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Quasi-periodic orbits are of great interest for mission design due to their prevalence in as-

trodynamics. Incorporating quasi-periodic orbits in the design process expands the design space

and have the potential to decreases station-keeping efforts. Quasi-periodic orbits are computation-

ally more complex than periodic orbits, however the benefits of utilizing quasi-periodic orbits and

their invariant manifolds can outweigh the computational burden. Methods and tools to handle

the larger design space are needed to make the study of families of quasi-periodic orbits tractable

to mission designers. In this thesis we leverage single-parameter continuation of n-dimensional

quasi-periodic invariant tori to compute quasi-periodic orbits with specific orbit frequencies and

with specific orbital characteristics. Additionally, we formulate and solve optimization problems

such that the optimization variables are the frequencies of the quasi-periodic orbits. The solution

process incorporates a novel parametric constraint, which constrains the direction of travel in fre-

quency space in continuation methods. Moreover, we develop search strategies which successively

use parametric constraints to explore families of quasi-periodic orbits. Lastly, we leverage number

theoretic properties of quasi-periodic orbits to avoid the effect of resonances in the continuation

process. We compute the family of the Earth-Moon L2 quasi-halo orbits in the circular restricted

three-body problem to serve as a test bed and solution space for the work in this thesis.
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Chapter 1

Introduction

1.1 Introduction and Background

Dynamical systems theory offers an abundance of tools which has accelerated research in

astrodynamics enabling the construction of complex mission designs which were previously unimag-

inable. Dynamical systems theory provides a systematic way of discovering dynamical structures

which are known to organize the dynamics of the phase space. In astrodynamics these are, namely,

equilibrium points, periodic orbits, quasi-periodic orbits (QPOs), and their stable and unstable

manifolds. By leveraging the tools afforded by dynamical systems theory, researchers and mis-

sion designers are able to take advantage of these structures to accomplish science objectives and

efficiently explore space.

The first mission to utilize dynamical systems theory in the trajectory design process was

Genesis which injected into a halo orbit about the Sun-Earth L1 Lagrange point [119]. The transfer

and return trajectory from this orbit utilized the orbit’s stable and unstable manifolds. Since that

time, a number of missions have utilized dynamical systems theory to design trajectories to and

from the vicinity of the libration points. One notable mission is ARTEMIS which first launched as

THEMIS and later repurposed for a lunar flyby [40]. ARTEMIS became the first mission to achieve

orbit around the Earth-Moon L1 and L2 Lagrange points, utilizing a low-energy transfer between

them. Looking forward there are many more libration point missions planned [162, 132, 7, 6, 5] such

as NASA’s flagship Artemis program. The Lunar Gateway is set to be launched to an Earth-Moon

near rectilinear halo orbit (NRHO) about the L2 Lagrange point [167, 169].



2

Figure 1.1: Depiction of a quasi-periodic torus (a) and a quasi-periodic orbit (b).

Of the dynamical structures utilized by libration point missions, quasi-periodic orbits are

quite challenging to compute, more so than periodic orbits. The challenge is due to their inherent

property of never repeating themselves. To conceptualize a quasi-periodic orbit consider the 2-

dimensional torus in plot (a) in Figure 1.1. A trajectory, in cyan, lies on the surface of this torus.

The trajectory evolves in such a way that the trajectory will never repeat itself, covering the surface

in infinite time. The torus and the trajectory undergo smooth deformations, consistent with the

dynamics a spacecraft experiences, resulting in a quasi-periodic orbit in plot (b). Despite the

complicated geometry of the quasi-periodic orbit, it can be easily visualized as motion on a torus.

Due to the consistency between the trajectories on the torus and on the quasi-periodic orbit, we

call the torus a quasi-periodic invariant torus. Quasi-periodic invariant tori are characterized by

having a rationally independent set of frequencies which govern the trajectory on the surface of the

torus and give insight into the motion of a spacecraft.

At the expense of a higher computational complexity, quasi-periodic orbits offer numerous

benefits over equilibrium points and periodic orbits. To understand the benefits let us first examine

a commonly studied multi-body dynamical system in astrodynamics, the circular restricted three-

body problem. In the circular restricted three-body problem there are five equilibrium points, and

by Lyapunov’s center theorem [159, 87, 134], about each equilibrium point there are 1-parameter
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families of periodic orbits. Under certain circumstances (mentioned in Chapter 2) there exists a 1-

parameter family of 2-dimensional quasi-periodic orbits about a periodic orbit. Sweeping across the

family of periodic orbits results in a 2-parameter family of quasi-periodic orbits. Therefore, in the

circular restricted three-body problem quasi-periodic orbits are more plentiful than periodic orbits,

highlighting the greater abundance of options for mission designers to utilize when considering

quasi-periodic orbits in the design process.

The (un)stable manifold extending from an equilibrium point is a 1-dimensional curve,

whereas the (un)stable manifold extending from a periodic orbit forms a 2-dimensional surface

in phase space. Likewise, the (un)stable manifold of an n-dimensional quasi-periodic orbit forms a

n + 1-dimensional surface. Considering quasi-periodic orbits form higher-parameter families than

periodic orbits then there are vastly more low-energy trajectories which more densely fill phase

space, providing versatility to the mission designer in designing complex missions.

Moreover, periodic orbits generically become quasi-periodic when periodic or quasi-periodic

perturbations are added to the system’s dynamics [107]. Farquhar notes this behavior in [65] in

which he studies the use of halo orbits for Lunar operations. He also adds that including these higher

order effects presents a more dynamically accurate solution which lowers station-keeping costs by

saying, “The accurate nominal trajectories are actually quasi-periodic and can be obtained by

finding particular solutions to equations of motions that include the effects of nonlinearities, lunar

eccentricity, and the sun’s gravitational field. If a satellite is forced to follow an inaccurate nominal

path, the stationkeeping fuel expenditure can become quite high.”

It is evident that to leverage the dynamics of a system to design low-fuel missions it is critical

to understand quasi-periodic orbits and their manifolds. This motivates the creation of tools to aid

mission designers and motivates this thesis.

The numerical computation of quasi-periodic orbits is a fairly recent development and made

great strides in the early 2000s with continued development now [71, 83]. We provide a brief

background on the methods to compute quasi-periodic orbits, however the reader is referred to the

recent book written by Àlex Haro et al. for an in depth treatment on the history of computing quasi-



4

periodic orbits and the different methods available [84]. Early methods relied on semi-analytical

methods such as Lindstedt-Poincaré series expansions and reduction to the center manifold [63, 74,

103]. The benefit of these methods is that they can compute orbits with very high accuracy, however

they suffer from having small radii of convergence as more terms are incorporated into the solution

and thus struggle to compute orbits with rather large amplitudes. Moreover, the formulation of the

solutions have to be modified any time the type of orbit changes or the dynamical system changes.

From the year 2000 and onward the developed methods primarily focus on fully numerical

implementations. A popular collection of methods, known as parameterization methods, has the

advantage of being fast, backed by rich theory, and simultaneously computing the stability infor-

mation for reducible tori [44, 45, 57, 82, 84, 83, 104, 115, 46, 172]. However, the downside of

parameterization methods is they have to be curated to the type of dynamical system. Moreover,

other available methods have a simpler implementation than the parameterization methods, making

the parameterization method less favorable from a practitioner’s point of view.

Another popular method is a flow map method first conceived by Castellà and Jorba [101, 47]

and independently developed by Gómez and Modelo [75], and later improved upon by Olikara and

Scheeres [140]. This method has been successfully used in a variety of contexts [22, 19, 139,

135, 121, 131, 20, 16, 166]. It has the advantage of being simple to implement, applicable to

a range of dynamical systems, is indifferent to the stability type of the computed orbits, and

computes the stability of the orbits as a byproduct. The downside is that the method is O(n3)

in the number of computations and O(n2) in the required storage space. In comparison, the

parameterization methods are O(n log n) in the number of computations and O(n) in the storage

requirement. Despite this drawback we opt to use this flow map method to compute quasi-periodic

orbits here. However, the tools and methods developed in this thesis are amenable to the various

quasi-periodic orbit computational schemes.

With the advent of powerful modern personal computers the barrier to studying quasi-

periodic orbits has greatly diminished. This is likely a reason, alongside the development of efficient

computational methods, that quasi-periodic orbits are gaining popularity in the astrodynamics re-
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search community. The utilization of quasi-periodic orbits and their stable and unstable invariant

manifolds in space missions will become more widespread as more research on the application of

quasi-periodic orbits is published. This is a motivation for this thesis which aims to develop tools

to explore families of quasi-periodic orbits. Many of the tools used and developed here can be used

in a variety of dynamical systems, but this thesis will exclusively focus on astrodynamics, and in

particular the circular restricted three-body problem. The presentation of the material here is kept

general where possible and will be drawn to the specific case of the circular restricted three-body

problem.

1.2 Contributions

Thesis Statement: Quasi-periodic orbits generally form multi-parameter families of orbits

in astrodynamics, expanding the design space, presenting challenges for mission designers. Lever-

aging the natural parameterization of quasi-periodic orbits, their orbit frequencies, the design space

becomes simpler to explore and find specific solutions.

The goals of this thesis is to make simple the inherently complex nature of quasi-periodic

orbits in astrodynamics, and to present practical and efficient tools for their computation in mission

design, thus lowering the barrier for their use in space missions. We accomplish these goals by

presenting an existing quasi-periodic orbit computational algorithm in generality in great detail

(Chapter 3), studying a 2- and 3-parameter family of quasi-periodic orbits (Chapter 3), improving

the continuation of families of quasi-periodic orbits (Chapters 3 & 4), and developing tools to

compute specific quasi-periodic orbits within single- and multi-parameter families (Chapters 5 &

6). A detailed description of the contributions are given below.

Detailed description of an n-dimensional invariant torus algorithm: Much research has used

and described the quasi-periodic orbit computational method, commonly referred to as GMOS,

however it has only been used to compute diffeomorphisms of 2- and 3-dimensional quasi-periodic

invariant tori, and the body of literature usually leaves out critical information necessary for the

numerical implementation of the algorithm. As research in astrodynamics progresses the interest
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in studying more complex dynamical systems will increase, and thus the interest in computing

invariant tori of dimension greater than 3 will increase. A literature review has revealed that the

generalization of this algorithm has not been presented in such detail before. Therefore, in this

thesis a very detailed generalization of the algorithm applicable to n-dimensional tori will be given

allowing researchers to more easily implement it.

In-depth studies of relevant families of quasi-periodic orbits: NASA’s Artemis program has

sparked interest in the Earth-Moon L2 NRHO family. This 1-parameter family is surrounded by a

2-parameter family of quasi-halo orbits, and in the vicinity is also a 3-parameter family of stable

quasi-halo orbits. Therefore, a study of the 2- and 3- parameter families of the Earth-Moon L2

quasi-halo orbits is conducted to better understand the space in which the Lunar Gateway will be

staged in. This study examines a novel parametric constraint to fix the continuation direction in

frequency space, examines a previously unstudied portion of the 2-parameter family of quasi-halo

orbits along with a sub-family of the 3-parameter family of quasi-halo orbits, computes several

orbital characteristics, makes observations about the family, and speaks to applications to mission

design. This work presents a paradigm in which to study and visually represent data for 2-parameter

families efficiently.

Improved performance of the continuation of quasi-periodic invariant tori: One major chal-

lenge in the continuation of families of quasi-periodic orbits is the presence of resonances. Reso-

nances inhibit the ability of algorithms to compute quasi-periodic invariant tori, thereby halting

the continuation procedure. A method to determine the irrationality of floating point numbers is

leveraged to construct two novel methods to avoid the issues of resonances. The first method uses

a line search to pick a step size which predicts a torus with the “most” irrational set of frequencies,

promoting better-conditioned computations which lead to faster matrix inversions and less Newton

iterations for convergence. The second method determines when the continuation is near a reso-

nance and decides when to increase the step size to jump beyond the resonance. Together these

two methods improve the continuation of families of quasi-periodic orbits by mitigating the effects

of resonances.
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Enhanced mission design capabilities applied to families of orbits: An algorithm is developed

which adapts standard continuation methods to be able to precisely compute specific orbits based

on a target set of orbit frequencies. This has multiple applications and a couple of them are ex-

plored here. Both applications aim to enhance the capability of mission designers to find orbits from

within families of orbits which satisfy constraints which can be derived from mission constraints.

The methods used are not restricted to quasi-periodic orbits and astrodynamics; they are general

enough for a class of problems satisfying the conditions of the implicit function theorem. The first

application is a modified Newton’s method to compute an orbit from a family of quasi-periodic

orbits with desired orbital characteristics. The second application imports techniques from opti-

mization to optimize over a family of quasi-periodic orbits with equality and inequality constraints.

1.3 Organization

This section summarizes the remaining chapters of the thesis.

Chapter 2 introduces the notation which is used throughout this thesis and outlines the

background material which is fundamental to the research presented here. Section 2.2 introduces

the notion of a torus, and defines different types of tori. Section 2.3 gives a discourse on dynamical

systems theory which provides the framework in which quasi-periodic invariant tori are computed.

Section 2.4 presents the dynamical system in which orbits are computed. Section 2.5 goes over the

implicit function theorem and the manifolds which define families of orbits. Section 2.6 presents the

ideas of continuation methods and shooting methods which are vital to the computation of families

of quasi-periodic orbits. Lastly, Section 2.7 provides the elementary principles of optimization and

known algorithms for constrained and unconstrained optimization.

Chapter 3 provides an in depth study of the Earth-Moon L2 quasi-halo orbits in the circular

restricted three-body problem tailored toward a mission design perspective. Section 3.2 generalizes

an existing quasi-periodic orbit computational scheme to compute n-dimensional quasi-periodic

invariant tori. Section 3.3 describes a method to compute the amplitudes of an invariant surface.

Section 3.4 overviews the halo orbit family and points out important aspects for the remaining
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sections. Section 3.5 presents findings for the 2-parameter family of quasi-halo orbits, while Section

3.6 presents findings on the 2- and 3-parameter family of quasi-halo orbits in the vicinity of the

stable halo orbits.

Chapter 4 defines two methods to avoid the difficulties of computing quasi-periodic orbits near

resonances. Section 4.2 discusses the problem of identifying a resonance between orbit frequencies.

Section 4.3 presents a line search method for picking the most irrational set of orbit frequencies

within a range of continuation step sizes. Section 4.4 presents a heuristic method for determining

when a continuation scheme should increase the step size to jump beyond a resonance. Section

4.5 analyzes the performance of the methods on a test example. Section 4.6 discusses the impact

of resonances on the computations of quasi-periodic orbits and provide advice for dealing with

resonances in computing branches of quasi-periodic orbits. Lastly, Section 4.7 concludes the chapter.

Chapter 5 presents a novel algorithm for computing quasi-periodic orbits within single- and

multiple- parameter families. This algorithm enables the precise computation of orbits within

a family and is equivalent to a retraction function. Section 5.2 goes over the development of the

retraction. Section 5.3 presents the algorithm for the retraction. Section 5.4 validates the retraction

with two examples. The first example computes quasi-halo orbits from a 2-parameter family which

have specific sets of orbit frequencies. The second example computes an orbit which is a specific

distance from the initial orbit along a 1-dimensional submanifold of constant energy. Section 5.5

ends the chapter with a discussion of the advantages of the retraction and presents various uses for

it.

Chapter 6 presents applications for the use of the algorithm developed in Chapter 5. The

examples highlight the power of the retraction function and its use for developing tools to enhance

mission design in multi-parameter families of quasi-periodic orbits. Section 6.2 defines the optimiza-

tion problem. Section 6.4 details a modified Newton’s method devised for computing solutions with

specified characteristics. Several examples in the mindset of mission design are presented. Section

6.5 details a modified gradient descent algorithm which recasts an equality constrained problem into

an unconstrained optimization problem. Examples of optimization problems are presented. Section
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6.6 uses the modified gradient descent algorithm in an augmented Lagrangian method (ALM) to

perform constrained optimization with inequality constraints. And again, examples of optimization

problems are presented. Lastly, Section 6.7 ends the chapter with concluding remarks.

Lastly, Chapter 7 concludes this thesis by summarizing the main contributions, presenting

ongoing challenges, and defining avenues for future work.

1.4 Publications
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Conference Publications

A) Lujan, D., and Scheeres, D. J., “Frequency structure of the nrho family in the earth-
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Chapter 2

Preliminaries

2.1 Introduction

This chapter is devoted to defining the fundamental concepts and notation necessary to

understand the work in this thesis. The hope is that the reader can read through this material

with limited background knowledge and be able to understand the research methods used here, and

walk away with an understanding of the numerical computation of quasi-periodic invariant tori. At

the roots of this subject are dynamical systems theory, Kolmogorov-Arnold-Moser (KAM) theory,

manifold theory, and numerical analysis. Dynamical systems theory and manifold theory will be

treated in fair detail, while KAM theory will only be introduced at a high level, and no attention

is brought to numerical analysis. Those familiar with the presented material will only need to skim

through to learn the notation.

This chapter is organized as follows: Section 2.2 introduces the notion of a torus, and defines

different types of tori. Section 2.3 gives a discourse on dynamical systems theory which provides the

framework in which quasi-periodic invariant tori are computed. Section 2.4 presents the dynamical

system in which orbits are computed. Section 2.5 goes over the implicit function theorem and the

manifolds which define families of orbits. Section 2.6 presents the ideas of continuation methods and

shooting methods which are vital to the computation of families of quasi-periodic orbits. Lastly,

Section 2.7 provides the elementary principles of optimization and known algorithms for constrained

and unconstrained optimization.

The information presented in this chapter is covered in much more detail in various textbooks.
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The reader is strongly encouraged to read [133] for a treatment on the theory of dynamical systems

theory applied to general dynamical systems. This book is where much of Section 2.3 comes from.

See [154] for a treatment on dynamics, especially Hamiltonian dynamics, and techniques which are

vital to the aspiring astrodynamicist. See [158] to dive deeper into the numerical tools which are

used to numerically study dynamical systems. The ideas in this book form the basis for comput-

ing families of orbits in dynamical systems. See [111] for a rigorous treatment on invariant tori

in dynamical systems. See [39] for families of quasi-periodic invariant tori in dynamical systems

with a focus on KAM theory in different settings. See [116] for a comprehensive background on

manifold theory and differential geometry. A complementary text is [33] which presents optimiza-

tion on smooth manifolds. Additionally, the reader is referred to the works of [25, 35, 120, 138] for

background on classical optimization theory, including constrained and unconstrained optimization,

linear and nonlinear programming, and convex optimization. Lastly, see [56, 12] for a theoretical

treatment on KAM theory.

2.2 The Torus

At the heart of a quasi-periodic invariant torus is the topological object known as a torus.

It is the Cartesian product between circles. A circle is defined as the space S1 = {θ | 0 ≤ θ ≤ 2π}.

Then, an n-dimensional torus is defined as Tn = S1 × . . .× S1︸ ︷︷ ︸
n

, which is called an n-torus for short.

An n-torus is parameterized over its surface with n independent coordinates θ = [θ0, . . . , θn−1]

with 0 ≤ θi ≤ 2π for i = 0, . . . , n− 1. See Figure 2.1 for an example of a 2-dimensional torus with

constant θ0 and θ1 circles.

With the definition of a torus given we may proceed to define a quasi-periodic torus. A

quasi-periodic torus is a special case of a torus in which the parameters θ are governed by the set

of dynamics

θ̇ = ω (2.1a)

ω̇ = 0 (2.1b)
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Figure 2.1: A 2-dimensional torus with constant θ0 (red) and θ1 (blue) circles.

wherein each θi evolves at a constant rate in time. The rates are called the torus frequencies and

are denoted by the vector ω. This vector is also called the frequency vector. Furthermore, the

non-resonance condition

⟨ω,k⟩ ≠ 0, ∀ k ∈ Z \ {0} (2.2)

must be met by the frequencies to ensure the trajectory following Equation (2.1) densely covers the

surface of the torus. When the non-resonance condition is met we call the torus an n-dimensional

quasi-periodic torus (Figure 2.2) and call the frequencies incommensurate. In the case the non-

resonance condition is not met then the dimension of the torus decreases to the number of rationally

independent frequencies.

More machinery is required to fully define a quasi-periodic invariant torus. This machinery

lies within dynamical systems theory and will be defined in Section 2.3.2.

2.3 Dynamical Systems Theory

A dynamical system is a set of rules which govern the time evolution of points in a phase

space. In this thesis we only consider the phase space to be Rd even though phase space can be on a

general manifoldM. Let x ∈ Rd be a point in phase space, then a general autonomous dynamical

system takes the form

ẋ = f(x), (2.3)
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Figure 2.2: A 2-dimensional quasi-periodic torus with a partial trajectory.

where t ∈ R is time and f : Rd → Rd is called the vector field. The solution flow (or simply flow)

to Equation (2.3) is the differentiable mapping φ : Rd × R→ Rd such that

(1) φt0(x) = x

(2) φt(φs(x)) = φt+s(x), ∀ t, s ∈ R,

where x(t) = φt(x0) gives the state of a particle at time t starting from the initial condition x0 at

the initial time t0. Moreover, the vector field is recovered from

f(x) =
dφt(x)

dt
. (2.4)

When the word “orbit” or “trajectory” is used we mean

Γx = {φt(x) | t ∈ R}, (2.5)

the collection of states in forward and backward time starting with x at t0. When x(t) is referenced

as the orbit it is implied to mean the orbit induced by x(t) in forward and backward time.

The dynamical systems of interest in this thesis are Hamiltonian systems. Before defining

a Hamiltonian system, we give the definition of the broader category of dynamical systems called

conservative systems. A conservative system is a class of dynamical systems in which there is a

conserved quantity along the solution flow, meaning the following equation holds:

∇I · f = 0, (2.6)
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where I = I(x) is constant along x(t).

A Hamiltonian system typically describes the motion of a particle under natural forces.

Systems of this type have coordinates q,p ∈ Rd which define the position and momentum of a

particle in phase space, respectively. In this case, phase space is always an even dimension equal to

2n and x = [qTpT ]T . For a Hamiltonian system the conserved quantity is the Hamiltonian function

H(q,p, t) = p · q̇ − 1

2
mq̇ · q̇ + U(q, t), (2.7)

where U is the potential function of the forces acting on the particle. The dynamical system is

generated from taking the partial derivative of the Hamiltonian with respect to q and p, resulting

in

ẋ =

 0n In

−In 0n


∂H

∂q

∂H
∂p

 , (2.8)

where 0n is an n× n matrix of zeros and In is the n× n identity matrix.

While the Hamiltonian formalism is not used in this thesis it is important to note when

the term “Hamiltonian” is used to describe a system, force, or perturbation the implication is

the object in question can be tied back to a Hamiltonian formalism and all the assumptions and

results pertaining to Hamiltonian systems apply. Notably, the state transition matrix (STM) in a

Hamiltonian system is a symplectic matrix. One important property of a symplectic matrix is the

determinant always equals 1, meaning the matrix is always invertible. Another implication is its

eigenvalues come in reciprocal pairs. Let λ be an eigenvalue, then 1/λ is also an eigenvalue. See

[154] for more properties of symplectic matrices. The symplectic nature of the STM has important

implications on the linear behavior surrounding a trajectory.

2.3.1 Linearization

A fundamental tool in the study of dynamical systems is the linearization of solutions, which

provides insight into the local dynamics, and allows for the detection of nearby dynamical objects.

Let x(t) be a solution to Equation (2.3). Suppose one is interested in how a small deviation δx0 ∈ Rd
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evolves in time then the linear dynamical system describing the motion of δx(t) is derived from the

following:

d(x+ δx)

dt
= f(x+ δx)

dx

dt
+

dδx

dt
= f(x+ δx)

f(x) +
dδx

dt
= f(x+ δx). (2.9)

A Taylor series expansion of the right-hand side of Equation (2.9) reveals

f(x+ δx) = f(x) +
df(x)

dx

∣∣∣∣
x(t)

δx+O(∥δx∥2). (2.10)

Substituting Equation (2.10) into Equation (2.9), canceling like terms, and dropping higher-order

terms leads to

dδx

dt
=

df(x)

dx

∣∣∣∣
x(t)

δx. (2.11)

Letting A(t) = df(x,t)
dx |x(t), Equation (2.11) can be rewritten in the more familiar form

δẋ = A(t)δx, (2.12)

where A(t) is the Jacobian matrix of f(x) evaluated at x(t).

The general solution to Equation (2.12) is

δx(t) = Φ(t, t0)δx0, (2.13)

where Φ(t, t0) : Rd → Rd is called the fundamental matrix solution or the state transition matrix.

The STM is the solution to the following linear differential equation

Φ̇ = A(t)Φ, Φ(t0, t0) = I, (2.14)

where A(t) is as previously defined. The use of Φ in dynamical systems theory to help organize the

phase space will be made clear in the next section when discussing the common invariant sets in

astrodynamics.
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2.3.2 Invariant Sets

The ability of dynamical systems theory to organize phase space by detecting and computing

invariant sets is what makes dynamical systems theory so attractive to those studying dynamical

systems. An invariant set is a set Λ ⊂ Rd such that φt(Λ) = Λ for all t. Dynamical system theory

provides systematic approaches to determining the invariant sets in a dynamical system.

We now have the machinery to introduce the notion of an invariant torus. An n-torus is

said to be invariant of the vector field f if there exists an invertible and differentiable function 1

τ : Tn → Rd such that the restriction of the vector field to T = {τ (θ) | θ ∈ Tn} is mapped by

the inverse of the differential map Dτ−1 into the constant vector field on the torus in Equation

(2.1). The orbit in Rd given by τ is an invariant set under the flow φ, and the orbit in Tn densely

covers the surface of the torus with frequencies ω satisfying Equations (2.1) and (2.2). Each point

τ (θ) = x generates an orbit, and each orbit belongs to the same invariant set. The function τ is

commonly referred to as a torus function.

The value of n determines the type of invariant set the invariant torus is diffeomorphic to. For

n = 0 the invariant set is an equilibrium point, for n = 1 the invariant set is a periodic orbit, and

for n ≥ 2 the invariant set is a quasi-periodic orbit. In the case of n ≥ 2 we call the invariant torus

a quasi-periodic invariant torus. Sections 2.3.3 to 2.3.6 are devoted to defining and describing the

common invariant sets in astrodynamics, namely, equilibrium points, periodic orbits, quasi-periodic

orbits, and the invariant stable and unstable manifolds emanating from these types of orbits.

2.3.3 Equilibrium Points

The simplest invariant set is the equilibrium point. An equilibrium point of Equation (2.3)

is a point x∗ which satisfies

f(x∗) = 0. (2.15)

1 An invertible and differentiable function is called a diffeomorphism.
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The invariant set defined by an equilibrium point is the singleton Λ = {x∗}. An object at this

point in phase space will never change its state unless perturbed by a force not considered in the

dynamical model.

Studying the linearization of the dynamics about x∗ reveals information about the types of

motion in the vicinity of x∗. The resulting linear differential equation

δẋ = Aδx (2.16)

is a linear time invariant system since the Jacobian matrix, or dynamics matrix, A = df(x)
dx |x∗ is

constant. The space surrounding x∗ in the linear regime is composed of three distinct subspaces,

also called eigenspaces, the stable subspace, Es, the unstable subspace, Eu, and the center subspace,

Ec. The direct product of these three subspaces compose Rd with dimEs + dimEu + dimEc = n.

The local dynamics is organized according to these three types of subspaces and the eigenvalues of

A tell which subspaces are present around x∗. Suppose (λ,ψ) is an eigenpair of A, then the three

subspaces are defined as follows:

Es = span{Re(ψ), Im(ψ) | Re(λ) < 0}, (2.17)

Eu = span{Re(ψ), Im(ψ) | Re(λ) > 0}, (2.18)

Ec = span{Im(ψ) | Re(λ) = 0}. (2.19)

For any δx0 ∈ Es then limt→∞ ∥δx(t)∥ → 0, showing asymptotic stability. Conversely,

for any δx0 ∈ Eu then limt→∞ ∥δx(t)∥ → ∞, showing instability. For deviations which are in

the center eigenspace the solution δx(t) remains bounded for all time if A is semisimple. An

equilibrium point is deemed stable if all the eigenvalues are without positive real parts and A is

semisimple. Otherwise, the equilibrium point is deemed unstable. The classification of stability

becomes more involved when A is not semisimple. See Section 2.7 in [133] for more information

on the classifications of linear stability. The symplectic nature of the STM has ramifications on

the eigenvalues of the Jacobian matrix. The existence of an unstable eigenvalue λu implies the

existence of a stable eigenvalue λs = −λu, enforcing the stable and unstable eigenspaces to appear
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together. When a stable and unstable eigenvalue are paired together in the linearization the linear

behavior is called a saddle. Moreover, the existence of a complex conjugate pair of eigenvalues λ

and λ̄ implies the existence of two additional complex conjugate pairs −λ and −λ̄. In the event

that Re(λ) = 0 then the additional conjugate pair is the same as the original pair and do not

appear in the spectrum of A. When Re(λ) = 0 the linear behavior is called a center. A depiction

of the saddle and center behavior is in Figure 2.3. The black arrows depict the direction of motion

a particle would experience in each subspace. An equilibrium point that is described with linear

behavior center×center×saddle implies there are two independent center modes and one saddle

mode of motion.

Figure 2.3: Depiction of the distinct eigenspaces surrounding an equilibrium point.

It is important to note that the eigenspaces are only invariant of the linear dynamics in

Equation (2.16) and not invariant of the original nonlinear system. However, the vectors which

span each subspace lie tangent to the nonlinear invariant manifolds ([133]) and provide good initial

estimates of the nonlinear invariant manifolds in a small region of x∗, after which the nonlinear

dynamics warp these directions. The process to generate the nonlinear invariant manifolds from the

linearization of other invariant objects will be discussed throughout the remainder of Section 2.3,

however it is worth mentioning now the types of invariant structures present around an equilibrium

point based on the eigenvalues of A when f is Hamiltonian.

If there exists a λ such that Re(λ) < 0 or Re(λ) > 0 then both a stable and unstable
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manifold exist. The combination of these two manifolds results in a hyperbolic manifold. If there

exists a purely imaginary pair of eigenvalues then the invariant sets are periodic orbits as given by

Lyapunov’s center theorem [87, 134, 159]. This theorem states:

Let x∗ be an equilibrium point of ẋ = f(x, t). Suppose λ = iω is an eigenvalue of the Jacobian

matrix. Then there exists a continuous one-parameter family of periodic orbits about x∗. Moreover,

the period of the periodic orbits approaches 2π/ω as the periodic orbits approach x∗.

There is another condition on the remaining eigenvalues λi which says that ω/λi can not be

an integer. Lyapunov’s center theorem enables the detection of families of periodic orbits about

equilibrium points.

2.3.4 Periodic Orbits

A point x is said to be on a periodic orbit if there exists a T > 0 such that

φT (x) = x. (2.20)

The variable T is called the period of the periodic orbit and is the minimum T necessary for

Equation (2.20) to be satisfied, implying the orbit Γx consists of a closed curve in phase space. A

point on a periodic orbit traces out this curve and repeats its state every T time units. A change

of variables can be made so that the orbit is parameterized by an angular coordinate θ0 ∈ [0, 2π]

such that x = x(θ0) = x(θ0 + 2π). The torus function τ (θ0) is given by τ (θ0) = x(T
θ0
2π ).

Suppose x∗ is an equilibrium point which satisfies the conditions of Lyapunov’s center the-

orem, then we know a one-parameter family of periodic orbits exists in the vicinity of x∗. The

theorem does not state how large this family of periodic orbits is or how to find the family. In

general, one does not know how large a family of periodic orbits will be, however the linearization

of f(x) about x∗ provides information on how to generate a guess of a nearby periodic orbit. The

eigenvector ψ associated with the imaginary eigenvalue iω of the dynamics matrix provides insight

into the prediction of a point x on a periodic orbit while iω provides insight into the value of the

period. Recall the linearization is only valid close to the equilibrium point, so only a small step size
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∆s should be taken in the center subspace. The value of ∆s varies from system to system, but a

good value in the non-dimensional circular restricted three-body problem is between 1e-3 and 1e-6.

Equation (2.21) gives how to make a prediction of a periodic orbit about an equilibrium point

with the imaginary eigenvalue iω and corresponding imaginary eigenvector ψ.

x̃0 = x
∗ + Im(ψ)∆s (2.21a)

T̃ =
2π

ω
(2.21b)

In the above equations the (̃·) above a variable indicates the quantity is an approximate solution

to the nonlinear system. The process to correct the approximate solution and find invariant sets in

the nonlinear system is not presented in this thesis, but it follows the ideas in Section 2.6.2. The

interested reader is directed to [15] for an algorithm to find families of periodic orbits.

Suppose we have a periodic orbit x(t) with period T and want to study the linear behavior

about the orbit. Following the linearization process in Section 2.3.1 gives the following periodic

linear system.

δẋ = A(t)δx, δx(t0) = δx0, A(t+ T ) = A(t) (2.22)

The solution to Equation (2.22) is still the general solution to linear systems given in Equation

(2.13), however the analysis to determine the eigenspaces is different from an equilibrium point.

The theory to study periodic linear systems is known as Floquet theory [133]. A linear system is

said to be Floquet or reducible if there exists a periodic change of coordinates x = P (t)y with

period T such that the linear system of Equation (2.22) reduces to a constant coefficient linear

system. The eigenvalues of the dynamics matrix of the constant coefficient system describe the

linear behavior about a periodic orbit.

Determining the eigenspace around a periodic orbit relies on studying the eigenvalues of the

STM evaluated over one period, Φ(T+t0, t0). The resulting matrix is called the monodromy matrix

and is denoted by M . Suppose (λ,ψ) is an eigenpair of M , then λ is called a Floquet multiplier of

M . The successive application of M to ψ results in

Mkψ = λkψ = ek lnλψ, (2.23)
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where lnλ is called the Floquet exponent and is a special case of the Lyapunov exponent. The

Lyapunov exponent characterizes the long-term behavior of a system and quantifies the rate at

which nearby orbits leave an area.

The classification of the eigenspace relies on the values of the Floquet multipliers and differs

from the classification for an equilibrium point. Let (λ,ψ) be an eigenpair of M , then the three

subspaces are defined as follows:

Es = span{Re(ψ), Im(ψ) | |λ| < 1}, (2.24)

Eu = span{Re(ψ), Im(ψ) | |λ| > 1}, (2.25)

Ec = span{Re(ψ), Im(ψ) | |λ| = 1}. (2.26)

Any eigenvalues inside the unit circle are deemed stable modes of motion. Conversely, any eigen-

values outside the unit circle are deemed unstable modes of motion. Lastly, eigenvalues on the unit

circle are deemed to be center modes. Similar to the case of equilibrium points, the eigenvectors lie

tangent to the nonlinear invariant manifolds, and provide approximations to the nearby invariant

objects.

