliding. All three constellations also show peaks around similar areas. GPS fragment clouds
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.37: Argument of perigee vs RAAN structure of objects produced in a collision event for
the parent set

peak at 1 and 5 radians RAAN while the other two are slightly shifted. GLONASS fragment clouds

have the least pronounced differences in the maximum eccentricity achieved by the fragments.

Figure 4.40 shows the characteristics of the reentry times of the distributions. Like the

explosion case, the collision cases show a similar trend in the number of reentering solutions. All

three constellations have the least reentries around π radians and the most around π/2 and 3π/2

radians.
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.38: Argument of perigee vs RAAN structure of objects produced in a collision event for
both the impactor and the parent set

4.4.2 Varying Epoch

4.4.2.1 Known Structure of the Region

The epoch or initial positions of the Sun and Moon can affect the stability of objects due to

luni-solar resonances in MEO. Previous research has shown that this behavior is cyclic with respect

to the period of the lunar node which is about 19 years. Figure 4.41 shows the patterns for a stable

base case and unstable case over this period. These results are consistent with previous findings

in Alessi et al. [8]. The regions of instability sprout from ω = π and 2π radians depending on the
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(a) GPS

(b) Galileo

(c) GLONASS

Figure 4.39: Maximum eccentricity of objects produced in a collision event

epoch for each of the graphs. For the stable base case, events toward the end of the simulation tend
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Figure 4.40: Reentry of objects in debris clouds compared to RAAN

to produce more stable trajectories while it is somewhat uniform throughout the unstable case just

varying in regions of instability.
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Figure 4.41: Argument of perigee vs initial epoch structure

4.4.2.2 Explosions

In this section, we replicate these graphs for the fragment clouds made from explosion events

in each of the constellations. Like the previous section, the debris objects have more varying
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characteristics than their argument of perigee. Thus, the graphs will not appear one to one to

one with Figure 4.41 and will instead appear streaking with some zones of highly eccentric orbits

compared to hot spots of that figure.

Figure 4.42 shows how the three constellations compare to the variations due to epoch. The

GPS cloud hardly reaches any regions of high eccentricity making it difficult to decipher any clear

patterns. The GLONASS cloud shows little variation due to epoch and the Galileo cloud appears

to be the most sensitive to epoch with some of the structure seen in Figure 4.41.

(a) GPS (b) Galileo

(c) GLONASS

Figure 4.42: Argument of perigee vs initial epoch structure of objects produced in an explosion
event

Looking at the distributions independent of argument of perigee tells a similar story. Figure
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(a) GPS

(b) Galileo

(c) GLONASS

Figure 4.43: Maximum eccentricity of objects produced in explosion event

4.43 shows how Galileo is the most sensitive to variations in epoch. This is followed by GPS which

has most of its objects near circular throughout the 200 year simulation for all of the variations in

epoch. GLONASS has many objects reaching high eccentricities but this behavior does not seem
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Figure 4.44: Reentry of objects in debris clouds compared to epoch

dependent on the changes in the timing of the event.

The reentry times of the clouds tell a similar story to the maximum eccentricity distribu-

tions. Figure 4.44 shows how Galileo is the most sensitive to changes in the timing of the event.

Interestingly, the number of reentries follows a cycle slightly different than the regression of the

node cycle, but this might be due to the sensitivity of the variable (or condition) in comparison to

the eccentricity’s behavior.

4.4.2.3 Collisions

The breakup clouds due to collisions can also be compared to the known structure of the

regions. Figure 4.45 shows how the impactor’s fragment clouds structure compares. In each of the

clouds, there are hot spots of increased eccentricity with regard to the timing of the event and the

argument of perigee.

The parent satellite’s fragment cloud follows the known structure of the region more closely.

Figure 4.46 shows how closely the Galileo fragment cloud matches the known structure followed

by the GPS fragment cloud while the GLONASS fragment cloud does not appear to have much

structure to it.
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.45: Argument of perigee vs initial epoch structure of objects produced in a collision event
for the impactor set

The entire event is depicted in Figure 4.47. The entire event follows the similar structure as

the argument of perigee and epoch maps earlier.

Although the epoch dependent structure is easy to decipher in the contour maps, the distri-

butions of the maximum eccentricities look relatively uniform among varying epochs in the violin

plots (Figure 4.48). Galileo shows the most structure in the contour maps but when the whole

distribution is mapped out into the violin plots, it loses this structure. This could be a result of

what was alluded to in the known structure maps about how without separating the objects by

argument of perigee in an unstable case, the patterns due to epoch are not as obvious. The effects
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.46: Argument of perigee vs initial epoch structure of objects produced in a collision event
for the parent set

average out over the entire distribution. The GPS cloud has the largest dependency on epoch

for the mean of its maximum eccentricity distribution, peaking at about seven years past J2000.

GLONASS also has some variation on the average behavior of its distribution dependent on epoch

where between four and five years favor a more bimodal behavior than the others.

The characteristics of the reentry times of the collision events have some dependency on

epoch. Figure 4.49 shows how the number of solutions changes with the timing of the event and

the mean of those reentry times. In terms of reentry times, the Galileo cloud and the GPS cloud

have some dependency on epoch with GPS having larger number of reentries around seven years
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(a) GPS (b) Galileo

(c) GLONASS

Figure 4.47: Argument of perigee vs initial epoch structure of objects produced in a collision event

but a longer mean reentry time.



103

(a) GPS

(b) Galileo

(c) GLONASS

Figure 4.48: Maximum eccentricity of objects produced in collision event
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Figure 4.49: Reentry of objects in debris clouds compared to epoch

4.4.3 Vary Semi-major Axis

The final variable we explore is semi-major axis. This study was motivated by the possibility

of graveyard orbits surrounding the GNSS regions. The current practice in Geosynchronous orbit

is to raise the perigee by 300 km above the nominal orbit (or by increasing the circular orbit’s

semi-major axis to 300 km more than its previous value) [46, 13]. This study aims to explore if the

event took place in a nearby orbit to the nominal as what might happen if a graveyard orbit was

a practiced mitigation technique in this regime.

Semi-major axis contributes to the resonance structure; resonances are mapped out analyt-

ically in eccentricity, inclination, and semi-major axis space [83]. However, as will be discussed in

Chapter 5, 10-100 km variations in semi-major axis do not result in largely different trajectories

[77]. Therefore, we expect to see slight fluctuations based on varying semi-major axis.

Because these fragment clouds were generated independently of the research by NASA’s

orbital debris program office, the creation of differing fragment clouds from varying semi-major

axes was not feasible. Each of the previous variables were easily varied because RAAN remains the

same after the event and could be easily replaced and because we chose the initial timing of the

simulation. Instead, this variable was varied after the event by adding a change to the semi-major
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(a) GPS

(b) Galileo

(c) GLONASS

Figure 4.50: Maximum eccentricity of objects produced in explosion event

axis to each of the fragments in the fragment cloud. Collisions provide too large an array of semi-

major axes due to the highly energetic nature of the event for this process of editing the fragment
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cloud post event to be meaningful. Therefore, we only investigate how explosions might vary due

to occurrences at differing semi-major axes.

Figure 4.50 shows the maximum eccentricity distributions for the explosion events for differing

semi-major axes. In both the GPS fragment clouds and GLONASS fragment clouds, there is a trend

of increasing eccentricity distributions with increasing semi-major axis. This might be due to the

lowering of some of the resonance webs closer to circular orbits as semi-major axis increases or

the unstable regions’ occurring closer to the objects with near circular orbits generated by the

explosion event thus exciting more of them. Galileo is known to have a region of instability close to

its nominal orbit for its semi-major axis. This could explain why the fragment cloud’s maximum

eccentricity peaks close to its nominal orbit. However, it is interesting to note that it similarly has

an increasing eccentricity behavior up until about 1000 km above its nominal orbit. This seems to

be the cutoff where the region of instability is no longer near circular orbits.

The reentry conditions of the fragment clouds shown in Figure 4.51 tell a similar story. The

GPS and GLONASS fragment clouds increase in number of reentering solutions as the semi-major

axis increases. Galileo’s fragment cloud has a peak number of reentering solutions close to its

nominal orbit.
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Figure 4.51: Reentry of objects in debris clouds compared to semi-major axis
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4.5 Conclusion

The evolution of collision and explosion fragment clouds in medium Earth orbit shows some

interesting dynamics. Massive objects with relatively low area-to-mass ratios result in reentries

in the fragment cloud. A large number of those reentries occur toward the end of the 200-year

simulation for the explosion case and with the collision case most of the objects reenter within a

few years of the event.

All six breakup events show varying behavior in terms of loitering near the nominal orbits

of the GNSS regime. The types of events show a large impact on how long the objects inhabit

the nominal orbital regime. Explosions tend to have less dynamic debris objects and thus a larger

percentage loiter close to the event further into the simulation. Collisions have a larger variation in

debris objects, and many of them, due to their higher eccentricities, don’t loiter near the nominal

orbits. However, these objects are still interacting with the nominal orbits late into the simulation.

Events in the GPS regime tend to produce breakup clouds that loiter for the longest time in

hazardous areas or close to the nominal satellite orbits of the varying constellations. In contrast,

Galileo events lead to fragments which inhabit all of the orbits relatively quickly but those objects

decrease in time spent in nearby nominal orbits in the latter half of the simulation. GLONASS

events show interesting behavior in that more debris objects tend to inhabit the nearby nominal

orbits in the latter portion of the simulation as compared to the prior two.

Beyond the base cases, this work has shown that right ascension of the ascending node, epoch,

and semi-major axis can largely influence a fragment event’s long-term behavior. Some of these

patterns have followed the known resonance structure of the region. The Galileo fragment events

seemed to be the most sensitive to the changes in these initial conditions. However, variations in

right ascension of the ascending node caused large shifts in the behavior in all three constellations.

The explosions and collisions showed varying behavior due to sensitivities in the initial condi-

tions. For right ascension of the ascending node, the explosion events provided the most intelligible

variations in the cloud behavior as compared to the collision cases, as the collisions had two initial
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satellites out of phase by π radians. The variations in epoch showed that the Galileo region was

sensitive to the initial positions for the explosion event, but when the initial distributions between

the parent and impactor satellite were larger in the collision event, the sensitivities due to epoch

seemed to diminish.

The chaotic nature of medium Earth orbit proves to cause wide variation in the behavior of

fragment clouds in the regime. The known eccentricity growth of the region impacts each of the

semi-major axes of the nominal constellation orbits studied differently. Some general trends can be

pulled from the type of event and the nominal orbit studied. This work proves that breakup events

in medium Earth orbit will remain a hazardous risk for many objects in neighboring regimes and

not all the objects will immediately depopulate due to the known eccentricity growth of the region;

many will begin to interact with neighboring functioning orbits due to an increase in eccentricity

but not a large enough increase to depopulate the region.

Additionally, this research has shown when considering the debris mitigation practices in

medium Earth orbit, it is important to consider the wide range of possible outcomes of dynamic

events in these orbits. Simple variations in the timing of such an event can cause a fragment cloud

to drift towards nominal orbits of surrounding satellites rapidly due to the instabilities of the region.

Current mitigation practices of increasing the semi-major axis of high altitude orbits will help in

the short term of preventing collision hazards, but the unstable nature of the region is not avoided

by this practice.



