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 Low-thrust propulsion technologies such as electric propulsion and solar sails are key to 

enabling many space missions which would be impractical with chemical propulsion. With 

exhaust velocities 10x higher than chemical rockets, electric propulsion systems can deliver a 

spacecraft to its target state for a fraction of the fuel. Due to the low thrust, the control must 

remain active for weeks or even years. When three-body dynamics are considered, the change in 

dynamics over the course of a trajectory can be extreme. This greatly complicates low-thrust 

mission design and navigation in cislunar and translunar space, making it an area of active 

research.  

 Deterministic strategies for trajectory design and optimization rely on linearizing the 

problem and solving a series of linearized problems. In regimes with simple or slowly-varying 

dynamics, the linearization holds “true enough”, and we can easily arrive at a solution. However, 

three-body environments readily provide real cases where the linearization for all but the most 

carefully-chosen problem descriptions break down. This thesis presents a few modifications to 

existing algorithms to improve convergence.   

 This thesis then uses this fast, robust method for trajectory optimization to generate 

training samples for a machine learning approach to optimal trajectory correction. We begin with 

one optimal low-thrust transfer. Then, we optimize thousands of transfers in the neighborhood of 

the nominal transfer. These transfers are described in the language of indirect optimal control, 

with the optimal control given as a function of Lawden’s primer vector. We see that for a slightly 
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different initial condition, the states and the costates both follow a slightly different trajectory to 

the target. A feedforward artificial neural network is trained to map the difference in states to the 

difference in costates, with a high degree of accuracy.  

 Finally, we explore a potential application of this neural network: spacecraft that can 

navigate themselves autonomously in the presence of errors. We propose this as a method for 

future spacecraft that can optimally correct their trajectories without ground contacts. We 

demonstrate neural network navigation in two simplified dynamical environments: two-body 

heliocentric gravity, and the Earth-Moon circular restricted three body problem.  
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