In Hamiltonian systems M is a symplectic matrix. The result of which is the eigenvalues

of M come in reciprocal pairs as noted before. Therefore, stable and unstable manifolds appear

together and form a hyperbolic manifold. Additionally, one pair of eigenvalues is always a unity

pair [154]. Figure 2.4 shows the distinct eigenvalue pairs which can possibly come from M in a

Hamiltonian system. Stable eigenvalues are denoted by λs, unstable eigenvalues are denoted by λu,

non-unity center eigenvalues are denoted by λc, and unity eigenvalues are denoted by λ.

The idea of Lyapunov’s center theorem can be extended to make a statement about one-

parameter families of quasi-periodic orbits:

Let x be a periodic orbit with period T of the system ẋ = f(x, t). Suppose λ = a+ib is an eigenvalue

of the monodromy matrix such that b ≥ 0 and ρ = arctan(b/a) ∈ R \ Q. Then there exists a

nearly continuous one-parameter family of quasi-periodic orbits with two frequencies ω = (ω0, ω1).

Moreover, the frequencies of the orbits approach (2π/T, ρ/T ) as the orbits approach x.



23

Figure 2.4: Eigenvalue pairs of the monodromy matrix in a Hamiltonian system.

2.3.5 Quasi-Periodic Orbits

An orbit x(t) is said to be quasi-periodic if it can be represented as a Fourier series given as

x(t) =
∑
k

ake
i⟨ω,k⟩t, (2.27)

where k ∈ Zn is a multi-index ranging over all the integers, the coefficients ak decay exponentially

with the growth of |k| =
∑n−1

i=0 |ki|, and ω ∈ Rn constant. The vector ω is called the frequency

vector and satisfies the non-resonance condition of Equation (2.2). A quasi-periodic orbit has no

period because there does not exist a T such that x(t+ T ) = x(t).

Similar to a periodic orbit, a change of variables can be made such that the orbit is parame-

terized by angular coordinates θ ∈ Tn, where θ(t) = ωt. With these coordinates we can associate

the torus function

τ (θ) =
∑
k

ãke
i⟨θ,k⟩ (2.28)

which is 2π periodic in each angular coordinate. The term “orbit frequencies” is synonymous with

“torus frequencies” and are also called the “internal frequencies” or “intrinsic frequencies”. The

term “internal” refers to the fact that those frequencies have center modes which have already been

excited while there may be other available “external” or “normal” center modes to excite. We have

already encountered this idea with both equilibrium points and periodic orbits whose linearization
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revealed a center mode of motion normal to the respective orbit.

Just as an equilibrium point with a center mode has closed curves surrounding them, so does

the point on a periodic orbit (with a center mode) where the monodromy matrix is computed. In

this case the closed curve is called an invariant curve rather than a periodic orbit. The invariant

curve is a slice of a 2-dimensional invariant torus with the coordinate θ0 fixed and parameterized

by θ1 ∈ [0, 2π]. As the point on the periodic orbit flows forward in time the invariant curve

flows forward too, sweeping out the rest of the quasi-periodic orbit. This idea extends to cases

when a periodic orbit has n−1 center modes in the linearization. The result is an invariant surface

diffeomorphic to an (n−1)-dimensional invariant torus. For this reason the term “invariant surface”

is used to describe the slice of an n-dimensional invariant torus when at most n− 1 coordinates are

fixed.

Let x(t0) = x0 be a point on a periodic orbit with period T whose monodromy matrix M has

n−1 pairs of complex conjugate eigenvalues λi and λ̄i, i = 1, . . . , n−1, with associated eigenvectors

ψi and ψ̄i, respectively. For each λi suppose Im(λi) > 0, ρi = arg (λi) /∈ Q, and ρi
ρj

/∈ Q for i ̸= j.

The quantity ρ = [ρ1, . . . , ρn−1]
T is called the rotation vector with each element called a rotation

number. Then an n − 1 dimensional linear invariant surface is given in two flavors in Equation

(2.29). Equation (2.29a) gives the linear invariant surface relative to the point x0 while Equation

(2.29b) gives the full states of the surface in phase space (Figure 2.5).

χ̃rel(θ̄) =

n−1∑
i=1

∆si(Re(ψi) cos θi − Im(ψi) sin θi) (2.29a)

χ̃(θ̄) = x0 +
n−1∑
i=1

∆si(Re(ψi) cos θi − Im(ψi) sin θi) (2.29b)

In the equations above, θ̄ ∈ Tn−1, ∆si ∈ R \ {0} are step sizes to control the amplitude

in each center subspace, and the (̃·) above a variable means it is an approximate solution to the

nonlinear system. Varying the ∆si’s results in a continuous (n− 1)-parametric family of invariant

surfaces. It should be noted that the invariant surface in Equation (2.29a) is invariant of M and

not the nonlinear dynamics. Equation (2.29b) serves as an initial guess of an invariant surface

invariant of the nonlinear dynamics provided the ∆si’s are small enough. Again, good values here



25

Figure 2.5: Figure of linear invariant curves with different step sizes relative to a periodic orbit (a)
and in configuration space (b).

are between 1e-3 and 1e-6. Smaller step sizes may be needed if the correction procedure is having

issues converging.

Each application of M to χ̄rel gives

Mkχ̄rel(θ̄) = χ̄rel(θ̄ + kρ), (2.30)

indicating points on an invariant surface do not leave the surface, and the points are shifted on the

torus by ρ each time M is applied. Applying M corresponds to x0 completing a full revolution

around the periodic orbit and the invariant surface returning to where it began.

Now, the full invariant torus (invariant of the linearized dynamics) is given by

τ̃ (θ0, θ̄ + ρ) = x

(
T
θ0
2π

)
+Φ

(
T
θ0
2π

, 0

)
χ̃rel(θ̄), (2.31)

where θ̄ = [θ1, . . . , θn−1]
T and Φ is the STM of the periodic orbit.

The invariant torus has frequencies ω = [2πT , ρ1T , . . . , ρn−1

T ]T . The period T of the periodic

orbit is referred to as the stroboscopic time of the quasi-periodic orbit. It is the time taken for

an invariant surface to get back to its starting position. The stroboscopic time is given by the

following equation.
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T =
2π

ω0
(2.32)

Figure 2.6 depicts the construction of a 2-dimensional linear invariant torus τ̃ (θ0, θ1) with

several constant θ0 slices (a), and a complete torus with a few trajectories on the surface and

the invariant curve χ̃(θ1) (b). As time evolves the trajectories wrap around the surface of the

torus. Upon completing one stroboscopic period the trajectories return to the invariant curve in

the stroboscopic map, however their locations are shifted by the rotation number ρ1.

The stroboscopic time is constant in the linear system, but when transitioned to the nonlinear

system the stroboscopic time depends on the amplitudes of the invariant tori. Moreover, not all

the linear invariant tori survive the effects of the nonlinearity, leaving behind a Cantor family of

quasi-periodic invariant tori. These results follow from KAM theory [12, 110, 108, 107, 39, 80, 143].

Figure 2.6: Construction of a 2-dimensional linear invariant torus about a periodic orbit (a) and a
complete linear invariant torus (b).

A process to compute families of quasi-periodic invariant tori in the nonlinear system is

explained in Section 2.6, however we present the fundamental equation which, when satisfied, de-

termines when a torus is an invariant of Equation (2.3) has been found. First, let us introduce some

notation. For any torus function τ (θ) there infinitely many parameterizations of the torus such that

τ (θ̂ + α) = τ (θ). Let Tn(ω) = {τ (θ) = x(t) | x(t) is a quasi-periodic orbit with frequencies ω}
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be the space of torus functions τ : Tn → Rd which associate quasi-periodic tori to quasi-periodic

trajectories in Equation (2.3) with frequencies ω. Let Xn−1(T,ρ) = {χ(θ̄) = τ (θ0, θ̄) | τ ∈ Tn(ω)}

be the space of invariant surface functions with

ρ = [ω1T, . . . , ωn−1T ]
T , (2.33)

where T is the stroboscopic time defined in Equation (2.32). Furthermore, let R−ρ : Xn−1(T,ρ)→

Xn−1(T,ρ) be the transformation χ(θ̄) 7→ χ(θ̄ − ρ) which rotates the coordinates θ̄ backward by

ρ. In the linear case, the action of the monodromy matrix on the linear invariant surface rotates

the coordinates θ̄ to θ̄ + ρ. In the nonlinear case the solution flow φT has the same effect on the

nonlinear invariant surface given in Equation (2.34). The solution flow φT is a map called the

stroboscopic map with stroboscopic time T .

φT (χ(θ̄)) = χ(θ̄ + ρ) (2.34)

Finally, we introduce the quasi-periodicity constraint

R−ρφT (χ(θ̄))− χ(θ̄) = 0. (2.35)

Any (χ, T,ρ) which satisfies Equation (2.35) produces an invariant surface. The full invariant torus

τ is recovered by flowing χ forward in time from t0 to T + t0 (Equation (2.36)). The frequencies

are recovered from Equations (2.32) and (2.33) which uses the stroboscopic time to transform the

rotation vector into the frequency vector.

τ (2π(t− t0)/T, θ̄ + ω(t− t0)) = φt(χ(θ̄)), t ∈ [t0, T + t0] (2.36)

Suppose we know an invariant surface χ(θ̄) with a rotation vector ρ which satisfies Equation

(2.35) and wish to study how deviations ψ(θ̄) behave linearly under the stroboscopic map φT . To

study the linear behavior about an invariant surface we Taylor expand φT (χ(θ̄) + ψ(θ̄)) about

χ(θ̄).

φT (χ(θ̄) +ψ(θ̄)) = φT (χ(θ̄)) + DχφT (χ(θ̄))ψ(θ̄) +O(∥ψ(θ̄)∥2)



28

Substituting φT (χ(θ̄)) = χ(θ̄ + ρ) from Equation (2.34) and dropping higher order terms gives

φT (χ(θ̄) +ψ(θ̄)) = χ(θ̄ + ρ) + DχφT (χ(θ̄))ψ(θ̄).

Here, we let φT (χ(θ̄) + ψ(θ̄)) = χ(θ̄ + ρ) + ψ̃(θ̄ + ρ). Note that ψ̃(θ̄ + ρ) is not the same as

ψ(θ̄ + ρ) because it includes the effects of any rotations, stretching, and shrinking induced by the

flow. After canceling like terms the resulting system is

ψ̃(θ̄ + ρ) = DχφT (χ(θ̄))ψ(θ̄) (2.37)

= Φ(T, 0; θ̄)ψ(θ̄) (2.38)

= A(θ̄)ψ(θ̄), (2.39)

where Φ(T, 0; θ̄) is the STM associated with a point on the invariant surface at a fixed value of θ̄.

Examining Equation (2.39) it is clear this is the linearization of the stroboscopic map and

governs how deviations behave around the invariant surface. The system is a discrete quasi-periodic

linear system and needs special treatment to determine the linear behavior around χ. Equation

(2.39) can be rewritten as the linear quasi-periodic skew-product

ψ̂ = A(θ)ψ (2.40)

θ̂ = θ + ρ, (2.41)

where the (̂.) above a quantity represents an updated quantity after the discrete map has been

applied. The (̄.) notation has been dropped as it is assumed in the linear system we are dealing

with invariant surfaces and discrete maps instead of invariant tori and flows. In [102] Equation

(2.40) is called reducible if and only if there exists a quasi-periodic change of variables ψ = C(θ)y

such that Equation (2.40) becomes

ŷ = By (2.42)

θ̂ = θ + ρ (2.43)

where B = C−1(θ + ρ)A(θ)C(θ) is constant. We call B the Floquet matrix of the torus and

its eigenvalues the Floquet multipliers. The dynamics of Equation (2.40) are described by the
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dynamics of Equation (2.42). The issue is determining C(θ) to reduce the system to constant

coefficient. However, Jorba in [102] proves the eigenvalues and eigenvectors can be found by solving

a generalized eigenvalue problem.

Revisiting Equation (2.39), the term ψ̃(θ̄+ρ) is rewritten as Rρψ̃(θ̄). Substituting this into

Equation (2.39) and dropping the (̄.) notation gives

Rρψ̃(θ) = A(θ)ψ(θ). (2.44)

Suppose ψ(θ) is chosen carefully such that it is an eigenfunction with eigenvalue η of the

generalized eigenvalue problem

ηRρψ(θ) = A(θ)ψ(θ̄). (2.45)

It is shown in [102] that if (η,ψ(θ)) is an eigenpair of Equation (2.45) then so is
(
ηei⟨k,ρ⟩,ψ(θ)ei⟨k,ρ⟩

)
for k ∈ Zn−1, showing the eigenvalues form concentric rings in the complex plane centered on the

origin. Moreover, if η is an eigenvalue of B then it is also an eigenvalue of Equation (2.45).

Therefore, the eigenvalues λ of B which characterize the linear stability of χ are contained within

the spectrum of Equation (2.45). Furthermore, the eigenfunctions ψ(θ) form the columns of C(θ),

and are the functions which determine the eigenspaces of χ. Jorba presents a method to sort ηei⟨k,ρ⟩

to find the appropriate η such that η = λ is in the spectrum of B. See [102] for the details and

more on the linear stability of invariant surfaces. The presentation of the material is for invariant

curves, but the results hold for higher dimensions.

The classification of the linear behavior about a quasi-periodic invariant torus relies on the

eigenvalues of B. Let λ be an eigenvalue of B with associated eigenfuction ψ(θ), then the three

subspaces are defined as follows:

Es(θ) = span{Re(ψ(θ)), Im(ψ(θ)) | |λ| < 1}, (2.46)

Eu(θ) = span{Re(ψ(θ)), Im(ψ(θ)) | |λ| > 1}, (2.47)

Ec(θ) = span{Re(ψ(θ)), Im(ψ(θ)) | |λ| = 1}. (2.48)

Now, each subspace varies continuously on θ (i.e. the location on the invariant surface). The
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radius of the rings give insight into the stability of χ. Rings of radius greater than 1 represent

unstable modes of motion. Rings of radius less than 1 represent stable modes of motion. Lastly,

rings of radius 1 represent center modes of motion. The magnitudes of the rings quantify how

strongly stable or unstable a particular mode is. In a Hamiltonian system the eigenvalues come in

reciprocal pairs. So an unstable ring of radius r is necessarily paired with a stable ring of radius

1/r. Furthermore, for an n-dimensional quasi-periodic invariant torus there are n− c pairs of unity

eigenvalues, where c is the number of forcing frequencies in the dynamical system.

Let χ(θ̄) be an (n − 1)-dimensional invariant surface of an n-dimensional quasi-periodic in-

variant torus with internal frequencies ω. Suppose Equation (2.40) is reducible to Equation (2.42).

Further, suppose there exists r complex eigenvalues λi of B on the unit circle with eigenfunctions

ψ(θ̄), and each λi has an associated rotation number ρi = arg(λi) /∈ Q and none of the rotation

numbers are commensurate. The frequencies ωi =
ρi
T associated to λi are called the normal fre-

quencies of the quasi-periodic invariant torus. Then an approximation of an n+ r− 1-dimensional

invariant surface is given in a similar fashion to Equation (2.29b). However, r additional coordi-

nates θi, i = n, n + 1, . . . , n + r − 1 need to be considered to construct the new invariant surface

diffeomorphism. Let θ̃ ∈ Tn+r−1 where θ̃ = [θ̄T , θn, . . . , θn+r−1]
T . An approximation for a new

invariant surface is given by

χ̃(θ̃) = χ(θ̄) +

r∑
i=1

∆si(Re(ψi(θ̄)) cos(θn−1+i)− Im(ψi(θ̄)) sin(θn−1+i)) (2.49)

with rotation vector ρ̃ = [ρT , ρ1, . . . , ρr]
T . Upon correcting the approximate invariant surface to

satisfy the nonlinear dynamics one can easily recover the full invariant torus. The frequencies of

this torus are recovered from Equation (2.33), all of which are now considered internal frequencies.

2.3.6 Invariant Stable and Unstable Manifolds

In Sections 2.3.3 to 2.3.5, we present the linear subspaces about different types of orbits.

These subspaces are only valid locally to each orbit, but their directions are tangent to the nonlinear

invariant manifolds [133]. In each of those sections we show how to generate initial guesses for the
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nonlinear objects residing in the center manifolds. This section presents the method for computing

the nonlinear stable and unstable invariant manifolds emanating from quasi-periodic orbits. From

here on out we refer to these simply as the stable and unstable manifolds. The method can easily be

modified to compute stable and unstable manifolds emanating from periodic orbits and equilibrium

points.

Before going into the method we first introduce the definition of the stable and unstable

manifolds W s and W u, respectively. To measure the distance between a point x in phase space

and an invariant set Λ we define ρΛ : Rd → R to be

ρΛ(x) = min(∥x− y∥ | y ∈ Λ). (2.50)

Then the stable and unstable manifolds of a smooth vector field are defined as

W s(Λ) = {x /∈ Λ : lim
t→∞

ρΛ(φt(x)) = 0} (2.51)

W u(Λ) = {x /∈ Λ : lim
t→−∞

ρΛ(φt(x)) = 0} (2.52)

A stable manifold is the collection of orbits that are forward (in time) asymptotic to an invariant

set. Conversely, an unstable manifold is the collection of orbits that are backward asymptotic to

an invariant set. These manifolds are themselves invariant sets according to the definition provided

in Section 2.3.2.

Equations (2.51) and (2.52) provide insight as how to generate the stable and unstable man-

ifolds for a quasi-periodic orbit. In order to generate stable and unstable manifolds, one needs to

find appropriate points near the initial orbit and numerically integrate backwards and forwards in

time, respectively. The appropriate points are generated from the subspaces Es(θ̄) and Eu(θ̄) in

Equations (2.46) and (2.47). Approximate points on the manifolds are generated from functions

v(·)(θ̄) ∈ E(·)(θ̄), where (·) is a placeholder for s and u. Note that v only initializes directions off

of the invariant surface and must be mapped across the entire invariant torus.

We restrict our attention to the case that Es(θ̄) and Eu(θ̄) are one-dimensional vector spaces

for a fixed value of θ̄. Doing so simplifies the discussion and this is the case encountered in this
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thesis. Let λ(·) ∈ R be an eigenvalue of Equation (2.45) with the associated eigenfunction ψ(·)(θ̄).

Then ψ(·)(θ̄) necessarily takes on real values. The eigenfunction ψ(·)(θ̄) must be mapped across

the surface of the torus in order to generate initial points covering the manifold. The mapping

is accomplished by left multiplying ψ(·)(θ̄) by the STM Φ(t, t0; θ̄). The stretching or shrinking

effects due to λ(·) must be taken into account, so the initial points on the manifold have consistent

displacement sizes. After the stretching or shrinking has been taken care of then these directions

are multiplied by a small step size and added to the torus function τ (θ).

Note that since ψ(·)(θ̄) is a basis vector for a fixed value of θ̄ then −ψ(·)(θ̄) is as well, so we

need to add and subtract ψ(·)(θ̄) to generate the full manifold. We write W
(·)
+ when the portion

of the manifold is generated by adding ψ(·)(θ̄) and write W
(·)
− when the portion of the manifold is

generated by subtracting ψ(·)(θ̄). We call W
(·)
+ and W

(·)
− half-manifolds. The full manifold is the

union of each half-manifold, W (·) = W
(·)
+ ∪W

(·)
− .

Let w(·) : Tn × R → Rd be a diffeomorphism which maps from a cylinder to phase space.

This function is often referred to as a cylinder function. Approximate points on the half-manifolds

are given by

w
(·)
± (θ, t0) = τ (θ)±∆s

(
λ(·)
)−θ0

2π
Φ

(
T
θ0
2π

; θ̄

)
ψ(·)(θ̄). (2.53)

Good values of ∆s depend on the system, but are likely between 1e-4 and 1e-8. The value of

∆s determines the amount of truncation error due to the linear approximation of the nonlinear

invariant manifold. To generate the manifold at time t one simply needs to flow w
(·)
± (θ̄, t0) from

time t0 to t.

Figure 2.7 depicts the perturbing directions of an unstable eigenfunction across the invariant

curve in plot (a) and across the entire quasi-periodic orbit in plot (b) for a discretized quasi-halo

orbit in the Earth-Moon system of the circular restricted three-body problem.

2.3.7 Common Torus Terminology

In literature there are many types of studied tori. This section is devoted to defining com-

monly encountered tori which are used in this thesis.
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Figure 2.7: Unstable directions to initialize the unstable manifold on an invariant curve (a) and on
a quasi-periodic orbit (b).

2.3.7.1 Diophantine Tori

An important type of torus encountered in literature dealing with the computation of quasi-

periodic invariant tori is a Diophantine torus. It is closely related to a quasi-periodic torus, however

stricter non-resonance conditions are placed on the frequency vector, called the Diophantine con-

dition (Equation (2.54)). The Diophantine condition is one of the two main assumptions on tori

which KAM theory can deal with [12, 56, 80]. In short, KAM theory establishes the existence and

persistence of quasi-periodic invariant tori in dynamical systems.

An n-torus is a called a Diophantine n-torus if

| ⟨ω,k⟩ | ≥ c|k|−γ , γ > n− 1 (2.54)

for all k ∈ Zn \ {0}, where c > 0, γ > 0, and |k| =
∑n

i=0 |ki|. Clearly, Diophantine tori are a subset

of quasi-periodic tori, but the frequency vector is constrained to be a certain distance away from

resonances between the frequencies.

The set of tori satisfying the Diophantine condition can be shown to be a Cantor manifold. A

Cantor manifold is not smooth by the standard definition presented in calculus, but it is smooth in

the sense of Whitney [168, 143, 39], meaning a function defined on the set of Diophantine tori can

be extended to a smooth function. The idea of a Cantor manifold will be mentioned throughout

the thesis as this directly relates to families of quasi-periodic orbits.
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2.3.7.2 KAM Tori

A KAM torus is the type of torus which is studied in KAM theory. KAM tori satisfy, in

addition to the Diophantine condition of Equation (2.54), a non-degeneracy condition [39, 12,

80, 56]. The non-degeneracy condition states an invariant torus’s frequencies change with the

amplitude of the torus and the invariant tori are uniquely parameterized by their frequencies.

These tori, when subject to sufficiently small and smooth perturbations, deform and persist in

the new dynamical system. KAM tori have been widely studied in literature and are of great

importance in astrodynamics [107, 108, 81, 46, 102, 66, 111].

2.3.7.3 Reducible Tori

A reducible, or Floquet, torus is an invariant torus whose linearization can be reduced to the

linear system of constant coefficients (Equation (2.42)) by a quasi-periodic change of variables [39].

2.3.7.4 Lagrangian Tori

A Lagrangian torus is a maximal-dimensional invariant torus [38]. For example, In the circular

restricted three-body problem the maximum dimension of tori is 3. Moreover, In autonomous

Hamiltonian systems with n degrees of freedom and r non-resonant perturbing frequencies the

maximum dimension of tori is n+ r [104].

2.3.7.5 Elliptic Tori

An elliptic torus is an invariant torus which only has center modes of motion in its lineariza-

tion, corresponding to the eigenvalues of B residing only on the unit circle [107].

2.3.7.6 Whiskered Tori

A whiskered torus is an invariant torus which has stable or unstable modes of motion in

its linearization, resulting in the torus having stable or unstable manifolds, respectively, in the

nonlinear system. The manifolds appear as “whiskers” emanating from the torus.
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2.3.7.7 Partially Elliptic and Partially Hyperbolic Tori

A partially elliptic or partially hyperbolic torus is an invariant torus which is not elliptic,

and will necessarily have whiskers, making them synonymous with whiskered tori.

2.4 The Circular Restricted Three-Body Problem

It is common practice to study simplified dynamical models to gain an understanding of the

dynamics of higher fidelity models which represent more realistic environments that spacecraft will

be exposed to. This thesis considers the circular restricted three-body problem as a test bed for

the development, testing, and analysis of tools which can be applied in a variety of dynamical

systems. The circular restricted three-body problem has been studied since the 1700s by famous

mathematicians such as Euler, Lagrange, and Poincaré. Many books have been published on the

circular restricted three-body problem [24, 129, 153, 161, 150, 165], and many papers describe

the circular restricted three-body problem [94, 96, 37, 29, 75]. For this reason we omit a from-

first-principles development of the equations of motion and provide only a brief description of the

circular restricted three-body problem.

The circular restricted three-body problem is a Hamiltonian dynamical system which de-

scribes the motion of a massless particle due to gravitational forces from two massive bodies, P1

and P2, called the primaries. They have masses m1 and m2 such that m1 ≥ m2. The primaries

move in circular orbits about their common center of mass according to Keplerian dynamics. The

reference frame is a uniformly rotating frame with origin at the center of mass. The positive x-axis

lies along the vector pointing from P1 to P2. The positive z-axis is aligned with the orbital angular

momentum vector of the primaries, and the positive y-axis completes the right-handed coordinate
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system. The equations of motion in dimensionless form are

ẍ = x+ 2ẏ − (1− µ)(x+ µ)

r31
− µ(x+ µ− 1)

r32

ÿ = y − 2ẋ− (1− µ)y

r31
− µy

r32
(2.55)

z̈ = −(1− µ)z

r31
− µz

r32

where µ = m2
m1+m2

is the dimensionless mass distribution of the system, r1 =
√

(x+ µ)2 + y2 + z2

is the distance between the massless particle and P1, and r2 =
√

(x+ µ− 1)2 + y2 + z2 is the

distance between the massless particle and P2. In the non-dimensional form the dynamics admit

one dimensionless constant of motion called the Jacobi constant [150]. The equation for the Jacobi

constant used here is

J = 2

(
1− µ

r1
+

µ

r2

)
+ x2 + y2 − (ẋ2 + ẏ2 + ż2) (2.56)

Figure 2.8: Coordinate system and equilibrium points of the circular restricted three-body problem.

The circular restricted three-body problem has five equilibrium points called the Lagrange

points. Three of them lie along the x-axis and are called the co-linear points labeled L1, L2, and

L3. Each of these equilibrium points have center×center×saddle behavior, meaning there are

two center subspaces (Ec) and one hyperbolic subspace (Es ⊕ Eu) in the linearization. The other
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two points are called the equilateral points as each point forms an equilateral triangle with the

two primaries. These points are labeled as L4 and L5 and each have normal behavior of type

center×center×center for values of µ < 0.0385208965, after which the normal behavior is of type

center×saddle×saddle [161, 150]. The Lagrange points are depicted in Figure 2.8 along with the

primaries and reference frame of the circular restricted three-body problem.

The circular restricted three-body problem equations of motion exhibit symmetry. This

symmetry is seen from the change of variables (x, y, z, t) 7→ (x,−y, z,−t) which preserves the

equations of motion. Moreover, this symmetry is the same reason that the halo orbits have a

northern and southern family, two families that are symmetric about the z-axis [37]. Additionally,

for symmetric orbits centered on the x-axis only the stable or unstable invariant manifold needs to

be computed; the other can be determined from the symmetry.

2.5 Smooth Manifolds

Chapter 6 focuses on the use of gradients to enable optimization over families of quasi-periodic

orbits. Gradients are taken of functions whose arguments are quasi-periodic orbits. To perform the

optimization we need

(1) Information about the smoothness of the families of quasi-periodic orbits, and

(2) To know how to define these gradients.

We have already seen in Section 2.3.7.1 that a family of quasi-periodic orbits form a Cantor manifold

and are smooth in the sense of Whitney, allowing us to treat families of quasi-periodic orbits as

smooth manifolds.

The objective of Section 2.5 is to develop the mathematical framework which enables us to

define gradients of functions whose domain are families of quasi-periodic orbits. Moreover, Sections

2.5.1 and 2.5.2 help with the mathematical development in Section 2.6. We do not present a

self-contained background as much of the material covered in this section comes from Boumal’s

easy-to-read book on optimization on smooth manifolds [33]. We do, however, provide the basics
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which are necessary for this thesis. We encourage the reader to fill in the blanks by reading Chapter

3 and Section 7.7 in [33].

2.5.1 Implicit Function Theorem

Let x ∈ RD be state variables and q ∈ Rp be a set of parameters2 . Let U be an open set in

RD × Rp and define the function

F : U → RD. (2.57)

Further, define the setM to be

M = {(x, q) ∈ U | F (x, q) = 0}. (2.58)

Under the conditions of the implicit function theorem (IFT), the state variables are uniquely pa-

rameterized locally by the parameters and we say thatM is an implicitly defined smooth manifold.

As we will see in Section 2.6 the system of equations which define families of quasi-periodic orbits is

represented by functions of this type, and we may treat the Cantor manifold with the same calculus

with which we treat smooth manifoldsM.

Theorem 2.5.1 (Implicit Function Theorem). Let U be an open set in RD × Rp with coordinates

(x, q). Let F in Equation (2.57) be continuously differentiable. Let (a, b) ∈ U such that F (a, b) =

0. If DxF (a, b) is invertible, then there exist an open set X ⊂ RD containing a and an open set

Q ∈ Rp containing b satisfying the following.

(1) There is a unique function g : Q → RD such that g(b) = a and F (g(q), q) = 0 for all

q ∈ Q.

(2) The function g is continuously differentiable and for all q ∈ Q

Dqg(q) = −D−1
x F (g(q), q)DqF (g(q), q). (2.59)

2 The parameters are often called control variables and design variables. These terms are used interchangeably.
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The conclusions of the implicit function theorem say the state variables x are uniquely pa-

rameterized locally by the parameters3 , and the set of solutionsM define a p-dimensional smooth

embedded submanifold of Euclidean space [85, 33]. Manifolds of this type are referred to here sim-

ply as smooth manifolds. The invertibility of DxF can easily be checked by computing the rank

of the matrix. If the rank of DxF is equal to D then it is full rank and invertible. Equation (2.59)

presents how to compute the derivatives of the states with respect to the parameters. In practice,

we do not use this equation to do this. Instead, we retrieve the derivative from the tangent space

ofM.

2.5.2 Tangent Space of a Smooth Manifold

For the remainder of Section 2.5 let us forget about x and q and let z ∈ Rm+k, so that

F : Rm+k → Rk. We modify Equation (2.58) to become

M = {z ∈ Rm+k | F (z) = 0}. (2.60)

Define TzM to be the tangent space ofM at the point z. To determine TzM, let us perform

a Taylor series expansion of F about the point z +α with z ∈M.

F (z +α) = F (z) +DF (z)α+αTD2F (z)α+O(∥α∥3) (2.61)

= DF (z)α+αTD2F (z)α+O(∥α∥3) (2.62)

To find a first-order approximation of F (z + α) such that F (z + α) ≈ 0 it is required that

DF (z)α = 0. It follows that TzM is

TzM = {z′ | DF (z)z
′
= 0} (2.63)

the null space of the Jacobian matrix of F evaluated at z. We write (·)′ to indicate that a quantity

is in a tangent space.

3 This condition is quite similar to the non-degeneracy condition in KAM theory where the parameters are the
torus frequencies. See Section 2.3.7.2.
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Figure 2.9: Depiction of the tangent space of a manifold at the point z.

The tangent space is anm-dimensional Euclidean subspace of Rm+k with linearly independent

basis vectors z
′
j ∈ Rm−k, j = 1, . . . ,m (Figure 2.9). The tangent space provides linear information

aboutM in a small neighborhood of z. Then for any z
′ ∈ Tz0M the quantity

z̃ = z0 + z
′

(2.64)

is a first-order approximation of another point z ∈M.

2.5.3 Retractions

Given the approximation of a point z̃ from Equation (2.64) we need a way to move back to

the manifold. There are many points z onM which are near z̃, however we are interested in a map

Rz0 : Tz0M → M such that for each z
′ ∈ Tz0M the point Rz0(z

′
) = z is unique ((a) in Figure

2.10). Moreover, we require the path on M which Rz0 follows be a smooth curve c(t) such that

c(0) = z0 and c′(0) = z′ ((b) in Figure 2.10). According to Boumal in [33], the function which has

these properties is called a retraction.

In this thesis a retraction is used to computationally move through a family of orbits to

search for orbits with specific characteristics or search for optimal solutions. The property to move

to a unique point onM enables the precise computation of an orbit from within a family of orbits.
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Figure 2.10: Ambiguity with moving on a manifold. In (a) there is a region of points which are
considered close to the approximated point z̃. In (b) there are multiple curves which can be followed
to get to a point on the manifold.

The property to move away from z0 in a given direction on a manifold is “the basic operation of a

gradient descent algorithm, and of essentially all optimization algorithms on manifolds” [33].

2.5.4 Gradients on Smooth Manifolds

LetM be defined as in Equation (2.60) with F = [F1, . . . , Fk]
T where each Fi : Rm+k → R

is defined on a Euclidean space of dimension strictly greater than k. Let f : Rm+k → R be a

continuously differentiable function defined on a Euclidean space and f̄ = f |M be the restriction

of f to M. The gradient of f̄ , i.e. the gradient on the manifold, is the Euclidean gradient of

f projected onto TzM. The projection onto TzM depends on the Jacobian matrix of F . The

projection operator Projz : Rm+k → TzM is defined as

Projz(v) = v − [DF (z)]T
[
[DF (z)]T

]†
v, (2.65)

where the † is the Moore-Penrose inverse. Then the gradient of f(z) is given as

∇f̄(z) = Projz(∇f(z)). (2.66)

In this thesis we do not use Equation (2.65). Recall from Equation (2.63) that TzM is the null

space of F . Then the gradient of f̄(z) is simply the portion of the Euclidean gradient of f(z) which
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lies in TzM, equating to solving an underdetermined system linear system. The solution to the

underdetermined system is

∇f̄(z) = V
[
V †∇f(z)

]
, (2.67)

where the columns of V are composed of any linearly independent basis vectors spanning TzM.

2.6 Computation of Quasi-Periodic Orbits

This section is devoted to walking through the building blocks to be able to compute families

of quasi-periodic orbits. These techniques are well studied and are used widely throughout many

fields of engineering, mathematics, and science. The solution techniques presented in this chapter

can be found in the books by Ascher et al. [13] and Seydel [158]. Both books cover the theory

of ordinary differential equations (ODEs). Ascher et al. focus on solution methods for two point

boundary value problems (TPBVPs) and provides a review of numerical analysis, whereas Seydel

focuses on the continuation of solutions and bifurcations in dynamical systems. Together the

information within these books form the foundation for most modern algorithms to compute families

of solutions to ODEs.

Computing families of quasi-periodic orbits boils down to solving a TPBVP for ODEs in

succession. We proceed in an outside-in approach to describe the components that come together

to compute families of solutions in ODEs. Starting with the ideas of a continuation method, and

then moving into the correction procedure.