Chapter 5

Research Goal 3 - Targeting Regions of Chaos

This chapter is motivated by the potential use of targeting regions of chaos for direct reentry

and considers the question of how precisely these impacting orbits need to be targeted. If we are

to target specific orbital parameters for reentry, it is important to understand the likelihood of

that satellite reentering. As the chaoticity of orbits in these regions has been established, and

because one of the hallmarks of chaos is sensitivity to initial conditions, the sensitivity of these

reentry orbits and whether nearby orbits will also reenter needs to be characterized. We study the

targeting behavior independent of the method used to target the initial states; possible examples

include solar sailing and multiple chemical burns. We recognize that the targeted orbit might

change depending on the propulsion method used. In this chapter, we will study the sensitivity of

such orbits that impact within a few decades to changes in their initial conditions, thus determining

how accurately a satellite must hit a targeted orbit to achieve the expected reentry.

The chapter is structured as follows. First, we explore in detail the singly-averaged dynamics

performance. It was used as a reference in Chapter 3 but now that we are requiring a higher

level of precision in this chapter, we will discuss its behavior too. Then, we detail the structure of

these resonances and the degrees of freedom of the system. Subsequently, we analyze each of the

targeted regions using a Monte Carlo method varying the initial conditions of the target. We will

be discussing three navigation constellations with a focus on the GPS which has an inclination of

55° and semi-major axis of 26560 km. Also included are the European navigation system Galileo

which has an inclination of 56° and semi-major axis 29600 km, and the Russian GLONASS, GLObal
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NAvigation Satellite System, which has an inclination of 64.8° and semi-major axis of 25440 km.

5.1 Model Comparison

Many different initial conditions were tested to compare the long-term behavior of each of

the equations of motion. In particular, we will focus on two representative cases. As this chapter

is using singly-averaged integration to study the sensitivity of orbits in the GNSS region, we will

explore two typical candidate trajectories: one that experiences an impact after 35 years and

one which does not over a fifty-year time span. Both of these orbits are subjected to luni-solar

resonances. For the highly excited region, the satellite impacts the Earth in about 35 years and

has a Lyapunov exponent of 0.0163/year (Lyapunov time of 61.4 years). For the slightly excited

case, the satellite does not impact within the fifty-year simulation and has a Lyapunov exponent

of 0.0110/year (Lyapunov time of 91.1 years).

The comparisons show that the averaged dynamics closely follow the full numerical integra-

tions. This provides confidence in their use to define the sensitivity of these trajectories. For all

the integrations, we used the seventh-eighth order Runge-Kutta Fehlburg method [28].

5.1.1 Slightly Excited

In the slightly excited case, the singly-averaged equations track the real solution well over

the entire time span. While we clearly see the short period fluctuations of the full dynamics as

compared to the secular, singly-averaged dynamics, we note that the overall secular trends are well

captured (Figure 5.1).

The semi-major axis shows the largest short period oscillations with variations as large as 9

km from the original value. These variations do not amount to larger trends, and thus the averaged

integrator performs as expected. The other elements track overall trends well. Figure 5.2 shows

the difference between the two solutions.

The averaged solutions overall deviate with time from the full numerical model. The largest

deviations are from argument of perigee and right ascension of the ascending node (RAAN) which
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Figure 5.1: Slightly excited comparison. Semi-major axis variation is on the order of 10 km. Lines
are coincident where not distinguishable.
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Figure 5.2: Difference of comparison in Figure 5.1 for the orbital elements except for semi-major
axis. All angles are represented in radians.

at the end of the simulation have offsets of about 0.94° and 0.68° respectively. Eccentricity and

inclination have much smaller offsets with respect to the full numerical solution. Eccentricity ends
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with a peak offset of 1.6×10−3 while inclination’s largest deviation is 0.019°.

5.1.2 Highly Excited

When the simulations were conducted with initial conditions that show large increases in

eccentricity, the results were similar. The singly averaged solution was able to track the behavior of

the real solution throughout the simulated fifty years. In this particular case, an eccentricity of 0.76

would be required for reentry and is not achieved until closer to thirty years. The two simulations

are in agreement to that point (Figure 5.3). We note that we ran the solution out beyond this

epoch to test the robustness of the solution.
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Figure 5.3: Highly excited comparison. Semi-major axis variation is on the order of 100 km. Lines
are coincident where not distinguishable.

Semi-major axis shows the largest short period oscillations with variations up to 300 km

from the original value. These variations do not lead to larger secular trends and thus the averaged
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Figure 5.4: Difference of highly excited comparison in Figure 5.3 for the orbital elements except
for semi-major axis. All angles are represented in radians.

integrator performs as expected. The short period oscillations are an order larger than the slightly

excited case. The other elements track overall trends well. Figure 5.4 shows the difference between

the two solutions.

Like the slightly excited case, the largest deviations are from argument of perigee and RAAN

which at the end of the simulation have offsets of about 11° and 23°, respectively. These offsets are

quite large at the end of the simulation; however, they occur after the orbit has come within the

radius of the Earth. At the point of impact for this solution, the offsets for argument of perigee

and RAAN are about 5.9° and 7.8°. Eccentricity and inclination still have much smaller offsets

with respect to the full numerical solution. Eccentricity ends with a peak offset of 8.2×10−3 while

inclinations’ largest deviation is 0.35°. At the point of impact the offsets were 9.1×10−4 and 0.080°.

5.2 Choosing Targets

For each of the GNSS constellations, we will explore two targeted disposal cases. Target 1

will be a target that is surrounded by fast impacting neighbors. Target 2 has an eccentricity and

inclination closer to the nominal orbit but is neighbored by locations that do not reenter. Therefore,

target 1 is hypothesized to be more robust, while target 2 is less expensive to reach.

This study is independent of the method of propulsion used as we are focused on the perfor-
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mance of the targets not the method to reach them. It is important to note that we keep constant

the semi-major axis of the nominal orbits we study commensurate with using a spherical solar

sail for propulsion [72, 9]. A set of two chemical burns can also reach an eccentricity change while

holding semi-major axis constant if chemical propulsion is used. However, it might be more optimal

to target a different semi-major axis (a GPS orbit targeting a Galileo target instead) to potentially

reduce fuel cost. For the purposes of this paper, we will not study the differences in optimization

of the targets except for how target 1 compares to target 2. In case of either propulsion method,

target 2, having a closer eccentricity and inclination to the nominal orbit, would be easier to reach

than target 1.

For GLONASS, although the inclination is on a secular resonance, numerical simulations

show that the chaotic areas for its semi-major axis are in lower inclinations. Figure 5.5 shows that

the closest region of chaotic activity for its semi-major axis is in the 55° to 60° inclination range.

Thus, for all three navigation systems we will be exploring this range of inclinations, even though

only Galileo and GPS have nominal orbits in this range.

To pick the targets, we used numerical integration to survey the nearby region for chaotic

trajectories or decadal reentry times, similar to those in Figures 2.4, 2.5, and 5.5. In this case, we

surveyed varying eccentricity and inclination for each semi-major axis. Unlike Figures 2.4 and 5.5,

we do not use one RAAN and argument of perigee for each eccentricity and inclination combination

but 14 different ones. Meaning, for every eccentricity and inclination pair, 14 different RAANs and

14 different argument of perigees are tested, totaling 196 cases. Because there is a trend of non

reentering solutions in RAAN around π radians, the 14 RAAN cases were taken from 0 to π/2

radians and 3π/2 to 2π radians while the 14 cases in argument of perigee were selected from a

uniform distribution from 0 to 2π. The shortest reentry time from this set is plotted in Figure 5.6.

This helps prevent any biases in choosing the eccentricity and inclination of a target based on an

initial RAAN or argument of perigee of the surveyed space. This method averages out the fractal

structure in Figures 2.4 and 5.5 and produces a uniform reentry time map.

After choosing an eccentricity and inclination to target, we determine the RAAN and argu-
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Figure 5.5: Map of years until Earth reentry for varying eccentricities and inclination for the
GLONASS semi-major axis. The inclination for the nominal orbit is the dashed line. The colorbar
represents the time of reentry. 500 year entries may not have reentered.

ment of perigee through a similar method. This time surveying over 100 RAANs and arguments

of perigee, 10,000 cases, we pick a pair that is surrounded by the most neighboring reentering

solutions. Figure 5.7 shows for the eccentricity and inclination of Galileo’s target 2, the choices of

RAAN and argument of perigee we select to target. Table 5.1 shows the chosen targets for each of

the navigation constellations. Semi-major axis is defined by the navigation constellation [83].

Table 5.1: Targeted Orbital Parameters

GPS T1 GPS T2 GLONASS
T1

GLONASS
T2

Galileo T1 Galileo T2

a 26560km 26560km 25440km 25440km 29600km 29600km

e 0.400 0.359 0.374 0.243 0.362 0.270

i 57.5° 57.6° 57.9° 59.3° 58.7° 58.1°
Ω 315° 40.0° 331° 36.4° 305° 287°
ω 160° 280° 171° 178° 171° 178°

Reentry
Time

31 yrs 49 yrs 38 yrs 69 yrs 30 yrs 38 yrs
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(a) GPS (b) Galileo

(c) GLONASS

Figure 5.6: Comparison of chaotic regions independent of Ω and ω. Each point is the shortest
collision time of 14 different Ω and ω (196 cases). The colorbar represents time until reentry.
Entries of 100 years may not have reentered.

5.3 Robustness Analysis

In comparison to previous works which studied the stability of the overall region and varying

trajectories [7], this work focuses on analyzing the neighborhood of the unstable trajectories. To

determine the robustness of each of these targets, we used a Monte Carlo method of analysis using

the averaged dynamic equations. As described in more detail in the subsections, for each of the

targets, the initial conditions were varied by the position, velocity, orbital elements, and other
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Figure 5.7: Varying Ω and ω for the eccentricity and inclination for Galileo’s target 2. The colorbar
shows time until reentry. Entries of 200 years may not have reentered.

parameters around the nominal target. These initial distributions were drawn from a uniform

distribution within a set of values. The initial epoch is J2000.

We show a detailed analysis of the GPS Monte Carlo results for each of the varying initial

conditions. In an effort to consolidate the information, the GLONASS and Galileo results are not

discussed in the same detail but the overall inferences are compared alongside the GPS targets.

These comparisons are pulled from the exact same methods and similar data as the GPS targets

but will allow the reader to understand the greater implications of the robustness of these regimes.

5.3.1 GPS

5.3.1.1 GPS Target 1

Target 1 was chosen to be in an area that we hypothesize should show robust behavior. This

is due to the fact that the area is dominated by unstable behavior and thus nearby trajectories
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will also have decadal Earth reentry times. The orbital parameters targeted are listed in Table 5.1.

The reentry time of the target is approximately 31 years.

The target position was varied for 1,000 runs as shown in Figure 5.8. Each of the directions

was varied in a uniform distribution from the nominal orbit by -10 to 10 km and -100 to 100 km

respectively. The norm of the deviation from the reference is used in order to compare each run.

The results show that for variations of up to 10 km, the range of reentry times are within a matter

of months. For the 100 km variations, the range is approximately a year.
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(a) Target position varied by 10 km.
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(b) Target position varied by 100 km.

Figure 5.8: 1,000 Monte Carlo runs for target 1

The target velocity was varied for 1,000 runs as shown Figure 5.9. Each of the directions was

varied from the nominal orbit by -1 to 1 m/s and -10 to 10 m/s respectively. The range of reentry

times for the 1 m/s case is about 3 years. The 10 m/s deviation case shows that the simulations

result in a high variation of reentry times. Most of the deviated cases do not reenter over the full

200 years of the simulation. Therefore, a targeting accuracy of 10 m/s would not ensure an orbit

reentry. Instead, an apparent requirement of targeting with 1 m/s is needed to ensure the satellite

reenters using the naturally chaotic dynamics of the region.

In addition to analyzing the Cartesian Coordinates, we also studied variations in the orbital

elements. By isolating the orbital elements, the analysis will provide a better understanding of

the sensitivities to the geometry of the targets. Figure 5.10 shows the results from varying the
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(a) Target velocity varied by 1 m/s.
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(b) Target velocity varied by 10 m/s

Figure 5.9: 1,000 Monte Carlo runs for target 1

orbital elements. Clear trends can be seen in variation of the orientation of the orbit. Decreasing

RAAN and argument of perigee result in longer reentry times. Smaller eccentricities also result in

longer reentry times, which fits the larger trends shown in Figure 5.6. Inclination proves to be the

most sensitive to variations, requiring a targeting accuracy of less than one degree in inclination.

Changes in semi-major axis do not appear to have a large effect on the reentry time.

Other cases taken into consideration were timing and solar radiation pressure. Solar radia-

tion pressure was varied by manipulating the area-to-mass ratio to be plus or minus 100% of the

nominal value. This shows whether the solution was robust to deviations from attitude, overall

understanding of the effect on the satellite, and any debris shedding events that occur once the

satellite reaches the target. Figure 5.11a displays that changes in solar radiation pressure does not

have a large effect on time to impact.

Another condition we accounted for was how robust the solution was to the targeting epoch,

detailed effects of epoch on chaoticity are in Chapter 4. As Figure 5.11b shows deviations on time

scales as large as a year show no meaningful effect on the time until reentry. Thus, the initial

positions of the Moon and Sun are not a concern for implementation.
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(a) Argument of perigee varied by 1 degree
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(b) Eccentricity varied by 0.01
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(c) Inclination varied by 1 degree
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(d) RAAN varied by 1 degree
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(e) Semi-major axis varied by 100 km

Figure 5.10: 1,000 Monte Carlo runs for target 1
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(a) Area-to-mass ratio was varied .001 to 2 m2/kg
for target 1
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(b) Target time varied by 1 year for target 1

Figure 5.11: Variations in area-to-mass ratio and epoch

5.3.1.2 GPS Target 2

Target 2 was chosen to be more easily reached. With a lower eccentricity of 0.359, it would

not require as much propulsion to change from the original GPS orbital eccentricity, about 0, as

target 1’s 0.4. The other orbital parameters are in Table 5.1. The eventual impact time of target

2 is approximately 49 years.

Target 2 was shown to be more sensitive than target 1 in Cartesian coordinates. Deviations

in position of more than 10 km will result in missing the impacting trajectory as shown in Figure

5.12. Velocity also requires a higher level of precision in target 2 than target 1. Figure 5.13 shows

that to guarantee reaching an impacting trajectory the velocity needs to be within 0.1 m/s in each

direction of the targeted value.

Target 2 showed different sensitivities than target 1 in the orbital elements. Figure 5.14 shows

the variations due to changes in the orbital elements. This region is much closer to non-impacting

neighboring regions which can be shown in the inability to drop the inclination or eccentricity much

below the target. The argument of perigee and RAAN show similar trends to target 1 over the

variations with no significant deviations from the nominal reentry time. Semi-major axis, like in

target 1, does not show a trend in the behavior and has a small range of reentry times of months
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(a) Target position varied by 10 km.
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(b) Target position varied by 100 km.

Figure 5.12: 1,000 Monte Carlo runs for target 2
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(a) Target velocity varied by 1 m/s.
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(b) Target velocity varied by 10 m/s
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(c) Target velocity varied by 0.1 m/s

Figure 5.13: 1,000 Monte Carlo runs for target 2

for 100 km deviation.

We also analyzed variations in solar radiation pressure and target time for target 2. Solar
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(a) Argument of perigee varied by 1 degree
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(b) Eccentricity varied by 0.01
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(c) Inclination varied by 1 degree
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(d) RAAN varied by 1 degree

-100 -80 -60 -40 -20 0 20 40 60 80 100

Deviation of semi-major axis from reference

48.8

48.85

48.9

48.95

49

49.05

49.1

49.15

T
im

e
 u

n
ti
l 
re

e
n

tr
y
 (

y
e

a
rs

)

(e) Semi-major axis varied by 10 km

Figure 5.14: 1,000 Monte Carlo runs for target 2

radiation pressure variations show reentry times to be approximately the same as the nominal target

(Figure 5.15a). GPS target 2 was the only case where there was a sudden shift between reentering



124

solutions and non-reentering solutions dependent on area-to-mass ratio. The sudden shift for high

area-to-mass ratio objects (>1m2/kg) could be the result of an interaction between solar radiation

pressure and the luni-solar resonance structure discussed in the previous chapter.

Over deviations of a year, there are cases of missing the chaotic region (Figure 5.15b). How-

ever, this requirement on time to target is on the order of two months. Thus, time is a factor in

achieving chaos in target 2 but can easily be addressed by a robust mission schedule.
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(a) Area-to-mass ratio was varied .001 to 2 m2/kg
for target 2
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(b) Target time varied by 1 year for target 2

Figure 5.15: Variations in area-to-mass ratio and epoch

5.3.2 GNSS Comparison

The same process of running 1,000 Monte Carlo runs of varying initial distributions was

conducted for the Galileo and GLONASS targets. To be more concise, we do not examine the

GLONASS and Galileo results in the same detail so that more target cases can be compared. In

this section, instead of showing how every initial condition translated into a final reentry time, we

will use two graphs to compare the overall trends of the distribution sets.

The first graph shows how much variation in reentry time results from the same initial con-

dition distribution for each target. For example, in the case of eccentricity, each set of distributions

being compared is initialized by a uniform distribution around the target of plus or minus 0.01.
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From the same initial sets of distribution, we compare how much the final reentry time varies using

a violin plot. The violin plots also plot the mean result which is zero for each of the graphs because

each of the plots is normalized about the nominal reentry time in order to compare the different

targets; although, the target’s nominal reentry times vary from 30 years to 69 years. The thick

gray bar represents the interquartile of the distribution and the thin gray bar represents the upper

and lower adjacent values.

The second graph shows how much the initial conditions can vary and still result in reentering

solutions. As some of the previous figures show, many of the distributions do not reenter for large

variations of initial conditions. This graph will use bar plots to show how much variation in initial

conditions still results in solutions that reenter. This graph also distinguishes between solutions

that reenter within the 200 year simulation and those that reenter within 10% of their nominal

reentry time. For GPS, the nominal reentry time for target 1 is about 31 years and target 2 is

about 49 years. For GLONASS, targets 1 and 2 are approximately 38 and 69 years, respectively.

For Galileo, targets 1 and 2 are about 30 and 38 years, respectively. As with the violin plot,

everything is normalized about the nominal reentry time and nominal initial condition.

Cartesian position and velocity variations are discussed first to provide context on overall

maneuver execution accuracy requirements. These are followed by individual orbital variations to

provide insight into how error geometry affects the resulting reentry time.

5.3.2.1 Position

Large errors in the targeted position still reenter. Figure 5.16 shows the variation of reentry

times for a uniform distributions of plus or minus 10 km in each direction.

GLONASS target 2 has the largest variation and is the only one to vary close to 10% of the

nominal reentry. There is a bimodal behavior in GLONASS target 2 and a stratification of the

reentry times of all of the targets. This settling of specific reentry times is because the trajectory’s

eccentricity oscillates. Larger oscillations occur on the year timescale as can be seen in the settling

of two sets of solutions for the GLONASS target, and smaller oscillations occur closer to a week
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(a) Full range of reentry times (b) Truncated to ± ∼ 0.4 years

Figure 5.16: Violin plots of reentering times of varying targets with the same initial position
distribution of ± 10 km in each direction.

scale as can be seen in the bands of the violin plots. Depending on how close the trajectory is able

to follow the target’s trajectory, it will settle on or near the target’s reenntry time. In contrast, in

the case of GLONASS target 2, the trajectory will not be able to achieve the reentry in the vicinity

of the target’s reentry time and will have to wait for the eccentricity to oscillate back to that higher

eccentricity a few years later.

Because all the solutions enter within 10% of the reentry time, the additional analysis of how

precise knowledge of position would be required to target these regions is not necessary (they all

can be off by ten kilometers in each direction).

5.3.2.2 Velocity

Velocity was also varied in each direction of the vector. Figure 5.17 shows the violin plots for

the velocity vector’s variation of plus or minus 0.1 m/s in each direction. Due to the large outlier

in GLONASS target 2, the results are also truncated in the figure.

GLONASS target 2 has the largest variation due to errors in velocity. GPS target 2 and

GLONASS target 1 are the next biggest distributions with GPS target 1 and the Galileo targets

all reentering within 0.1 years of the nominal reentry time.

Figure 5.18 shows how many solutions can reenter for large changes in the velocity vector.

Galileo targets 1 and 2 are by far the most robust to errors in velocity knowledge, allowing
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(a) Full range of reentry times (b) Truncated to ± ∼ 0.3 year

Figure 5.17: Violin plots of reentering times of varying targets with the same initial velocity dis-
tribution of ± 0.1 m/s in each direction.

(a) Full range of deviated velocities (b) Truncated to 25 m/s or less

Figure 5.18: Variation of the magnitude of the velocity vector that result in reentering solutions.

solutions to be off by over 100 m/s and still reenter. These solutions require the deviations to

be smaller than 30 m/s to ensure a speedy reentry time. The GLONASS targets are the second

most robust to errors in velocity targeting. GPS target 2 has the tightest requirement of all three

constellations; it has the largest deviation in the magnitude of the velocity vector, 1.6 m/s.

5.3.2.3 Eccentricity

The first orbital element set compared is the eccentricity variation for each of the targets.

Figure 5.19 shows the final reentry distributions for a uniform eccentricity variation of plus or minus

0.01 around the nominal target.
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Figure 5.19: Violin plots of reentering times of varying targets with the same initial eccentricity
distribution of ±0.01.

GLONASS targets 1 and 2 both have the largest distribution of final reentry times with

about 5 and 6 years of variation respectively. They both show bimodal behavior in the reentry

time variation. For GPS target 2, there is a small group of outliers from the main set causing the

overall distribution to be about 5 years.

Figure 5.20 shows for a maximum change of plus or minus 0.1 in eccentricity which solutions

will still reenter and which solutions will reenter within 10% of the nominal reentry time.

GPS target 2 has the tightest requirement of the targets. Solutions with an eccentricity

decrease of greater than 0.0073 or an increase greater than .0915 will no longer reenter. GLONASS

target 2 will also result in non-reentering solutions when the eccentricity is increased by more than

0.0798. GPS target 1, GLONASS target 1, and Galileo targets 1 and 2 solutions all reenter for

eccentricity deviations as large as ±0.1.
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Figure 5.20: Variation of eccentricity with reentering solutions

5.3.2.4 Inclination

The inclination was varied by plus or minus 0.1 degrees from the nominal reentry to achieve

the final distributions captured in Figure 5.21. Because the two targets of GLONASS have almost

an order of magnitude larger distribution than the others, Figure 5.21 was also truncated to compare

the smaller distributions.