2.6.1 Continuation

Most continuation methods compute solutions to form a 1-parameter subset of a family. We

call a 1-parameter family a branch of solutions, as it resembles a branch from a tree. A multi-

parameter continuation method was developed by Henderson [85] and used by Henry and Scheeres

[89] to explore a 3-parameter family of heteroclinic connections between families of quasi-periodic

orbits in the circular restricted three-body problem. Recently, Baresi et al. developed a continuation

method to compute a Taylor polynomial of continuous solutions [17].
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Figure 2.11: Schematic of a predictor-corrector algorithm.

A continuation method aims to compute a family of solutions from within a 1- or multi-

parameter family. It predicts an initial guess z̃k of a family member, which is then corrected and

solved for by a correction procedure, and continues to make predictions (see Figure 2.11). The

method continues until either the convergence to a true solution cannot be accomplished or a

specified number of family members have been computed.

The main components of a continuation method are

(1) Prediction of next solution

(2) Parameterization strategy of the family

(3) Correction to a true solution

(4) Control of step size between family members

Let F : Rs → Rs−1, then M as defined in Equation (2.60) has dimension 1, meaning F

defines a 1-parameter family. Let z0 be a true or approximate family member ofM. This solution

could come from the linear subspaces, such as in Equations (2.21) and (2.29b), or by some other

means. The first step in the continuation method is to predict an initial guess of the next family
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member z̃1 according to

z̃k+1 = zk +∆skz
′
k, (2.68)

where z
′
k ∈ TzkM (Equation (2.63)), and ∆sk ∈ R is a step size.

At the moment, if z̃1 is corrected then there are an infinite number of solutions z1 can be.

We must add another equation to F so that the correction procedure has a unique solution to hone

in on. We introduce the pseudo-arclength equation

s(zk+1) =
〈
zk+1 − zk, z

′
k

〉
−∆sk = 0, (2.69)

so that for each ∆sk there is a unique zk+1 = zk+1(∆sk). We note that ⟨·, ·⟩ is an appropriate inner

product. The pseudo-arclength constraint measures the distance traveled between solutions and

compares it to the step size used to predict the next solution. Moreover, Equation (2.69) allows

the branch of solutions to be ordered on a line by the map ζ(γk) with γk =
∑

k=0∆sk such that

ζ(γk) = zk. This is what is called a parameterization strategy for the branch of solutions.

We save a discussion on the correction strategy for the next section, and for now assume

that we can solve for zk+1. After zk+1 has been found we would like to adjust ∆sk+1 so that we

may predict solutions which are close to solutions on the branch. We use the following step size

controller presented by Seydel in [158],

σ = Nopt/Nj , (2.70a)

σ̄ =



0.5, σ < 0.5

σ, 0.5 ≤ σ ≤ 2

2, σ > 2

, (2.70b)

∆sk+1 = σ̄∆sk, (2.70c)

where Nopt is a user defined value which determines how many iterations the corrector should take

to converge, and Nj is the number of iterations the corrector actually took to converge. This step

size controller is performance based, and has the advantage of decreasing the step size when the



45

topology of F is constantly changing. On the other hand, it can increase the step size when the

topology of F is flat so that computational time is not wasted.

2.6.2 Correction Procedure

We now turn attention to the correction procedure so that one may actually solve F for a

true solution. The correction procedure is dependent on the form of F . Solving for solutions in a

dynamical system amounts to solving a TPBVP. A TPBVP has the general form

ẋ = f(x, t; q), t0 < t < tf (2.71a)

g(x(t0),x(tf ), q) = 0, (2.71b)

where q ∈ Rp are constants the trajectory x ∈ Rd depends on. We are interested in finding a

solution z(t) = [(x(t))T , qT ]T such that x(t) obeys the vector field f , and z satisfies the boundary

constraints in Equation (2.71b). TPBVPs type are commonly solved using shooting methods,

however collocation methods are commonly used when the problem at hand requires more care.

This thesis uses shooting methods, so we will describe these methods.

2.6.2.1 Single-Shooting

A single-shooting method takes an initial guess of the solution z(t0) and integrates it to time

tf . Then we have

x(tf ) = φtf (x(t0)), (2.72)

and can remove the dependency on x(tf ). Single-shooting gets its name from the fact that x(t0)

is integrated in a “single shot” to the final time.

After the integration an updated guess is determined via a Newton’s method. Let zj be the

jth guess to the solution z(t0) which satisfies the boundary conditions. Then the update zj+1 is

given by

zj+1 = zj − [Dg(zj)]−1g(zj). (2.73)
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The shooting process is repeated until ∥g(zj+1)∥ ≤ ε. A good value of the tolerance level is

0 < ε ≤1e-10. A single-shooting method relies on a good initial guess and does not perform well

when the dynamics are highly unstable. A way to reduce the effect of the instability and improve

the convergence is to use a multiple-shooting method.

2.6.2.2 Multiple-Shooting

A multiple-shooting method breaks the trajectory x(t) into m independent arcs at the times

ti, i = 0, . . . ,m− 1. Each arc is defined by the initial point xi, and each arc is flowed from time ti

to ti+1 with the final points of each arc denoted by φ∆ti+1(xi). Figure 2.12 contains an image of a

single-shooting arc (a) broken into multiple-shooting arcs (b).

Figure 2.12: Depiction of a single shooting arc (a) broken into m multiple-shooting arcs (b).

Now the boundary constraint takes the form g(x0,xm−1, q) = 0. In addition to the boundary
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conditions needing to be satisfied, it is also required that continuity constraints are satisfied. Let

z =



x0

x1

...

xm−1

q


,

then the continuity constraints c : Rmd+p → R(m−1)d are given by

c(z) =


φ∆t1(x0)− x1

...

φ∆tm−1(xm−2)− xm−1

 = 0 (2.74)

Equation (2.74) ensures that the entire trajectory is continuous so that it obeys the vector

field in Equation (2.71a). The vector z is corrected until both Equations (2.71b) and (2.74) are

satisfied. To find the updated solution with Newton’s method it is necessary to solve the augmented

system of nonlinear equations

G(z) =

g(x0,xm−1, q)

c(z)

 = 0. (2.75)

Therefore, it is necessary to compute the derivative of Equation (2.74). The (m− 1)d× (md+ p)

Jacobian matrix of the continuity constraints has the form

Dc(z) =

Φ(t1, t0;x0) −Is 0 . . . . . . 0
∂φ∆t1

(x0)

∂q

0 Φ(t2, t1;x1) −Is 0 . . .
...

∂φ∆t2
(x1)

∂q

... 0
. . .

. . .
. . .

...
...

...
...

. . . Φ(tm−2, tm−3;xm−3) −Is 0
∂φ∆tm−2

(xm−3)

∂q

0 0 . . . 0 Φ(tm−1, tm−2;xm−2) −Is
∂φ∆tm−1

(xm−2)

∂q


,

(2.76)
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where Φ(ti+1, ti;xi) is the STM corresponding to xi and evaluated from time ti to ti+1. Equation

(2.73) is carried out until ∥G(zj+1)∥ < ε.

2.7 Optimization Theory

Optimization is widely used throughout the world, and most people reading this thesis have

likely encountered it in some form in their coursework or otherwise in their life. The theory of

optimization defines what a well-posed optimization problem is, and allows one to answer the

question, “what is the best solution to my problem?”

Optimization problems can be grouped into many classes, but here we only consider the

dichotomy of unconstrained and constrained problems. Unconstrained optimization considers the

entire solution space, while constrained optimization presents restrictions on the solution space.

Because of this, the solutions to an unconstrained and constrained problem can be vastly different

even when the objective function is the same.

An optimization problem has the form

min
x∈Rd

f(x)

subject to gi(x) = ai, i = 1, . . . , r

hj(x) ≤ bj , j = 1, . . . , s.

(2.77)

We call the vector x the optimization variables, the function f : Rd → R the cost or objective

function, the functions gi : Rd → R the equality constraint functions, and the functions hi : Rd → R

the inequality constraint functions. When both r and s are equal to zero then we say that Problem

(2.77) is an unconstrained problem. Otherwise, we call it a constrained problem.

We define the set of feasible solutions S to be

S =


Rd, r = s = 0

{x | gi(x) = ai, hj(x) ≤ bj}, otherwise

. (2.78)

Any x ∈ S is called a feasible solution. Let x∗ ∈ S be a feasible solution to Problem (2.77),

and U ⊂ S be an open set containing x∗. We call x∗ a local minimum if f(x∗) ≤ f(x) for any
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x ∈ U . Likewise, we call x∗ a global minimum if f(x∗) ≤ f(x) for any x ∈ S. In this thesis we are

only concerned with cost functions and constraint functions that are continuously differentiable on

U , leading to the first order optimality conditions: if x∗ is a local optimum point then ∇f(x∗) = 0.

We are interested in finding local minima in the set of feasible solutions. We say that x∗ is a solution

to Problem (2.77) if x∗ ∈ S and x∗ is a local minimum.

There are many methods to solve Problem (2.77), and we present only one method to solve

each the unconstrained and the constrained problem. We use the ideas of these methods to solve

the formulated optimization problems in Chapter 6.

2.7.1 Unconstrained Optimization

When r = s = 0 Problem (2.77) reduces to

min
x∈Rd

f(x). (2.79)

A classic method to solve Problem (2.79) is gradient descent. Its objective is to search along the

direction of steepest descent to arrive at a point such that ∇f(x) = 0. It is not guaranteed to

find a global optima, only a local optima. In its basic form gradient descent assumes that f is

continuously differentiable on Rd, and it ignores equality and inequality constraints. There are

ways to improve the performance of gradient descent, such as using projected gradient descent or

acceleration methods.

Let xk be a guess of the solution to Problem (2.79). The direction d = −∇f(xk) is the

direction of steepest descent and is called the search direction. One could let the next iterate

xk+1 = xk + d, however performance can be improved when a line search is done in the search

direction. That is, we compute the set

Lα = {f(y(γ)) | y(γ) = xk + γd, γ ∈ [0, α]} (2.80)

over a specified range of values, and let xk+1 be the point which attains the minimum value of

f in the set Lα. In many situations there is no way to obtain an analytical expression for xk+1,
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and we rely on numerical procedures to find the next iterate. We call the procedure to find xk+1

LineSearch, and leave the details for the procedure until Chapter 6.

An algorithm for gradient descent is given in Algorithm 1. We call the algorithm a Euclidean

gradient descent (EGD) because the cost function depends only on the optimization variables. In

contrast, Chapter 6 develops an optimization problem which depends on state variables x and

parameters q, but only the parameters are used as the optimization variables.

Algorithm 1 Euclidean Gradient Descent

1: procedure EGD(x0,f ,ε)
2: k = 0
3: while ∥∇f(xk)∥ ≥ ε do
4: d = −∇f(xk)
5: xk+1 = LineSearch(f,d)
6: k ← k + 1
7: end while
8: return xk

9: end procedure

We note that Newton’s method can be used to solve unconstrained optimization problems.

We have already seen Newton’s method in Section 2.6.2.1 presented as a root-finding method. To

solve Problem 2.79, Newton’s method computes the gradient and Hessian of the cost function. For

the optimization problems in Chapter 6 computing the Hessian is not desirable. However, as a

root-finding method, Newton’s method can be thought of as solving for the roots of the gradient of

some unknown cost function. In Equation (2.73) the function g can be associated to this gradient.

2.7.2 Constrained Optimization

If either r or s is not equal to 0 then we have a constrained problem. The constrained problem

is fundamentally different from the unconstrained problem since x is not allowed to roam around

Rd. Gradient descent on its own is not suitable for these problems since it may find a solution

which satisfies ∇f(x) = 0, but is not in the feasible set. We need a way to ensure the solution lies

inside the feasible set.

Popular methods to enforce the constraints are barrier methods and penalty methods. Both
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methods solve a sequence of unconstrained optimization problems, called subproblems, with a

modified cost function. Barrier methods, also called interior-point methods, start with an initial

guess x0 ∈ S and enforce that the solution to each subproblem lies inside S. This is done by

imposing a large cost on feasible points that lie ever closer to the boundary of S. On the other

hand, penalty methods can start with an initial guess outside the feasible set. A penalty is applied

to points which lie outside the feasible set. The solution to each subproblem determines how the

penalty changes. The penalty continues to change until the solution resides inside the feasible

set.



Chapter 3

Study of the Earth-Moon L2 Quasi-Halo Orbits

3.1 Introduction

Szebehely eloquently states in his comprehensive exposition on the restricted problem of

three bodies, “the aim of dynamics is to characterize dynamical systems by describing the totality

of motions and discussing their properties; to fulfill this purpose numerical integration is one of

the powerful tools” [161]. He could not have had more foresight in his assertion 57 years ago when

numerical explorations were just beginning. Each family of quasi-periodic orbits is unique and as

such each have their own advantages and disadvantages for spacecraft missions. Computing a family

in its entirety provides a global view of that family and allows for quick preliminary evaluation in

the early stages of trajectory design. Only when families are computed as fully as possible can we

gain a complete picture of the dynamics.

To put the context of this chapter into perspective a literature review of computing families of

orbits and high-dimensional tori in astrodynamics is provided. First, a non-comprehensive review

on the computation of 1-parameter families is presented, followed by a review on the computation of

multi-parameter families. Lastly, a review on the work of 3+ dimensional invariant tori is provided.

Szebehely in [161] covered the history and the works of many researchers between the years

1897 and 1965 devoted to the computation of periodic orbits in the circular restricted three-body

problem. In 1966, Farquhar computed halo orbits [64]. In 1973, Farquhar and Kamel used a

Lindstedt-Poincaré series to compute a 1-parameter family of quasi-halo orbits about the L2 La-

grange point in the Earth-Moon system with the addition of the lunar orbital eccentricity and the
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Sun’s gravitational field [63]. In the late 70s and early 80s Breakwell, Brown, and Howell further

studied the 1-parameter families of halo orbits by employing numerical methods [37, 94, 96]. In

1987, Howell and Pernicka developed a numerical method to compute Lissajous orbits [97]. In 1997,

Hénon presented a comprehensive list of periodic orbit families in the restricted three-body problem

[86]. In 2000, Castellà and Jorba introduced a new method of computing quasi-periodic orbits and

used it to explore 1-parameter families of Lissajous orbits about the dynamical equivalents of the

Earth-Moon L4 and L5 points in the Bicircular Problem. Their method computed quasi-periodic

orbits based on the Fourier coefficients of an invariant curve [101, 47]. In 2016, Baresi and Scheeres

computed a 1-parameter family of 3-dimensional quasi-periodic orbits in the vicinity of the complex

rotator 4179 Toutatis [19]. In 2021, McCarthy and Howell computed in the Earth-Moon circular

restricted three-body problem a 1-parameter family of 3-dimensional quasi-halos with constant ω0

and Jacobi energy fixed to the generating periodic orbit [130]. In 2021, Rosales et al. computed the

dynamical equivalents to the 1-parameter family halo orbits in the Earth-Moon Bicircular Problem

[148].

In 2001, Gómez and Mondelo used the method in [47] to compute 2-parameter families of

Lissajous and quasi-halo orbits in the Earth-Moon circular restricted three-body problem by means

of single-parameter continuation [75]. A similar analysis by the same authors was conducted in

2005 which looked at the same families but in Hill’s problem [73]. In this same vein, in 2021,

Haro and Mondelo in [83] computed the L1 Lissajous family in the Earth-Moon system using a

different method, called the parameterization method, to compute the family and compare it to

the results in [75]. In this work they evaluated dynamical observables which indicate when tori

break down at the end of the family. In 2018, Bosanac used a method similar to that of Gómez

and Mondelo to compute 2-parameter families of 2-dimensional quasi-periodic orbits about resonant

orbits in the Earth-Moon and Sun-Earth circular restricted three-body problem [29]. In 2022, Ming

et al. computed a 2-parameter subset of the 3-parameter family of 3-dimensional quasi-distance

retrograde orbits by fixing ω0 to match the frequency of the generating periodic orbit, leaving

two additional parametric constraints to fully constrain their problem [135]. They constructed
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two pseudo-arclength constraints and devised a 2-parameter continuation method to explore the

two additional parameters with single-parameter continuation. Their method performs the same

function as the constant slope parametric constraint developed by Lujan and Scheeres in [124] by

using the two pseudo-arclength equations to enforce a constant search direction in the continuation.

Similarly, Baresi and Scheeres employed two pseudo-arclength constraints in [19], but they did not

constrain the search direction. The direction was allowed to change throughout the continuation

as two pseudo-arclength step sizes were adaptively updated.

In 1998, Jorba and Villanueva used normal form methods to compute 3-dimensional quasi-

periodic orbits about a linearly stable periodic orbit of L5 in the circular restricted three-body

problem [109]. In 2005, Gabern and Jorba used normal form methods to compute 3-, 4-, and

5-dimensional quasi-periodic orbits about the dynamical equivalent of the Sun-Jupiter L5 point

subject to perturbations by Saturn and Uranus [69]. Likewise, in 2009, Jorba and Olmedo used a

parameterization method to compute 3- and 4-dimensional quasi-periodic orbits of the dynamical

equivalent of the Sun-Jupiter L5 point subject to perturbations by Saturn, Uranus, Neptune, and

Earth [104]. In these papers the authors showed off the ability to compute higher-dimensional

invariant tori with their developed methods, however they did not study the 3-parameter families

of invariant tori which densely fill the space, nor the 1- and 2-parameter families that are known

to foliate the center manifold [107].

While many papers have published methods to compute quasi-periodic orbits there are various

works which use these methods to study families of quasi-periodic orbits and how to efficiently utilize

them for mission design. Some applications include trajectory design [19, 23, 68, 79], transfer design

[28, 89, 90, 130, 131, 139], and formation flying [22, 20, 21, 88, 91, 92].

It is evident the most commonly studied families are 1-parameter families even though it

is known that a higher density of orbits exist in 2- and 3-parameter families in astrodynamics

[38, 107, 108]. One of the reasons is the increase in computational complexity which arises when

moving from a 1-parameter family to a multi-parameter family. The increase in the dimension of

the family means there are more dimensions to explore, and vastly more family members need to
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be computed to fully explore the family. Additionally, the method to explore higher-parameter

families becomes nontrivial since the search direction is no longer forward or backward along a line.

Rather, there are infinite directions, resulting in infinite choices in the direction to explore. To get

a clear picture of the dynamics it is necessary to understand ways in which to compute and study

multi-parameter families.

Moreover, most studies which compute quasi-periodic orbits focus on 2-dimensional quasi-

periodic orbits even when 3+ dimensional quasi-periodic orbits exist in their respective systems.

One of the reasons is the increase in the number of points needed to represent the invariant surface

which increases the number of integrations and storage space. However, access to machines with

several cores should eliminate the barrier caused by the time required for integration since each

point can be integrated independently of one another. In the near future there will be increased

interest in computing invariant tori of dimension greater than 2 as a result of studying higher-

fidelity multi-body systems. Therefore, it is necessary to develop tools now to compute higher-

dimensional invariant tori. Doing so will assuredly lead to the discovery of new families of orbits,

and subsequently more options for mission designers.

The literature review highlights the prevalence of research of 1-parameter families of orbits

and reveals the lack of research on higher-parameter families of higher-dimensional tori. This

chapter studies the use of various parametric constraints on their effectiveness to explore multi-

parameter families. Due to the Lunar Gateway, the area near the Earth-Moon L2 9:2 NRHO

is of particular interest in the community [76, 30, 31, 54, 55, 163, 174, 32, 173, 141]. The halo

orbit family is a 1-parameter family of periodic orbits about which 2- and 3-parameter families

of quasi-halo orbits exist. Therefore, this chapter focuses on the 2- and 3-parameter Earth-Moon

L2 quasi-halo families in the circular restricted three-body problem to further understand the

dynamical environment surrounding the Gateway. Gómez and Mondelo in [75] partially studied

the 2-parameter family in this same system, however their study stopped short of the whole family.

They found for certain energy values the Lissajous and quasi-halos are bounded by the planar

Lyapunov orbit with the same energy level, but did not elaborate further on the family and their



56

characteristics. In the spirit of “describing the totality of motions and discussing their properties”

this study paints a more complete picture of the family and examines them from a mission design

perspective.

This chapter is organized as follows: Section 3.2 generalizes an existing quasi-periodic orbit

computational scheme to compute n-dimensional quasi-periodic invariant tori. Section 3.3 describes

a method to compute the amplitudes of an invariant surface. Section 3.4 overviews the halo orbit

family and points out important aspects for the remaining sections. Section 3.5 presents findings

for the 2-parameter family of quasi-halo orbits, while Section 3.6 presents findings on the 2- and

3-parameter family of quasi-halo orbits in the vicinity of the stable halo orbits.

3.2 Computation of n-Dimensional Quasi-Periodic Invariant Tori

The presentation of quasi-periodic orbits in Chapter 2 was given in a functional form, however

in practice we cannot compute invariant tori this way. The function must be sampled at discrete

points with a fine enough partition so that the approximate invariant torus is accurately represented.

We use a flow map method to compute n-dimensional quasi-periodic invariant tori which reduces

the problem to working with invariant surfaces of dimension n − 1. We present the method by

Olikara and Scheeres [140], who originally presented the method for n-dimensional quasi-periodic

invariant tori, in great detail, and in an algorithmic way. In this section we describe in detail the

equations needed and how to compute them at a level which should be easy to implement on a

computer. We present the equations as they would be used in a multiple-shooting. The single-

shooting version is obtained as a special case of the multiple-shooting version and is not difficult

to derive.

For ease of notation we present the equations assuming the dimension of the invariant surface

is n, meaning the dimension of the invariant torus is n + 1. Let τ ∈ Tn+1(ω) be an (n + 1)-

dimensional invariant torus with frequencies ω, then τ : Rn+1 → Rd. Let χ ∈ Xn+1(ρ) be an

invariant surface with the rotation vector ρ such that χ(θ) = τ (0,θ). Let N = (N1, . . . , Nn) ∈ Nn

be a set of integers defining the number of points to be sampled in each dimension of Tn, and



57

N =
∏n

i=1Ni. We define j = (j1, . . . , jn) to be a multi-index where each ji ∈ {0, 1, . . . , Ni − 1}.

Then we define θj = (θ1,j1 , θ2,j2 , . . . , θn,jn) = 2π(j1/N1, j2/N2, . . . , jn/Nn) ∈ Tn, containing the

points which partition the n-torus. Figure 3.1 shows an example of a partition on a flattened

2-dimensional torus with N1 = N2 = 5.

Figure 3.1: Partition of a flattened 2-dimensional torus with N1 = N2 = 5.

We stack all the points χ(θj) into the vector X ∈ RdN according to Algorithm 2. The

order in which the points are stacked is important. If the points are stacked differently than what

is shown here, then the resulting Fourier computations will not work, and modifications will be

needed. In the algorithm the functions hcat(A,B) = [A|B] and vcat(A,B) =

 A

B

 perform

the function of horizontally and vertically concatenating the arrays A and B, respectively. The

function length(A) returns the number of elements in an array. The function ones(a, b; c) returns

an a × b array filled with the value c. Lastly, the notation a : b : c produces the column vector

[a, a + b, a + 2b, . . . , c]T , the notation A = [ ] creates an empty array, and A[a, :] returns the ath

row of A.
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Algorithm 2 Stack Points of an Invariant Surface

1: procedure Stack(N ,χ(θ))
2: n← length(N)
3: J ← (1 : 1 : Nn)
4: for k in (n− 1 : −1 : 1) do
5: A← [ ]
6: for j in (1 : 1 : Nk) do
7: p←

∏n
i=k+1Ni

8: B ← hcat(ones(p, 1; j), J)
9: A← vcat(A,B)

10: end for
11: J ← A
12: end for
13: X ← [ ]
14: p←

∏n
=1Ni

15: for k in (1 : 1 : p) do
16: j ← J [1, :]
17: X ← hcat(X,χ(θj))
18: end for
19: return X
20: end procedure
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As an example, suppose N = (2, 2, 3), then we have

X =



χ(θ1,1, θ2,1, θ3,1)

χ(θ1,1, θ2,1, θ3,2)

χ(θ1,1, θ2,1, θ3,3)

χ(θ1,1, θ2,2, θ3,1)

χ(θ1,1, θ2,2, θ3,2)

χ(θ1,1, θ2,2, θ3,3)

χ(θ1,2, θ2,1, θ3,1)

χ(θ1,2, θ2,1, θ3,2)

χ(θ1,2, θ2,1, θ3,3)

χ(θ1,2, θ2,2, θ3,1)

χ(θ1,2, θ2,2, θ3,2)

χ(θ1,2, θ2,2, θ3,3)



=



x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12



.

For m multiple-shooting segments we need to sample τ at m values of θ0. The sampling

does not need to be uniform. Recall from Equation (2.31) we let x(t) = x(T θ0
2π ), showing the time

associated with each segment is tj = T
θ0,j
2π , and the time each segment needs to be propagated is

∆j+1 = tj+1 − tj . With this information we construct the invariant surfaces χj(θ) = τ (θ0,j ,θ).

Then using Algorithm 2 we construct the stacked vectors X̄j and let

X =


X̄0

...

X̄m−1


[dmN×1]

(3.1)

We proceed by giving the equations and describing their purpose in the torus computations.

Let

z =



X

T

ρ

ω


(3.2)
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be the vector containing all the points on the invariant surface, the stroboscopic time, the rotation

vector, and the frequency vector. The vector z contains all the information necessary to fully define

the invariant torus and construct the diffeomorphism between torus space and phase space. We

note that including both (T, ρ) and ω is redundant, however doing so is convenient. One can omit

either set if desired and make the corresponding changes, but it is necessary to include ω for the

developments in Chapters 5 and 6.

3.2.1 Quasi-Periodicity

We have already seen the quasi-periodicity constraint in functional form in Equation (2.35).

We now explain this equation from the perspective of a computer implementation. Equation (2.35)

becomes

G(z) = R−ρφ∆tm(X̄m−1)− X̄0 = 0, (3.3)

where φ∆tm(X̄m−1) is a dN × 1 stacked vector where each of the N points in the invariant surface

have been propagated from time tm−1 to time T .

To understand the rotation operator R−ρ we first begin by describing a discrete Fourier

transform (DFT) and its inverse. The reader is referred to the books of Amidror [4] and Rao et al.

[145] to learn more about the DFT, its properties, and its uses. The DFT computes the Fourier

coefficients from a discretely sampled function or signal. The inverse transform has the opposite

effect as the DFT so that the sampled points are recovered in their original domain. There are

several ways to compute the DFT, however we present one possible way here. Consider a single

Fourier coefficient ck of an invariant surface X for d = n = 1 uniformly sampled at N1 points so

that θ1,j1 = 2π j1
N1

, for j1 = 0, . . . , N1 − 1,

ck =

N1∑
j1=0

χ(θ1,j1)e
−2πik

j1
N1 . (3.4)

We define c = [c−N1−1
2

, c−N1−1
2

+1
, . . . ,−1, 0, 1, . . . , cN1−1

2
−1

, cN1−1
2

]T , then

c = WN1X, (3.5)
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where X is the stacked vector of the points sampled from the invariant surface, and

WN1 =



w0 w−N1−1
2 w−2

N1−1
2 . . . w−(N1−1)

N1−1
2

w0 w−N1−1
2

+1 w−2(
N1−1

2
+1) . . . w−(N1−1)(

N1−1
2

+1)

...
...

...
...

w0 w0 w0 . . . w0

...
...

...
...

w0 w
N1−1

2
−1 w2(

N1−1
2

−1) ... w(N1−1)(
N1−1

2
−1)

w0 w
N1−1

2 w2
N1−1

2 ... w(N1−1)
N1−1

2



, (3.6)

with w = e
−i 2π

N1 . The matrix WN1 is the N1×N1 DFT to convert a signal to its Fourier coefficients.

The inverse DFT is given by

W−1 =
1

N1
W ∗

N1
, (3.7)

where (·)∗ is the complex conjugate transpose operator. The invariant surface in phase space is

recovered by

X = W−1
N1
c. (3.8)

Now we derive the discrete form of the rotation operator R−ρ. Recall the property of the

rotation operator from Section 2.3.5

R−ρ1χ(θ1,j1) = χ(θ1,j1 − ρ1). (3.9)

Expanding χ(θ1,j1 − ρ1) as a Fourier series gives

χ(θ1,j1 − ρ1) =
1

N1

N1−1
2∑

k=−N1−1
2

cke
ik(

2πj1
N1

−ρ1) (3.10)

=
1

N1

N1−1
2∑

k=−N1−1
2

cke
2πik

j1
N1 e−ikρ1 (3.11)

Stacking all the χ(θ1,j1 − ρ1) into a vector and writing the result in matrix form gives

R−ρ1X = W−1
N1

diag(e−ikρ1)c, (3.12)



62

where k = [−N1−1
2 ,−N1−1

2 + 1, . . . ,−1, 0, 1, . . . , N1−1
2 − 1, N1−1

2 ] and diag(·) is a diagonal matrix.

We denote

Q−ρ1 = diag(e−ikρ1) (3.13)

the rotation matrix which rotates the Fourier coefficients by an angle −ρ1. Using Equation (3.5)

to replace c in Equation (3.12) gives

R−ρ1X = W−1
N1

Q−ρWN1X. (3.14)

Therefore, the rotation operator is given by

R−ρ1 = W−1
N1

Q−ρ1WN1 . (3.15)

Extending to the case where d > 1 and n > 1 the DFT in Equation (3.6) becomes

W = WN1 ⊗WN2 ⊗ . . .⊗WNn ⊗ Id, (3.16)

where ⊗ is the Kronecker product. The inverse DFT in Equation (3.7) becomes

W−1 =
1

N
W ∗, (3.17)

the rotation matrix in Equation (3.13) becomes

Q−ρ = diag(e−ikρ1)⊗ diag(e−ikρ2)⊗ . . .⊗ diag(e−ikρn)⊗ Id. (3.18)

Finally, the n-dimensional rotation operator for a d-dimensional phase space is given as

R−ρ = W−1Q−ρW. (3.19)

For the correction process we need the derivative of G(z) in Equation (3.3) with respect to

each variable in z. The partial derivatives of G are

∂G

∂X
=

[
−IdN 0dN×dN . . .0dN×dN︸ ︷︷ ︸

m-2

R−ρΦ(T, tm−1; X̄m−1)

]
(3.20)

∂G

∂T
= R−ρf(X̄m−1) (3.21)

∂G

∂ρ
=

[
−Dρ1R−ρX̄m−1 −Dρ2R−ρX̄m−1 . . . −DρnR−ρX̄m−1

]
(3.22)

∂G

∂ω
= 0dN×n, (3.23)
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where

Dρ1 = W−1(idiag([1, . . . , N1 − 1])⊗ IN2 ⊗ . . .⊗ INn)W (3.24a)

Dρ2 = W−1(iIN1 ⊗ diag([1, . . . , N2 − 1])⊗ IN3 ⊗ . . .⊗ INn)W (3.24b)

Dρi = W−1(iIN1 ⊗ IN2 ⊗ . . .⊗ diag([1, . . . , Ni − 1])⊗ INi+1 ⊗ . . .⊗ INn)W, i = 3, . . . , n− 2

(3.24c)

Dρn−1 = W−1(iIN1 ⊗ . . .⊗ INn−3 ⊗ diag([1, . . . , Nn−1 − 1])⊗ INn)W (3.24d)

Dρn = W−1(iIN1 ⊗ . . .⊗ INn−1 ⊗ diag([1, . . . , Nn − 1]))W. (3.24e)

3.2.2 Continuity Constraints

The continuity constraints arise from using a multiple-shooting method. These equations are

given in Equation (2.74). The derivatives of the continuity constraints are in Equation (2.76). Here

we elaborate on the partial derivatives in the last column of Equation (2.76) which are the partial

derivatives of the flow with respect to the parameters in the vector z. The parameters are T , ρ,

and ω. Without knowing the form of the dynamical system most of these derivatives must be left

general, however the stroboscopic time will play a role in every dynamical system, so we give the

partial derivative of the flow with respect to T in Equation (3.27).

Each ∆ti makes up some portion of the stroboscopic time such that

T =
m∑
i=1

∆ti = T

m∑
i=1

ai. (3.25)

It is clear that the ai’s must sum to 1 for the equation to hold. Moreover, it is clear that

∆ti = aiT. (3.26)

Therefore, taking the partial derivative of the flow with respect to T gives

∂φ∆ti(X̄i−1)

∂T
=

1

ai
f(X̄i−1), i = 1, . . . ,m− 1. (3.27)

In Equation (3.27) the term f(X̄) is a dN × 1 stacked vector which evaluates the vector field at

each point in the invariant curves and for each multiple-shooting segment. It is assumed that each

point is evaluated at its respective time. For a uniform sampling of m segments we have ai =
1
m .
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3.2.3 Phase Constraints

In Section 2.3.5 we state any invariant surface with stroboscopic time T and rotation vector ρ

will satisfy the quasi-periodicity constraint, i.e. if τ ∈ Tn+1(ω) is a torus function with incommen-

surate frequencies ω then any χ ∈Xn(T,ρ) satisfies Equation (2.35). The constraint is indifferent

to the choice of parameterization on the torus. Therefore, there are an infinite number of solutions

to the quasi-periodicity constraint. To resolve this issue phase constraints are added to the sys-

tem of equations. Phase constraints fix the parameterization on the torus. Suppose (X̃, T̃ , ρ̃) is

a solution which satisfies Equation (3.3). This solution is typically either generated from a linear

approximation according to Equation (2.29b) or is the previous solution in a continuation method.

The vector X̃ necessarily defines a parameterization over the torus. Then the phase constraints

ensure that the next solution (X, T,ρ) to be computed has the same parameterization by finding

the solution which is closest to X̃.

The phase constraints are given as

p(z) =


p0(z)

...

pn(z)

 =


〈
X − X̃, ∂X̃∂θ0

〉
...〈

X − X̃, ∂X̃∂θn

〉

 = 0, (3.28)

where

∂X̃

∂θi
= DρiX̃, i = 1, . . . , n (3.29a)

∂X̃

∂θ0
=

1

ω0

(
f(X̃)−

n∑
i=1

ωi
∂X̃

∂θi

)
. (3.29b)

The number of phase constraints and which phase constraints are included in the system of

equations to solve in the TPBVP depends on the dynamical system in which invariant tori are being

computed. For systems which explicitly depend on ωi or θi the corresponding phase constraint is not

included. In a system of this type the dependence on the angle or frequency fixes that coordinate.

In an autonomous Hamiltonian system all n phase constraints are needed. Suppose the periodic

forcing of Jupiter is added to the system. Then that forcing frequency becomes a frequency of any



65

invariant torus in the system, and the phase constraint corresponding to that coordinate is removed

from the system of equations.