(a) Full range of reentry times (b) Truncated to ± 1 year

Figure 5.21: Violin plots of reentering times of varying targets with the same initial inclination
distribution of ± 0.1 degrees.
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The targets for GLONASS have the largest final reentry distribution for the same set of initial

inclinations and a bimodal distribution of the reentry times. GLONASS target 1 has a range of 4

years, and target 2 has a range of 12 years. The GPS targets in general have a greater difference

in reentry times than the Galileo targets.

Figure 5.22 shows how much the initial inclination can be varied for a maximum of plus or

minus 1 degree.

Figure 5.22: Variation of inclination with reentering solutions

None of the targets results entirely in reentering solutions for plus or minus 1 degree. For

the GPS targets, decreasing the inclination by too much (more that 0.88 degrees for target 1 and

0.73 degrees for target 2) can result in non-reentering solutions. GLONASS target 1 has to be

within +0.64 and −0.96 degrees of the targeted inclination. GLONASS target 2 has the tightest

requirement on inclination: for the solution to reenter the inclination has to be within +0.23 and

-0.45 degrees. Galileo targets have some flexibility, similar to the GPS targets. Galileo target 1

cannot have an inclination increase more than 0.83 degrees from the target. Galileo target 2 has

less strict of a restriction of +0.91 and -0.92 degrees from the nominal target, but target 2 has more
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solutions that reenter at later times.

5.3.2.5 Semi-major Axis

Because large variations in semi-major axis still result in reentering solutions close to the

nominal reentry time, the only plots discussed are the violin plots which compare the variation of

reentry times for a semi-major axis deviation of plus or minus 100 km, Figure 5.23.

(a) Full range of reentry times (b) Truncated to ± ∼ 0.4 years

Figure 5.23: Violin plots of reentering times of varying targets with the same initial semi-major
axis distribution of ± 100km.

The GLONASS targets have substantially longer reentry times than the other targets. How-

ever, these reentry variations are within 10% of their nominal reentry times, 38 and 70 years. The

rest of the targets reenter within a year of their nominal reentry time.

5.3.2.6 Right Ascension of the Ascending Node

For RAAN, the initial conditions were all varied by plus or minus 1 degree of the nominal

value. GLONASS target 2 has an order of magnitude larger distribution than the rest of the targets,

so there is a truncated version of the violin plot in addition to the full one in Figure 5.24.

All of the reentry times are close to their nominal reentry time with the large change in RAAN.

The GPS targets are closest to their nominal reentry times out of all the targets. GLONASS target

2 has the largest deviation with reentry time as long as 4 years after the nominal targeted reentry

time.
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(a) Full range of reentry times (b) Truncated to ± 0.4 year

Figure 5.24: Violin plots of reentering times of varying targets with the same initial RAAN distri-
bution of ± 1 degree.

Figure 5.25: Variation of RAAN with reentering solutions

Figure 5.25 shows for a maximum deviation of 10 degrees in RAAN how many of the solutions

reenter. For every target, all of the solutions reenter with deviations up to plus or minus 10 degrees.

For GLONASS target 2, the reentry time is longer than 10% of the nominal for a RAAN decrease of

more than 6.18 degrees. For Galileo target 1, a decrease of 9.1 degrees or more will cause a change

greater than 10% of the nominal reentry time. For Galileo target 2, a RAAN deviation of plus or

minus 8.5 degrees will cause solutions to reenter more than 10% of the nominal reentry time.
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5.3.2.7 Argument of Perigee

The argument of perigee initial conditions were varied in Figure 5.26 by a distribution between

plus or minus 1 degree. Some of the distributions were on an order of magnitude larger than the

others so the graph is also truncated.

(a) Full range of reentry times (b) Truncated to ± ∼ 0.4 year

Figure 5.26: Violin plots of reentering times of varying targets with the same initial argument of
perigee distribution of ± 1 degree.

GLONASS target 2 shows the highest range in reentry times for the fluctuation in argument

of perigee followed by the GPS targets. The targets for Galileo show the smallest range in reentry

times of all the sets.

Figure 5.27 shows how solutions reenter up to a maximum of plus or minus 10 degrees in

argument of perigee. GPS Target 2 is the only target which has solutions that do not reenter; this

occurs with a decrease of more than 8.5 degrees. GLONASS target 2 also shows some sensitivity

with some results entering beyond the 10% of the nominal reentry time.

5.3.2.8 Epoch

To see how initial epoch affected the solution and how important timing is to targeting, we

varied the starting time of the simulations.

Figure 5.28 shows that GLONASS target 2 results in the greatest distribution in final reentry

times for a change of up to one month in the targeted disposal time. The remaining targets have

reentry times within a year of their nominal with the exception of the outlier group in GLONASS
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Figure 5.27: Variation of ω with reentering solutions

target 1.

Figure 5.29 shows which solutions will still reenter based on failing to target the reentry at

the appropriate time with a maximum change of plus or minus one year.

GPS target 2 has the tightest cut off which was discussed in the previous section. GLONASS

target 2 is the only other target to have solutions that do not reenter if the epoch is less than a

year off. However, GLONASS target 2 will only not reenter if the mission targets the region too

early. It does have flexibility in delaying targeting.

5.4 Discussion

In all three GNSSs discussed, the closer target to the nominal orbit (target 2) required tighter

uncertainty knowledge to achieve the planned reentry trajectory than the farther but more robust

target (target 1) required. Therefore, there is a trade between moving farther in eccentricity and

inclination space and accuracy needed to achieve Earth reentry. For example, between the two GPS
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Figure 5.28: Violin plots of reentering times of varying targets with the same initial epoch distri-
bution of ± one month.

Figure 5.29: Variation of initial epoch with reentering solutions

cases, target 1 could be missed by 1 m/s in each direction whereas target 2 requires an accuracy
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of 0.1 m/s in each direction. At the same time, maneuvering to the farther eccentricity, 0.400 for

target 1 versus 0.359 for target 2, requires about 79.5 m/s greater change in velocity. Similarly, to

reach target 1 would require a sail size 12% larger than that of target 2 [72, 71]. These trends are

also true for GLONASS’s and Galileo’s targets as both target 1s are at higher eccentricities but

have more robust behavior to changes in initial conditions.

In addition to understanding the trade off due to farther eccentricities between targets 1 and

2, we also analyze the differences in targeting inclination in GLONASS’s targets. This is because

for GLONASS, the re-impacting trajectories are far in inclination space from the nominal orbit.

Figure 5.5 illustrates how far the inclination range is from the nominal orbit. GLONASS target

2, the closer target to its nominal orbit, had the largest variation of reentry trajectory times of all

the targets and tighter constraints than those of GLONASS target 1, the farther target. Figure

5.6 shows that the target closer in inclination space to the nominal orbit is neighbored by more

non reentering trajectories than the other five targets. Maneuvering to the farther inclination, 6.9°

away from the nominal orbit for target 1 versus 5.5° away for target 2, requires 96.6 m/s larger

change in velocity than maneuvering to the closer target. Because eccentricity change is the main

driver in needing to increase solar sail area size, the inclination deltas only cause a 0.4% increase

in sail size.

5.5 Conclusion

Through our analysis, we have found that it can be feasible to target regions of unstable

dynamics for debris mitigation through Earth reentry over decadal time spans. All of the solutions

are robust enough to achieve reentry through a chemical burn to the target. For solar sailing, where

it might not be feasible to achieve the required level of accuracy to reenter on a closer trajectory,

it would be more beneficial to reach a slightly farther target in eccentricity and inclination space

where the trajectory is surrounded by impacting neighbors. For the case of Galileo, satellites do not

need large changes in eccentricity and inclination for a fast atmospheric reentry trajectory. Most

of the constellation targets reenter within a year for small variations in the target variables. The
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exception is GLONASS target 2 which had the widest swaths of reentry times but still achieved

reentries for small fluctuations. This demonstrates that small uncertainties will not magnify despite

these trajectories being in a chaotic regime. This insight is especially important when determining

whether unstable reimpacting trajectories can be a feasible debris mitigation method for satellites

in this region.



Chapter 6

Research Goal 4 - Utilizing Solar Radiation Pressure

In this chapter, we explore how to use solar radiation pressure for debris mitigation. Satellite

orbiters subject to solar radiation pressure (SRP) will have periodic variations in eccentricity and

inclination that could be utilized for mission design purposes. These periodic variations have been

described before, but have not been applied to mission design purposes for solar sails in Earth orbit

[89]. Current development of sail technology makes it feasible to deploy a sail from a satellite in

an initially circular orbit and then jettison it later [81][33]. Applications of this can be developed

for orbit design and transfer to higher eccentric orbits, satellite deorbit, or plane changes. This

chapter seeks to utilize sailing to conduct an orbit change by deploying a sail, reaching the desired

eccentricity and inclination change, and finally releasing the sail after the desired orbit is achieved.

We will particularly focus on leveraging averaged solutions to satellites subject to strong

SRP forces to take advantage of the secular effects in Earth’s orbit. Our focus, however, will be on

the more simplistically described cannonball model. Concepts for spherical solar sails have been

described as early as 1958 by Ehrike [25] and as recently as 2013 by Lücking et al. [56], and

would be particularly attractive to use for the deorbit of defunct satellites or debris, one of the

applications discussed later in this chapter. Alessi et al. discussed using the design of the spherical

sail as possible disposal methods for GNSS satellites [9].

This research goal is built off the orthonormal matrix defined in Equation 2.15 which we

use to demonstrate how the control of the maximum plane change or eccentricity change can be

realized just by the choice of sun-relative node when the sail is furled. First, we maximize the
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eccentricity change due to the node choice. This exemplifies the direct reentry case. We then

describe a targeting algorithm to target a specific eccentricity and a change in inclination. This

algorithm can leverage the sun node line again to achieve the maximum change in both for a given

SRP parameter. This case depicts targeting a specified orbit.

6.1 Maximizing Eccentricity in an Initially Circular Orbit

In this study the satellite is assumed to initially lie on a circular orbit. This simplifies the

analysis and fits with the orbits of the vast majority of Earth-orbiting satellites.

6.1.1 Initially Circular Orbits

Because we assume the initial satellite orbits are circular and study sail dynamics once de-

ployed in a circular orbit, e0 is zero and ĥ0 is a unit vector initially, simplifying the dynamics.

Substituting these initial conditions into Equation 2.14 yields Equations 6.1 and 6.2.

e = Φehĥ0 (6.1)

h = Φhhĥ0 (6.2)

where

Φeh = =
(
1− cos(ψ)

)
×
[
− sin Λ cos Λ

(
ẑd̂+ d̂ẑ

) ]
+ sin (ψ)

[
sin Λ

˜̂
d

]
(6.3)

Φhh = cos(ψ)I3x3 + (1− cos(ψ)[cos2 Λẑẑ + sin2 Λd̂d̂]− sinψ cos Λ˜̂z (6.4)

To study the dynamics, we focus on eccentricity and inclination. As a reminder, these

vectors are not in the Earth Centered Inertial (ECI) frame but instead are given relative to the
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frame rotating with the Sun line, so a subscript of rot will be used to distinguish orbital parameters

typically defined by the Earth centered frame.

Eccentricity is defined by Equation 6.5.

e2 = ĥ0 ·A · ĥ0 (6.5)

where we define matrix A as Equation 6.6.

A = ΦehΦeh = sin2 Λ (1− cosψ)2


cos2 Λ − cos Λ cot(ψ/2) 0

− cos Λ cot(ψ/2) cot2(ψ/2) 0

0 0 cot2(ψ/2) + cos2 Λ

(6.6)

Inclination is defined by Equation 6.7.

cos irot =
h · k̂
|h|

=
k̂ · Φhh · ĥ0√

1− e2
(6.7)

which yields Equation 6.8.

cos irot =
1√

1− e2
[cos2 Λ + cosψ sin2 Λ] cos irot0 (6.8)

Given the form of the orbit eccentricity, we can now study it in detail, in particular finding

its maximum value and defining the initial conditions that will achieve it.

6.1.2 Eigenvalues and Eigenvectors of A

In order to determine the maximum eccentricity we solve for the eigenvalues and eigenvectors

of the matrix in Equation 6.6. This matrix’s eigenvalues and eigenvectors will describe its funda-

mental properties which we will later tie to the maximum eccentricity that can be achieved for a

certain size sail.
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6.1.2.1 Eigenvalues of A

The eigenvalues are solved from the relationship in Equation 6.9.

|λI3x3 −A| = 0 (6.9)

Because of the structure of A when solving for the determinant, the condition decouples as

Equation 6.10.

|λI3x3 −A| =

∣∣∣∣∣∣∣∣
λI2x2 −A′ 01x2

02x1 λ− sin2 Λ(1− cosψ)2(cot2(ψ/2) + cos2 Λ)

∣∣∣∣∣∣∣∣ = 0 (6.10)

leading to Equation 6.11

|λI2x2 −A′| · |λ− sin2 Λ(1− cosψ)2(cot2(ψ/2) + cos2 Λ)| = 0 (6.11)

This simplification allows us to break up the 3x3 matrix and easily find the first eigenvalue,

equal to sin2 Λ(1− cosψ)2(cot2(ψ/2) + cos2 Λ). To find the other two eigenvalues, the first part of

Equation 6.11 is expanded where A′ is expressed as Equation 6.12.

A′ = sin2 Λ (1− cosψ)2

 cos2 Λ − cos Λ cot(ψ/2)

− cos Λ cot(ψ/2) cot2(ψ/2)

 (6.12)

leading to Equation 6.13.

λ2 − λ
[

sin2 Λ(1− cosψ)2
][

cos2 Λ + cot2(ψ/2)
]

= 0 (6.13)

We see that λ = 0 is an eigenvalue and the other eigenvalue is equal to the initial one found,

meaning that there is a double eigenvalue equal to

λ = 4 sin2(ψ/2) sin2 Λ(1− sin2(ψ/2) sin2 Λ) (6.14)

We note that the double eigenvalue is always positive, and thus the matrix A is a positive

semi-definite matrix.
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6.1.2.2 Eigenvectors of A

To solve for the eigenvectors, we use the relationship in Equation 6.15.

A · v = λv (6.15)

For λ = 0, Equation 6.16

A · v = 0 (6.16)

This gives Equation 6.17.

0 = cos2 Λvi − cos Λ cot(ψ/2)vj

0 = cos Λ cot(ψ/2)vi + cot2(ψ/2)vj

0 = (cot2(ψ/2) + cos2 Λ)vk

(6.17)

We see that vk = 0, the eigenvector will follow the form [vi vj 0]T thus vi is defined by

Equation 6.18

vi =
cot(ψ/2)

cos Λ

cot(ψ/2) + cos Λ

cos Λ
vj (6.18)

In a more simplified readable form, the unit magnitude eigenvector for λ = 0 is defined by

Equation 6.19.

1√
1− sin2(ψ/2) sin2 Λ


cos(ψ/2)

sin(ψ/2) cos Λ

0

 (6.19)

Using a similar analysis for the double eigenvalues, λ = 4 sin2(ψ/2) sin2 Λ(1− sin2(ψ/2) sin2 Λ), we

find the eigenvectors, Equations 6.20.
0

0

1

 ,
1√

1− sin2(ψ/2) sin2 Λ


− sin(ψ/2) cos Λ

cos(ψ/2)

0

 (6.20)
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and note that all of the eigenvectors are mutually orthogonal, as expected for a symmetric matrix.

The matrix of eigenvectors is defined by Equation 6.21.

T =
1√

1− sin2(ψ/2) sin2 Λ


0 − sin(ψ/2) cos Λ cos(ψ/2)

0 cos(ψ/2) sin(ψ/2) cos Λ√
1− sin2(ψ/2) sin2 Λ 0 0

 (6.21)

Then from the property of positive semi-definite matrices we have Equation 6.22.

A = T


λ(ψ,Λ) 0 0

0 λ(ψ,Λ) 0

0 0 0

T T (6.22)

where λ(ψ,Λ) = 4 sin2(ψ/2) sin2 Λ− 4 sin4(ψ/2) sin4 Λ.

6.1.2.3 Relationship between e and λ

The evolution of eccentricity in Equation 6.5 is nicely decoupled with the initial conditions

captured with the angular momentum unit vector and the time evolution for a given angle Λ defined

by the matrix A. As such, we can study the totality of the time variation results by analyzing A,

and, in particular, by breaking this matrix down into its component eigenvalues and eigenvectors.

When first defining A in Equation 6.5, we note that it maps to eccentricity using the initial

angular momentum. To separate that relationship, we develop a new angular momentum, ĥ′ =

T T ĥ0, which exists in the eigen space, where T is defined in Equation 6.21 and leading to Equation

6.23

e2 = ĥ′


λ 0 0

0 λ 0

0 0 0

 ĥ′ (6.23)

or Equation 6.24.

e2 = λ(ĥ′i
2

+ ĥ′j
2
) = λ(1− ĥ′k

2
) (6.24)
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We note that at any time the maximum value that the eccentricity can take on is equal

to
√
λ. Thus, the maximum eccentricity attainable is proportional to the maximum value of the

eigenvector over one period of motion when it occurs simultaneously with h′k = 0. We note that λ

will have a maximum value over each SRP cycle, and that if we want e to take on that maximum

value, we must choose the initial conditions such that h′k = 0 when λ = λmax. First, we will delve

into what λmax is. Then we will utilize the eigenvector’s relationship to determine where to deploy

the satellite.

6.1.3 Finding λmax

Due to the fact that ψ is the variable that changes along Earth’s orbit, ψ determines the

evolution of the eccentricity while Λ is fixed. To solve for the relative extrema, the partial derivative

is taken with respect to ψ and set to zero, Equation 6.25.

∂λ

∂ψ
= 0 = sin(ψ/2) cos(ψ/2) sin2 Λ[1− 2 sin2(ψ/2) sin2 Λ] (6.25)

This leads to the points of interest at Equation 6.26.

ψ = 0, π, and sin(ψ∗/2) = ± 1√
2 sin Λ

(6.26)

where we note that sin(ψ/2) = ± 1√
2 sin Λ

is only defined for Λ > π/4.

Evaluating the second derivative at ψ = 0 gives 1
2 which is positive and thus indicates a

minimum. The second derivative at ψ = π is sin2 Λ − 1/2 and thus is dependent on Λ whether it

is a minimum or maximum. For Λ < π/4, ψ = π is a local maximum and for Λ > π/4, ψ = π is

a local minimum. Likewise, at sin(ψ/2) = ± 1√
2 sin Λ

the second derivative is also a function of Λ,

− sin Λ√
2

(
1− 1

2 sin2 Λ

)3/2
. In this case, it is negative for Λ > π/4 indicating that sin(ψ/2) = ± 1√

2 sin Λ

is a maximum for Λ > π/4. Therefore, we have two local maximums depending on the value of Λ.

For Λ < π/4, these values correspond to Equations, 6.27, 6.28, and 6.29.

ψ∗ = π (6.27)
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λmax = sin2(2Λ) (6.28)

emax = sin(2Λ) (6.29)

For Λ ≥ π/4, these values correspond to Equations, 6.30, 6.31, and 6.32.

sin(ψ∗/2) =
1√

2 sin Λ
(6.30)

λmax = 1 (6.31)

emax = 1 (6.32)

In Figure 6.1 we show a contour plot of the value of λ as a function of ψ and Λ. We note that

for all Λ > π/4 the maximum value of eccentricity is unity, but that the maximum value appears at

different values of ψ. Figure 6.2 plots the eigenvalue, λ = 4 sin2(ψ/2) sin2 Λ(1 − sin2(ψ/2) sin2 Λ),

showing its behavior as a function of ψ for a few different values of Λ.

We note that at ψ = 0, λ = 0 and thus is at a minimum. For ψ = π, λ = 4 sin2 Λ cos2 Λ there

are two cases; Λ ≥ π/4, it is a local minimum, but for Λ < π/4, it is at a local maximum. This

maximum is consistent with results presented in Scheeres’s work [94].

6.1.4 Utilizing Eigenvectors to Denote the Location for Maximal Eccentricity

Change.

Figures 6.1 and 6.2 show how the eccentricity’s evolution is dependent on two parameters:

Λ, how strong of an effect SRP has on the object; and ψ, which measures the change in Earth

true anomaly from the location where the sail is unfurled. We have developed an expression of

what the eccentricity maximizes to, but now we will show when to deploy the sail to achieve that
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Figure 6.1: Contour Plot of eigenvalues with respective ψ and Λ. The red line indicates where λ
maximizes to 1.

maximum. In particular taking ψ∗ and relating it to the angular momentum of the satellite utilizing

the eigenvectors.

As stated earlier emax reaches λmax when ĥ′k is 0 in the eigenspace frame. The initial angular

momentum that will achieve this maximum is defined as the angular momentum that lies in the

2-D plane defined by the two non-zero eigenvectors at the time when the maximum eccentricity

appears. We note that any initial angular momentum vector that leads to components off of this

2-D plane at ψ∗ will yield a smaller eccentricity by mixing the components with the zero eigenvalue

eigenvector.

The k direction of the eigenspace angular momentum, ĥ′k, can be described in the Sun line

rotating frame by Equation 6.33.

ĥ′k =

[
0 0 1

]
T T · ĥ0 (6.33)
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Figure 6.2: How eigenvalues vary with respect to ψ for 3 different cases: 2 of Λ < π/4, Λ > π/4,
and Λ = π/4

Because we are particularly interested in when the maximum occurs, when ψ = ψ∗, the T matrix

is solved separately for the two cases of ψ∗, Equations 6.34 and 6.39.

For Λ ≥ π/4

T (ψ∗,Λ)T =
1√√√√1−

(
1√

2 sin Λ

)2

sin2 Λ



0 0

√
1−

(
1√

2 sin Λ

)2

sin2 Λ

− 1√
2 sin Λ

cos Λ

√
1−

(
1√

2 sin Λ

)2

0√
1−

(
1√

2 sin Λ

)2
1√

2 sin Λ
cos Λ 0


(6.34)

Inserting into Equation 6.33 yields the following relationship of the initial angular momentum,

Equation 6.35.

ĥ′k =

√√√√1−

(
1√

2 sin Λ

)2

ĥ0i +
1√

2 sin Λ
cos Λĥ0j (6.35)
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Now using the condition ĥ′k = 0, Equations 6.36, 6.37, and 6.38.

− 1√
2 sin Λ

cos Λĥ0j =

√
1− 1

2 sin2 Λ
ĥ0i (6.36)

ĥ0j = −
√

2− 1

sin2 Λ
tan Λĥ0i (6.37)

ĥ0j = −
√

tan2 Λ− 1ĥ0i (6.38)

Thus, to maximize eccentricity, the orbit orientation must meet the condition ĥ0j = −
√

tan2 Λ− 1ĥ0i,

making it dependent on the SRP parameter for the Λ > π/4 case.