The partial derivative of each pi with respect to X is given by

∂pi
∂X

=
∂X̃

∂θi
. (3.30)

The remaining partial derivatives are zero.

3.2.4 Consistency Constraints

In Section 3.2 we mentioned the redundancy between including both (T,ρ) and ω as inde-

pendent variables, since they are correlated through Equations (2.32) and (2.33). To address this

issue we add consistency constraints to ensure there correspondence between the stroboscopic time,

rotation vector, and frequency vector.

The consistency constraints are

k(z) =



Tω0 − 2π

Tω1 − ρ1

...

Tωn − ρn


= 0 (3.31)

The derivatives of the consistency constraints are straightforward to compute.

3.2.5 Parametric Constraints

The quasi-periodicity constraint, the phase constraints, and the consistency constraints are

sufficient to compute an orbit within a p-parameter family of quasi-periodic orbits, however to

enable single-parameter continuation we must include p additional constraints. We call these con-

straints parametric constraints as they allow us to identify a single member from within a family,

thus parameterizing the family. For a Hamiltonian system with d degrees of freedom the maximum

size a family can be is a d-parameter family. In autonomous Hamiltonian systems, such as the

circular restricted three-body problem, p-dimensional invariant tori come in p-parameter families.
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Consider, again, that the periodic forcing of Jupiter is added to the system. Then p+1-dimensional

quasi-periodic invariant tori form p-parameter families.

The first and most important parametric constraint in continuation is the pseudo-arclength

constraint. This constraint was encountered in Equation (2.69), however we amend it to be

s(z) =
1

mN

〈
X − X̃, X̃

′
〉
+ (T − T̃ )T̃

′
+
〈
ρ− ρ̃, ρ̃′

〉
+
〈
ω − ω̃, ω̃′

〉
−∆s = 0. (3.32)

Recall that (·)′ is a tangent space vector. We often call this vector a family tangent vector

when using continuation because it predicts how to approximate the next family member in a

branch. The method to generate a family tangent vector is given in Section 3.2.6.

The remaining parametric constraints g(z) = [g1(z), . . . , gp−1(z)] can take on any form as

long as they construct a full rank Jacobian matrix in the resulting system of equations during the

entire continuation procedure. These equations add flexibility in the types of solutions obtained in

the continuation procedure.

3.2.6 Family Tangents

Putting all the equations together forms the system of equations F : RdmN+2(n+1) →

RdmN+2(n+1)+p,

F (z) =



G(z)

c(z)

p(z)

k(k)

s(z)

g(z)


. (3.33)

We stress that the exact form of F depends on the dynamical system, the dimension of the tori being

computed, and the dimension of the orbit family. Equation (3.33) gives the full system of equations

which defines a single quasi-periodic orbit from within a family of quasi-periodic orbits. However,

for the continuation we need the tangent space of the 1-parameter family in order to compute
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branches of solutions. We recover the systems of equations defining the branch of solutions by

removing the pseudo-arclength constraint, giving

F1(z) =



G(z)

c(z)

p(z)

k(k)

g(z)


. (3.34)

Equation (3.34) forms an implicitly defined smooth embedded submanifold (in the sense of Whitney)

of dimension 1. For other reasons we are interested in the tangent space of the full family of quasi-

periodic orbits. Removing the remaining parametric constraints gives the system of equations

Fp(z) =



G(z)

c(z)

p(z)

k(k)


. (3.35)

Equation (3.35) forms an implicitly defined smooth embedded submanifold (in the sense of Whitney)

of dimension p.

The initialization of the continuation method requires an initial or approximate solution z

and a family tangent vector z′ to provide an approximation of the next family member. If the

solution is an approximate solution derived from the linearization about a periodic orbit, then the

family tangent vector is generated from Equation (2.29a) as a stacked vector according to Algorithm

2 with T ′ = 0, ρ′ = 0, and ω′ = 0. In this case we choose the step size to be quite small since the

family tangent vector is likely not pointing in the direction to satisfy the parametric constraints g.

If the solution is a true solution satisfying F1, then a family tangent vector is the basis vector of

the 1-dimensional null space of the Jacobian matrix.

Once the continuation procedure is underway and has computed at least the first true solution

F then the family tangent vector can be computed as the difference between two consecutive

solutions (Equation (3.36)) or, again, come from the null space of the Jacobian matrix of F1.
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z̃′ = z − z̃ (3.36)

3.2.7 Stability Analysis

Once a quasi-periodic orbit has been computed we can easily solve the discretized version of

the eigenvalue problem in Equation (2.45). Given the discretized invariant surface X ∈ RdmN of

an invariant torus with frequencies ω we compute the stability matrix

Gω = R−ρΦ, (3.37)

where Φ is the dN × dN block diagonal matrix containing the STM of each point in X̄0 evaluated

over one stroboscopic time.

To find the Floquet multipliers and the corresponding eigenvectors we compute the eigen-

values and eigenvectors of Gω. Just as in the continuous case, the eigenvalues in the discretized

case form rings in the complex plane, and the same rules apply for determining the type of motion

each ring corresponds to. Using the method of Jorba in [102] we filter and sort the eigenvalues

to find the Floquet multipliers λ. The stable and unstable manifolds are initialized in the same

manner as in Equation (2.53). It is important to note the eigenvectors corresponding to λ are dN -

element vectors with each d set of values corresponding to the tangent direction of the invariant

manifold at the corresponding point in X̄0. We call each d set of values a fiber of the invariant

manifold, whereas the collection of all the fibers is called a bundle. When the invariant manifold is

a (un)stable manifold we call the bundle the (un)stable bundle, and for a center manifold we call

the bundle the center bundle.

3.3 Amplitudes of an Invariant Surface

The size of a quasi-periodic orbit is not a well-defined quantity. There are different ways to

quantify the size of a quasi-periodic orbit. For 2-d quasi-halo orbits one might be interested in the

average distance from the surface of the orbit to the halo orbit. However, even this is not well-
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defined. The distance could be measured from the quasi-halo orbit to the closest point on the halo

orbit, or the distance could be measured to the point on the halo orbit which corresponds to the

same θ0 value. Moreover, this metric is only defined when the stroboscopic time of the quasi-halo

shares the same value with the period of the halo orbit. In other dynamical systems there may not

be any periodic orbits to compare the quasi-periodic orbits with. Therefore, we present a method

to measure the amplitudes of each dimension of an n-dimensional quasi-periodic orbit, irrespective

of any external point of reference, so that we may quantify the size of a quasi-periodic orbit.

An algorithm is given to compute the amplitudes of an n-dimensional discretized invariant

surface X. First, given a set of integers (N1, . . . , Nk) ∈ Nk that form an evenly spaced grid over Tk

define the multi-index j = (j1, . . . , jk) that belongs to the set Jk ≡ {j ∈ Zk|0 ≤ ji < Ni for i =

1, . . . , k}. Then define the vector of angles θj = (θj1 , . . . , θjk) = 2π (j1/N1, . . . , jk/Nk) ∈ Tk. Then

X(θj) is a single point on the invariant surface, and the collection of points representing a k-

dimensional invariant surface is X = {X(θj)|j ∈ Jk}. The notation Yj(θk) = {X(θj , θk,l)|l =

0, . . . , Nk − 1} represents a curve along the kth dimension of the invariant surface with fixed angles

θj where j ∈ Jk−1 and Yj(θk,i) is a single point on the curve at θk,i = 2πi/Nk.

Algorithm 3 Amplitudes of an Invariant Surface

Require: X, N1, . . . , Nn

1: for k in (n : −1 : 2) do
2: for all j ∈ Jk−1 do
3: ck,j ← 1

Nk

∑Nk−1
i=0 Yj(θk,i)

4: rk,j ← 1
Nk

∑Nk−1
i=0 ∥Yj(θk,i)− ck,j∥

5: end for
6: Ak ← 1∏k−1

i=1 Ni

∑
j∈Jk−1

rk,j

7: X ← {ck,j |j ∈ Jk−1}
8: end for
9: c1 ← 1

N1

∑N1−1
i=0 X(θ1,i)

10: r1 ← 1
N1

∑N1−1
i=0 ∥X(θ1,i)− c1∥

11: A1 ← r1
12: return A1, . . . , An
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Figure 3.2: Example of computing amplitudes of an invariant surface with n = 2, N1 = 6, and

N2 = 4.

The process to compute the amplitudes of an n-dimensional invariant surface (k = n) com-

putes the amplitudes in reverse order starting with An. By freezing the first n − 1 dimensions, a

group of points is defined and forms a curve Yj(θn). A centroid cn,j and average radius rn,j is

computed from this curve and are recorded. The centroid and average radius are computed for

each curve Yj(θn) with j ∈ Jn−1. The amplitude An is the average of the radius of each curve. The

set of points X is redefined to be the set of centroids {cn,j |j ∈ Jn−1}. This process has effectively

reduced the dimension of the invariant surface by one by averaging out the last dimension. The

process continues until all amplitudes have been computed. A 3-d quasi-periodic invariant torus

has an invariant surface that is a 2-dimensional, and as such, it has 2 amplitudes A1 and A2. The

amplitude A0 of the 3-d quasi-halo orbits correspond approximately to the sizes of the halo orbits,

so these amplitudes have been omitted. However, it is straightforward to compute A0; one simply
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needs to let X be a discretized set of points covering the entire invariant torus. Figure 3.2 depicts

the process of computing the amplitudes for a 2-d invariant surface.

3.4 The Halo Orbit Family

We are interested in the Earth-Moon system, so the value of µ used throughout this thesis

is 0.012153599037880. The L2 halo orbit family serve as the generating orbits for the L2 quasi-

halo orbit family, and their structure is important to the structure of the quasi-halo orbit family.

Quasi-halo orbits inherit the stability properties of their generating halo orbit.

The halo orbits are a bifurcation from the planar Lyapunov orbits at the point where the

frequency of the Lyapunov orbit matches the frequency of the center manifold emanating from

the orbit. This center manifold produces out of plane oscillations which in turn gives rise to the

3-dimensional geometry of the halo orbits. From the bifurcation point the halo orbits grow larger

in size becoming more vertical while moving closer to the Moon forming a continuous 1-parameter

family.

Figure 3.3: A stable halo orbit with the linear center manifolds from its monodromy matrix.
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Figure 3.4: The frequencies of the center manifolds of the halo orbit family.

From the Lyapunov bifurcation the halo orbits start out as type center×saddle. Quasi-

periodic motion is created by exciting the normal center manifold. Moving through the family

there is a bifurcation and the halo orbits become type saddle×saddle. The region of orbits that

have this unstable behavior is very small, and the family quickly reverts to type center×saddle.

Continuing through the family there is another bifurcation and the orbits become stable with type

center×center. The stable region was first discovered by Breakwell and Brown in [37], and the two

normal center manifolds are visualized in Figure 3.3. In this region 2- and 3-dimensional quasi-halo

orbits exist. Continuing through the family the stability is lost, reverting to type center×saddle,

and remains this way until getting very close to the Moon; at which point the halo orbits become

stable again. However, these stable orbits have a perilune (point of closest approach to the Moon)

below the surface of the Moon, so they are not typically considered for operational applications.

The frequencies of the normal center manifolds are plotted against the frequencies of the halo

orbits in Figures 3.4 and 3.5. The units of the frequencies are radians per non-dimensional time

unit (rad/TU). The existence of two distinct center manifolds results in two distinct lines in the

figure. The first center manifold is referred to as Center Manifold A (CM-A) while the second one



73

is referred to as Center Manifold B (CM-B). These lines are referred here as the halo lines since

they represent the halo orbit family in frequency space. It is these halo lines that are used as the

starting boundaries to present the frequencies of the quasi-halo family.

Figure 3.5: Frequencies of the stable L2 halo orbit family and the frequencies of their normal center

subspaces.

Halo orbits have a base frequency ω0 (see Equation (2.32)). 2-dimensional quasi-halo orbits

have an additional frequency ω1, while 3-dimensional quasi-halo orbits have two additional fre-

quencies ω1 and ω2. These frequencies arise from the normal center manifolds. The frequency ω0

dictates the frequency of moving along the periodic orbit, while the frequencies ω1 and ω2 dictate

the frequencies of oscillations about the halo orbit.

Figure 3.6 shows the halo lines in conjunction with the halo orbit family to put the lines into

perspective. It is important to note that both plots represent the halo orbit family. The left plot
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Figure 3.6: Correspondence between the halo orbit family in frequency space (left) and in coordinate
space (right).

represents the family in frequency space while the right plot represents the family in coordinate

space in an x-z view. Notable regions of the family are indicated on both plots and the orbits are

colored according to their frequency ω0. One halo orbit to take note of is the 9:2 NRHO because

this is where NASA plans to stage the Lunar Orbital Platform Gateway as a proving ground to

test technologies that could enable future manned missions to Mars [169].

3.5 The 2-Parameter Family of Quasi-Halo Orbits

We have computed 500 halo orbits which span from the genesis of the family at the point

of the planar Lyapunov stability bifurcation to the point where the orbits have perilune below the

lunar surface. This provides numerous starting points from which to compute quasi-halo orbits.

In the majority of the computation we used 41 points to discretize the invariant curves. A mix of

single-shooting and multiple-shooting was used in the computation of quasi-halo orbits.

3.5.1 Exploring the Family

To understand efficient methods to explore families of quasi-periodic orbits we test the use

of four different parametric constraints. The tested parametric constraints are given in Equations
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(3.38) -(3.41). In the equations the symbol (·)∗ represents a constant quantity. Equations (3.38)-

(3.40) maintains a constant characteristic of the computed branch of orbits. These are the values

of ω0, ω1, and the Jacobi energy, respectively. In Equation (3.40), J̄(X) averages the Jacobi

constant among all points in X. Equation (3.41) does not maintain a constant value of any orbital

characteristic, but it ensures the branch of solutions follows straight line in frequency space at a

specified slope m.

ω0 − ω∗
0 = 0 (3.38)

ω1 − ω∗
1 = 0 (3.39)

J̄(X)− J∗ = 0 (3.40)

ω1 − ω∗
1

ω0 − ω∗
0

−m = 0 (3.41)

It is easy to see that Equation (3.41) generalizes both Equations (3.38) and (3.39). Moreover,

Equation (3.41) generalizes the constant rotation number constraint utilized by various researchers

[29, 75, 83, 130]. To see this let m =
ω∗
1

ω∗
0
=

ρ∗1
2π . Then Equation (3.41) becomes

ω1 − ω∗
1

ω0 − ω∗
0

=
ρ∗1
2π

,

2πω1 − 2πω∗
1

ω0 − ω∗
0

= ρ∗1,

ρ1ω0 − ρ∗1ω
∗
0

ω0 − ω∗
0

= ρ∗1,

ρ1ω0 − ρ∗1ω
∗
1 = ρ∗1ω0 − ρ∗1ω

∗
0,

ρ1ω0 = ρ∗1ω0

ρ1 = ρ∗1.

In each of the parametric constraints we let the fixed value of the characteristic come from the

generating halo orbit. The base frequency ω∗
0 and the Jacobi constant J∗ are computed directly from

the halo orbit, while ρ∗1 and ω∗
1 come from the normal center manifold. In the stable region there

are two normal center manifolds, so we compute 2-dimensional quasi-halo orbits off of each center
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manifold and use each center manifold’s linear rotation number and frequency. For the constant

slope constraint we chose m =
ω∗
1

ω∗
0
so that constant rotation number branches were computed.

Figure 3.7: Quasi-halo orbits computed using different parametric constraints: constant ω0 (a),

constant ω1 (b), constant Jacobi energy (c), and constant slope (d).

The results of using each parametric constraint are presented in Figure 3.7. The parametric

constraint that explored the most area is the constant slope constraint for the case that each

computed branch is keeping the rotation number constant. The reason for this is that each branch

follows a straight line with slope m = ω0
ω1

to the origin in frequency space. In this space resonances

are also straight lines intercepting the origin, however resonances only take on rational values for

the slope. As long as a branch has a frequency ratio far enough away from a rational value that

branch will be unaffected by the computational difficulties encountered near resonances. Gómez

and Mondelo use a constant rotation number constraint and choose generating halo orbits with
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particular rotation numbers to avoid computing branches near resonance lines. We did not compute

halo orbits in this fashion so that we can study how well this constraint performs in more general

cases.

The parametric constraint that explored the least area is the constant ω1 constraint. This

is because a constant ω1 branch encounters resonances very quickly. Moreover, for the case of the

L2 quasi-halo orbits the orientation between a constant ω1 branch and a resonance line is closer to

parallel than it is to perpendicular, implying there is more “distance” to travel to get to the other

side of a resonance line. Despite this the constant ω1 constraint did well to fill out the bottom left

portion of the family than did the constant slope constraint.

The constant ω0 constraint performs well to explore the family, and even outperforms the

constant slope constraint in the top right portion of the family, but falls short of when encountering

resonances. This behavior is easily seen by the hard cutoffs and discontinuity between the branches,

showing that it is easier to cross over resonance lines when the quasi-halo orbits are smaller. That

is, until the resonances cross over the halo line. Moreover, the constant ω0 constraint is unable to

explore the portion of the family which is to the left of the left-most point on the halo line. The

area of the family in this region does not have any generating halo orbits which have the same base

frequency. If a quasi-halo orbit shares its ω0 value with a halo orbit then they essentially have the

same period and prevent secular drift between the two orbits, meaning constant ω0 branches are

excellent for studying formation flying when the chief spacecraft is assumed to be on a halo orbit.

The constant Jacobi energy constraint performs well by constructing long branches. It fills

out the bottom left portion of the family near the halo line very well, but struggles to get past lower

order resonances appearing at larger values of ω1. Constant Jacobi energy branches are particularly

useful for studying families of orbits which can be reached given limitations on the propulsion of

a spacecraft. Additionally, families of orbits at the same energy level provide the possibility for

heteroclinic transfers between orbits.

It is not easy to quantify which parametric constraint is best because each constraint has

its own pros and cons when it comes to studying families of quasi-periodic orbits. If the goal is



78

to explore the family as fully as possible, then the constant slope constraint is likely to achieve

this goal. However, its exploration capability, just like the other parametric constraints, is limited

to simple geometries of the parameter space of a family. To more fully explore families one needs

to either use multi-parameter continuation, which has yet to be used to explore families of quasi-

periodic orbits, develop search strategies which utilize multiple parametric constraints. In addition

to either of these two options, one needs to find ways to reduce the effect of resonances which

limit the efficacy of exploring families of quasi-periodic orbits. In this chapter we develop search

strategies, and in Chapter 4 we address ways to reduce the effects of resonances.

The parametric constraints are swapped during the continuation to develop search strategies.

The strategies developed and tested are named stair step, resonance bouncing, and roots. The stair

step strategy swaps between Equation (3.39) and Equation (3.38) when the continuation method

fails to find any more family members. The resonance bouncing strategy uses Equation (3.41)

and changes the slope from m to −m upon getting stopped by a resonance. The roots strategy

is employed once a branch of solutions is stopped. The parametric constraint becomes Equation

(3.41) and multiple branches are initialized with different slopes to explore in a variety of directions.

In each of these strategies it is advantageous to compute a new family tangent vector when

the parametric constraint is swapped so that the next predicted family member is computed more

easily. Let z̃ be the current solution, then computing the null space of the Jacobian matrix of Fp

(Equation (3.35)) provides basis vectors for the tangent space of the 2-parameter family of quasi-

halo orbits. We compute new basis vectors such that the last 2× 2 block is the identity. We call

these basis vectors the principle tangent basis, and denote them z
′
ω0

and z
′
ω1
. The principle tangent

basis vector z
′
ωi

provides a linear prediction of nearby solutions when solely ωi is incremented. We

leverage the principle tangent basis to construct a family tangent vector which points towards a

solution satisfying the new parametric constraint.

Suppose we want to move in frequency space with slope m. We choose the family tangent

according to Equation (3.42) by leveraging that the slope is simply the change in ω1 divided by the
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change in ω0.

ẑ
′
=



z
′
ω0
, m = 0

z
′
ω1
, m = ±∞

z
′
ω0

+mz
′
ω1
, otherwise

(3.42a)

z
′
=

ẑ
′

||ẑ′ ||
(3.42b)

The results of using each search strategy are presented in Figure 3.8. In plots (a) and (b)

the black points are the orbits computed using the stair-step and resonance bouncing strategies,

respectively. Plot (b) includes red lines indicating which resonances the solution branches are

bouncing between. In plot (c) the black points show the solutions which only used a constant slope

parametric constraint initialized from a the linearization about a halo orbit, while the red points

show the extension of branches using the roots strategy.

The advantage of each strategy is that more area of the quasi-halo family is explored, and

each has the potential to explore parameter spaces with more complex geometries by changing the

search direction. The stair step strategy is seen to extend the branches to explore further than

would have been done without swapping between the constant ω0 and constant ω1 constraints. A

disadvantage of the stair step strategy is that it can get stuck at resonances.

Figure 3.8: Search strategies utilizing different parametric constraints: stair step (a), resonance

bouncing (b), and roots (c).
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The resonance bouncing strategy does well to stay within the bounds of two low-order res-

onances. The bounding resonances are the 3 : 1 and the 4 : 1 resonances and are labeled in plot

(b) in Figure 3.8. By an p : q resonance we mean that ω0
ω1

= p
q . With the resonance bouncing

strategy we can explore the family by filling out the regions between bounding resonances. It is

unclear a priori which resonances will be strong enough to bound the continuation procedure, but

with enough generating halo orbits this is not an issue.

It is seen in plot (b) that some branches escape the bounding resonances, showing the po-

tential to move into other areas to explore. Moreover, it is seen that some branches are to the

right side of the halo line. This happens when a branch of quasi-halo orbits approaches the halo

orbit family. The amplitudes of the invariant curves approach zero and as a result become smaller

than the error tolerance for the Newton’s method. At this point any error in the quasi-periodicity

constraint is below the error tolerance as well, becoming a “true” invariant curve. The branch

continues as if nothing is wrong. Therefore, it is important to include a measurement on the size

of invariant surfaces in the continuation method to ensure the invariant tori are not collapsing in a

dimension.

Lastly, the roots strategy pushes the branches even further and fills out more of the family.

The roots method is particularly advantageous to explore parameter spaces which are not geomet-

rically convex since multiple branches are constructed to move in various directions. The strength

of the roots method is not displayed here for two reasons. The first is that the constant rotation

number constraint already filled out a large portion of the family, so there was not much space left

to explore. Secondly, the geometry of the frequency space is largely convex such that using any one

of the parametric constraints of Equations (3.38)-(3.41) by themselves is enough to largely explore

the family.

Using a combination of various parametric constraints and search strategies we can explore

more regions of the family and be more certain no areas are missing. There are many more

parametric constraints and many more search strategies which can be constructed, however, for the

L2 quasi-halo family, the methods used here are sufficient for the exploration.
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3.5.2 Family Surface

The family surface can be presented in various ways based on the parameterization of the

family, but the natural way for families of quasi-periodic orbits is to show the surface in the space

spanned by the quasi-periodic orbit orbit frequencies ω0 and ω1. The entire range of the halo orbit

family is used as a starting boundary to compute quasi-halo orbits. Family branches are computed

using the four different parametric constraints of Equations (3.38)-(3.41) and the accumulation of

the results are shown in Figure 3.9. Each data point in the figure represents a single quasi-halo

with the corresponding frequency pair (ω0, ω1). There are two separate surfaces because there are

two distinct center manifolds that emanate from the halo orbits. The top plot shows the surfaces

together whereas the bottom plots show each surface individually in more detail.

Figure 3.9: Family surface of Earth-Moon L2 quasi-halo orbits parameterized by the orbit frequen-

cies.
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A large portion of the surface has ω0 values less than the minimum ω0 value of the halo

orbit family. A quasi-halo with the same ω0 value as a halo orbit have effectively the same period

meaning spacecraft remain nearby for all time to a spacecraft on the halo orbit. This synchronicity

is useful to be able to place satellites around the Lunar Gateway that can monitor the external

health of the station or astronauts doing spacewalks. When the ω0 values are not the same then

the spacecraft on the quasi-halo will either move ahead or lag behind the chief spacecraft resulting

in a secular type of drift. Eventually the two spacecraft will catch up to each other, but it will take

a long time to do so. This means the areas of the surface directly above the halo line are suitable

candidates for formation flying whereas the areas of the surface not above the halo line are not

ideal for formation flying when the reference trajectory is a halo orbit. However, these quasi-halo

orbits that are non-synchronous with halo orbits are synchronous with planar Lyapunov orbits.

The synchronicity follows from the fact that the period of the planar Lyapunov orbits increases as

the orbits grow larger from the libration point and continues to increase after the bifurcation of

the halo orbit family.

The small displacement from the halo lines are not enough to say that these quasi-halos do

not grow large, but it does show that there is not a lot of variability in the rates at which spacecraft

move around on these quasi-halos. The sizes of the quasi-halo orbits need to be examined directly

to make a conclusion about how large the quasi-halos grow in this region which is a study presented

in Section 3.5.4.

The surface for CM-A (bottom left of Figure 3.9) is mostly triangular with some gaps. It

is believed that most of these gaps are due to resonances between ω0 and ω1. Recall that res-

onances between frequencies cause a degeneracy in quasi-periodic orbits, and for 2-dimensional

quasi-periodic orbits this results in periodic orbits. There are resonances almost everywhere, but

their effect is computationally noticeable at low-order resonances. Some resonance lines are plotted

on top of the surface emanating from CM-A and shown in Figure 3.10. In this figure it can be

seen that the resonance lines cause some branches to stop, yet different branches pass right through

other resonances. The ability of resonances to stop the growth of branches seems to diminish near
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the halo line. The exception to this is the 2:1 resonance that crosses at about the middle of the

halo line which does not let any branch cross it. Near the crossing of the 2:1 resonance line and

the halo line is the region of halo orbits that do not have center manifolds. Only in this area is it

expected to not find quasi-halo orbits. The reason for the gaps and discontinuities is quasi-periodic

orbit computation methods have problems computing quasi-periodic orbits near resonances. It is

interesting to point out that on the resonance lines there exist families of periodic orbits with a

larger period which can be found using high accuracy shooting methods.

Figure 3.10: Family surface emanating from CM-A overlaid with resonance lines.
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Figure 3.11: Comparison of L2 quasi-halo orbit family between our results in (a) to the results of

Gómez and Mondelo in [75] in (b).

We compare our results to those in [75] in Figure 3.11. To do this we multiply the Jacobi

constants by −1
2 to match their energy calculations. Looking at plot (b) in the figure there are four

main regions where orbits do not appear. From top to bottom these correspond to the 2:1, 5:2,

3:1, and 4:1 resonances. These are low-order resonances that play a critical role in the organization

of the dynamics, though they are not the only resonances that prevent quasi-halo orbits from

being computed. For the range of halo orbits which are in common between our work and the

work of Gómez and Mondelo they compute a larger portion of the quasi-halo family. This is

because they used up to a maximum of 100 points to discretize their invariant surfaces and used

4 multiple-shooting segments. In this work we restrict to using 41 points and typically use single-

shooting. This gives them an advantage in the numerical accuracy and allows them to compute

quasi-periodic orbits closer to the point at which they break down. Gómez and Mondelo state that

they stop computing halo orbits at the turning point in the Jacobi constant in the halo orbit family.

Computing quasi-halo orbits from a wider range of halo orbits allows us to study the stable region

within the halo orbit family, and allows us to study the quasi-halo orbits which share the same ω0

value as the 9:2 NRHO.
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Table 3.1: Maximum and minimum values of the Jacobi constant, perilune, and apolune obtained
by the quasi-halo family.

Extremal Value J (ND) rp (ND) ra (ND)

max 3.151818691968968 0.132410593278286 0.297495381129119

min 3.001239064876652 1.660669385605371e-04 0.154580747306807

When looking at the quasi-halo orbit family it is not completely understood why the boundary

of the family exist in the way that it does. It is known that hyperbolic quasi-halo orbits are bounded

by the planar Lyapunov orbits corresponding to the same energy level [75, 103]. Henon states that

a family of periodic orbits terminates naturally due to either the family closing on itself or any

of the size, energy, or period growing unbounded [86]. These same principles apply to families of

quasi-periodic orbits. Moreover, it has been shown that quasi-periodic orbits break down when any

of the bundles collide with each other, destroying the bundles and the orbit itself [46, 66, 81].

3.5.3 Characteristics

Recall that each point in Figure 3.9 corresponds to a unique orbit, and each of these or-

bits have measurable quantities that may be of interest for mission applications. The quantities

computed here are the Jacobi constant (Figure 3.12), perilune distance (Figure 3.13), and apolune

distance (Figure 3.14). In each of these figures the points are colored according to the values of

each individual quantity in non-dimensional units (ND). The maximum and minimum values of the

Jacobi constant, perilune, and apolune taken on by the computed family are listed in Table 3.1.

The behavior of the Jacobi constant for the family might look simple according to Figure 3.12,

however it is nontrivial in the regions of the family surface that are very slim and therefore hard

to see. Jacobi constant contours for CM-A outside the stable region make nearly straight diagonal

lines leading downward away from the halo line. Considering constant ω0 branches then the Jacobi

constant decreases as the branches (and likewise the orbits) grow larger. For constant ω0 branches

up to ω0 = 2.700793 in the stable region of CM-A the Jacobi constant decreases as well, however

for branches with ω0 larger than this the trend in the Jacobi constant along branches switches and
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begins to increase with some branches having a non-monotonic behavior in the transition zone.

Jacobi constants along constant ω0 branches in the stable region of CM-B only increase while

branches outside the stable region transition to a decreasing trend.

Figure 3.12: Jacobi constant across the family surface in non-dimensional units.

The Jacobi constant is an energy-like quantity that dictates what areas of phase space are

accessible, and as the value decreases more areas of space become accessible. Libration point orbits

tend to have a decrease in the Jacobi constant as they grow larger from the libration point meaning

more energy is needed to place spacecraft on those orbits and that their hyperbolic manifolds (if

they exist) can extend to more areas of space. However, it is seen that there are branches of orbits

where growing the orbits larger requires less energy to reach those orbits. Most of these branches

are in or near the stable region, so these orbits could be targets for missions that require minimal

station-keeping efforts.

The perilune and apolune are the closest and furthest approach distances respectively on an

orbit with the center of the Moon. The behaviors of these plots are more physically intuitive. As

the orbits grow larger from the halo orbits the perilunes decrease and the apolunes increase. As

ω0 increases the orbits are necessarily getting closer to the Moon since that is how the halo orbit

family evolves. In Figure 3.13 the perilune decreases as the surface moves away from the halo lines
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Figure 3.13: Perilune across the family surface in non-dimensional units.

Figure 3.14: Apolune across the family surface in non-dimensional units.
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(though less observable for CM-B) and decreases as ω0 gets larger. In Figure 3.14 the apolune

increases as the surface moves away from the halo lines, however the behavior as ω0 increases is not

as straight forward. Initially, the apolune increases as the ω0 increases, but hits a maximum in the

stable region of the halo orbits and begins to decrease as ω0 increases further. This can be observed

by looking at Figure 3.6. In non-dimensional units the radius of the Moon is about 0.00452, so an

interesting observation is that there is an area of the family surface of CM-B composed with orbits

that intersect the lunar surface. None of the quasi-halos emanating from CM-A have perilunes

below this threshold.

Knowledge of these characteristics and undoubtedly others can be used to limit the search

space of the family for orbits that meet preliminary mission design requirements. A Jacobi constant

constraint could arise from an energy constraint due to the launch vehicle and spacecraft propulsion

system or arise from a constraint on the hyperbolic manifold to reach a specific region in space. A

perilune and apolune constraint could arise from viewing constraints to get images of the Moon at

certain resolutions or arsie from communication constraints.

3.5.4 Geometry

An example of three different family branches extending from the same halo orbit are in Figure

3.15 to show the variability in family members. The halo orbit has a frequency ω0 of 1.868404, a

Jacobi constant of 3.126576, and a center manifold frequency ω1 of 0.166293. The three different

branches are a constant ω0 branch, a constant ω1 branch, and a constant Jacobi energy branch.

Each column represents a different family branch. The top row shows the branch on the family

surface, the middle row shows the orbits in the branch colored according to the color gradient of

the branch, and the bottom row shows the last family member of the branch. The family takes on

a wide range of unique geometries which can not be achieved from the halo orbits. The quasi-halo

orbits are self-intersecting near the x-axis crossings allowing for maneuvers to change phase. Near

the x-axis crossings the halo orbit leaves and re-enters the branch of quasi-halos creating a potential

for collisions and transfers onto other orbits. Additionally, the orbits in each branch intersect the
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other orbits in the respective branches allowing for transfers to other orbits.

The constant ω0 branch terminates at the 3:1 resonance and the effects of this resonance can

be seen by the thicker bands in the last orbit giving a preview of what a 3:1 resonant periodic

orbit looks like. This periodic orbit can be found by using a high accuracy predictor-corrector

shooting method to propagate an initial condition on the dark band with a period of three times

the stroboscopic time. The constant ω1 branch terminates at a 10:1 resonance. The constant Jacobi

energy branch terminates at the boundary of the family surface and not at a resonance. In this

branch the value of ω0 decreases below the halo orbit limit and the value of ω1 tends to zero. This

means the branch moves toward a planar Lyapunov orbit which can be seen by the thicker planar

band in the last family orbit.

Figure 3.15: Three different branches of quasi-halo orbits extending from the same halo orbit.

Another way the geometry is analyzed is by computing the box size of each computed orbit.
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The box size of an orbit is a 3-element set (lx, ly, lz) that describes the lengths in the x, y, and z

directions of the smallest box that encapsulates the orbit. Computing these values for each family

member makes a set of values that can be plotted in a 3-dimensional space to create a 2-dimensional

surface. This surface is in Figure 3.16 and each point on the surface is colored according to the

Jacobi constant of the corresponding orbit. The surface does not give insight into the actual shapes

of the quasi-halos but it does give a complete picture of the sizes of the quasi-halo orbits. The figure

also contains three shadows that are projections of the surface on different planes. Additionally,

the box sizes of the halo orbits are plotted on top of the shadows and colored according to the halo

lines of Figure 3.4 to help the reader put this surface into correspondence with the family surface

in the top plot of Figure 3.9. This type of surface can be generated for other 3-element data sets

such as the maximum or minimum x-y-z coordinates of each orbit or even a 4-element set where

the fourth variable is plotted as a color just like the Jacobi constant in Figure 3.16.

Following the surface along the boundary created by the halo lines the halo orbits grow in size

while decreasing in the Jacobi constant. The largest halo orbit has a Jacobi constant of about 3.04.