Using the same process for Λ < π/4 we solve for the initial angular momentum by Equations

6.39, 6.40, and 6.41.

T (ψ∗,Λ)T =
1

cos Λ


0 0 cos Λ

− cos Λ 0 0

0 cos Λ 0

 (6.39)

ĥ′k =
1

cos Λ

[
0 cos Λ 0

]
· ĥ0 (6.40)

ĥ′k = ĥ0j (6.41)

Then specifically using that ĥ′k = 0 we find Equation 6.42.

0 = ĥ0j (6.42)

Therefore, the orbit plane for when eccentricity maximizes for Λ > π/4 is dependent on Λ

while for Λ < π/4 it is not. For this case, the angular momentum of the circular orbit must initially

be in the d̂ẑ plane when the sail is deployed to achieve the maximum eccentricity.
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Given the initial angular momentum that maximizes eccentricity, we find what angle the orbit

needs to initially be with respect to the Sun by solving for the right ascension of the ascending

node in the rotating ecliptic frame using Equation 6.43.

ĥ0 =


sin irot sin Ωrot

− sin irot cos Ωrot

cos irot

 (6.43)

It is important to note that in both cases the initial angular momentum for maximum ec-

centricity does not depend on the h0k term, and thus is independent of inclination. Therefore,

inclination does not influence the maximum eccentricity, and we can strictly look at the right as-

cension of the ascending node, relative to the Sun-line.

Using Equation 6.43, the relationship between angular momentum and Ωrot can be described as

Equation 6.44

ĥ0j

ĥ0i

=
− sin irot cos Ωrot

sin irot sin Ωrot
= − cot Ωrot (6.44)

For Λ >= π/4 the condition depends on the angle Λ, Equations 6.45 and 6.46, but the maximum

eccentricity is 1.

ĥ0j

ĥ0i

= −
√

tan2 Λ− 1 = − cot Ωrot (6.45)

Ωrot = arccot

(√
tan2 Λ− 1

)
(6.46)

For Λ < π/4 the condition is independent of Λ, Equations 6.47 and 6.48, although the maximum

eccentricity equals sin(2Λ).

ĥ0j = 0 = − sin irot cos Ωrot (6.47)

Ωrot = ±π
2

(6.48)
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For Λ < π/4, the orbit plane of the satellite must face the Sun, the angular momentum vector

in the d̂ẑ plane, to achieve the maximum change in eccentricity, while for Λ > π/4 the orbit plane’s

positioning is dependent on the specific value of Λ.

This is illustrated in Figure 6.3 which varies rotating RAAN and the SRP parameter. At

Λ = π/4 or 45°, the maximum switches from Ωrot = π/2 or 90° to higher RAAN values depending

on Λ. This figure is shown with the most sensitive case, when the orbit is inclined 90° to the ecliptic.

Figure 6.3: Maximum eccentricity for varying SRP strength and initial node orientation in the
rotating ecliptic frame. The red line indicates a maximum eccentricity of 1. The solution repeats
itself at 180°.

6.2 Dynamics in Earth Equatorial Frame

Everything up until this point has been expressed in the Sun-line Ecliptic rotating frame. This

has allowed us to define important characteristics in the effects due to solar radiation pressure. To
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utilize these characteristics, the orbital elements will need to be transferred into the Earth centered

equatorial frame which was briefly discussed when using this frame in Chapter 3.

6.2.1 Orientation of the Optimal Direction in the Earth Inertial Frame

To describe the averaged solution in an ECI frame involves two frame changes, one from a

frame rotating with the Sun-line to an inertial frame, technically just the ecliptic frame, and the

other going from the ecliptic to an Earth centered equatorial frame.

The Sun line rotating frame as compared to the inertial ecliptic frame differs based on Earth’s

position around the Sun or its argument of latitude, u. A rotation about the z axis of the ecliptic

by u degrees converts ecliptic and the sun line rotation frame. Figure 6.4 shows the physical

rotation happening while Figure 6.5a shows how the rotation looks on the three axis system. The

rotating axes as are [d, t, z] and the ecliptic inertial axes are [x′,y′, z′]. The rotation matrix for

this transformation is Equation 6.49.

TR =


1 0 0

0 cosu sinu

0 − sinu cosu

 (6.49)

Transforming between the ecliptic and the equatorial frames involves rotating the equatorial

frame by the tilt of the Earth. Because of the J2 perturbation, ĥ precesses about the Earth’s

rotation pole, ẑ. Thus as time progresses, the angular momentum precesses about ẑ, giving different

inclinations with respect to the ecliptic pole, ẑ′. The x axis is defined by the vernal equinox, as

does the equatorial frame we use (ECI). Figure 6.5b shows how the frame rotates and thus how

the angular momentum vector should be represented in the ecliptic frame. The equatorial frame is

denoted by axes [x,y, z] and the ecliptic frame is denoted by axes [x′,y′, z′]. The rotation matrix
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Figure 6.4: Visualization of how the rotation frame changes with respect to the inertial frame

for this transformation is Equation 6.50.

TE =


cos ε sin ε 0

− sin ε cos ε 0

0 0 1

 (6.50)

All together, to switch from the equatorial frame to the rotating ecliptic frame, two rotations

are needed. Then, the angular momentum vector can be mapped between the two frames so that

it can be described in terms of the Earth equatorial frame using the transport theorem [92] in

Equation 6.51.

hequatorial = TETRhrotating (6.51)

The final piece of the puzzle is using the information of the right ascension of the ascending

node to describe the optimal point in Earth’s orbit to deploy a solar sail. The angle of the orbit with

respect to the Sun is described by the argument of latitude of the Earth and the right ascension

of the ascending node of the orbit. Because the RAAN will be defined by the satellite’s orbit
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(a) Rotation between Earth Ecliptic Frame
[x’,y’,z’] and the Sun-line Rotating Frame [d,t,z]

(b) Rotation between Earth Equatorial Frame
[x,y,z] and Earth Ecliptic Frame[x’,y’,z’]. ε de-
notes inclination of Earth’s orbit with respect to
the ecliptic.

Figure 6.5: Coordinate frame rotations

and therefore cannot be changed, the focus will be on the initial argument of latitude or where in

Earth’s orbit the solar sail is deployed. Thus, we will define the deployment argument of latitude

of the Earth about the Sun as a function of the rotating RAAN, Ωrot, and the satellite’s RAAN in

the Earth Centered Inertial frame, Equation 6.52.

u = Ω− Ωrot (6.52)

6.2.2 Regression of the Node Due to J2

As noted in Figure 6.5b, the perturbing effects due to zonal harmonics cause a node regression

around the pole. The expression for nodal regression due to J2 is given by Vallado as Equation

6.53 [101],

Ω̇sec = −
3nR2

EJ2

2p2
cos i (6.53)
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where n is the mean motion of the satellite, RE is the radius of the Earth, J2 is the first zonal

coefficient = 0.0010826269, and p is the orbit’s parameter. The inclination and right ascension

variation is expressed in the equatorial frame. The lower the altitude the larger an effect the

perturbation has on the object. Thus, the oblateness of the Earth can greatly influence the reentry

conditions for low Earth orbit.

Despite having a ten order of magnitude less of an influence on dynamics than SRP, J2 can

shift the solution to not reenter for LEO as high as 5000 km altitude. Figure 6.6 demonstrates how

the model is mismatched when the perturbation is accounted for with LEO satellite reentries. The

assumptions made in this work thus cannot be applied to studying low Earth orbit. Alessi et al.

have studied the analytical representation of solar radiation pressure and oblateness phase space

for these LEO solutions [8]. This work will instead focus on higher altitudes where J2 has a much

smaller effect on the overall dynamics.
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Figure 6.6: Eccentricity evolution with J2 perturbations compared to just solar radiation pressure
for a satellite with a sail attached equaling an area-to-mass ratio of 7.5 m2/kg.
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6.2.3 Targeting an Orbit

With the proper rotation sequence to transform the angular momentum in and out of the

rotating frame, we can use equatorial elements and characterize their behavior in the equatorial

frame using the averaged solution. Although RAAN can be solved simplistically by Equation

6.52, inclination requires rotation matrices to describe it in the rotating frame as compared to the

equatorial frame, Equation 6.51.

Two tuning parameters are used to target the eccentricity and inclination: the right ascension

of the ascending node in the rotating frame and the SRP Parameter. The SRP parameter, which is

defined by Equation 2.16, can be varied by changing the area-to-mass ratio, such as by varying the

size of the solar sail. The RAAN can be varied based on where in the Earth’s revolution about the

Sun the sail is deployed. The algorithm minimizes the distance between the guessed set of points

and the targeted point in eccentricity and inclination space. It continues iterating until a given

acceptable error distance is met.

The magnitude of the eccentricity vector will be used to describe the evolution of eccentricity.

In the algorithm, we will be using the cosine of the inclination instead of inclination as it is easier

to target. The cosine of the inclination is the third element in the angular momentum vector (after

it has been transformed from the ecliptic to the equatorial frame).

For the purpose of this example, we will be targeting a GPS resonance location which has an

eccentricity of 0.4 and a cosine of inclination of 0.56 (∼ i = 56◦). The initial orbit is consistent with

a nominal GPS orbit of an eccentricity 0 and inclination of 55◦. Targeting is done by initializing

at a set Λ and solving over an arc of right ascension of the ascending nodes to ensure the optimal

solution is based on both parameters.

This arc can be seen by the outer most points on each of the loops in Figure 6.7. Instead of

sweeping through the entire year, as the loops shown in that graph do, we only calculate each loop’s

farthest reach which occurs at approximately halfway through the year. This efficiently surveys the

various RAANs because we are only calculating the portions of the solar sail’s journey when the
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Figure 6.7: How eccentricity and inclination evolve over the course of a year. The colorbars indicate
what the initial RAAN was in the simulation in radians. The black bars indicate the farthest reach
for each of the area-to-mass ratios.

satellite is deposited or the targeting phase of the orbit.

Once the evolved cosine and eccentricity is solved, the solution is then iterated until the

distance between the solved and target values are within a specified threshold ( 10−13 for these

calculations). This distance is characterized by Equation 6.54

J = (e− e∗)2 + (cos i− cos i∗)2 (6.54)

To account for the varying right ascension of the ascending node, the algorithm takes the

minimum of the solved distances at each iteration. For each iteration where Jmin is the minimum

distance, we update the SRP parameter at each time step over the values of right ascension of the
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ascending node, Equation 6.55.

Λi+1 = Λi −
∆Λ

∆Jmin
Jmin (6.55)

6.3 Application to Space Debris Mitigation

Lücking et al. looked into using spherical solar sails for space debris mitigation purposes [56].

The spherical sail is especially useful for the space debris application as it does not require attitude

control which might not be available on a defunct satellite.

This section will explore using solar sailing for end of life operations of satellites at high alti-

tude orbits. This is done by two methods. One is deorbiting straight from the satellites functioning

orbit to an atmospheric reentry, achieved by targeting the maximum possible eccentricity. The

other case involves an alternative to directly coming back to Earth: targeting the satellite into an

orbit where it can utilize chaotic dynamics to grow in eccentricity and reenter Earth’s atmosphere.

6.3.1 Deorbiting Using Only SRP

The first situation explored is using solely solar radiation pressure to deorbit a satellite. In

this approach, a mission would use a solar sail to increase the eccentricity to bring its periapsis to

the upper atmosphere, letting drag deorbit it the rest of the way. To be most efficient, the sail is

deployed where the eccentricity is maximized due to solar radiation effects in order to get the most

out of a solar sail.

6.3.1.1 Area-to-Mass Ratio Required for Atmospheric Reentry

As stated in Section 6.2.3, besides choosing the time of year to deploy the sail, the other

factor that can be changed is Λ, more specifically the area-to-mass ratio of the object in Λ. To find

what area-to-mass ratio is needed for a given orbit, we look at the area-to-mass ratio as a function

of semi-major axis as that is the only satellite orbit element defined parameter in Λ, Equation 2.16.

The amount of area-to-mass ratio needed is based on reentry at an altitude of 122km where NASA
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defines reentry interface begins (full breakup at 78km) [68]. This condition for radius of periapsis

will be denoted as r∗p = RE + 122 in Equation 6.56. In order to minimize solar sail size, Λ < π/4

is studied. The maximum eccentricity from Equation 6.29 is achieved to result in Equation 6.57.

emax = 1−
r∗p
a

(6.56)

Λmax =
1

2
arcsin emax (6.57)

To determine the area-to-mass ratio needed to achieve the maximum eccentricity, Equation

2.16 is solved for the area-to-mass ratio using the SRP parameter solved in Equation 6.57 to result

in Equation 6.58.

η =
2 tan Λmax
3(1 + ρ)P0

√
µEµSaS(1− e2

S)

a
(6.58)

Figure 6.8 illustrates this relationship between the semi-major axis of the initial orbit and

the area-to-mass ratio needed for a solar sail for atmospheric reentry. This figure is showing the

general trends while later examples will explore the feasibility of implementing this method.
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Figure 6.8: Needed area-to-mass ratio of a solar sail to reach atmospheric reentry based on initial
semi-major axis
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6.3.1.2 Solar Sail Sizing for Current Satellites

To see how satellites would use this technology for end of life operations, we compared active

satellites with their current orbit parameters and masses to see how large of a solar sail they would

require to deorbit. Table 6.1 shows what the required solar sail size would be for different satellites

at varying positions: GEO and MEO. As solar sail sizes are often described by their length/width

both the area needed and the square root of the area are listed. The final satellite in the list

explores the option if, in the future, CubeSats inhabit the geosynchronous orbit regime.

Table 6.1: Current satellites and what solar sail area would be needed to deorbit

Spacecraft Name Semi-major Axis Mass of S/C Area of Sail (ηm) Length/Width of Sail

GOES-8 42128 km [67] 2165 kg[67] 54542 m2 233 m

Viasat-2 42165 km [5] 1464 kg [5] 36877 m2 192 m

Intelsat VA 42166 km [40] 902 kg [64] 22720 m2 151 m

Galileo FOC 29600 km [83] 710 kg [99] 18581 m2 136 m

GPS-IIf 26754 km [83] 1633 kg [99] 42867 m2 207 m

GPS-IIR 26574 km [83] 1080 kg [99] 28351 m2 168 m

CubeSat at GPS 26574 km[83] 1 kg [52] 26.3 m2 5.12 m

CubeSat at GEO 42128 km 1 kg [52] 25.2 m2 5.02 m

Missions for solar sails have been proposed for sizes as large as 40m, NASA’s Sunjammer

[39] and JAXA’s OKEANOS [66]. The majority of these proposed sail sizes are larger due to the

massive size of the types of satellites currently inhabiting these regimes. This work can be used to

ensure safe orbiting of CubeSat missions in these areas like the proposed GCPM [50] and GRIFEX,

a launched satellite used to demonstrate radar capabilities to be used in geostationary orbit [65].

6.3.2 Deorbiting Using Luni-Solar Resonances

The mass of the satellite has a direct relationship to the size of the solar sail needed because

solar radiation pressure is a function of area-to-mass ratio. Therefore, the fact that satellites

currently in medium Earth orbit are navigation satellites and are relatively massive makes solar
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sailing for Earth reentry and burn up difficult, even when deploying the sail in a smart location

to reach the maximum eccentricity that sized sail can achieve. This helps motivate the decision to

utilize other perturbations to help deorbit satellites in this region.

Because SRP provides a large and predictable change in inclination and eccentricity for

satellites and can be described using a simple averaged formulation, SRP is a prime candidate for

placing satellites directly into orbits that will be in resonance and that decay more rapidly. Proper

design and deployment can move a satellite from a given zero eccentricity and inclination value

into a region of strong resonances, effectively cutting off “centuries” of random motion where the

satellite will drift along the resonance to a region of crossing resonances and injecting it right into

the destabilizing region thus speeding up its removal. Movement into resonances occurs in less

than one year, so the solar sail would dominate the dynamics of the satellite. Resonance structure

can be defined in higher dimensions, incorporating factors including the epoch and other orbital

parameters, but, for the purposes of this study, we will focus on the analytical definition of the

region which is defined by semi-major axis, eccentricity, and inclination.

Studies have looked at deorbiting strategies utilizing solar radiation pressure in conjunction

with tesseral resonances. Krivov studied the perturbations using high-altitude balloon satellites

[53]. Lücking described a deorbiting strategy using solar radiation pressure and J2 at medium

Earth orbit [57]. This chapter, on the other hand, does not look at resonances due to oblateness

but instead due to gravitation perturbations. In this case, we split the two effects into two phases

of the deorbiting strategy. The first, happening on a timescale of less than a year is the unfurling

of the sail to target the region of chaos where SRP is the dominant force. The second is when the

sail is jettisoned, the sail’s dynamics follows the SRP cycle and the satellite follows the resonance

dynamics due to the Sun and Moon’s gravity happening on the timescale of decades.

6.3.2.1 Targeting Resonance Locations

To implement these targeting algorithms, we note that the description of the dynamics is in

the ecliptic frame whereas the orbit is defined in the equatorial frame. With the proper rotation
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sequence to transform the angular momentum in and out of the rotating frame, equatorial elements

can characterize their behavior using the averaged solution, as done in Section 6.2.1.

As shown in Figure 6.7, changing inclination is mainly dependent on when the sail is deployed

rather than its area-to-mass ratio. Therefore, it is cheaper in terms of size of sail needed to target

regions that are farther away than the nominal orbit in inclination, but these regions require smaller

jumps in eccentricity. Therefore the optimal region to target the numerical solution for GLONASS

is about 0.15 eccentricity and about 55 degrees inclination.

6.3.2.2 Solar Sail Sizing for Current Satellites

Utilizing this method, the SRP parameter can often be much smaller because the regions

of chaos require less of a change in eccentricity and inclination. This results in a smaller area-

to-mass ratio needed and a smaller sail overall. By roughly estimating target locations from the

literature [83], the target eccentricities reduce from 0.76, 0.74, 0.78, and 0.77 to 0.40, 0.29, 0.09, and

0.24. These are different from the targets chosen in Chapter 5 as those were picked after extensive

numerical analysis where these targets were chosen solely based on the analytical maps. Table 6.2

shows approximate Λ values and solar sail sizes for GNSS satellites. Notice how the GPS block

sails reduce by about 30 meters using this method; Galileo, which has a fairly easy resonance to

get to, reduces by over 50 meters.

6.3.2.3 Sail Dynamics After Release

In the case where a mission wants to leave the satellite in the targeted region, after the

satellite reaches the target the sail will be jettisoned. Then the sail’s mass significantly decreases,

thus increasing the area-to-mass ratio and causing Λ to become close to the largest strength of π/2

radians. For the purposes of this study, we will assume that after the satellite is released, it follows

the dynamics of Λ = π/2 radians. The limiting case was solved to equal Equation 2.19.

The Λ = π/2 case can theoretically reach a maximum eccentricity of 1. However, the orbit’s

orientation at the time of deployment (or, in this case, time of releasing the satellite) is critical to
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Table 6.2: Current satellites and what solar sail area would be needed to deorbit either into a
resonant region or direct reentry

Spacecraft Name Mass of
Spacecraft

Sail Size for
Earth Reentry

Sail Size for
Resonance
Disposal

Galileo FOC 710kg[99] 136 m 44 m

GPS IIf 1633 kg [99] 207m 140m

GPS-IIR 1080 kg [4] 168 m 114 m

GLONASS-K 750 kg [79] 120 m 78 m

BeiDou 1100 kg[3] 170 m 121 m

CubeSat at GPS 1 kg 5.1 m 3.5 m

achieve this maximum eccentricity. As Figure 6.1 shows for an initially circular orbit the values

vary from 0.1 to 1 depending on Ωrot0.

In the targeting example, the sail will only achieve a maximum eccentricity of approximately

0.6 after being jettisoned. The path of the sail over the course of a year for this example is shown

in Figure 6.9, where green is the path after deployment of the sail with the satellite attached and

blue is the path after the satellite has been released into its targeting orbit. This could be an issue

leaving the sail as a potential debris hazard.

To guarantee reentry of the sail into the atmosphere after the satellite is released, the orbital

orientation at the point of satellite release would have to change. Instead of determining the

location where the satellite is released solely by what was found to achieve the ideal inclination

and eccentricity change, another factor of achieving the sail reentry of an eccentricity of about 0.76

must be included. An illustration of what that sail’s path would look like with the post release

eccentricity taken into consideration is shown in Figure 6.10.

In this case, the satellite is not released at the maximum inclination and eccentricity but

instead is released after. This will ensure the sail will reenter Earth’s atmosphere because the

orientation of the sail’s orbit with respect to the Sun has changed due to waiting later in the year

to release the satellite. In order to still achieve the correct inclination and eccentricity, despite not
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Figure 6.9: The solar sail’s journey after deployment if sail disposal is not considered.
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Figure 6.10: The solar sail’s journey after deployment with positioning to dispose of the sail.
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releasing it at its maximal change, the initial Λ and RAAN at deployment will need to change. In

the case shown in Figure 6.9, the Λ parameter was increased by 0.1 radians and the initial RAAN

was shifted by 0.4 radians to achieve the desired path as shown in Figure 6.10. This additional

factor would be needed to be taken into consideration in future targeting algorithms.

6.4 Conclusion

This research leverages the simplistic descriptions of averaged dynamics to maximize plane

changes and changes in eccentricity. By choosing a point on Earth’s orbit to unfurl a sail, we can

leverage the orbit geometry to maximize the effect due to the solar radiation pressure perturbation

for a particular area-to-mass ratio, thereby allowing mission designers to pick the smallest sail to

fulfill their objectives.

For lower area-to-mass ratio values, we demonstrated that an angular momentum vector in

the plane d̂ẑ would provide the highest eccentricity change. If a program is interested in targeting

a specific inclination as well, a simple targeting algorithm is applied to minimize the area-to-mass

ratio needed.

If the satellite is to be placed in a targeted region and the sail be jettisoned, the sail orientation

at time of placement becomes more critical. The sail on its own represents a very high area-to-mass

ratio case. In this case, the sail can maximize to eccentricity of 1 at two points around Earth’s orbit

dependent on the strength of the perturbation due to Solar Radiation Pressure (SRP). Therefore, a

mission designer in this scenario would have to consider time of deployment and time of placement

to ensure both changes in solar radiation pressure occur at times that maximize its effects and

bring the sail back after it completes the transfer.