Continuing along the boundary the halo orbits get smaller while the Jacobi constant continues to

decrease. At the point where the Jacobi constant achieves its minimum value the halos become

stable. Past this point the Jacobi constant begins to increase in value while the halo orbits get

smaller. After observing this behavior it is evident that the portion of the surface that belongs to

the CM-B family surface is the top right hook-like portion of the surface. The rest of the surface

then belongs to the CM-A family surface. An example of how to visualize the information from

Figure 3.16 is in Figure 3.17. A box is constructed from the origin to a point on the surface and the

corresponding quasi-halo orbit is plotted inside it and colored according to its Jacobi constant. It is

then easy to see that the quasi-halo orbits belonging to CM-B are relatively small when compared

to the orbits of CM-A. Similar to the Jacobi constant, perilune, and apolune the box sizes can be

used in preliminary mission design to reduce the search space of quasi-periodic orbits to find orbits

that meet a size requirement that stems from a communications requirement.

Another way to measure the size of a quasi-periodic orbit is by the maximum and minimum
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Figure 3.16: Surface of box sizes of the L2 quasi-halo orbits.

Figure 3.17: Example of how to interpret the surface of box sizes in Figure 3.16.
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amplitudes of the invariant surfaces. For 2-dimensional invariant tori there is only one dimension to

the invariant surfaces. Figure 3.18 shows the family of quasi-halo orbits in frequency space colored

according to the location the invariant curve achieves its maximum and minimum values. The

location is measured by θ0 and is only specified between 0 and π. This is because the quasi-halo

orbits exhibit symmetry about the x-z plane and θ0 = 0 occurs as the bottom of the orbit centered

on the x-axis. At the beginning of the halo orbit family the minimum locations take on values near

π and steadily decrease until the 2:1 resonance; at which point there is a sharp decrease to 0. At

the beginning of the stable region and beyond the minimum locations are near 0. Interestingly,

a similarly smooth behavior is not noticed with the maximum locations. There are three distinct

regions which take on values of 0, π
2 , and π. In the same figure we have provided examples of

quasi-halo orbits from within each region and have plotted the invariant curves with the maximum

and minimum sizes in each orbit.
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Figure 3.18: Locations of the minimum and maximum amplitude of the invariant curves across the

2-parameter family of L2 quasi-halo orbits.

3.5.5 Period Doubling Halo Orbit Family

Periodic orbits with normal center manifolds with rational rotation numbers give rise to

1-parameter families of periodic orbits with larger periods. Common occurrences of these bifurca-

tions are the period-doubling bifurcation, period-tripling bifurcation, and period-quadruplication

bifurcation. Here we show the period-doubling halo orbit family and compute quasi-periodic orbits

generated from this family. The purpose is not to show the entire family in a manner like the

quasi-halo family, but to show these families exist and can generate families of quasi-periodic orbits

different from the quasi-halo orbits.

The period-doubling family is very large and takes on a variety of shapes, so the family is
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Figure 3.19: Period-doubling family of periodic orbits that bifurcates from the L2 halo orbits broken
into four segments.
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broken into four segments based on the geometrical shape of the orbits and how the family grows

(Figure 3.19). The family begins with the dark orbits in plot (a) and grow larger. The thick dark

ring in the plot is the remnant of the halo orbit that the family bifurcated from. Moving clockwise

to plot (b) the dark orbits continue the family where plot (a) left off with the light colored orbits.

This pattern continues going from plot (b) to (c) and from plot (c) to (d). The orbits in plot

(a) contain a center manifold, so these orbits give rise to a 2-parameter family of period-doubling

quasi-halo orbits. An example of one of these quasi-periodic orbits is in Figure 3.20. The period-

doubling halo and quasi-halo orbits are not a new discovery since they are presented by Gómez

and Modelo in [75] among the period-tripling and period-quadrupling counterparts, however the

period-doubling halo orbit family are displayed here.

Figure 3.20: Period-doubling quasi-halo orbit.

Generating an initial guess to a periodic orbit that has a p : q resonance between the orbit

frequency and its center manifold frequency requires the center eigenvector ψ of the monodromy

matrix of a periodic orbit y(t) with period T . The initial guess of the state ỹ(t0) and period T̃ is
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generated from the following equations

ỹ(t0) = y(t0) + ∆sRe(ψ)

T̃ =
p

q
T

This information is then put into the same predictor-corrector shooting algorithm used to generate

the family of halo orbits.

3.5.6 Stability Analysis

The stability of each orbit is assessed from the eigenvalues of the stability matrix Gω. As

mentioned in Section 2.3.5 the eigenvalues come in rings, however only six eigenvalues are needed

since the phase space is 6-dimensional. A method to sort the eigenvalues and pick the correct

representative set is presented by Jorba in [102] and is the method used here. Once the set of

representative eigenvalues is known then the orbit is classified as either hyperbolic, meaning it has

eigenvalues off the unit circle indicating the existence of a hyperbolic manifold, or elliptic, meaning

it has eigenvalues solely on the unit circle indicating stability and the existence of an additional

center manifold where 3-d invariant tori reside.
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Figure 3.21: Lyapunov exponent across the family surface at a top-down view (top row) and a 3-d

view (bottom row).

Using the method of Jorba on all orbits for which Gω is computed each orbit is classified and

the Lyapunov exponent is computed. The Lyapunov exponent is calculated as the natural logarithm

of the magnitude of the unstable eigenvalue [102]. The results of this across the whole family surface

are in Figures 3.21 while a zoomed in portion of just the stable region are in 3.22. In each figure

the left column shows the stability of the family surface for CM-A, while the right column is for

CM-B. The top row shows a top-down view while the bottom row shows a 3-dimensional view.

Orbits classified as hyperbolic are colored and plotted on the z-axis according to the Lyapunov

exponent while orbits classified as elliptic intrinsically have a Lyapunov exponent of 0 and have

a fixed color to distinguish them from the hyperbolic points. Additionally, there are unclassified

points that do not have a proper set of eigenvalues after using the method of Jorba. They have a
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fixed color different from the hyperbolic and elliptic points and are assigned a value of -1 so that

they are separated 3-dimensionally from the points that are classified. Note that -1 is not the value

of the Lyapunov exponent.

Figure 3.22: Lyapunov exponent across the family surface in the stable region of the halo orbits at

a top-down view (top row) and a 3-d view (bottom row).

An interesting feature of Figure 3.22 is that the stable quasi-halos are easily identified and

that many orbits transition from stable to unstable in the region of the stable halo orbits. In this

region we suspect 3-d invariant tori exist up to the stability bifurcation points. The information in

Figure 3.22 can then be compared with the box sizes to infer the size of the 3-dimensional quasi-halo

orbits. We compare the sizes of the orbits which have a stability bifurcation to the 3-d quasi-halo

orbits in Section 3.6.4. Moreover, for constant ω0 and constant ω1 branches the orbits become more

stable as the orbits grow larger. By comparing this figure to the constant Jacobi energy surface in
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Figure 3.12 the conclusion is made that constant Jacobi energy branches become more unstable as

the orbits grow larger.

Many points are unclassified near resonances, the surface boundaries, and in the stable region

of the halo orbits showing a shortcoming of Jorba’s eigenvalue sorting method. To validate the

stability of the orbits in the stable region of the halo orbits numerical propagation tests are carried

out by perturbing points on the orbits by about 1e-10 and propagating those points for up to

27 years (1000 non-dimensional time units). If the orbit assumes a hyperbolic manifold then

perturbations are made along the unstable eigenvector, and all other orbits have perturbations

made in random directions. Analyzing data from these tests show that nearly every branch of

quasi-halo orbits extending from a stable halo orbit has a stability bifurcation that transitions from

stable to unstable.

3.5.7 Survey of Hyperbolic Manifolds

The previous sections of results deals with the quasi-halo orbits themselves and several quan-

tities associated with each orbit to give a global perspective of the Earth-Moon L2 quasi-halos. This

section does not investigate the family as a whole, but instead looks at the hyperbolic manifold of a

variety of orbits to generalize the behavior to the family. The hyperbolic manifold can be utilized to

get to and depart from a specific orbit as well as make homoclinic connections - transfers between

the same orbit - and heteroclinic connections - transfers between two orbits. This work looks at

applications using the hyperbolic manifold to make orbit-to-Moon transfers which are trajectories

on the hyperbolic manifold to move between a quasi-halo orbit and the Moon.
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Figure 3.23: Family surface with stars indicating the sampled orbits used to investigate the behavior

of the hyperbolic manifolds along with the regions identified as having distinct behavior.

3.5.7.1 General Behavior

Based on the dynamical structure of the halo orbit family there are two separate center man-

ifolds and two separate hyperbolic manifolds. The quasi-halo orbits inherit the stability properties

of the halo orbits in the linear regime and the properties are able to change as the quasi-halo orbits

grow larger and move away from the halo orbits. In the stable region of the halo orbits, where there

are two center manifolds, small quasi-halos will be stable, however, as it was shown, this behavior

does not hold for larger quasi-halos in this region.

Quasi-halo orbits are sampled across the family surface and the unstable half-manifolds W u
−

and W u
+ are computed out to a time of 108.56 days (25 ND time units). The orbits are chosen such

that most areas of the family surface have a representative data point in order to see the different

types of behaviors for the unstable manifold. From this sampling there appears to be three regions

that produce qualitatively different behaviors. The sampled orbits as well as the identified regions
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are in Figure 3.23. Region A is the area of CM-A that lies below the 2:1 resonance line, Region B

is the area of CM-A that lies above the 2:1 resonance line, and lastly Region C is the area covered

by CM-B outside the stable region.

In Region A W u
− breaks apart with one portion spiraling counterclockwise inward toward the

space between the Earth’s and Moon’s orbital radius, another portion spirals clockwise outward,

and another portion stays near the quasi-halo. On the other hand W u
+ spirals clockwise outward

maintaining a shape topologically equivalent to the quasi-halo until a portion comes close to the

Moon. The portion that comes close to the Moon spirals counterclockwise inward similar to W u
−

while the outer portion continues to spiral outwards.

In Region B W u
+ behaves similarly to W u

+ in Region A except that at some point the manifold

appears to get sliced apart from the torus shape. This observation is due to the discretization of the

manifold such that it appears to be tearing apart. W u
− shears away from the quasi-halo such that

one part stays near the quasi-periodic orbit while another part departs the area at an increasing

rate. The portion of the manifold that departs the quasi-halo spirals clockwise outward and then

behaves similarly to W u
+.

In Region C W u
− and W u

+ each behave in the same way. This behavior is similar to the way

W u
− behaves in Region A except that most of the manifold spirals outward and the departure from

the quasi-halo takes longer. The delay in the departure is due to the fact that these orbits are

much less unstable than the orbits in Region A and B.

Examples of unstable manifolds from these three distinct areas are plotted at discrete points

in time in Figure 3.24. The left column shows W u
− and the right column shows W u

+. The top

row uses a quasi-halo with frequencies (1.753081, 0.207659) and a Jacobi constant of 3.056899

from Region A, the middle row uses a quasi-halo with frequencies (2.341753, 1.308604) and a

Jacobi constant of 3.010736 from Region B, and the bottom row uses a quasi-halo with frequencies

(3.232268, 2.564819) with a Jacobi constant of 3.020008 from Region C.
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Figure 3.24: W u
− and W u

+ for three different quasi-halo orbits from the three different regions
identified to have distinct behavior.
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3.5.7.2 Lunar Intersections With Hyperbolic Manifolds

The application explored here is lunar intersections with the hyperbolic manifolds. The

purpose for this is motivated by the Lunar Gateway since quasi-halo orbits exist in the area sur-

rounding the Gateway and can be utilized to support mission operations. Lunar impacts with the

hyperbolic manifold give opportunities for transfers between the Moon and quasi-halo orbits. This

type of work has been completed before in much greater depth by Bury and McMahon for fami-

lies of periodic orbits in various systems [43]. After computing the unstable manifold for various

quasi-halo orbits that span the CM-A family surface it seems that the quasi-halos in general have

hyperbolic manifolds that impact the lunar surface. However, it seems that the quasi-halos from

the CM-B family surface need to be large enough before the manifold intersects the Moon. There

is a lot of variability in the impact locations on the Moon and four different impact patterns are

plotted in Figure 3.25. The impacts shown include lunar intersections with both W u
− and W u

+ with

a maximum propagation time of 108.56 days. To find the impact locations with the stable manifold

the transformation from Section 3.2.7 can be made to the unstable manifold impact points and are

symmetric about the y-axis. The impact locations on the Moon’s surface is fixed since the Moon

is tidally locked with the Earth and maintains a fixed position relative to the orbits.

It can clearly be seen from Figure 3.25 that the impact locations appear in an organized

fashion and are very different from one another. This suggests that the family surface can be

divided into different regions based upon the lunar intersection pattern type which could potentially

be accomplished with a clustering algorithm after computing the lunar intersections for a large

amount of quasi-halo orbits. This can then be used to pick out orbits to target specific landing

areas on the Moon or to know which orbits can be reached from specific locations on the Moon

if utilizing the stable manifold. Additionally, at the boundaries of these intersecting regions the

manifold lies tangent to the lunar surface, defining a locally optimal place to perform one-impulse

maneuvers to enter onto the manifold.



104

Figure 3.25: Lunar surface intersection points withW u
− andW u

+ within 108.56 days for four different

quasi-halo orbits.

Not every point on a quasi-halo orbit will be a sufficient point to move onto the unstable

manifold to achieve a lunar intersection, therefore it is important to know where on the orbit an

intersection takes place. This is easily visualized by plotting points according to the angles θ0 and

θ1 that parameterize the orbit. Figure 3.26 shows a quasi-halo orbit and the points that allow for

lunar intersections with W u
− up to a time of flight (TOF) of 108.56 days. This orbit corresponds to

the top left lunar impact pattern of plot (a) in Figure 3.25. The points identified on the orbit are

called takeoff points since they leave the orbit on the unstable manifold, and points that arrive on

the stable manifold are called arrival points. It should be noted that the locations of the impact

points on the quasi-periodic orbit are affected by the magnitude of the step size ∆s used to compute

the unstable manifold. To get a more accurate representation of the impact points a smaller step

size needs to be used along with a longer integration time to ensure the manifold has enough time

to reach the lunar surface.

Each takeoff point has a trajectory along the unstable manifold and each of the trajectories
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Figure 3.26: A quasi-halo orbit overlaid with the locations on the orbit where W u
− impacts the

lunar surface (left) and the parameterization of the orbit with the W u
− takeoff points (right).

can be evaluated for different characteristics. Two characteristics are presented here that may be

of interest for mission design. The first is the inclination of the Keplerian orbit assumed by each

trajectory at the point of impact. This has applications to lunar landers and missions where a

spacecraft would go into a low lunar orbit (LLO). This analysis is not constrained to the lunar

surface and can easily be adjusted for different altitudes. The second characteristic is the ∆v

required to land on the surface of the Moon.

These characteristics are plotted in Figure 3.27 and correspond to the lunar intersection

points associated with W u
− of the quasi-halo in Figure 3.26. In plots (a) and (b) the x-axis is θ0

and the y-axis is θ1 which parameterize the quasi-periodic orbit, whereas the z-axis in plot (a) is

the inclination in degrees and in plot (b) is the ∆v in km/s. The points shown are only the W u
−

takeoff points since all of the other points on the orbit do not allow for lunar intersections up to a

TOF of 108.56 days, and are colored according to the time for each trajectory to impact the Moon.

From Figure 3.26 there are clearly separate sections on the quasi-halo orbit that have tra-

jectories on W u
− that impact the lunar surface, and from the top plot in Figure 3.27 it is clear

that these sections, and even within the sections, produce qualitatively different approaches to the
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Moon. In this case the intersection points cover the entire surface of the Moon with a limited area

on the quasi-halo to leave from. By choosing the correct takeoff point a specific landing spot on

the Moon can be achieved. The inclinations range between 11 and 169 degrees allowing for nearly

equatorial, polar, and retrograde LLOs without the need of an out-of-plane maneuver. Moving

attention to the bottom plot in Figure 3.27 it can be seen that all trajectories have roughly the

same ∆v meaning the speed relative to the Moon is about the same for all impact points, so there

is no benefit of choosing a takeoff point to minimize the ∆v to land on the Moon. This seems to

be the case for all investigated quasi-halo orbits, however a mission designer may want to choose

a takeoff point to land at a specific location on the Moon or have a specific approach direction.

Moreover, by knowing an impact point on the Moon a range of quasi-halos can be targeted by

utilizing the stable manifold intersection points.

Figure 3.27: The inclination of the instantaneous Keplerian orbit about the Moon at the point of

lunar impact (top) and the ∆v needed to land on the lunar surface with no velocity (bottom).
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These same types of plots can be made to look at other characteristics of the trajectories on

W u that impact the Moon such as the latitude and longitude of the impact sites. Additionally, the

radius of impact can be changed to learn about the trajectories of W u at higher altitudes such as

the Keplerian orbital elements and the ∆v to circularize the orbit.

3.5.8 9:2 Resonant Synchronous Quasi-Halo Orbits

This section reports findings about the branch of quasi-halo orbits that have the same base

frequency ω0 as the 9:2 halo orbit - the orbit of the Lunar Gateway. The quasi-halo orbits that are

synchronous with the 9:2 halo orbit (referred to as 9:2 synchronous quasi-halo orbits) reside in the

center manifold (CM-B) emanating from it and form a 1-parameter cantor family. Before talking

about the findings of this family an introduction to the 9:2 halo orbit will be made.

The period of the 9:2 halo orbit is about 6.55 days (ω0 = 4.1666), a perilune of about 3212

kilometers, and a Jacobi constant of about 3.046741. It is pictured in plot (a) of Figure 3.28 with

the Moon to scale to show what it looks like and where it is located. The 9:2 resonance is a

resonance between the halo orbit’s period and the lunar synodic period with respect to the sun

and is not a resonance between the halo orbit frequency and the frequency of its center manifold.

This orbit was chosen to stage the Lunar Gateway for various reasons. One of which is its ability

to avoid most Earth eclipses and has short, infrequent lunar eclipses [169]. The orbit is weakly

unstable making station keeping efforts fairly small and infrequent so that the Gateway can stay

in orbit for a long time without running out of fuel. Since the orbit is unstable it has a hyperbolic

manifold that can be used to arrive at and depart the orbit with little fuel usage.

Upon investigation of the hyperbolic manifold there are lunar intersections, however the

intersection points do not cover a wide area of the Moon, and the TOF for the trajectories are at

least 80 days long. The intersection points found up to a 108.6 day propagation period are shown

in plots (a) and (b) of Figure 3.28, however a zoomed in picture on the Moon in plot (b) clearly

shows these points. Additionally, within the propagation time the hyperbolic manifold achieves a

minimum distance of about 110,000 kilometers from the Earth which has a TOF of about 107.7
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days. A longer propagation time to look for more lunar intersections and closer perigees was not

sought out since 108 days is already a long time for a ballistic trajectory to the Moon.

Figure 3.28: 9:2 halo orbit and Moon with lunar intersections (left) with a closeup on the Moon

(right).

The 9:2 synchronous quasi-halo family is presented in Figure 3.29. This family of quasi-halos

have the same base frequency as the 9:2 halo orbit (ω0 = 4.1666), so a spacecraft on any of these

quasi-halos will oscillate around a spacecraft on the 9:2 halo orbit without secularly drifting apart,

making these orbits good candidates for formation flying about the 9:2 halo orbit. This family

intersects the 9:2 halo near the crossings of the x-axis, so there are opportunities for the Gateway

or other spacecraft to transfer onto any of the family members. Additionally, each member of the

family intersects the other members near the more positive x-axis crossing making it possible to

directly transfer between any of the family members. This can be seen in plot(c) of Figure 3.29.

The frequency ω1 ranges from 0.540906 to 0.520461 and the Jacobi constant ranges from 3.046741

to 3.045658. Moreover, this family is unstable like the 9:2 halo, however the hyperbolic bundle is
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two dimensions greater thereby providing more trajectories to reach the Moon, Earth, and other

areas of space.

Figure 3.29: Family of 9:2 synchronous quasi-halo orbits at different views with the 9:2 halo orbit
show in plot (d).

The 9:2 synchronous family also has lunar intersections with the hyperbolic manifolds. The

intersections look similar to the 9:2 halo orbit lunar intersections at first but as the family grows the

intersections take up a larger area on the Moon and changes to a completely different intersection

pattern by the end of the family. The progression of the intersections as the family grows are shown

in Figure 3.30. Plot (a) is the 9:2 halo lunar intersections and plot (f) is the lunar intersections for

the largest computed family member.

For some orbit with ω1 ∈ [0.536327, 0.536570] and J ∈ [3.046506, 3.046493] a distinct pattern

emerges near the north pole of the Moon and is depicted in plot (d). This spot persists and grows

larger while the other dispersed intersection points disappear as the family continues to grow. The

dispersed intersections points disappear because as the family grows larger the orbits decrease

their perilune making the collection of intersection points closer together. For another orbit with

ω1 ∈ [0.5346046, 0.534878] and J ∈ [3.046400, 3.046415] the quasi-halo family obtains a perilune

below the lunar surface, thereby directly intersecting the Moon. This is what gives the very distinct

and defined intersection pattern in plots (e) and (f). After this point it is possible to intersect the

Moon without needing to move onto the unstable manifold, and likewise it is possible to directly
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inject into an orbit from the lunar surface without getting onto the stable manifold.

Figure 3.30: Lunar intersections for a sample of the 9:2 synchronous quasi-halo family.

3.5.9 Conclusion

A study of the 2-parameter family of Earth-Moon L2 quasi-halo orbits have been conducted

to provide a global view of the family. Research methodologies and results are presented that allow

for quick and initial studies for mission design. The quasi-halos take on a wide range of shapes and

sizes providing for unique orbit geometries, and while they emanate from the center manifold of

the halo orbits a large amount of the family are not synchronous with the halos. The majority of

the family is composed of hyperbolic orbits with hyperbolic manifolds. Their Lyapunov exponents

generally decrease as their frequencies move away from the frequencies of the halo orbits and their

linear center manifolds. Emanating from stable halo orbits there are stable quasi-halo orbits, but a
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bifurcation occurs when the size of the orbits grow large enough and become unstable. Surrounding

the stable halo and quasi-halo orbits is a 3-parameter family of quasi-halo orbits diffeomorphic to

3-dimensional invariant tori with more complex motion.

The family of quasi-halo orbits provide opportunities for formation flying about halo orbits

and can be transferred onto from halo orbits due to multiple intersection points in coordinate space.

The family of halo orbits form a 2-dimensional manifold in phase space while the 2-parameter family

of quasi-halo orbits form a 4-dimensional manifold. Additionally, the hyperbolic bundle of the halo

orbit family is a 4-dimensional manifold in phase space while the hyperbolic bundle of the family

of quasi-halo orbits is a 6-dimensional manifold. This means the quasi-halo family more densely

fills phase space than the halo family and their hyperbolic manifolds provide more trajectories to

efficiently move around and explore space. This is especially true for transfers to and from the

lunar surface via the hyperbolic manifolds. The takeoff and landing points on the lunar surface

make distinct patterns, and in a case presented covers the majority of the surface. The quasi-halo

orbit family will be of great value to support the Lunar Gateway by providing opportunities to get

to cislunar space from Earth, land on the lunar surface from orbit, and be outposts to escape and

return to the Earth-Moon system. Additionally, the quasi-halo orbits that are synchronous with

the 9:2 halo orbit provide opportunities to place satellites to monitor the external health of the

Lunar Gateway and astronauts doing spacewalks.

3.6 The Dynamics in the Vicinity of the Stable Halo Orbits

This section focuses specifically on the quasi-halo orbits which are generated by the stable

halo orbits. There are four different types of branches that are initialized from each halo orbit.

The first type contains solutions of 2-d quasi-periodic orbits initialized by stepping onto CM-A,

the second contains solutions of 2-d quasi-periodic orbits initialized by stepping onto CM-B. Each

of these orbit types have two frequencies, however the frequency pair for the second branch type

is (ω0, ω2) in order to make the labelling of the frequencies consistent with which center manifold

they correspond to. The third branch type contains solutions of 3-d quasi-periodic orbits initialized
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by stepping onto both center manifolds and holding ω2 constant. The last branch type contains

solutions of 3-d quasi-periodic orbits which hold ω1 constant. The four branch types are computed

from a span of elliptic halo orbits and pieced together to form four 2-parameter families.

The first branch type is called the “constant ω2 2-d” branch since ω1 changes throughout the

branch while ω2 is held constant, which effectively mutes motion in CM-B. Likewise, the second

branch type is called the “constant ω1 2-d” branch. The third branch is called the “constant ω2

3-d” branch, and lastly the fourth branch is called the “constant ω1 3-d” branch.

To construct branches of solutions Equation (3.33) must be satisfied, however there is a

choice for the remaining parametric constraints. In the computations here the stroboscopic time is

always chosen to be consistent with the period of the generating halo orbit T ∗, corresponding to

using the constant ω0 constraint in Equation (3.38). This suffices as the only parametric constraint

for computing branches of the 2-parameter families. One more parametric constraint is needed to

compute branches in the 3-parameter family. For the constant ω2 3-d branch we use a constant ω2

constraint, while for the constant ω1 3-d branch we use a constant ω1 constraint.

Each orbit has been computed with an error tolerance of 7e-11. The 2-d quasi-halo orbits

use N1 = 111 while the 3-d quasi-halos use N1 = 15 and N2 = 11. The reason for using 111 points

to represent the invariant curves of the 2-d quasi-halos is because increasing the number of points

increases the accuracy of the eigenvalues of the stability matrix [102]. The stability matrix of the

3-d quasi-halos is not necessary to compute as the orbits are inherently stable. The continuation

of each branch is run until either: 1. The step size ∆s has decreased to an allowable minimum

step size. 2. The number of orbits computed reaches the maximum number of allowed orbits. The

minimum step size for the 2-d quasi-halo orbits is taken to be 1e-5, while it is 6e-8 for the 3-d

quasi-halo orbits. The maximum number of orbits is 120 for the 2-d quasi-halo orbits, while it is

100 for the 3-d quasi-halo orbits. Compiling the results from each 1-parameter branch gives four

2-d subsets of the solutions in the vicinity of the stable halo orbits.
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3.6.1 Frequencies

The frequencies of the orbits are in Figure 3.31. Recall that each branch is a 1-parameter

family of quasi-halo orbits grown from a halo orbit, so the plotted frequencies are lines extending

from the frequencies of the halo orbits. Plot (a) of the figure shows the frequencies of the constant

ω2 2-d family, plot (d) is for the constant ω2 3-d family, plot (b) is for the constant ω1 2-d family,

plot (e) is for the constant ω1 3-d family, plot (c) is the combination of the constant ω2 2-d and

constant ω1 2-d families in the three-dimensional frequency space, and plot (f) is the combination

of the constant ω2 3-d and constant ω1 3-d families in the three-dimensional frequency space.

Figure 3.31: Frequencies of the four branches with different views.

The families of 2-d invariant tori fill more area in the frequency space than the families

of 3-d invariant tori, showing a wider variety in the rate of motion among the 2-d invariant tori

than the 3-d invariant tori. This figure may lead one to believe that there are more 2-dimensional

invariant tori than 3-dimensional invariant tori in this region, however this is incorrect. In the 3-

dimensional parameter space the 2-parameter families have measure 0 while the 3-parameter family
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is non-zero. Moreover, it is much easier to compute 2-d invariant tori than 3-d invariant tori due

to computational cost and the interplay between the internal frequencies. In Figure 3.31 branches

move upwards and downwards in the subplots. It is interesting to note that we did not tell the

continuation method to move “up” or “down”. We initialized a solution in the center manifold and

let the continuation method go from there. Attempts to go in the “other” direction were made,

but it was found that solutions do not exist on both sides at a given halo orbit.

Looking through the constant ω2 2-d branch it is found that the frequencies of the invariant

tori are not unique, showing the existence of non-KAM tori in the circular restricted three-body

problem. Examples of three of these branches are in Figure 3.32. It is evident in these branches ω1

has a critical point as each computed invariant curve is not repeated. If the continuation procedure

had turned around and began backtracking then this would be evident in the invariant curves and

orbital characteristics.

3.6.2 Amplitudes

Recall that ω1 corresponds to motion in CM-A and ω2 corresponds to motion in CM-B.

Continuing with the notation, then A1 is the amplitude of motion in CM-A and A2 is the amplitude

of motion in CM-B. As such the constant ω2 2-d family has invariant surfaces with amplitudes A1,

the constant ω1 2-d family has invariant curves with amplitudes A2, and the constant ω2 3-d and

constant ω1 3-d families have invariant surfaces with both amplitudes. The amplitudes for each

elliptic quasi-halo family are shown in Figure 3.33 in a log-log plot. The constant ω2 3-d family

adheres to the left color bar while the constant ω1 3-d family adheres to the right color bar. The

points are colored according to the ω0 value of their corresponding quasi-periodic orbit (this also

identifies which halo orbit that branch originates from). The amplitudes of the initial quasi-halos

for each branch are around 1e-8 in both dimensions for reference. The distribution of the amplitudes

between the two families appears to be symmetric. Many of the orbits grow large in both dimensions

while some of them grow small in one of the dimensions. It should be noted that at some point

when one of the dimensions gets too small that orbit can no longer be considered a 3-d quasi-halo;
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Figure 3.32: Three constant ω2 2-d branches showing the non-uniqueness of the orbit frequencies.
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rather it has degenerated to a 2-d quasi-halo. This degeneracy point should be when an amplitude

falls below the error tolerance used for convergence.

Figure 3.33: Distribution of amplitudes for the branches of 3-d quasi-halos.

From Figure 3.33 it can be seen that some constant ω2 3-d family members have a large A1

and a small A2 (bottom right region), while few family members have large A2 and small A1 (top

left region). This shows a preference for A1 to grow for the constant ω2 3-d family. The opposite

behavior is seen for the constant ω1 3-d family, which shows a preference for A2 to grow while A1

remains small. Recall that the amplitude A1 is tied to the magnitude of oscillations in CM-A, while

the amplitude A2 is tied to the magnitude of oscillations in CM-B. Then, the observed behaviors

logically make sense because freezing ω2 should limit the growth of the amplitude A2 in CM-B.

Since the initial excitement of CM-B is small, then A2 should remain small. Likewise for freezing

ω1. However, looking at the top right region of the figure, it is seen that most of the branches

contain orbits which grow equally in both amplitudes. This result contradicts the logical argument

presented above, so it is unknown why the amplitudes grow the way that they do in these families.

Figure 3.33 does not present a relationship between the growth of the frequencies and the growth

of the amplitudes, however this will be shown in the next section.
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Figure 3.34: Maximum amplitudes within each of the four computed branch types.

A comparison is made to the amplitudes of the 2-d quasi-halos and shown in Figure 3.34.

The four marker types correspond to each of the four branch types while each data point is the

maximum amplitude within that branch of orbits with fixed ω0. It is seen that the maximum size of

the 2-d quasi-periodic orbit branches are typically several times larger than the 3-d quasi-periodic

orbit branches. In dimensional units the maximum amplitude of: the constant ω2 2-d family is

20,000 km, the constant ω1 2-d family is 19,000 km, the constant ω2 3-d family is 6,700 km, and

the constant ω1 3-d family is 14,000 km. For reference the maximum amplitude of the 2-d quasi-halo

orbits in 3.5.4 is 117,800 km. It turns out there is generally a single location along the θ0 direction

where the 2-d quasi-halo orbits in the vicinity of the stable halo orbits attain their maximum or

minimum amplitudes, namely the point closest to the secondary (θ0 = π) and the point furthest

from the secondary (θ0 = 0), respectively (Figure 3.35).

3.6.3 Jacobi Constant

The Jacobi constant is plotted as a color gradient for each of the two 2-parameter families

in the left column in Figure 3.36. The right column contains the same plots but with a different
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Figure 3.35: Histogram of location where maximum and minimum amplitude along each 2-d quasi-
periodic orbit occurs (a) and a plot of the invariant curves in configuration space with maximum
and minimum amplitude for each 2-d quasi-periodic orbit (b).

color gradient. This color gradient represents the change in Jacobi constant among each branch

compared to the Jacobi constant of the halo orbit each branch originates from. The top row shows

the constant ω2 2-d family while the bottom row shows the constant ω1 2-d family. Figure 3.37

shows the same information but shows the 3-d families instead. The plots in the left columns

show that as ω0 increases the Jacobi constant increases. This is the same behavior the halo orbits

themselves follow. Each branch appears to be a single color, showing there is little change in the

Jacobi constant as the orbit amplitudes grow larger. The more interesting observations come from

the plots in the right columns.

The first observation is that the Jacobi constant does not change very much as the orbits

grow larger, however near the ends of many branches the free frequency changes more rapidly as

does the Jacobi constant. This seems to suggest that rapid changes in the frequencies and the

Jacobi constant compared to the sizes of the orbits indicate branches are nearing the end of the

family. The second observation is that the Jacobi constant decreases along some branches while

increasing along others. In contrast, Figure 3.12 shows the Jacobi constant typically decreases as

the L2 quasi-halo orbits grow larger while holding either frequency constant. This is largely seen

with the quasi-halos emanating from the halo orbits with type center×saddle. However, the Jacobi

constant exhibits a more complex behavior in the vicinity of the stable halo orbits.

The Jacobi constants computed lie in the range [3.014788704506776, 3.017204276227027] for
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Figure 3.36: Plots displaying the Jacobi constant for the 2-d quasi-halo branches.

the constant ω2 2-d family, [3.015176655614008, 3.017088403921683] for the constant ω1 2-d family,

[3.015065998407869, 3.017086688496275] for the constant ω2 3-d family, and [3.015169926957731,

3.017087620465851] for the constant ω1 3-d family.

3.6.4 Stability Bifurcation

The 3-d quasi-halo orbits are stable, so there are no hyperbolic manifolds to utilize to ap-

proach or depart these objects. The benefit of the stability property is that small perturbations will

not cause an asymptotic departure from the nominal orbit. At most there will be a bounded secular

drift caused by the difference in frequencies between the nominal orbit and the orbit a spacecraft

has been perturbed onto. The 2-d quasi-halos in the region come in two stability types: elliptic

and partially hyperbolic. The elliptic quasi-halo orbits are stable and behave similarly to the 3-d

quasi-halo orbits, however a small perturbation will generally excite the third mode of oscillation

creating a 3-d quasi-halo. This is one reason it is important to study the 3-d quasi-halo orbits. The

partially hyperbolic orbits have a hyperbolic manifold emanating from them. These orbits, other

partially hyperbolic quasi-halo orbits, and unstable halo orbits can be utilized for low-energy trans-

fers to the stable region. Once the spacecraft is close enough a maneuver or some other transfer

design (such as in McCarthy and Howell [130]) can lead the spacecraft to a stable orbit.

The method of Jorba in [102] is too numerically unstable to accurately classify the stability



120

Figure 3.37: Plots displaying the Jacobi constant for the 3-d quasi-halo branches.

of the orbits in the stable region of the halo orbits. In this section small deviations on the order

of 1e-10 are made from the invariant curves of the 2-d quasi-halo orbits and propagated to various

points in time. The propagated points are compared to the original invariant curve. This analysis

is a visual inspection to distinguish between stable and weakly unstable behavior. After combing

through each 2-d quasi-halo branch the points are identified and plotted in Figure 3.38. This figure

is the same as Figure 3.36 but with the identified bifurcation points where the branches transition

from stable to unstable.

Figure 3.38: Stability transition in the 2-d quasi-halo branches.

The locations of these bifurcation points are generally consistent with the behavior of the

eigenvalues. Figure 3.39 shows the eigenvalues of the quasi-halo orbits at the identified bifurcation
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points and for orbits before and after the bifurcation point in the continuation process for each

constant ω2 2-d branch. Likewise, Figure 3.40 show the eigenvalues of the constant ω1 2-d branches

around the bifurcation points. The orbits in a branch can be numbered 1, 2, 3,. . . in accordance

with the order in which they are computed. The number at which the last orbit is stable before

becoming unstable in the visual analysis is defined as N∗. Then the notation N∗ ± n is the nth

orbit computed after or before the identified transition point N∗. Orbits before the transition point

are stable while the orbits after the transition point are unstable. The color of each point in each

plot is in accordance with the halo orbit from which each quasi-halo has been generated from.

Figure 3.39: Eigenvalues near the identified bifurcation points from the visual analysis for each
constant ω2 2-d branch.

What is seen in Figure 3.39 is the progression of the eigenvalues as the continuation proce-

dure approaches and passes through the bifurcation points for each constant ω2 2-d branch. The

mechanism for the bifurcations are the collisions between eigenvalues that push them off of the unit

circle. It is clear that the eigenvalues begin on the unit circle, indicating stability, and break off

as they near the identified stability transition point from the visual analysis. There are 3 locations

where the eigenvalues break from the unit circle. The eigenvalues that collide at plus or minus 1

break off onto the real axis. The eigenvectors of these eigenvalues give the tangent directions to the

stable and unstable manifolds. The eigenvalues that collide on the unit circle away from plus and
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Figure 3.40: Eigenvalues near the identified bifurcation points from the visual analysis for each
constant ω1 2-d branch.

minus 1 break into a complex quadruple, indicating the formation of a complex saddle. A similar

behavior is seen for the constant ω1 2-d family in Figure 3.40.

In Section 3.5.6 it is conjectured that the transition points are thought to bound the sizes

of the 3-d quasi-halo orbits. To test this theory the amplitudes of the 2-dimensional elliptic quasi-

halos are compared with the amplitudes of the 3-dimensional quasi-halos in the same manner that

Figure 3.34 is constructed but with the partially hyperbolic orbits removed. This comparison

revealed that there are 3-d quasi-halo orbits with amplitudes larger than the elliptic 2-d quasi-halo

orbit amplitudes, so no conclusions can be drawn from the comparison with our data.

3.6.5 Region of Stability

All the orbits in this work are numerically computed with a pseudo-arclength continuation

method which terminates when either the maximum number of family members has been computed

or when the step size falls below the minimum step size. Outside these conditions the cause of

termination of the continuation method is not always certain. The termination could be due to

approaching a resonance that the continuation was unable to move past, or it could be due to

the branch reaching the end of the family. To check for sizes of potentially missing quasi-periodic
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orbits a numerical perturbation analysis is performed. The idea behind this test is that since this

region is stable, then any points perturbed from the stable halo orbits should remain in the area,

given that the magnitude of the perturbation is small enough. The perturbed points that remain

in the area after an amount of time should generically be on 3-d quasi-halo orbits. The size of

the perturbation at which orbits begin to depart the area can be used to quantify the size of the

stability region. This test will answer the question, given a perturbation magnitude from a stable

halo orbit, how likely is it that the point will remain in the area (i.e. in the stable region)?

Figure 3.41: Empirical estimates of the size of the stable region surrounding the stable halo orbits.

The test is performed by initializing points with a given perturbation size and then propa-

gating them forward in time. At the end of the time they are determined to have either departed

or remained in the stable region based on their distance from the generating halo orbit. For this

test 1,500 points are initialized in the center subspaces of a stable halo orbit from Equation (2.29b)

with particular step size ∆si and various values of θ0 and θ1. Those points are then propagated out

to 10 orbital periods of the periodic orbit from which they emanate from. The minimum distance

from each point to the halo orbit is computed at the final time. Points with a distance of more than
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1.3 times the initial step size are considered to have departed the area. The percentage of departed

trajectories is then calculated. A departure percentage is targeted from a bisection method to find

the step size required for that departure percentage. For a targeted departure percentage the step

size is found for each stable halo orbit and recorded. The targeted departure percentages are 50%,

70%, 90%, and 97%, and the results are in Figure 3.41.

Figure 3.42: Comparison of the 97% line with the computed orbit amplitudes.

An interesting result from this experiment is that as ω0 increases moving through the stable

halo orbits the step size needed to reach the departure percentage continues to increase and is

several times larger at the end of the halo orbits than at the beginning. At first the step size

increases because the perturbed points are getting further away from the boundary between stable

and unstable halo orbits. It was thought that the step sizes would decrease as the perturbed points

approach the end of the stable halo orbits, however this is not observed. The general increase in the

step size suggests that the hyperbolic manifold after the stable region is weaker than the hyperbolic

manifold prior to the stable region. A larger step size is needed in order to push the perturbed

points outside the threshold in the allotted amount of time. From this idea it can be inferred
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that the actual step size needed to stay in the stable region is smaller than the found step size.

The hypothesis about the strength of the hyperbolic manifolds is confirmed from the Lyapunov

exponents of the 2-d quasi-halo orbits emanating from outside the stable halo orbit region in Lujan

and Scheeres [121].

The 97% line in Figure 3.41 serves as a theoretical limit to the size of the stable region, and

hence the maximum size of quasi-halo orbits in this region. This line is then compared with the

amplitudes from Figure 3.34 to determine if we have reasonably found the maximum sizes of quasi-

halo orbits in this region. The comparison between the region of stability and the orbit amplitudes

seem to agree fairly well in Figure 3.42. Some branches of the 2-d quasi-halos have orbits with

amplitudes larger than the step sizes that comprise the 97% line while most of the branches lie

below this line. Toward the right side of the plot where ω0 is larger the gap between the orbit

amplitudes and the 97% line grows. This could indicate that the 97% line should begin sloping

downward to account for the weaker hyperbolic manifold as mentioned above, or it could be that

the continuation procedure terminated prematurely and did not find larger orbits.

3.6.6 Geometry

The 2-d quasi-halo orbits are quasi-periodic tori of dimension 2 and have invariant surfaces

that are closed curves in the 6-dimensional phase space of the circular restricted three-body problem.

As one of these curves evolves in time it extrudes out the shape of the entire quasi-halo orbit forming

a 2-dimensional surface. When this object is projected into configuration space the object is still a

surface, however it becomes self-intersecting. The motion of a spacecraft on a 2-d quasi-halo orbit

lies on the surface of this object.

While we cannot show all the 2-d quasi-halo orbits on a single plot we use the invariant

curves to construct a surface encapsulating all the computed invariant curves for each of the two

corresponding branch types. This is done by taking the last invariant curve from each branch of a

given branch type and constructing a surface that connects the curves to each other. The surface

created in this fashion for the constant ω2 2-d family is in plot (a) of Figure 3.43 while the surface
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created in this fashion for the constant ω1 2-d family is in plot (b). The invariant curves used to

construct each surface are plotted and colored according to the value of ω0 they possess. Coloring

them this way allows one to see how the invariant curves change as the generating stable halo orbit

changes.

The sharp changes in the surface are a result of the differences in size and shape between the

last invariant curve from one branch to another. These differences arise from the partitioning of

the stable halo orbits, from dynamical effects from crossing over and getting stuck by resonances,

and the numerical reasons of termination of the program.

The 3-d quasi-halo orbits are quasi-periodic invariant tori of dimension 3 and have invariant

surfaces that are 2-dimensional surfaces in the 6-dimensional phase space of the circular restricted

three-body problem. The extrusion of one of these surfaces in time forms a 3-dimensional surface

which fills a volume in any 3-dimensional subspace of the 6-dimensional phase space. The fact

that the orbit fills a volume in configuration space makes it difficult to view and understand the

motion of a spacecraft on one of these orbits. Additionally, the method of constructing a Poincaré

map of a constant Jacobi energy family (such as in [75]) cannot be applied to view and analyze

the elliptic quasi-halo orbits. Moreover, the Poincaré maps of the elliptic 2-d quasi-halos orbits are

allowed to overlap unlike their hyperbolic counterparts. However, looking at the invariant surfaces

individually in configuration space gives geometrical insight into the full orbits.
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Figure 3.43: Surface (with shadows) made by the last invariant curve of each branch in the constant
ω2 2-d family (a) and in the constant ω1 2-d family (b).
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Figure 3.44: Examples of 3-dimensional quasi-halo orbits in configuration space.

Figure 3.44 shows four examples of 3-dimensional quasi-halo orbits in configuration space

along with the Moon for a reference on size. Additionally, the invariant surfaces for each orbit

are shown. Comparing these orbit amplitudes to Figure 3.33 and Figure 3.34 shows that plots (a)

and (b) are among the largest of the 3-dimensional quasi-halo orbits while plots (c) and (d) are

among medium-sized orbits. This figure shows just how small the 3-dimensional quasi-halo orbits

are compared to the partially hyperbolic orbits.

Figure 3.45 shows the growth and evolution in the continuation procedure of the invariant

surface for a constant ω2 3-d branch and a constant ω1 3-d branch. In each plot is the points

representing the surface and the interpolated surface. A constant ω2 3-d branch is in plots (a), (b),
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and (c). This branch has constant frequencies ω0 = 2.821444 and ω2 = 2.085261. Plot (a) is taken

near the beginning of the branch, plot (b) is taken from the middle of the branch, and plot (c) is

taken toward the end of the branch. Plots (d), (e), and (f) shows the growth and evolution of the

invariant surface for a constant ω1 3-d branch. This branch has constant frequencies ω0 = 2.666571

and ω1 = 1.698082. Plot (d) is taken near the beginning of the branch, plot (e) is taken from

the middle of the branch, and plot (f) is taken toward the end of the branch. The constant ω2

3-d branch has an increase in Jacobi constant along the branch, while the constant ω1 3-d branch

has a decrease in Jacobi constant. Figure 3.46 shows other individual invariant surfaces we found

interesting.

Figure 3.45: Invariant surfaces within a constant ω2 3-d branch (a-c) and within a constant ω1 3-d

branch (d-f).

It should be noted that most of the invariant surfaces of the 3-d quasi-halo orbits are found

to be self-intersecting, and thus the entire orbit is composed of trajectories constantly crossing over
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Figure 3.46: Survey of invariant surfaces in the 3-dimensional quasi-halo family.

each other. This observation calls for care and detailed analysis when placing multiple spacecraft

on a 3-dimensional quasi-halo orbits to ensure a collision will not occur. However, in light of this,

the abundance of intersections means there are boundless opportunities to change the phasing on

the orbit.

3.6.7 Relative Motion

The static images of the invariant surfaces give insight into what the orbits look like, however

they do not provide information about the motion of the invariant surface in time. To show

this behavior the points constructing the invariant surfaces of 415 quasi-halo orbits have been

propagated for three stroboscopic times and the relative states with respect to their underlying

halo orbit have been examined.

Figure 3.47 shows one example that captures the typical behavior of the relative motion. Plot

(a) shows the color map used to identify each point on the invariant surface where each coordinate

pair (θ1, θ2) has a unique color. Plot (b) shows the invariant surface colored according to the color

map. Plot (c) shows in configuration space the relative motion about the stable halo orbit which

the orbit was generated from. Plot (d) shows the time history of the distance to the halo orbit for
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each point.

Figure 3.47: Representative example of the relative motion for the 3-d quasi-halo orbits.

The initial invariant surface of plot (b) is embedded in the relative motion in plot (c). The

results in plot (c) show that the invariant surface gets warped and stretched in the y and z directions

while not much stretching occurs in the x direction. The plot also shows that there is full coverage

of the halo orbit by the invariant surface. This shows that these orbits are good to place surveillance

satellites to keep watch on an object on the underlying halo orbit.

Combining the information of plot (c) and plot (d) it is surmised that at half the stroboscopic

time the maximal stretching occurs while also achieving its closest approach to the halo orbit

meaning the invariant surface is largest at this point in time. The smallest spread in distances

occurs when the invariant surface is furthest from the Moon meaning it assumes its smallest size.

The point in time when the largest spread in distance occurs is when the invariant surface is
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making its closest approach to the Moon. And similarly the point in time when the smallest spread

in distance occurs is when the invariant surface is furthest from the Moon. This behavior is seen

among most of the tested elliptic quasi-halo orbits, and it coincides with where the invariant curves

of the 2-d quasi-halo orbits in this region achieve their largest and smallest amplitudes (refer to

Figure 3.35).

Plot (d) shows that the distance to the halo orbit remains positive. This result shows that

there exists a ball with a radius of about 1e-5 for which the invariant surface does not penetrate.

So spacecraft on this invariant surface will not collide with a spacecraft on the underlying halo

orbit. However, if there is a displacement along the θ0 direction between the invariant surface and

a point on the halo orbit, then the analysis will have to be repeated to ensure there are no crossings

with the underlying halo orbit. It is shown in Section 3.5.4 that the underlying halo orbits usually

penetrate the surfaces of the 2-d quasi-halo orbits, so it is reasonable to assume that the underlying

stable halo orbits penetrate the elliptic quasi-halo orbits. The difference between the penetrations

is that for the 2-d quasi-halo orbits there are a finite number of penetrations since a line is crossing

through an infinitely thin surface. However, the elliptic quasi-halo orbits fill a volume, so there

would be an infinite number of penetrations along the crossings.

3.6.8 Error Analysis

As mentioned in Section 3.6 the tolerance level used to compute all the invariant surfaces

and curves in this work is 7e-11. Since each point incurs some amount of error then each point

is actually on a different quasi-periodic torus with different frequencies. This means there is a

difference between the actual and idealized orbits of the discrete points representing an invariant

surface. To measure this difference the points X of a 3-dimensinal quasi-halo invariant surface are

propagated forward with the stroboscopic map x 7→ ϕT (x). The points ϕT (X) are rotated by the

rotation matrix R−ρ to get the states of where the points should be on the invariant surface. The

states should coincide with X, so the error is the norm of the difference between these quantities.

The points ϕT (X) are then mapped to ϕ2T (X) and rotated by the rotation matrix R−2ρ. The
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error is calculated as the norm of the difference between the newly rotated points and the original

pointsX. Recall that the vectorX is a vector comprised of points in phase space xj that represent

points on the invariant surface of a quasi-periodic orbit. Then the equation for the error for point

xj is given in Equation (3.43). This process is repeated for a total of five mappings and the results

for six different quasi-halo orbits are given in Figure 3.48.

ej(n) = ||R−nρϕnT (xj)− xj || (3.43)

In Equation (3.43) when n = 1 then this is equivalent to the quasi-periodicity constraint of

Equation (3.3) divided by the number of points representing the surface. When n = 1 the error

in Figure 3.48 is below the error tolerance 7e-11, showing that the quasi-periodicity constraint is

indeed being satisfied. However, as X is mapped further in time the errors grow, showing that the

actual orbits diverge from the idealized orbits. In plots (a), (b), and (c) the errors grow to about

1e-8 after two stroboscopic maps and steadily grow for the following mappings. These orbits are

from constant ω2 3-d branches. In plots (d), (e), and (f) the errors grow to about 1e-2 after two

stroboscopic mappings and stay nearly constant for the following mappings. These orbits are from

constant ω1 3-d branches.

3.6.9 Conclusion

This work uses a single-parameter continuation method to explore the dynamical structure

in the vicinity of the L2 stable halo orbits in the Earth-Moon system of the circular restricted

three-body problem. The types of solutions explored are the quasi-halo orbits diffeomorphic to 2-

and 3-dimensional quasi-periodic tori. Two branches from each types of orbits are computed from

the span of stable halo orbits to construct a total of four 2-parameter families. The four branch

types are the constant ω2 2-d branch, the constant ω1 2-d branch, the constant ω2 3-d branch, and

the constant ω1 3-d branch. In each branch a parameter is held constant and the value of that

parameter is determined by the halo orbit and its monodromy matrix from which the branch is

grown.
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Figure 3.48: The error over time between six computed invariant surfaces and the propagated

surfaces.

The 3-d quasi-halo orbits do not have amplitudes as large as the 2-d quasi-halo orbits, but

are larger than some 2-dimensional elliptic quasi-halo orbits. However, all the orbits in this region

are much smaller than the quasi-halo orbits emanating from the unstable quasi-halo orbits. The

amplitudes of all the orbits are compared to an empirical limit to the sizes of orbits in this region.

The Jacobi constant among each of the four branch types has a net change in the range [-4e-4

3e-4] compared to the value of the Jacobi constant of the underlying halo orbit from which each

branch is generated. The direction of change has a turning point within the constant ω2 2-d and

constant ω2 3-d families. The branches with smaller ω0 values have a negative change in the Jacobi

constant as orbits grow larger. And branches with larger ω0 values have a positive change in the

Jacobi constant as orbits grow larger. The constant ω1 2-d and constant ω1 3-d branches exhibit

an increase in the Jacobi constant as the orbits grow larger.
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The 2-d quasi-halo orbits are comprised of elliptic and partially hyperbolic quasi-halo orbits.

Nearly each branch is identified to have a stability bifurcation leading from stable to unstable orbits.

All identified bifurcation points are near the ends of branches. The partially hyperbolic orbits do

not transition back to elliptic before the end of the branch is reached.

Lastly, the geometry of the invariant surfaces of these quasi-halo orbits are diverse. The

invariant surfaces of the elliptic quasi-halos create a volume in phase space when evolved in time

resulting in a trajectory with complex behavior. The relative motion of the invariant surfaces with

respect to the underlying halo orbit provides full coverage of a point on the halo orbit with the

same phasing in θ0.



Chapter 4

Resonance Avoidance Methods

“The dynamical properties of an invariant torus with linear flow are very sensitive to the

number-theoretical properties of its frequency vector.”

- Broer, Huitema, and Sevryuk [39]

4.1 Introduction

Any work in the area of KAM theory points out the problem of small-divisors which presents

itself in KAM type proofs on the existence of invariant tori. It is impractical to present an exhaustive

list of references to learn about KAM theory, invariant tori, reducibility, and related material,

however the reader is directed to the textbooks and their references in [11, 12, 39, 38, 134, 56]. The

reader is also referred to the following research papers and their references in [51, 61, 62, 100, 106,

105, 107, 108, 151, 156, 157, 80].

It is well known that resonances between the internal frequencies of invariant tori play a vital

role in the theoretical study and numerical computation of quasi-periodic invariant tori. Greene

[77] and MacKay [128] show invariant curves of 2-dimensional invariant tori of flows are most robust

when the rotation number of the curve is a noble number. As the rotation number moves away

from a noble number and approaches a rational number the robustness diminishes. At a resonance

the frequencies of an invariant torus violate the non-resonance condition in Equation (2.2), and the

dimension of the torus decreases, resulting in a submanifold of lower-dimensional invariant tori [39].
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For a 2-dimensional quasi-periodic invariant torus with frequencies near a resonance the invariant

curve no longer covers T, and resembles an island chain on a Poincaré map [136], a behavior which

extends to higher-dimensional quasi-periodic invariant tori. Both phenomena are destructive to the

computation of quasi-periodic orbits.

The complications of computing invariant tori near resonances is numerically observed by

Gómez and Mondelo in [75] wherein they compute a 2-parameter family of 2-dimensional quasi-

periodic orbits. To avoid these challenges, they tactfully choose rotation numbers such that 2π
ρ is an

integer plus the golden number 1
2(1+

√
5), leading to the most irrational set of frequencies. Gómez

and Mondelo enforce the continuation to maintain this rotation number to ensure the family of

computed quasi-periodic orbits exist in the nonlinear system.

McCarthy and Howell present a method to avoid resonances in a 3-parameter family of 3-

dimensional quasi-periodic orbits [130]. They suggest fixing the rotation numbers such that they

take values which are not multiples of 2π. Their method ensures the ratios of the frequencies stay

away from integer values. They do not address the issue that many resonances occur when the

ratios of the frequencies are not integers. Picking the rotation numbers to ensure the frequency

ratios avoid rational numbers is a more challenging task. However, avoiding resonances is exactly

one of the issues addressed in this chapter.

Both resonance avoidance methods described above seem sufficient for studying large portions

of families of quasi-periodic orbits, but they are restrictive in the types of branches which can be

computed, and do not allow the parameter space to be explored freely. Utilizing a combination of

the methods presented in Chapter 3 allows one to explore parameter spaces with more complicated

geometries. The issue of resonances in families of quasi-periodic orbits must be addressed to freely

explore the parameter space and is the motivation behind this chapter.

This chapter is organized as follows: Section 4.2 discusses the problem of identifying a res-

onance between orbit frequencies. Section 4.3 presents a line search method for picking the most

irrational set of orbit frequencies within a range of continuation step sizes. Section 4.4 presents

a heuristic method for determining when a continuation scheme should increase the step size to
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jump beyond a resonance. Section 4.5 analyzes the performance of the methods on a test example.

Section 4.6 discusses the impact of resonances on the computations of quasi-periodic orbits and

provide advice for dealing with resonances in computing branches of quasi-periodic orbits. Lastly,

Section 4.7 concludes the chapter.

4.2 Irrational Numbers in Floating Point Arithmetic

To efficiently compute branches of quasi-periodic orbits in arbitrary directions we devise a

methodology to avoid resonances. To avoid resonances it is necessary to identify when the torus

frequencies are near a resonance. Identifying a resonance on a computer equates to determining

whether the ratio of two frequencies in floating point arithmetic is well approximated by a rational

number. Determining the irrationality of a frequency vector on a computer is not a trivial task

since all floating point numbers are necessarily rational. While this is not a well-defined problem

we leverage research that addresses the issue of detecting resonances on a computer.

A question addressed by Sander and Meiss in [152] is: Given a floating point number x and

an interval Iδ = [x− δ, x+ δ] what is the rational n
d in this interval with the smallest denominator?

They mention there are built in functions, such as in Mathematica and MATLAB, which return an

n and d, but do not return the smallest denominator. Therefore, they present an algorithm which

does return the smallest denominator such that n
d ∈ I. We use their algorithm, given in Algorithm

4, to determine the approximate rationality between the torus frequencies.

Sander and Meiss perform tests on a set of floating point numbers to determine which values

of d make for good approximations to x. They found that log10(d) has a mean value of log10(δ)/2,

and when log10(d) deviates from the mean value then x is well approximated by a rational number.

Their results lead to the development of the metric

σ = | log10(d) + log10(δ)/2| (4.1)

to rate how “rational” x is [152]. In their work they use δ = 10−8, and deem a point x to be rational

when the log deviation σ is greater than 0.3375. We use the same δ value in this thesis, but use
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Algorithm 4 Compute the smallest denominator of the rational number approximating a floating
point number within an interval

1: procedure SmallDenom(x, δ)
2: (n, d) = (pl, ql) = (0, 1)
3: (pr, qr) = (1, 0)
4: while |x− n

d | ≥ δ do
5: (n, d) = (pl + pr, ql + qr)
6: if x < n

d then
7: (pr, qr) = (n, d)
8: else
9: (pl, ql) = (n, d)

10: end if
11: end while
12: return (n, d)
13: end procedure
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different values of σ to determine when an orbit is near a resonance. It is not straightforward to

determine what σ should be because each resonance has a region around it where the computation

of orbits becomes difficult; the size of this region is different for each resonance.

4.3 Picking Irrational Frequencies

In a continuation method to compute branches of quasi-periodic orbits we have a current

solution zk = [XT
k ,ω

T
k ]

T and a family tangent vector z
′
k which governs the prediction of the next

solution zk. Suppose a nominal step size ∆s for the prediction is used, such as Equation (2.70),

then the nominal set of frequencies is

ωk+1 = ωk +∆skω
′
k. (4.2)

The nominal frequencies may be nearly commensurate, thus making the next torus numerically

challenging to compute. However, within any open interval around any number there are irrational

numbers. Leveraging this information we conduct a line search to pick a new step size within the

interval [0.9∆sk, 1.1∆sk] so that the new predicted set of frequencies is the “most” irrational.

For a given value of s ∈ [0.9∆sk, 1.1∆sk] we compute a set of predicted frequencies ωp =

ωk + sω
′
k. For each combination of ratios between the frequencies, excluding the inverse of the

ratios, we rate the rationality of each ratio using SmallDenom and Equation (4.1). These values

are stored for each combination of ratios and for each set of predicted frequencies, producing a

matrix of σ values. The best step size is the one that minimizes the average σ value for a fixed

value of s. Picking the best step size this way minimizes the likelihood of being near a resonance,

promoting well-conditioned computations of invariant tori. The method to choose the best step

size to produce the most irrational set of frequencies is given in Algorithm 5.

We note that Algorithm 4 is not well-behaved over the interval [0.9∆sk, 1.1∆sk] (see Figure

13 in [152]), so locating the optimal step size is reduced to performing a grid search with 1000

values of s equally spaced throughout the interval.

An example of using Algorithm 5 is given in Figure 4.1. The black square represents the
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Algorithm 5 Compute best step size to avoid being near a resonance

1: procedure IrrationalStepSize(∆s,ω,ω
′
, δ)

2: for all s ∈ [0.9∆s, 1.1∆s] do
3: ωp = ω + sω

′

4: for all unique combinations of frequencies ωp,i, ωp,j in ω do
5: r̂ =

ωp,i

ωp,j

6: (n, d) = SmallDenom(r̂, δ)
7: σ(i,j),s = | log10(d) + log10(δ)/2|
8: end for
9: end for

10: σs = E(i,j)[σ(i,j),s] ▷ Take the mean over the (i, j) dimension of the array.
11: ∆smin = argminσs

s
12: return ∆smin

13: end procedure
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frequencies of the current solution. The cyan diamond represents the nominal frequencies using

the nominal continuation step size. One thousand predicted frequencies are computed within the

interval [0.9∆s, 1.1∆s]. Each pair of predicted frequencies are evaluated using Algorithm 4 and

Equation (4.1), and are colored according to their σ value. The blue star is the frequency pair

which attains the minimum value of σ in the grid search. The step size corresponding to that

frequency pair is the step size chosen for the prediction step. Had the nominal step size been

slightly larger the nominal set of frequencies could have been considered rather rational, possibly

requiring more Newton iterations to converge.

Figure 4.1: Example of picking step size to minimize chance of stepping near a resonance. Plot (b)

is a zoomed in copy of plot (a).

4.4 Hopping Beyond Resonances

With a step size chosen nominally as in Equation 2.70 it is easy for the continuation of quasi-

periodic orbits to get stuck near a resonance. As the continuation approaches a strong resonance

more iterations will necessarily be needed to converge to a true solution. By taking more iterations

to converge the step size will decrease and the frequencies of the quasi-periodic orbits will ever so

slowly approach the resonance, leading to stagnation and termination in the continuation procedure.

To circumvent the issue of premature termination due to resonances one needs a way of
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identifying when the continuation is stagnating at a particular resonance. From there we can make

an informed decision on how to adjust the step size. Tracking the σ values alone to determine the

likelihood of being near a resonance is not sufficient. The σ value is only able to detect when the

torus frequencies are near a resonance, however the continuation of a branch of quasi-periodic orbits

may be progressing sufficiently and just happen to converge with frequency ratios near different

rational values.

A method to hop beyond resonances requires not only tracking the σ values, but also requires

tracking the ratio of the frequencies to determine progress in the continuation. Therefore, we present

the following heuristic method to identify and jump past resonances in Algorithm 6 and Algorithm

7. Let ωk be the frequencies of the current converged solution with the new nominal step size

∆sk computed according to Equation (2.70). Let r be a vector which records the value of each

combination of frequency ratios, and let c be a vector of positive integers which keeps a count of

the consecutive occurrences when each frequency ratio is near a resonance. At the start of the

continuation, for k = 0, r is composed of the values of frequency ratios for the initial quasi-periodic

orbit, while c starts at all zeros. Once the next solution zk+1 has been found then Algorithm 7 is

called to determine whether the step size should be increased to move beyond a resonance.

Algorithm 6 Determine if continuation of quasi-periodic orbits are near a resonance

1: procedure CheckResonances(r,c,ω,δ)
2: k = 1
3: for all unique combinations of frequencies ωi, ωj in ω do
4: r̂ = ωi

ωj

5: (n, d) = SmallDenom(r̂, δ)
6: σ = | log10(d) + log10(δ)/2|
7: if σ > 0.1 and |r[k]− n

d | < 1e− 3 then
8: c[k] = c[k] + 1
9: else

10: c[k] = 0
11: end if
12: r[k] = r̂
13: k = k + 1
14: end for
15: return r, c
16: end procedure
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Algorithm 7 first calls Algorithm 6 to update r and c. Algorithm 6 goes through each

combination of frequency ratios of ωk+1, computes the rational with the smallest denominator

using Algorithm 4, and computes σ. For a given frequency ratio we increase the counter associated

with that ratio by one if two conditions are met. The first is that σ needs to be sufficiently large

to indicate the presence of a resonance. Trial and error has resulted in a threshold value of 0.1.

The second condition is the frequency ratio of the current continuation solution must be sufficiently

close to the frequency ratio of the previous continuation solution. We let the threshold value be

1e-3. If either of these conditions are not met then the counter associated with that frequency ratio

is reset to zero. The new values of the frequency ratios are recorded and compared with the next

continuation solution.

Algorithm 7 Decide whether to increase step size to hop a resonance

1: procedure HopResonance(r,c,ω,∆s,δ)
2: (r, c) = CheckResonances(r, c,ω, δ)
3: if any element of c is equal to 5 then
4: ∆s = 0.05 ∗ sign(∆s)
5: end if
6: return r, c,∆s
7: end procedure

Algorithm 7 uses c to decide if the continuation has stagnated at a resonance. If any value in

c has a value of 5, indicating the continuation has been near a particular resonance for 5 consecutive

solutions, then we change the step size to be 0.05 multiplied by the sign of the step size. Typical

continuation methods only have a positive step size so that the continuation only marches forward

along a branch of solutions, but as we will see in Chapter 5, there is use in negative step sizes, so

we respect the sign of the step size here. A step size magnitude of 0.05 has been deemed sufficient

to be able to move beyond many resonances while also providing for good linear approximations in

the prediction step of continuation. However, the value 0.05 should not be taken as absolute and

is likely dependent on many factors such as the family of orbits, the dynamical system, and the

dimension of the invariant tori. As it has been mentioned the method presented in this section is

a heuristic method, and, as such, many values have been chosen to provide favorable performance
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for the applications encountered in this thesis.

4.5 Results of Implementation

We tested the performance between the use of both resonance avoidance methods together

against using neither method. In the former case we call it the RAv variant, and in the latter case

we call in the plain variant. The plain variant uses only the nominal step size update given in

Equation (2.70). The nominal step size update is also used in the RAv variant with the inclusion

of Algorithm 5 to make little modifications to the step size and with the inclusion of Algorithm 7

to prevent stagnation at a resonance.

For the test we chose 7 quasi-halo orbits from within the Earth-Moon L2 quasi-halo orbit

family to act as initial solutions for continuing branches of solutions. About each initial solution

15 directions equally spaced out on a circle are chosen for the branches to follow. The direction

is enforced using the constant slope constraint in Equation (3.41). The initial family tangents are

chosen according to the method outlined in Section 3.5.1. Each branch of solutions terminates

when getting to a target set of frequencies. The specific method to target the frequencies is given

in Chapter 5, and defer details until then, however this does not impact the results of the test.
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Figure 4.2: Comparing the solutions in frequency space between the resonance avoidance variant

(a) to the plain variant (b).

All together there are 105 branches of solutions spanning a large portion of the unstable

2-dimensional quasi-halo orbits for both variants. The branches are faced with resonances to get

to the target set of frequencies. We are looking to see how many of the branches successfully reach

the target set of frequencies, how much time the branch took to get there, and how many family

members were computed along the way. Examining these three quantities gives insight into the

performance of the resonance avoidance methods. Statistics relating to these three metrics are in

Table 4.1.
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Figure 4.3: Comparing the branches in frequency space between the resonance avoidance variant

(a) to the plain variant (b).

Figures 4.2 -4.4 show the performance of the RAv variant compared to the plain variant. The

results of the convergence conditions are in Figure 4.2. In frequency space, Figure 4.2 shows the

family of quasi-halo orbits, the starting solutions, the target frequencies, and the final solution in

each branch. Each final solution is colored according to the reason the branch terminated. Select

resonance lines are laid on top of the family to help show interactions between the branches and

resonances. Figure 4.3 also shows the quasi-halo family in frequency space with resonance lines

laid on top and the starting solutions. In contrast to Figure 4.2, Figure 4.3 shows the individually

computed solutions in each branch colored according to the σ value in Equation (4.1).

The RAv variant has 77 branches which converge to solutions with the target set of frequen-

cies, 22 branches which reach the boundary of the family, and 6 branches which are stopped by

resonances. Therefore, there are 99 successful branches and 6 unsuccessful branches. The plain

variant has 70 convergent branches, 21 which reach the boundary of the family, and 14 that are

stopped by resonances, showing the RAv variant performs better at moving past resonances.
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Table 4.1: Performance of RAv and Plain variants.

Variant RAv Plain

# Hit Converge 77 70

# Hit Boundary 22 21

# Hit Resonance 6 14

Avg. Time per Branch 98 sec 102.5 sec

Avg. # QPOs per Branch 15 17

Avg. Time per QPO 6.5 sec 6 sec

For the RAv variant the average time per branch is 98 seconds, the average number of

solutions per branch is 15, and the average time per solution is 6.5 seconds. For the plain variant

the average time per branch is 102.5 seconds, the average number of solutions per branch is 17,

and the average time per solution is 6 seconds. The results show the RAv variant increases the

average time per solution, but decreases the average number of solutions per branch and has an

overall decrease in the average time per branch.

A graphical comparison between the resonance avoidance and plain variants are in Figure 4.4.