Solar sailing has wide applications around Earth orbit. In particular, utilizing sailing as

an end of life operation for atmospheric reentry can open the market to smaller satellites in high

altitude orbits and ensure orbit safety for the future. This chapter has explored ways in which

mission designers can utilize solar sailing by maximizing the solar radiation pressure effect based

on orbit orientation. Through a detailed derivation of the averaged dynamics, we have noted key
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points about Earth’s orbit that a sail can be unfurled maximizing the effects due to solar radiation

pressure without requiring the sail to be Sun pointing throughout the mission.



Chapter 7

Conclusions

This research has outlined several ways to approach debris mitigation at high altitudes using

naturally occurring perturbations. At higher altitudes, where the Earth’s atmosphere won’t natu-

rally decay orbits, dynamics due to third body perturbations and solar radiation pressure can be

exploited to deobrit satellites. This can be done by placing a satellite in a known region of chaotic

activity due to third body effects as explored in research goal three. This region can be reached by

using a solar sail or a solar sail can be used to directly deorbit as explored in research goal four.

To study the regions of chaos, the accuracy of averaged models was described in research goal one

along with improvements on the doubly averaged model for solar radiation pressure when dealing

with high area-to-mass ratio objects. Potential graveyard orbits as a method of debris mitigation

specific to the medium Earth orbit regime was explored in research goal two where it was shown to

be difficult to find regions of stability for the wide variation of objects that make up space debris.

The summation of each of the results from the research goals are as follows.

7.1 Research Goals

7.1.1 Research Goal 1 - Validation and Formulation of Doubly Averaged Method

For nominal area-to-mass ratio objects the doubly-averaged model was able to follow trends

found in the full dynamical solution. The statistical uncertainties the doubly-averaged model

provides would be large for navigation purposes but were close enough to understand the trends

decades in the future. The doubly-averaged model for solar radiation pressure was not able to
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characterize the magnitude shifts in eccentricity for high area-to-mass ratio objects. By applying

a numerical correction at the beginning of the simulation, the doubly-averaged model was able

to track the dynamics more consistently. However, for a statistically significant level of overlap

between the models, the singly averaged model for solar radiation pressure needs to be used. This

results from this analysis will provide researchers with a quantifiable degree of confidence when

using these tools in the chaotic regime.

7.1.2 Research Goal 2 - Stability of MEO

Finding stable graveyard orbits in medium Earth orbit is extremely challenging when con-

sidering debris type objects. High area-to-mass ratio objects interact with the resonance structure

in MEO differently than the nominal satellites of the region. Therefore, it is difficult to find a

stable region across all debris types. For more chaotic regions, like Galileo, dynamic events like

collisions and explosions relatively quickly depopulate the region due to its unstable nature. GPS

fragment clouds are in a more stable environment, and therefore the eccentricity distributions stay

relatively circular years in the future but thus interact with the nominal orbit for longer time-spans.

GLONASS fragmentation events do not necessarily reach a high enough eccentricity to totally de-

populate but many objects are excited to high eccentricities where they can pose a risk to various

orbits. We have shown through this research goal how the complex dynamics of fragment events

propagate in this chaotic regime which will be fundamental to informing the eventual mitigation

mandate for these orbits.

7.1.3 Research Goal 3 - Targeting Regions of Chaos

Targeting regions of chaos can be a feasible debris mitigation tactic in medium Earth orbit.

Depending on the location of the target, satellites can reach reentry trajectories with relatively large

uncertainties in their placement. Targets that are easier to reach (require less fuel to hit) require

tighter requirements on their placement. Therefore, it will be a balancing act for satellite providers

to consider their technological capabilities (or their ability to target the region with certainty) and
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the cost of reaching the region. This mitigation tactic would guarantee depopulation of the orbit

and therefore reduce collision risks from breakup events that the graveyard scenario would create.

This analysis adds to the validity of targeting chaotic trajectories as a debris mitigation solution

and helps strengthen the argument to employ this technique in medium Earth orbit.

7.1.4 Research Goal 4 - Utilizing Solar Radiation Pressure

Solar sailing is a debris mitigation tactic that could be used in a multitude of high altitude

orbits. The potential issue is that the expensive enormous satellites that currently occupy this

region are too heavy to attach a reasonably sized solar sail to achieve reentry. One potential

mitigation strategy for the region of medium Earth orbit is to target a closer region of chaos

instead of returning the satellite all the way to Earth using solar radiation pressure. Another

consideration for future use is requiring any small satellites that would propose to use one of these

orbits to employ this method of debris mitigation where the sail size requirements are much smaller.

This would potentially help space commerce grow by allowing smaller budget private companies

to use the same orbits that are currently occupied by satellites crucial to our national security

without concern of overpopulation of the orbit. By leveraging the geometry of the orbit, we derived

an optimal location to deploy a sail for either reentry or targeting a specified orbit. This ensures

satellite providers can incorporate this debris mitigation method with the maximum output of their

sail.
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Appendix A

Averaging Background

A.1 Derivation of Averaged Form of SRP

The following derivation of the rotating averaged solution is adapted from Scheeres [96].

To derive the averaged description of the dynamics, we will begin with the disturbing function,

Equations A.1 and A.2.

aSRP =
∂Rsrp

∂r
(A.1)

Rsrp = aSRP · r (A.2)

We then average the disturbing function over an orbit, Equation A.3.

R̄srp =
1

2π

∫ 2π

0
RsrpdM (A.3)

where M is the mean anomaly, to find Equation A.4.

R̄srp =
P0Σ(1 + ρ)

d2
d̂ · r̄ (A.4)

Here d̂ is the unit vector pointing from the Sun to the Earth and r̄ is the average position vector

defined as Equation A.5 [96].

r̄ = −3

2
ae (A.5)
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Substituting this expression into the Lagrange Planetary Equations, Appendix A.2, yields the

dynamics for the averaged problem, Equations A.6 and A.7.

ḣsrp = −3

2

√
a

µ

P0Σ(1 + ρ)

d2

˜̂
d · e (A.6)

ėsrp = −3

2

√
a

µ

P0Σ(1 + ρ)

d2

˜̂
d · h (A.7)

We use a rotating frame oriented along the Sun-body line, pointing from the Sun to the Earth.

Therefore, the vector d̂ rotates about the Earth’s orbit normal ẑ as the body revolves around the

Sun at the rate of change of the true anomaly, ḟ . The vector of the frame that makes it a right

handed coordinate system is t̂ = ẑ× d̂. The averaged Equations A.6 and A.7 are transformed into

a rotating frame using the transport theorem, e.g., ė = ėr + ḟ ẑ × ê [92].

ḣr + ḟ ˜̂z · h = −3

2

√
a

µ

P0Σ(1 + ρ)

d2

˜̂
d · e (A.8)

ėr + ḟ ˜̂z · e = −3

2

√
a

µ

P0Σ(1 + ρ)

d2

˜̂
d · h (A.9)

By using df
dt = h

r2
, the true anomaly can be used as the independent variable to simplify

Equations A.8 and A.9 to Equation A.10.

 de
df

dh
df

 =

 −˜̂z tan Λ ˜̂d

tan Λ
˜̂
d −˜̂z


e
h

 (A.10)

with the SRP parameter defined by Equations 2.16.

The equations of motion, Equation A.10, can be solved in closed form as they are time

invariant linear equations. To reduce the solution to elementary functions, it is helpful to define

the scaled true anomaly.

Then the solution can be found as Equations 2.14 and 2.15 in the paper.
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A.2 Lagrange Planetary Equations

The Lagrange equations in term of the Milaknovitch elements [12]

ḣ = h× ∂R∗

∂h
+ e× ∂R∗

∂e
(A.11)

ė = e× ∂R∗

∂h
+ h× ∂R∗

∂e
(A.12)

The typical formulation of the Lagrange equations taken from [101]

da

dt
=

2

na

∂R

∂M0
(A.13)

de

dt
=

1− e2

na2e

∂R

∂M0
−
√

1− e2

na2e

∂R

∂ω
(A.14)

di

dt
=

1

na2
√

1− e2 sin i

{
cos i

∂R

∂ω
− ∂R

∂Ω

}
(A.15)

dω

dt
=

√
1− e2

na2e

∂R

∂e
− cot i

na2
√

1− e2 sin i

∂R

∂i
(A.16)

dM0

dt
= −1− e2

na2e

∂R

∂e
− 2

na

∂R

∂a
(A.17)



Appendix B

Additional Characterizing Graphs

The plots pertaining to distributions that were too small for the doubly-dynamics to match

the singly dynamics are listed below. The first set is for the nominal area-to-mass ratio case, Figures

B.1 and B.2. The second set is for the first HAMR case, Figure B.3 and B.4.
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Figure B.1: The deviation of the initial conditions in terms of the magnitudes of the Cartesian

coordinates as compared to the final reentry times for a 0.125% initial distribution.
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(d) right ascension of the ascending node

-80 -60 -40 -20 0 20 40 60 80

Deviation of Semimajoraxis (km)

30.6

30.7

30.8

30.9

31

31.1

31.2

31.3

T
im

e
 u

n
ti
l 
c
o
lli

s
io

n
 (

y
e
a
rs

)

Doubly

Doubly  About Mean
Singly

(e) semi-major axis

Figure B.2: The deviation of the initial conditions in terms of the orbital elements as compared to

the final reentry times for a 0.125% initial distribution
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Figure B.3: The deviation of the initial conditions in terms of the magnitudes of the Cartesian

coordinates as compared to the final reentry times for a 0.3% initial distribution
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(d) right ascension of the ascending node
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Figure B.4: The deviation of the initial conditions in terms of the orbital elements as compared to

the final reentry times for a 0.3% initial distribution



Appendix C

Additional Fragment Cloud Distribution graphs

C.1 Varying RAAN

The fragment clouds were also analyzed for their reentry time distributions which are listed

in this appendix. The impactor and parent sets were also separated in the violin plot distributions

for the maximum eccentricities besides the additional reentry time distribution plots.
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.1: Reentry Times of objects produced in explosion event that have reentered after the
simulation starts
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.2: Maximum eccentricity of objects produced in by impactor object in a collision event



188

0 1 2 3 4 5 6 7

 (radians)

90

95

100

105

110

115

120

125

130

135

M
e

a
n

 o
f 

R
e

e
n

tr
y
 T

im
e

s
 (

y
e

a
rs

)

Impactor Only

(a) GPS

0 1 2 3 4 5 6 7

 (radians)

600

800

1000

1200

1400

1600

1800

2000

N
u

m
b

e
r 

o
f 

R
e

e
n

te
ri
n

g
 s

o
lu

ti
o

n
s

Impactor Only

(b) Galileo

0 1 2 3 4 5 6 7

 (radians)

520

540

560

580

600

620

640

660

680

700

720

N
u

m
b

e
r 

o
f 

R
e

e
n

te
ri
n

g
 s

o
lu

ti
o

n
s

Impactor Only

(c) GLONASS

Figure C.3: Number of objects that reenter from impactor which were produced in ecollision event
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.4: Reentry Times of objects produced in collision event that have reentered after the
simulation starts
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.5: Maximum eccentricity of objects produced in by parent object in a collision event
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Figure C.6: Number of objects that reenter from parent which were produced in collision event
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.7: Reentry Times of objects produced in collision event that have reentered after the
simulation starts
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.8: Reentry Times of objects produced in collision event that have reentered after the
simulation starts
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C.2 Varying Epoch

The same additional plots of reentry times for varying the initial epoch are listed below.
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.9: Reentry Times of objects produced in explosion event
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(a) GPS

(b) Galileo

(c) GLONASS

Figure C.10: Maximum eccentricity of objects produced in collision event
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