The plot (a) of the figure is a key to identifying the branch number that is on the x-axis of the three

subplots of plot (b). The branch numbers start at 9 o’clock relative to the initial quasi-periodic

orbits and increase counterclockwise. It is clear from the top subplot of plot (b) that the plain

variant tends to compute more solutions compared to the RAv variant. The bottom subplot of

plot (b) shows two lines showing the σ value of the returned solution and colored according to the

error between the returned solution and the targeted solution. The long dotted line is for the plain

variant and the short dotted line is for the RAv variant. The data points are either pentagrams,

showing convergence is achieved, or dots whose color and size are dependent on the error. The

two lines are aligned for most of the plot, however there are branches which lead to the two lines

diverging from one another.
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Figure 4.4: Comparison of performance between the plain variant and the resonance avoidance

variant (b). The x-axis is the branch number. The branch numbers are given in plot (a).
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It is interesting to see that many of the high σ value solutions achieved convergence. Moreover,

it is interesting to see there are gaps between the two lines at converged solutions, showing a large

variability in σ for very small differences in the returned solutions. These observations suggest a

high σ value does not measure the strength1 of a resonance, so in many cases there are no issues

computing quasi-periodic orbits with a nearly commensurate set of orbit frequencies. One might

wonder why many of the branches have a returned solution with a low σ value, but a high error.

If the reader correlates the branch numbers to the key in plot (a) and the convergence results in

Figure 4.2 it is evident that the error comes from the fact that the target frequencies are outside

the boundary of the family. The hope was there would be a clear correlation between high σ and

error, but this is not observed.

4.6 Discussion

There are two main reasons for branches getting stuck at resonances. The first main reason

is the target frequencies may are too close to a resonance for the branches to converge. Orbit

frequencies close to a resonance pose several complications. First, more Fourier coefficients are

needed to increase the accuracy of computations. Second, recall that quasi-periodic orbits near a

resonance exhibit island chain behavior, preventing the quasi-periodicity constraint to be satisfied.

Lastly, recall that families of quasi-periodic orbits form Cantor families, meaning orbits simply do

not exist for every set of frequencies. It may be the case that the target set of frequencies lie in an

area that do not allow for the existence of quasi-periodic orbits. For these reasons it is advised to

ensure the target frequencies do not lie too close to a low-order resonance.

The second main reason for branches getting stuck at resonances is the path may not have

been able to jump past the resonance to reach the target frequencies. This could be that the gap is

too large, meaning the family tangent vector does not provide for an accurate prediction of the next

quasi-periodic orbit in the continuation. The large gap issue can be circumvented if there are pre-

1 The quantity σ is purely a number theoretic quantity and does not capture the dynamical aspect of resonances.
Each resonance has its own region, around which, invariant tori cease to exist. The larger the region the “stronger”
the resonance.
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computed quasi-periodic orbits on the other side of the resonance sufficiently close to the predicted

set of frequencies. Then the guess of the quasi-periodic orbit states can be replaced with the states

of the closest known quasi-periodic orbit while maintaining the predicted set of frequencies.

Lastly, we observe that near-parallel crossings of resonances are difficult, while near- perpen-

dicular crossings of resonances are easier. The direction of crossing makes a difference because there

is an area associated with each resonance where computations of quasi-periodic orbits becomes

challenging or even impossible. The size of these areas are unknown, but generally lower-order

resonances have larger areas. It is evident that crossing in a perpendicular manner reduces the

distance that a continuation method has to move from one side of the resonance to the other to

continue computing solutions. Leveraging this, one can construct a method to hop past resonances

perpendicularly to reduce the chance of branches terminating prematurely.

We present a method to determine the correct family tangent vector to cross perpendicularly

in Algorithm 8, and describe how to alter the continuation method to perform the crossing. Let

z = [XT ,ωT ]T be the current solution and Vp be a matrix whose columns contain the principle

tangent basis vectors. Let m0 > 0 be the resonance between the frequencies ωi and ωj , such that

m0 ≈ |ωi
ωj
|. The pair of frequencies near a resonance can be determined from Algorithm 6. To

cross perpendicularly to the line y = m0x we need to direct the continuation to follow a line with

the slope m = − 1
m0

2 . We then use Equation (3.42) to pick the correct family tangent vector to

move along this line. The last consideration is to move forward in the sense of increasing ωj or

backward in the sense of decreasing ωj . The direction is determined from the previous solution z̃.

Let ∆ωj = ωj − ω̃j . If ∆ωj > 0 the direction is forward, if ∆ωj > 0 the direction is backward, and

if ∆ωj = 0 then we need to examine ∆ωi. If ∆ωi < 0 the direction is forward, and if ∆ωi > 0 the

direction is backward. After the correct family tangent vector has been computed from Algorithm

8 we simply use the constant slope constraint in Equation (3.41) with ωi taking the place of ω1 and

ωj taking the place of ω0.

After the resonance has been hopped perpendicularly the user can determine what to do

2 This result should be familiar from basic algebra.
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next. It is likely that before the crossing the user was computing a branch of orbits with a specific

characteristic. If the characteristic is the orbit frequencies then the tool developed in Chapter 5

will suffice to get to the desired orbit. However, Chapter 6 presents a tool for getting from an initial

solution within a multi-parameter family to a desired solution based on general characteristics.

4.7 Conclusion

Two novel methods for picking step sizes in continuation methods which compute quasi-

periodic orbits are developed and tested. One method chooses a step size within an interval

centered on a nominal step size to predict a quasi-periodic orbit which has the most irrational

frequencies. The other method greatly increases the step size to jump beyond resonances. Both

methods leverage number theoretic properties to compute more robust quasi-periodic orbits. These

two methods fall into a class called resonance avoidance methods which aim to improve the perfor-

mance of computing quasi-periodic orbits by avoiding resonances between the internal frequencies

of the tori. Both methods focus on the step size rather than the parametric constraint, allowing for

flexibility in the computed branches of orbits. The combined results of these new methods show im-

proved performance for the computation of quasi-periodic orbits by decreasing the time to compute

branches of orbits and increasing the probability of moving past resonances which would ordinarily

halt the continuation process. Lastly, we discuss the impacts of resonances on the computations of

quasi-periodic orbits and present ideas to circumvent resonances.
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Algorithm 8 Generate family tangent vector to hop over a resonance perpendicularly

1: procedure PerpResHop(ωi,ωj ,ω̃i,ω̃j ,Vp,δ)
2: r = ωi

ωj

3: (n, d) = SmallDenom(r, δ)
4: m = − d

n
5: ∆ωj = ωj − ω̃j

6: ∆ωi = ωi − ω̃i

7: if ∆ωj equals 0 then
8: if ∆ωi < 0 then
9: α = 1

10: else
11: α = −1
12: end if
13: else
14: if ∆ωj < 0 then
15: α = −1
16: else
17: α = 1
18: end if
19: end if
20: z

′
= α(Vp[:, j] +mVp[:, i])

21: return z
′

22: end procedure



Chapter 5

A Retraction on Families of Quasi-Periodic Orbits

5.1 Introduction

Trajectory design of 1-parameter families of solutions is fairly straightforward since there is

only one dimension in the space of solutions to search: forward and backward. Multi-parameter

families introduce a larger solution space and increase the complexity of finding solutions since

there are multiple dimensions to search. Most studies utilizing methods to compute quasi-periodic

orbits don’t focus on the computation of specific family members, but instead are used to research

entire families of orbits. Knowing the characteristics and limitations of each orbit family is the

first step in determining which orbit types should be used in designing a mission. The next step is

finding explicit members from the candidate families to provide options that meet initial mission

constraints. Quasi-periodic orbit families generally exist in multi-parameter families in astrody-

namics models, and the ability to search through these higher dimensional spaces to pick out a

specific orbit is not trivial.

Research investigating multi-parameter quasi-periodic orbit families usually relies on the use

of single-parameter continuation where the continuation is restricted to follow some rule based on

the hard coded constraints. In these cases, the computed family members primarily serve to be

representative members from the family to gain insight into the family as a whole. The ability

to methodically move through the family to find a specific family member is not existent to our

knowledge. In 2001 Gómez and Mondelo presented the idea of computing a periodic orbit with

given energy level and a prescribed value of a coordinate [75], however the idea is applied to the
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refinement of an orbit, so one must have an (approximated) orbit close to the desired one.

In 2012 Mondelo et al. develop a way to interpolate over a 2-parameter family of quasi-

periodic orbits allowing them to specify orbits by their energy and rotation number [136]. In many

areas of the parameter space they achieve interpolation errors below 1e-8, and they encounter larger

errors near resonances and the boundary of the family as high as 0.01. To improve the errors they

take a finite elements approach to reduce the errors down to 1e-10. Their interpolation method only

works when the interpolation nodes are nearly equally spaced in the parameter space. According

to their paper, “the rotation numbers have been ‘Diophantised’ in order to be far from low-order

resonances.” A grid of 25433 orbits are computed for the L1 family of Lissajous orbits, and a grid of

73939 orbits are computed for the L1 family of quasi-halo orbits. The paper neglects many details

on their research, such as the implementation of the interpolation, the time needed to compute

the grids, how the grid was constructed with continuation methods, and how they deal with the

interpolation when the number of Fourier coefficients representing the invariant curves is different

amongst the orbits in the grid since they allow this number to vary. Constructing these grids is

time-consuming without the use of a computer with many processors and requires the storage of

many orbits. Many computers which can be bought off the shelf these days will struggle with RAM

requirements to have all the orbits in memory at once. Additionally, any orbit produced from

the interpolation will need to be corrected to ensure the invariance is satisfied to a stricter error

tolerance.

We consider a different approach to computing orbits with a specified set of parameters,

avoiding the computation and interpolation of a dense grid of solutions. Leveraging the implicit

function theorem, we develop a retraction (see Section 2.5.3) by augmenting a standard continuation

method to travel a specified distance in a specified direction in the parameter space of an implicit

manifold M defined by F (x, q) = 0. The augmentation comes in the form of a line search over

step sizes to minimize the difference between the distance in the parameter space which is desired

and the distance which has actually been traveled by the continuation method. The retraction

takes advantage of the tangent space ofM to continue solutions in the appropriate direction. The
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formulation of the retraction is general, showing its versatility to a wide array of problems, however

it is validated and applied to the case of single- and multi-parameter families of quasi-periodic

orbits in the circular restricted three-body problem.

This chapter is organized as follows: Section 5.2 goes over the development of the retraction.

Section 5.3 presents the algorithm for the retraction. Section 5.4 validates the retraction with

two examples. The first example computes quasi-halo orbits from a 2-parameter family which have

specific sets of orbit frequencies. The second example computes an orbit which is a specific distance

from the initial orbit along a 1-dimensional submanifold of constant energy. Section 5.5 ends the

chapter with a discussion of the advantages of the retraction and presents various uses for it.

5.2 Solution Development

5.2.1 Manifolds

Let x ∈ RD be state variables, q ∈ Rp be parameters, and z = [xT , qT ]T . Consider the

system of equations

F : RD × Rp → RD, F (x, q) = 0. (5.1)

Assume the Jacobian matrix DxF is full rank for all solutions (x, q) satisfying F (x, q) = 0. Then

the set of points

M = {(x, q) | F (x, q) = 0} (5.2)

is a p-dimensional smooth manifold embedded in RD × Rp. We define the state manifold

X = {x | F (x, q) = 0} (5.3)

and the parameter manifold

Q = {q | F (x, q) = 0} (5.4)

so thatM = X×Q. Moreover, we have TzM = TxX×TqQ. The implicit function theorem (Section

2.5.1) says there is a unique mapping from Q to X . We refer to the case in which manifolds are

defined by Equation (5.1) as the unconstrained case. This is because the tangent space of Q is
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Rp. Consider q∗ ∈ Q, then there exists a radius r such that any q ∈ Br(q
∗) implies q ∈ Q, where

Br(q
∗) is a ball of radius r centered on q∗.

Now consider Equation (5.1) with c additional equations, resulting in the system of equations

F̄ : RD × Rp → RD+c, F̄ (x, q) = 0, (5.5)

where c ∈ N and c ≤ p− 1. Again, assume that the Jacobian matrix of Equation (5.5) is full rank

for all solutions (x, q) satisfying F̄ (x, q) = 0. Then the set of points

M̄ = {(x, q) | F̄ (x, q) = 0} (5.6)

is a (p− c)-dimensional implicit manifold embedded in RD × Rp. We define the state manifold

X̄ = {x | F̄ (x, q) = 0} (5.7)

and the parameter manifold

Q̄ = {q | F̄ (x, q) = 0} (5.8)

so that M̄ = X̄ × Q̄. It is evident that M̄ ⊂ M and the mapping defined from Q to X is a valid

mapping from Q̄ to X̄ (Figure 5.1). We refer to the case in which manifolds are defined by Equation

(5.5) as the constrained case. This is because the tangent space of Q̄ is not equal to Rp. Consider

q∗ ∈ Q̄, then there does not exist a ball such that all q ∈ Br(q
∗) implies q ∈ Q̄. Therefore, the

locally valid directions are constrained to a subspace of Rp.

5.2.2 Continuation Equations

For simplicity, we let

z =

x
q

 .

The aim of the tool is to target a solution zt satisfying either Equations (5.1) or (5.5) by specifying

the target parameters qt. To do this we must begin with an initial solution z0 from within the

family.
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Figure 5.1: The parameter and state manifolds defined by Equations (5.1) and (5.5).

In the unconstrained case this is simple. We only require that the line

q(t) = q0 + tδqt, t ∈ [0, 1] (5.9)

be entirely contained in Q where δqt = qt−q0. Then it is sufficient to use continuation to compute

the branch of solutions lying on q(t). We append Equation (5.1) with the following p−1 parametric

constraints, called direction constraints,

d(z) =
q̆ − q̆0
q − q0

− q̆t − q̆0
qt − q0

=
δq̆

δq
− δq̆t

δqt
(5.10)

where q is the coordinate of q such that

q = arg max
i=1,...,p

|q0,i − qt,i|, (5.11)

and q̆ are the remaining coordinates of q. Choosing q and q̆ in this way ensures there are no issues

with singularities. Moreover, we append with a pseudo-arclength equation s(z) so that

H(z) =


F (z)

s(z)

d(z)

 = 0 (5.12)

has a full rank Jacobian matrix. Equation (5.12) is used in a continuation method and ensures

we compute solutions which lie along the straight line connecting q0 to qt. However, we need to
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modulate the step size so that the continuation can converge to the target solution zt and stop

computing solutions. We will return to this in Section (5.2.5), and introduce the continuation

equations for the constrained case. The reader is pointed to Figure 5.2 to follow the proceeding

discussion of the constrained case.

Figure 5.2: Depiction of the direction constraint in the constrained case. The constrained manifold

Q̄ shown against the unconstrained manifold Q in (a). The projection of δqt onto the tangent

space, resulting in δq
∥
t , and the projection of the continuation path onto δq

∥
t in (b).

Just as in the constrained case we append a pseudo-arclength constraint to Equation (5.5),

resulting in D+c+1 equations. Unlike in the unconstrained case, in the constrained case it is likely

that q(t) /∈ Q̄ for all t ∈ [0, 1], so we must project the vector δqt into the tangent space Tq0Q̄. We

then want to ensure that the path that the continuation follows on the manifold is aligned with the

projected vector δq
∥
t . That is to say the vector pointing from the initial parameters to the current

parameters δq = q − q0 projected into Tq0Q is parallel to δq
∥
t . The projection is accomplished

similarly to the projection in Equation (2.67). Let V0 be a (D+ p)× (p− c) matrix whose columns
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are linearly independent vectors spanning Tz0M̄. Furthermore, we let

V̄0 =

V̄x0

V̄q0

 , (5.13)

where V̄q0 is a p × (p − c) matrix with linearly independent column vectors1 and V̄x0 is the

corresponding D× (p− c) matrix. The projection operator is given as

Projq0(v) = V̄q0

[
V̄ †
q0v
]
. (5.14)

Now the projected vector we wish to follow along the manifold is

δq
∥
t = Projq(δqt). (5.15)

The projected vector from the initial parameters to the current parameters in the continuation is

given by

δq∥ = Projq0(δq), (5.16)

leading to the following direction constraints

d̄(z) =
δq̆∥

δq∥
− δq̆

∥
t

δq
∥
t

. (5.17)

It is important to note the projection operator uses V̄q0 from the initial solution z0 for the entirety

of the computation of the branch.

We do not append all the direction constraints of Equation (5.17). Instead, we only append

p − 1 − c constraints. The choice of which equations to discard does not matter. Any p − 1 − c

of the scalar equations suffices to construct a full rank Jacobian matrix. Let d̄ be the p − 1 − c

direction equations, then the system of equations

H̄(z) =


F̄ (z)

s(z)

d̄(z)

 = 0 (5.18)

1 V̄0 having linearly independent column vectors does not imply any subset of the rows also have linear indepen-
dence. Thus, we require V̄q0 to also have linearly independent columns.
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is used in a continuation method for the constrained case. The original target solution is likely not

able to be achieved. Instead, we must settle for a nearby solution which satisfies Equation (5.5).

To this end, let

d = ∥δq∥t ∥. (5.19)

Then traveling in the direction of δq
∥
t on Q̄ a distance d should provide a nearby solution as long

as d isn’t too large. In the unconstrained case the projection operator is the identity operator,

d = ||δqt||, δq∥t = δqt.

5.2.3 Initial Direction

From Equation (5.15) we know the initial direction on Q̄ needed to continue solutions which

satisfy the direction constraints of Equation (5.18). However, to initialize the continuation method

we need to know the direction for both the states and the parameters. We generate the initial

direction z
′
0 to move on M̄ as

z
′
0 = V̄0

[
V †
q0δqt

]
=

V̄x0 V̄
†
q0δqt

V̄q0 V̄
†
q0δqt



=

δx∥
t

δq
∥
t

 . (5.20)

In the unconstrained case V †
q0 = V −1

q0 , reducing Equation (5.20) to

z
′
0 = V0

[
V −1
q0 δqt

]
=

Vx0V
−1
q0 δqt

Vq0V
−1
q0 δqt



=

δxt

δqt

 . (5.21)



162

5.2.4 Stopping Criterion

A standard continuation method computes branches until either the maximum number of

solutions has been computed or when a new solution fails to be found. However, to target a

specific solution we must introduce a stopping criterion which stops on the correct solution. In

the unconstrained case we know the parameters qt and can stop when those parameters are met,

however in the constrained case the target parameters are likely not in the parameter manifold Q̄.

Thus, we introduce a stopping criterion based on distance traveled on the parameter manifold.

The target distance to travel is given in Equation (5.19). Let z0 be the initial solution with

parameters q0, ∆s0 be the initial step size, and let z1 be the first solution from the continuation.

Then we define the distance traveled on Q̄ up to this point to be d1 = sign(∆s0)∥q1−q0∥. Extending

this to the kth solution leads to

dk =
k∑

j=1

sign(∆sj−1)∥qj − qj−1∥. (5.22)

In the limit of infinitesimal changes in the parameters we recover a path integral over the path on

Q̄ from q0 to qt. The distance equation ensures that if the target parameters are stepped over in

the continuation and the continuation needs to backtrack then the total distance traveled does not

increase. A positive step size indicates forward motion on the branch while a negative step size

indicates backward motion. Equation (5.22) is also used in the unconstrained case, however the

distance computation can be simplified to dk = ∥qk − q0∥. Computing dk allows us to keep track

of the progression of the continuation. Leveraging this knowledge we can intelligently choose step

sizes so that dk → d.

5.2.5 Step Size Computation

A standard continuation method utilizes some nominal step size update scheme such as the

one presented in Equation (2.70). This works well for computing branches of solutions to study

families as a whole, but does not perform well when a specific solution from a single- or multi-

parameter family is desired. A nominal step size update is adequate until the solutions approach
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the targeted solution, at which point the step size needs to be fine-tuned to ensure the targeted

solution is not passed over.

The method to choose the step size to converge on the target distance is a line search over

step sizes, given in Algorithm 9. Let qk and q
′
k be the parameters and their family tangent values,

respectively, at the current continuation solution. Additionally, let ∆sk be the current nominal step

size, and dk be the current distance traveled on the parameter manifold. A step size s is chosen

from a uniform partition on the interval [−1.2|∆sk|, 1.2|∆sk|] with N points. We choose N = 1000,

allowing the step size to potentially decrease by 3 orders of magnitude each continuation step. The

step size is multiplied by ∥q′
k∥ to generate an estimate ∆q of how much the parameters will change

by on the next continuation solution. ∆q is also the predicted distance traveled on the parameter

manifold from solution k to solution k+1. The distance is added to the current distance traveled dk

to generate a guess of the total distance traveled upon convergence to solution zk+1. The absolute

value of the difference between the target distance d and the predicted total distance traveled gives

an error, or the distance left to go before converging to the target distance. We choose the step

size s which minimizes this error.

Algorithm 9 Line search to determine the step size to get closest to the target distance

1: procedure TargetStepSize(∆sk,q
′
k,dk,d,N)

2: ∆dmin = |d− dk|
3: for j ∈ {0, 1, . . . , N} do
4: s = −1.2|∆sk|+ 2.4|∆sk| jN
5: ∆q = s∥q′

k∥
6: dj = dk +∆q
7: ∆dj = |d− dj |
8: if ∆dj < ∆dmin then
9: ∆smin = s

10: ∆dmin = dj
11: end if
12: end for
13: return ∆smin

14: end procedure

We note there are more sophisticated line search methods to pick the optimal step size,

however we are not interested in getting the exact optimal step size because the true parameters
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will differ from the predicted parameters. Moreover, to truly know the optimal step size it is

necessary to solve the BVP for each step size. This is extremely prohibitive, so we rely solely

on the predicted error rather than the true error to pick the optimal step size. We comment on

the range of step sizes; by allowing the lower bound of the step sizes to be negative we allow the

possibility of backtracking in the event the continuation has traveled too far, ultimately allowing

for convergence to the target distance. Moreover, we let the upper and lower bounds be larger

in magnitude than the nominal step size. From experience the nominal step size update given in

Equation (2.70) is conservative when in a well-behaved region of a family of solutions. In practice,

Algorithm 9 returns step sizes at the upper bound of the range, until getting close enough to the

target distance. Even with the increased step size the Newton’s method is able to converge without

any more difficulties.

5.3 The Retraction

Thus far we have seen that by projecting the vector from the parameters of the initial solution

to the target parameters to the parameter tangent space and using the distance constraints we can

control the direction of the continuation. Furthermore, by modulating the step size the continuation

can achieve a target solution. Recall from Section 2.5.3 a retraction is a mapping from a manifold’s

tangent space to down to a specific point on the manifold. By modifying a standard continuation

method with the capabilities presented in this chapter we have essentially constructed a continuation

method which behaves as a retraction. The ramifications of a retraction may not be fully understood

at this point, but a retraction is necessary for the applications in Chapter 6 when it is used to

optimize over families of solutions. For now, we present the general algorithm for the retraction

here and validate its functionality on simple examples in Section 5.4.

Algorithm 10 takes as inputs the direction to travel in the parameter space, δqt, the initial

solution, z0, the initial tangent space, V0, the initial step size, ∆s0, the error tolerance on the

distance, ε, and the number of points for the routine TargetStepSize, N . The distance, d, to

travel is computed as the norm of δqt. Then the family tangent vector is computed according to
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Algorithm 10 Retract from parameter tangent space down to the parameter manifold and find
the corresponding solution on the state manifold

1: procedure Retract(δqt,z0,V0,∆s0,ε,N)
2: d = ∥δqt∥
3: z

′
0 = V0

[
V †
q0δqt

]
▷ Automatically get δq

∥
t from Equation (5.20).

4: z
′
0 =

z
′
0

∥z′
0∥

5: k = 0
6: (qk, q

′
k,∆sk, dk) = (q0, q

′
0,∆s0, 0)

7: while |d− dk| > ε do
8: ∆sk = TargetStepSize(∆sk, q

′
k, dk, d,N)

9: (zk+1, Vk+1,∆sk+1) = Solver(zk, z
′
k,∆sk)

10: dk+1 = dk + ∥qk+1 − qk∥
11: z

′
k+1 = zk+1 − zk

12: k ← k + 1
13: end while
14: (z∗, V ∗) = (zk, Vk)
15: return (z∗, V ∗)
16: end procedure
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Equation (5.20) and normalized with the appropriate norm ∥ · ∥ consistent with the inner product

used in the pseudo-arclength equation. The algorithm proceeds to go into the continuation loop.

In each iteration the step size is modulated with Algorithm 9, the next solution is computed with

the routine Solver. The routine Solver solves the continuation equations and returns the next

solution, its tangent space, and the nominal step size. The cumulative distance in the parameter

space is computed. The continuation loop continues until either the distance traveled is within the

error tolerance or an updated solution is not found, and returns the final solution.

5.4 Validation

The retraction is tested on both the unconstrained and the constrained case for the application

of computing quasi-periodic orbits from within the 2-parameter family of the Earth-Moon L2 quasi-

halo orbit family in the circular restricted three-body problem. For this specific case of computing

quasi-periodic orbits we include the resonance avoidance methods from Chapter 4 to gain better

performance. The routine IrrationalStepSize (Algorithm 5) is implemented directly after the

routine TargetStepSize, fine-tuning the step size to compute the orbit with the most irrational

set of frequencies.

In the unconstrained case we are concerned with computing an orbit with a specific set of

orbit frequencies because all dimensions of the frequency space are available. In the constrained case

a Jacobi constant constraint is included, constraining the possible set of frequencies. The only way

to know the achievable set of frequencies is to compute the entire constant energy branch. Without

computing the entire branch we settle for targeting the distance along the branch to produce an

orbit close to a desired set of orbit frequencies.
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5.4.1 Targeting Orbit Frequencies in a Family of Quasi-Periodic Orbits

5.4.1.1 Problem Formulation

Recall from Section 3.2 the solution vector z is composed of discretized states over the

invariant surface, X, the stroboscopic time, T , the rotation numbers, ρ, and the orbit frequencies,

ω. Furthermore, the orbit frequencies parameterize the solutions, so the state variables

x(ω) =


X(ω)

T (ω)

ρ(ω)

 (5.23)

are functions of the orbit frequencies. For 2-dimensional quasi-periodic orbits we have ρ = ρ1 and

ω = (ω0, ω1). For a 2-parameter family of quasi-periodic orbits in the circular restricted three-body

problem the generating system of equations for the family in a single-shooting setting2 is

F (z) = F (X, T, ρ1,ω) =



R−ρ1φT (X)−X〈
X − X̃, ∂X̃∂θ0

〉
〈
X − X̃, ∂X̃∂θ1

〉
Tω0 − 2π

Tω1 − ρ1


, (5.24)

generating the following 2-dimensional Cantor manifolds

M = {(x,ω) | F (x,ω) = 0} (5.25)

X = {x | F (x,ω) = 0} (5.26)

Ω = {ω | F (x,ω) = 0}. (5.27)

The system of equations used in the continuation to compute branches of solutions needs an ad-

ditional parametric constraint to constraint the continuation to a 1-dimensional curve. To reduce

the dimension from 2 to 1, a direction constraint from Equation (5.10) is appended to F , along

2 See Section 3.2 for the notation and the extrapolation of the equations to multiple-shooting.



168

with a pseudo-arclength constraint to trace out the branch of solutions. This leads to the following

system of equations for the continuation method

H(z) =


F (z)

1
N

〈
X − X̃, X̃

′
〉
+ (T − T̃ )T̃

′
+ (ρ1 − ρ̃1)ρ̃

′
1 +

〈
ω − ω̃, ω̃′

〉
−∆s

δω̆
δω −

δω̆t
δωt

 . (5.28)

We choose an initial quasi-halo orbit with frequencies

ω = (1.946982196701564, 0.590131700668313),

target frequencies

ωt = (1.978018524093039, 0.622782717360435),

and a distance tolerance of ε =1e-8. Therefore, we have

δωt = (0.031036327391475, 0.032651016692122)

and d = 0.045048224260009. Based on δωt we have δω̆ = ω0 and δω = ω1. Additionally, we use

N = N1 = 41 to discretize the invariant curves.

5.4.1.2 Results

Algorithm 10 produces a quasi-halo with frequencies

ω∗ = (1.978018520706167, 0.622782713797358).

The results are given in Figure 5.3. Plots (a) and (b) show the continuation in frequency space,

while plot (c) shows the distance error versus the continuation solutions. The initial step size is

1e-3 while the maximum nominal step size is 5e-3, leading to small steps at the beginning of the

continuation. The step size drastically increases between solution 14 and 15 due to the resonance

avoidance method from Section 4.4 reducing the distance error by orders of magnitude. In plot

(b) it is seen that the solution jumps past the target solution and begins to backtrack. From there

it takes only a few more solutions to hone in on a quasi-halo orbit with frequencies satisfying the
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tolerance. The entire algorithm computes 19 orbits and takes 105 seconds to run. The computations

were performed in the Julia language and the integrations were not run in parallel. The runtime

can be significantly reduced if the integrations are run in parallel.

Figure 5.3: Targeting the frequencies of a quasi-periodic orbit.

Plot (c) shows a monotonically decreasing error as the orbits are successively computed. This

behavior is expected for larger step sizes, but as the step size gets small enough it is not unexpected

for the distance error to oscillate. The oscillation can occur because the predicted frequencies do

not exactly determine the true frequencies. The Newton’s method can converge to an orbit further

away from the target than expected based on the predicted frequencies.

5.4.2 Targeting Distance on a Subset of a Family of Quasi-Periodic Orbits

5.4.2.1 Problem Formulation

For this test case a Jacobi constant constraint is included in the generating system of equations

F̄ which constructs 1-dimensional Cantor manifolds. No direction constraints are necessary since
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the continuation method can trace out a 1-parameter branch. The generating system of equations,

the manifolds defined by the generating system of equations, and the continuation equations are

presented below.

F̄ (z) = F̄ (X, T, ρ1,ω) =



R−ρ1φT (X)−X〈
X − X̃, ∂X̃∂θ0

〉
〈
X − X̃, ∂X̃∂θ1

〉
Tω0 − 2π

Tω1 − ρ1

J̄(X)− J∗


(5.29)

M̄ = {(x,ω) | F̄ (x,ω) = 0} (5.30)

X̄ = {x | F̄ (x,ω) = 0} (5.31)

Ω̄ = {ω | F̄ (x,ω) = 0} (5.32)

H̄(z) =

 F̄ (z)

1
N

〈
X − X̃, X̃

′
〉
+ (T − T̃ )T̃

′
+ (ρ1 − ρ̃1)ρ̃

′
1 +

〈
ω − ω̃, ω̃′

〉
−∆s

 (5.33)

The same initial quasi-halo orbit, target frequencies, distance error tolerance, and number of

points discretizing the invariant curve are used as in Section 5.4.1. The only difference is the use

of the Jacobi constant constraint.

5.4.2.2 Results

Algorithm 10 produces a quasi-halo with frequencies

ω∗ = (1.978018524093039, 0.622782717360435).

The results are given in Figure 5.3. Plots (a) and (b) show the continuation in frequency space,

while plot (c) shows the distance error versus the continuation solutions, and plot (d) shows the



171

error in the prescribed value of the Jacobi constant for each computed solution. The initial step

size is 1e-3 while the maximum nominal step size is 5e-3. Keeping the maximum step size small in

the constrained case cultivates accurate distance computations. For continuation curves with more

curvature the maximum step size should be kept small while for continuation curves that resemble

straight lines the maximum step size can be larger. The number 5e-3 is conservative since constant

Jacobi energy lines in frequency space are nearly straight3 . No large steps are taken because a

resonance is not detected along this path, indicating the detected resonance in the previous test

case is likely a high-order resonance with little effect on the continuation. Therefore, the distance

between consecutive solutions remains fairly constant near the maximum step size. Though it

cannot be seen in plot (b) the solution jumps past the target solution and begins to backtrack. The

entire algorithm computes 23 orbits and takes 134 seconds to run.

Figure 5.4: Targeting the distance along a constant Jacobi energy line.

Plot (c) shows the distance error decreasing monotonically again while plot (d) shows the

computed orbits share the same Jacobi constant. Plot (b) shows the orbit a distance d along

3 See Figure 3.12
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this constant Jacobi energy branch. If we compare the distance between the initial and the final

parameters on Ω we get a distance of 0.04504817, but the distance on Ω̄ is 0.04504822. The distance

on Ω does not quite meet the distance error tolerance of 1e-8, while the distance on Ω̄ does.

5.5 Conclusion

Mondelo et al. compute tens of thousands of quasi-periodic orbits to construct grids in

an energy-rotation number space [136]. They interpolate the family to essentially construct a

continuous representation of the family. Their paper does not specify how quickly the interpolator

produces an invariant torus, however they will need to correct the interpolated solution to become

a truly invariant torus. With the retraction presented in this chapter the desired quasi-periodic

orbit automatically satisfies the invariance condition to a tight tolerance, computed in a matter

of minutes, and does not require the computation of thousands of orbits - only tens of orbits.

With the retraction no knowledge of the family is needed. If the specified orbit frequencies or the

continuation path lies outside Ω or Ω̄ then the continuation will simply terminate upon reaching

the boundary of the family or at a low-order resonance. Even if the returned orbit does not satisfy

the frequency or distance requirements it will still satisfy the invariance condition and give insight

into the structure of the family.

The retraction function can be used to construct grids of solutions over the parameter space.

In this chapter we looked at its use for computing quasi-periodic orbits parameterized by their orbit

frequencies. The retraction can be used to compute a grid of quasi-periodic orbits in frequency

space or in the stroboscopic time-rotation number space. Moreover, the retraction is applicable

to families of periodic orbits. However, the true power of the retraction is explored in Chapter 6.

With the tools developed later on, a grid of quasi-periodic orbits can be constructed in a variety of

spaces and a quasi-periodic orbit can be targeted based on general characteristics rather than just

the parameters. Furthermore, the retraction allows for optimization over families of quasi-periodic

orbits.

The work of Chapter 4 was motivated and developed concurrently with this chapter. To



173

target any set of orbit frequencies the continuation needs the ability to move in arbitrary directions

in frequency space. Naturally, these directions will cross over resonances. Therefore, methods to

avoid resonances without restricting the direction in which branches are computed were sought.

The method of Gómez and Mondelo directly restricts the continuation to compute constant rotation

number branches [75]. The method of McCarthy and Howell impose a generalization of the method

of Gómez and Mondelo to higher dimensional invariant tori by fixing all but one rotation number to

ensure the ratios between the frequencies stay constant [130]. The purpose of both of these methods

is to stay away from resonances altogether, restricting the direction of continuation, whereas the

methods developed in Chapter 4 do not restrict the continuation direction and seek to improve the

performance of the continuation of invariant tori in the face of resonances.

If a target set of frequencies cannot be reached from an initial quasi-periodic orbit due to a

resonance, and orbits have been computed across the family, then the target quasi-periodic orbit

may be reached by changing the initial quasi-periodic orbit. An idea we propose is if one knows

the target frequencies and has a grid of computed quasi-periodic orbits, then all the possible paths

to the target frequencies from the pre-computed frequencies can be analyzed in frequency space

ahead of time to choose the path, and hence the initial quasi-periodic orbit, that will have the least

interaction with resonances on its way to the target frequencies. This initial quasi-periodic orbit

should be the best option to reach the quasi-periodic orbit with the target set of frequencies.



Chapter 6

Optimization Over Families of Quasi-Periodic Orbits

6.1 Introduction

A family of quasi-periodic orbits satisfying the Diophantine conditions has been shown to be

a nearly continuous family called a Cantor family (Cantor manifold) in [110, 39, 114]. A Cantor

manifold has gaps in it where the torus frequencies do not satisfy the Diophantine conditions. It

has been shown that a Cantor manifold can be treated as a smooth manifold where smoothness

is defined in the sense of Whitney [143, 168, 56, 114, 39]. The smoothness of families of quasi-

periodic orbits is a powerful notion as it allows one to draw ties to smooth manifolds defined by the

implicit function theorem, and utilize all the rich theory and tools developed for smooth manifolds

[116, 33]. One such tool is the gradient; an indispensable tool enabling gradient-based optimization

over families of orbits, adding to the list of available tools for trajectory designers. This chapter

focuses on the optimization of cost functions over a family of quasi-periodic orbits.

Optimization can be done on smooth and non-smooth manifolds using non-gradient-based

methods, such as genetic algorithms and particle swarm optimizers [60], however in general, it is

beneficial to utilize the topology and smoothness of a space when available. The exceptions to this

are when the cost of evaluating the gradient is prohibitive, the gradient is not well-behaved over

the space, or when there are many local minima. As seen in Chapter 3 the L2 quasi-halo family is

well-behaved, meaning it is well-suited for gradient-based optimization.

The standard optimization formulation in Problem (2.77) treats the orbit states X and the

orbit frequencies ω as independent variables which need to satisfy equality constraints defining
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a family of quasi-periodic orbits, equivalently the parametric constraints in Equations (3.34) or

(3.35). Instead, we reformulate the optimization problem as

min
ω∈Ω

f(x,ω)

subject to hi(x,ω) ≤ bi, i = 1, . . . , s,

(6.1)

where x is defined in Equation (5.23), to leverage the fact that each orbit is uniquely parameterized

by the orbit frequencies ω, such that the optimization occurs over Ω, the set of orbit frequencies

in a family of quasi-periodic orbits. Optimizing over the orbit frequencies greatly reduces the

optimization variables. The negative gradient of a cost function, −∇f , dictates the direction in Ω

to move locally to minimize f . We use the retraction developed in Chapter 5 to explore the descent

direction and compute the corresponding quasi-periodic orbits. Using the retraction derives several

benefits. First, and foremost, the retraction ensures the invariance equations and any additional

parametric constraints are always satisfied. Moreover, the retraction is specialized to handle the

subtleties of computing quasi-periodic orbits, such as avoiding resonances, efficiently computing

quasi-periodic orbits. Lastly, the retraction uses continuation which is leveraged to perform line

searches in a gradient descent method.

Optimizing over families of quasi-periodic orbits, and even periodic orbit, closely relates

to a class of problems called PDE-constrained optimization (PDECO). PDECO problems occur

when there are constraints governed by physical laws described by partial differential equations

(PDEs). PDECO is a well-developed and active field which supports research in a variety of

disciplines. One popular use is for topology (shape) optimization which aims to find the optimal

shape of a surface given constraints within a dynamical environment. The most well-known use of

topology optimization in aerodynamics might be to design aircraft. Other applications of PDECO

include crystal growth [137], cooling of electronic components [144], drug transport [50, 160, 10],

image denoising [58], and uncertainty [70]. The reader is directed to the recent book by Antil and

Leykekhman in [9] for a deeper dive into the subject of PDECO and its applications. The following

papers contain additional applications [3, 8, 99]. While no PDEs are used here, the form of the
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resulting problem is similar. The equations defining a family of quasi-periodic orbits serve the

same purpose as PDEs with the primary constraint being the quasi-periodicity constraint involving

the solution flow of an ODE. The process to compute families of solutions in ODEs involves the

use of continuation. The idea of using continuation to solve optimization problems seems to have

originated in the work of Kernévez and Doedel [112].

Kernévez and Doedel devise an optimization routine to find the solution pair (λ0,u0) of

control variables and state variables which maximizes a cost functional f(λ,u) such that the state

equation g(λ,u) = 0 is satisfied and subject to inequality constraints hi(λ,u) ≤ 0. They’re

approach freezes all λ except one element, employs continuation to compute a branch of solutions

to g(λ,u) = 0, and then pick the solution from the branch which maximizes f(λ,u). They repeat

this process in succession and change which control variable is left unfrozen. Their approach is

applied to a family of dynamical systems which depend on λ and experience bifurcations in these

variables. The successive use of continuation is called successive continuation and has been used

in a variety of disciplines [170, 164, 53, 2, 117], however they find optimal control variables which

change the dynamical system. In essence, they are solving for a dynamical system which provides

favorable behaviors to optimize their processes. The application here considers optimizing over

families of solutions within a single dynamical system using successive continuation.

This chapter is organized as follows: Section 6.2 defines the optimization problem. Section 6.4

details a modified Newton’s method devised for computing solutions with specified characteristics.

Several examples in the mindset of mission design are presented. Section 6.5 details a modified

gradient descent algorithm which recasts an equality constrained problem into an unconstrained

optimization problem. Examples of optimization problems are presented. Section 6.6 uses the

modified gradient descent algorithm in an augmented Lagrangian method (ALM) to perform con-

strained optimization with inequality constraints. And again, examples of optimization problems

are presented. Lastly, Section 6.7 ends the chapter with concluding remarks.
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6.2 Problem Statement

We proceed with a general statement of the problem to be solved. Let x ∈ RD be state

variables, q ∈ Rp be parameters, and z =
[
xT , qT

]T
. Let F : RD × Rp → RD be a system of

equations defining a p-parameter family of solutions, and F (x, q) = F (z). Recall from Section

5.2.1 this is the unconstrained case. We drop the notion of the constrained and unconstrained

case to avoid confusion with constrained and unconstrained optimization problems, however the

difference between the two cases are important and will be recognized in Section 6.3.

Assume that DxF is full rank for all z satisfying F (z) = 0, then by the implicit function

theorem F (x, q) = 0 defines the following p-dimensional smooth manifolds

M = {(x, q) | F (x, q) = 0} (6.2)

X = {x | F (x, q) = 0} (6.3)

Q = {q | F (x, q) = 0}, (6.4)

withM = X ×Q. Moreover, there is a mapping from X to Q such that x = x(q).

We are interested in finding a solution z∗ ∈ M such that z∗ minimizes a cost functional

f : RD ×Rp → R subject to equality and inequality constraints. The optimization problem can be

stated as

min
z∈RD+p

f(z)

subject to F (z) = 0

gi(z) = ai, i = 1, . . . , r

hj(z) ≤ bj , j = 1, . . . , s.

(6.5)

In Problem (6.5), RD+p is the space over which the optimization occurs, treating z as the

optimization variables and x and q as independent quantities. From the implicit function theorem

we know x and q are not independent. Each x is uniquely parameterized by q and the parameters
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q lie on the manifold Q. We recast Problem (6.5) as the following optimization problem

min
q∈Q

f(x, q)

subject to gi(x, q) = ai, 1 = 1, . . . , r

hj(x, q) ≤ bj , j = 1, . . . , s.

(6.6)

In Problem (6.6), Q is the space over which the optimization occurs. For any q ∈ Q the state

variable x is uniquely determined. Therefore, the dependence on x is removed from the problem.

We can further remove the remaining equality constraints by considering the fact that the equality

constraints perform the same function as parametric constraints, leading to the new system of

equations F̄ : RD × Rp → RD+r

F̄ (z) =



F (z)

g1(z)

...

gr(z)


= 0. (6.7)

If DxF̄ is full rank for all z satisfying F̄ (z) = 0 then each set

M̄ = {(x, q) | F̄ (x, q) = 0} (6.8)

X̄ = {x | F̄ (x, q) = 0} (6.9)

Q̄ = {q | F̄ (x, q) = 0} (6.10)

define a (p − r)-dimensional smooth manifold. It is evident that 0 ≤ r ≤ (p − 1), since for r = p

there is at most a single solution in the space to optimize over, and r > p results in no solutions.

Then Problem (6.6) reduces to

min
q∈Q̄

f(x, q)

subject to hi(x, q) ≤ bi, i = 1, . . . , s.

(6.11)

Now each q ∈ Q̄ satisfies F and the equality constraints. Problem (6.6) effectively removes the

equality constraints by considering a space of parameters which identically satisfy the equality

constraints. We note that the equality constraints decrease the dimension of the feasible set of
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Figure 6.1: Equality and inequality constraints reduce the feasible set of solutions.

solutions while the inequality constraints reduce the measure of the feasible set of solutions (Figure

6.1).

6.3 Derivative With Respect to the Parameters

Gradient-based methods are used to solve Problem (6.11). When there are no inequality

constraints we call Problem (6.11) an unconstrained problem because the parameters are free to

explore all of Q or Q̄. The unconstrained problem is readily solved with gradient descent. The

inclusion of inequality constraints leads to a constrained problem, and gradient descent alone is not

enough to find the optimal solution if the optimal solution lies outside the set of feasible solutions.

In the constrained problem we use an ALM to solve for the optimal solution. In the optimization

problem we find z∗ minimizing a cost function f . Moreover, we consider the case of finding z∗,

the roots of a vector function g. Solving for the roots of a vector function is closely related to

minimizing a cost function with Newton’s method. In the latter case, g can be thought of as

the gradient of an unknown cost function. In both cases we take derivatives with respect to the

parameters. We proceed with an explanation of the derivative of g with respect to q.
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Let g : RD × Rp → Rt with t ≥ 1. Then

dg

dq
=

∂g

∂x

∂x

∂q
+

∂g

∂q

∂q

∂q

=

[
∂g
∂x

∂g
∂q

]∂x
∂q

Ip


=

dg

dz

dz

dq
. (6.12)

Here, we make two observations: First, dg
dq is the standard Euclidean gradient. It is defined on

Q and not necessarily on Q̄. Second, dz
dq facilitates how z changes given unit changes in each

parameter. The matrix dz
dq is formed from a particular set of basis vectors which span TzM. We

encountered this matrix in Section 3.5 and called it the principle tangent basis. Here we give how

to compute the principle tangent basis Vp. Let z ∈M and

V =

Vx

Vq

 (6.13)

be a matrix whose columns are linearly independent vectors spanning TzM. Furthermore, we

require the p× p matrix Vq be full rank. Then the principle tangent basis is found as

Vp = V
[
V −1
q Ip

]
. (6.14)

Column i of Vp gives how z changes with unit changes in qi, or equivalently gives dz
dqi

. Therefore,

we have

Vp =
dz

dq
, (6.15)

and the Euclidean derivative of g with respect to q is

dg

dq
=

dg

dz
Vp (6.16)

the matrix multiplication between the Euclidean derivative of g, with respect to z, and Vp. The

derivative dg
dz is readily obtained through analytical or numerical means, such as finite differencing

or automatic differentiation. The principle tangent basis is readily obtained from the tangent space

ofM. The tangent space is an output of the retraction.
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We still require a step to transform the Euclidean derivative dg
dq defined on Q to a manifold

derivative defined on Q̄. The transformation of the derivative is achieved by projecting the deriva-

tive onto TzM̄ through the projection operator. Now, we require z ∈ M̄, and let V̄ be a matrix

whose columns are linearly independent basis vectors spanning TzM̄. Then the projection operator

of a matrix A ∈ Rp×a, a ≥ 1, onto TqQ̄ is given as

Projq(A) = V̄q

[
V̄ †
qA
]
, (6.17)

and the manifold derivative of g with respect to the parameters is

dḡ

dq

T

= Projq

(
dg

dq

T)
, (6.18)

where ḡ = g|M̄ is the restriction of g to M̄. When g is a scalar function, g, the Euclidean gradient

of g with respect to q is given by

∇qg(z) =
dg

dq

T

. (6.19)

The manifold gradient is then

∇q ḡ(z) = Projq (∇qg(z)) . (6.20)

In the constrained and unconstrained optimization problems the choice of derivative type

is dependent on whether equality constraints are included. As we have seen, equality constraints

reduce the dimension of the search space, so the Euclidean gradient may point in a direction off

of the manifold. To target solutions with specific characteristics, only Euclidean derivatives need

to be computed. This is because we consider solutions in the entire p-parameter family, so all

dimensions of the parameter space can be explored locally.

6.4 Targeting Characteristics

In this section we consider the root-finding problem to find a solution within a p-parameter

family of solutions with desired characteristics. We do this by modifying a Newton’s method to

solve for the roots of a function g : M → Rt, 1 ≤ t ≤ p. The function g can be thought of as

equality constraints or parametric constraints where each gi specifies a characteristic we wish the
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Figure 6.2: Example of two parametric constraints on a 2-dimensional manifold, leading to a single
solution z∗.

solution to have. Specifying p parametric constraints for a p-dimensional manifold generally leads

to a single solution on the manifold (Figure 6.2). Other cases include multiple, isolated solutions, no

solutions, and infinite solutions. For 1 ≤ t < p there are generally an infinite number of solutions.

A Newton’s method is used to update q rather than z. The updated parameters are used with

the retraction to compute the solution at the updated parameter values. The reason for updating

q instead of z is Newton’s method is only able to converge on the solution, z∗, satisfying

H(z) =

F (z)

g(z)

 = 0

if the initial guess, z0, is reasonably close to the true solution. We call this the refinement of a

solution. We leverage the retraction to remove F , focusing solely on g. The retraction ensures

F (z) = 0 is satisfied at all times, and uses continuation which allows z0 to be far from z∗.

Section 6.4.1 presents and describes the algorithm used to target the characteristics of a

solution within a p-parameter family of solutions. We then validate the algorithm with various

examples in Section 6.4.2, testing it on the 2-parameter family of quasi-halo orbits computed

previously in Chapter 3.
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6.4.1 Algorithm

We wish to find a solution z∗ ∈ M such that g(z∗) = 0. The algorithm to target the

characteristics of a solution from within a p-parameter family of solutions is given in Algorithm 11.

Given an initial solution z0 ∈ M and a matrix V0 whose columns span the tangent space Tz0M,

the principle tangent basis is computed according to Equation (6.14), providing the derivative of

z0 with respect to the parameters, dz
dq |z0 . The derivative of g with respect to z is computed and

evaluated at z0,
dg
dz |z0 . The derivative of g with respect to q is computed with Equation (6.12) and

evaluated at z0.

A Newton update is computed to provide a change in parameters δq1. If the number of scalar

equations composing g is equal to p then the inverse in the Newton update is the usual inverse. If

the number of scalar equations is less than p then the inverse is the Moore-Penrose inverse. The

change in parameters dictates a direction and a distance to move in Q, directly providing the set

of parameters q1 of the solution z1. The updated solution z1 and its tangent space V1 is computed

with the retraction in Algorithm 10 of Chapter 5. The actual updated parameters are not exactly

equal to the guess provided by the Newton step, so q1 is taken from the returned solution z1. For

brevity, we leave out certain parameters from Algorithm 11 and assume the appropriate parameters

are passed into Algorithm 10.

The iterations continue until either ∥g(zk)∥ ≤ ε or ∥qk+1 − qk∥ ≤ ε, where ε is the error

tolerance on the characteristics. The first termination condition guarantees the solution has char-

acteristics close enough to the targeted characteristics. The second termination condition indicates

convergence to a local minimum of g.
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Algorithm 11 IFT Newton’s Method: Find a root of a function defined on an implicit manifold

1: procedure IFTNM(z0,V0,g,ε)
2: k = 0
3: (zk, Vk) = (z0, V0)
4: while ∥g(zk)∥ > ε do

5: dz
dq |zk = Vk

[
V −1
q,k Ip

]
6:

dg
dq |zk =

[
dg
dz

dz
dq

]
zk

7: δqk+1 = −
[
dg
dq

]†
zk
g(zk)

8: (zk+1, Vk+1) = Retract(δqk+1, zk, Vk)
9: if ∥qk+1 − qk∥ ≤ ε then

10: return (zk+1, Vk+1)
11: end if
12: k ← k + 1
13: end while
14: (z∗, V ∗) = (zk, Vk)
15: return (z∗, V ∗)
16: end procedure
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Table 6.1: Test cases for targeting solution characteristics

Case # g(z) Run Time (min) # Iterations

1 A(X)−A∗
1 3.7 4

2 J̄(X)− J∗ 2.4 3

3

[
A(X)−A∗

1

J̄(X)− J∗

]
3.2 4

4

[
A(X)−A∗

1

ω0 − ω∗
0

]
4.1 4

5 λu(z)− λ∗
u 12 3

6

[
J̄(X)− J∗

λu(z)− λ∗
u

]
19.2 4

6.4.2 Validation

Algorithm 11 is tested on the 2-paramter family of quasi-halo orbits, so we have

x =


X

T

ρ1

 , q =

ω0

ω1

 , Q = Ω.

The maximum number of characteristics we can choose an orbit to have is 2. For a single charac-

teristic equation there are an infinite number of solutions which can be targeted. As long as the

two characteristics generate intersecting contours on Ω there is a solution z∗ such that g(z∗) = 0.

We test the algorithm on six different characteristic functions. The cases, run time, and

number of Newton iterations are given in Table 6.1. Case 1 targets a solution with a specified

orbit amplitude A1. The amplitude is computed by Algorithm 3. Case 2 targets a solution with

a specified Jacobi constant. Case 3 targets a solution with a specified amplitude size and Jacobi

constant. Case 4 targets a solution with a specified orbit amplitude and frequency ω0. Case 5

targets a solution with a specified value of the unstable eigenvalue. Lastly, case 6 targets a solution

with a specified Jacobi constant and unstable eigenvalue. Cases 1, 2, and 5 have an infinite number

of solutions, while cases 3, 4, and 6 have a single unique solution. In cases 3, 4, and 6 we choose

characteristic values from pre-computed quasi-halo orbits, so there is a truth target orbit to compare

to. In all cases we use an error tolerance, ε0, of 1e-7 for Algorithm 11 and 1e-8 for Algorithm 10.

The results of each case are given in Figures 6.3-6.8. Plots (a) and (b) show the iterates ωk.
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Plot (c) shows the error of each characteristic function versus the iteration number. Plot (d) shows

the invariant curve of each solution Xk. Cases 3, 4, and 6 show the truth target invariant curve in

plot (d). All cases converge in 3 or 4 iterations. Cases 1 through 4 converge in 4 minutes or less,

while cases 5 and 6 take longer. The increased time of cases 5 and 6 are due to the computation

time required to compute the derivative of the unstable eigenvalue with respect to z. There is

no analytical means to compute the derivative of the unstable eigenvalue, so we must resort to

numerical derivatives. Finite differencing is prohibitively slow, so we use automatic differentiation

to perform the numerical derivatives.

Cases 1 through 4 find solutions within the error tolerance. Cases 5 and 6 terminate before

the error tolerance is reached because the difference between the current and updated frequencies

are within tolerance. Even with the premature termination of the algorithm the last iteration of

case 6 is nearly identical to the truth target solution as seen in plot (d) of Figure 6.8. In plot (c) of

Figure 6.6 the error in ω0 reached tolerance on the first iteration, and exactly matched the targeted

value in the subsequent iterations. In cases 1, 2, and 5 a solution is still found even though dg
dq is

not invertible in the usual sense.

6.4.3 Discussion

Algorithm 11 converges on the target solution quickly even with initial solutions not near

the truth solution. Treating ω as the free vector and x as a dependent vector to be found by the

retraction shows improved performance over a standard Newton’s method which treats z as the

free vector.

With Algorithm 11 we can construct grids of solutions over many sets of characteristics at

desired resolutions. From the grid points one can quickly and easily find the desired solution with

great accuracy without the need for a nearby solution or a dense grid. Interpolation methods, such

as in [136], require dense grids of solutions to produce approximate solutions which have to be

refined.

The characteristic values do not need to be known exactly for Algorithm 11 to work. Consider
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Figure 6.3: Results of case 1.

Figure 6.4: Results of case 2.
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Figure 6.5: Results of case 3.

Figure 6.6: Results of case 4.
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Figure 6.7: Results of case 5.

Figure 6.8: Results of case 6.
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we know the values exactly, and they correspond to a solution z∗ displayed in Figure 6.2. Suppose

there is are errors in the specified characteristic values. Graphically, this corresponds to shifting

the contours in Figure 6.2 slightly, resulting in a nearby solution. Suppose the characteristic values

do not correspond to any solution in the family of interest, meaning there will be no real roots of

g. Algorithm 11 can handle this case without issues. Rather than finding a root of g, Algorithm 11

will either find a solution which is a local minimum of g or will reach the boundary of the family

and stop. The returned solution is likely to be the solution with the characteristics closest to the

desired ones.

Algorithm 11 can be used to construct advanced resonance avoidance methods. Suppose we

are continuing a branch of quasi-periodic orbits within a multi-parameter family and encounter

a resonance. From Chapter 4 we suspect the best way to avoid the resonance is to hop over it

perpendicularly. Doing so results in a solution which is not on the original branch of solutions.

Algorithm 11 can be used to find a solution on the original branch of solutions which is known to

be on the appropriate side of the resonance, so that the continuation of the branch of solutions can

be reinitialized.

6.5 Unconstrained Optimization

The standard gradient descent method presented in Section 2.7.1 assumes all the variables

in z are independent optimization variables and optimizes over a Euclidean space. For solutions

z ∈ M̄ only q are the independent optimization variables, and the space Q̄ is not Euclidean,

requiring manifold derivatives and the retraction presented in Chapter 5. Equality constraints are

absorbed by the retraction, reducing the search space to the only space the optimization is aware

of. Therefore, including equality constraints still results in the unconstrained optimization problem

min
q∈Q̄

f(x, q). (6.21)

In Section 6.5.1 we present, what we call, the IFT gradient descent algorithm. In Section

6.5.2 we validate it with two test cases and optimize over the family of quasi-halo orbits.
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6.5.1 Algorithm

The IFT gradient descent is similar to the Euclidean gradient descent except the gradient is

taken only with respect to the parameters q and the gradient is a manifold gradient when there are

equality constraints, g. The IFT gradient descent aims to find a local minimum solution z∗ of the

function f : M̄ → R. Beginning with an initial solution z0 ∈ M̄ and V̄0 we compute the gradient

of f with respect to the parameters q0 with Equation (6.20). The initial descent direction, d, is

given as

d = −∇qf̄(z0).

The descent direction provides the direction to search on Q̄ to find solutions which reduce the value

of the cost function. While the magnitude of d provides a distance to travel, the descent direction

only provides local information. Traveling exactly a distance d = ∥d∥ may result in a solution with

a cost larger than the initial solution. To ensure the next solution, z1, has a cost less than the

initial solution a line search is employed. The descent direction is computed for z1 and the process

continues until either ∥∇qf̄(zk)∥ ≤ ε or ∥zk+1 − zk∥ ≤ ε.

Ideally, we want the next iterate to be the solution in the direction of d which has the lowest

cost associated with it. That is we want to find the solution which attains the minimum of the set

of points

Lα = {f(z) | z = Retract(γd, zk, V̄k), γ ∈ [0, α]} (6.22)

for a sufficiently large α > 0. Finding the exact optimal solution of Lα is computationally expensive

since each solution must be found with the retraction function. The retraction uses continuation, so

we leverage this to construct Lα. A small initial step size, ∆s0, is chosen so that many solutions are

computed near zk, giving a fine resolution near zk and less resolution further away. We don’t want

to compute too many solutions in the continuation, and we don’t want to pass over the optimal

solution to Problem 6.21 when zk is near the optimal solution. The cost is computed for each

solution in the continuation and the solution with the minimum cost is chosen as the next iterate

in the gradient descent algorithm.
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Algorithm 12 IFT Gradient Descent: Find minimum of a cost function defined over an implicit
manifold
1: procedure IFTGD(f ,z0,V̄0,ε)
2: k = 0
3: (zk, V̄k) = (z0, V̄0)
4: while ∥∇qf̄(zk)∥ > ε do
5: d = −∇qf̄(zk)
6: (zk+1, V̄k+1) = LineSearch(f,d, zk, V̄k)
7: if ∥zk+1 − zk∥ ≤ ε then
8: return (zk+1, V̄k+1)
9: end if

10: k ← k + 1
11: end while
12: (z∗, V̄ ∗) = (zk, V̄k)
13: return (z∗, V̄ ∗)
14: end procedure
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Table 6.2: Test cases for unconstrained optimization

Case # f(z) g(z) Run Time (min) # Iterations

1 1
2

(
J̄(X)− J∗)2 - 29.3 -

2 1
2

(
J̄(X)− J∗)2 ω0 − ω∗

0 4 -

6.5.2 Validation

We test Algorithm 12 on the family of quasi-halo orbits to find an orbit which minimizes the

distance squared to the desired Jacobi constant value of J∗ = 3.055460. The first case does not

include equality constraints, having two significant effects. First, we only need to take a Euclidean

gradient. Second, there are an infinite number of solutions to Problem 6.21 having a Jacobi constant

with a specific value. In the second case we include a constant ω0 equality constraint, identifying a

single solution to Problem 6.21. The two cases are given in Table 6.2 along with the run time. Due

to the specific implementation of Algorithm 12 we did not record the number of gradient descent

iterations needed for convergence.

The results of case 1 and 2 are in Figure 6.9 and 6.10, respectively. In Figure 6.9 we see the

descent direction lies perpendicular to the Jacobi constant contour, showing the continuation path

follows the path of steepest descent. It is not clear why the run time is nearly 30 minutes, however

this time can surely be decreased by tuning the line search. We note the use of Algorithm 11 is

likely to be more efficient to find a solution with the desired Jacobi constant.

In case 2 we constrain the optimal solution to have an ω0 value of 1.947982. The initial

solution does not meet this constraint, so Algorithm 11 is first used to find a solution with the

desired ω0 to initialize Algorithm 12. The gradient of f is projected to the tangent space of

the 1-dimensional manifold M̄, pointing parallel to the constant ω0 line. The continuation path

follows the constant ω0 constraint until the gradient vanishes at the optimal solution on the Jacobi

constant line. Case 2 has a 7x speed-up over case 1, showing that equality constraints speed up

the optimization.
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Figure 6.9: Results of case 1. Plot (a) is a zoomed out version of plot (b).

Figure 6.10: Results of case 2. Plot (a) is a zoomed out version of plot (b).
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6.6 Constrained Optimization

An ALM constructs a modified cost function called the augmented Lagrangian given by

Lρ(x,η,µ) = f(x) +
ρ

2

(
r∑

i=1

[
gi(x) +

ηi
ρ

]2
+

s∑
i=1

[
max

(
0, hi(x) +

µi

ρ

)]2)
, (6.23)

where ρ > 0 is a penalty parameter, η ∈ Rr, and µ ∈ Rs
+ are Lagrange multipliers. An ALM solves

the unconstrained subproblem

min
x∈Rd

Lρ(x,η,µ) (6.24)

successively while updating ρ, η, and µ after each solve. The method to solve the subproblem can

be any method to solve unconstrained optimization problems. We call the method to solve the

subproblems the Subsolver routine. We refer the reader to the book by Birgin and Martinez [27]

and to Chapter 17 in [138] to learn more about ALMs.

Since all equality constraints are pulled into the retraction we only need to treat the inequality

constraints, making η ≡ 0, and the unconstrained subproblem becomes

min
q∈Q̄

Lρ(z,µ). (6.25)

6.6.1 Algorithm

Before introducing the algorithm we present the clip operator defined by

clip[a,b](x) = max(a,min(b, x)), (6.26)

define I = 1, . . . , s to be the set of indices for the inequality constraints, and let

h(z) = [h1(z), . . . , hs(z)]
T .

The algorithm used to solve the constrained optimization problems in this thesis is given in Algo-

rithm 13 and pulled from Liu and Boumal in [118], however slight modifications have been made

to it.

The variable µ0 is the initial values of the Lagrange multipliers. We set these initial values to

1e-8. The variables µmin and µmax are minimum and maximum bounds to the Lagrange multipliers,
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and set µmin =1e-12 and µmax =1e+9. The variable ρ0 is an initial penalty parameter, and we

set ρ0 =1e-4. The multiplier θρ > 1 determines the rate of growth of the penalty parameter, and

we set θρ = 20. The variables ε0, εmin, and θε ∈ (0, 1) play a role in determining how many

iterations are necessary before convergence can be declared. We set ε0 = 1, εmin = 1e − 8, and

θε = 0.005. The multiplier θσ determines a threshold for the relative amount of movement in

the inequality constraints in order to adjust the penalty parameter. Essentially, if the values of

hk+1 do not change much from the previous iteration then the penalty parameter is increased. We

set this value to be 0.8. The constant dmin is an error bound. When the distance between two

consecutive solutions is less than this amount then it is likely that the algorithm is converging to

an optimal solution. However, the convergence decision is balanced with the number of iterations

which have satisfied ∥zk+1−zk∥ < dmin, thereby increasing the confidence that the returned solution

is actually an optimal solution to Problem (6.11). We set dmin =1e-6. Finally, Nmax limits the

number of iterations, so the algorithm cannot continue forever. We set Nmax = 50.

Algorithm 13 Augmented Lagrangian Method

1: procedure ALM(f ,h,z0,V̄0,µ0,µmin, µmax,ρ0,θρ, ε0,εmin,θε, θσ,dmin,Nmax)
2: (zk, V̄k) = (z0, V̄0)
3: for k = 0, 1, . . .,Nmax do
4: (zk+1, V̄k) = Subsolver(Lρk(z,µk), zk, V̄k)
5: if ∥zk+1 − zk∥ < dmin and εk ≤ εmin then
6: return zk+1

7: end if
8: µi

k+1 = clip[µi
min,µ

i
max]

(µi
k + ρkhi(zk+1)), for i ∈ I

9: σi
k+1 = max

(
hi(zk+1),−

µi
k

ρk

)
for i ∈ I

10: if ∥zk+1 − zk∥ < dmin and ρ > 1 then
11: εk+1 = max(εmin, θεεk)
12: end if
13: if k = 0 or maxi∈I(|σi

k+1|) ≤ θσ maxi∈I(|σi
k|) then

14: ρk+1 = ρk
15: else
16: ρk+1 = θρρk
17: end if
18: end for
19: z∗ = zk+1

20: return z∗

21: end procedure
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After Algorithm 13 returns a solution z∗ we check the gradient of Lρ∗(z
∗,µ∗) to determine

whether the returned solution is optimal. If ∥∇Lρ∗(z
∗,µ∗)∥ ≤ εmin and each hi(z

∗) ≤ 0 for i ∈ I,

then z∗ is declared to be a solution to Problem (6.11).

6.6.2 Validation

We validate Algorithm 13, using Algorithm 12 in place of Subsolver, with the three test

cases. The cases are given in Table 6.3 along with the run time and the number of iterations for

the ALM to converge. In cases 1 and 2 we minimize the distance squared to the desired Jacobi

constant value of J∗ = 3.055460. Case 1 does not have an equality constraint, while case 2 has

a constant ω0 equality constraint. Both cases constrain ω1 to be less than 0.518223. In case 3

we minimize the square of the logarithm of the unstable eigenvalue and place constraints on the

minimum and maximum values of both ω0 and the Jacobi constant. The inequality constraints

nearly form a quadrilateral in frequency space. Equality constraints make the problem easier by

reducing the dimension of the search space, so we optimize with only inequality constraints in case

3.

In all three cases we know a priori where the optimal solution lies. In case 1, any quasi-

halo orbit with the desired Jacobi constant and ω1 ≤ 0.518223 is an optimal solution. In case 2,

there is a single optimal solution. The optimal solution is the quasi-halo with orbit frequencies

ω = (1.947982, 0.518223). In case 3, the optimal solution lies on the boundary of the feasible set

at the intersection of the lines

J̄(X) = 3.030083

ω0 = 1.884444.

The location of the optimal solution can be inferred from Figure 3.21.

The results of case 1 through 3 are in Figures 6.11-6.13, respectively. The black stars are

solution to each subproblem in the ALM, beginning with the initial solution and ending with the

optimal solution. In case 1 the feasible set of solutions lies below the ω1 = 0.518223 line. In Figure
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Table 6.3: Test cases for constrained optimization

Case # f(z) g(z) h(z) Run Time (hr) # Iterations

1 1
2

(
J̄(X)− J∗)2 - ω1 − ω∗

1 2.1 9

2 1
2

(
J̄(X)− J∗)2 ω0 − ω∗

0 ω1 − ω∗
1 0.4 20

3 1
2 log10(λu(z))

2 -


ω0 − ω∗

0

ω̂0 − ω0

J̄(X)− J∗

Ĵ − J̄(X)

 24.7 18

6.11 we see the first iteration of the ALM finds a solution near the desired Jacobi constant because

the penalty parameter and Lagrange multipliers are very small. At the first solution the inequality

constraint is not satisfied, so the penalty parameter and Lagrange multipliers are modified to

construct a new augmented Lagrangian with a different vector field. As the iterations continue the

penalty parameter and Lagrange multipliers continue to be modified until an optimal solution is

found.

Figure 6.11: Orbit frequency iterates to minimize the difference in the Jacobi constant with an ω1

inequality constraint.
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Figure 6.12: Orbit frequency iterates to minimize the difference in the Jacobi constant with an ω0

equality constraint and ω1 inequality constraint.

Case 2 begins with the same initial solution as case 1 and optimizes the same cost function,

however case 2 has an equality constraint. The feasible set of solutions is the set of all quasi-

halo orbits with ω0 = 1.947982 and ω1 ≤ 0.518223. In Figure 6.12 we see the initial quasi-halo

does not satisfy the equality constraint, so Algorithm 11 is used to initialize Algorithm 13. The

first iteration of the ALM finds a quasi-halo orbit near the desired Jacobi constant. The remaining

iterates are found with ever smaller ω1 values as the penalty parameter and the Lagrange multipliers

are modified until the final solution satisfies the inequality constraint such that ω1 = 0.518223.
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Figure 6.13: Orbit frequency iterates to minimize the unstable eigenvalue with Jacobi constant and

ω0 inequality constraints.

For case 3 we adjust the initial value of the penalty parameter to be equal to 1000 because

we know the optimal solution to the unconstrained problem is far from the feasible set of solutions.

The feasible set of solutions lies on the interior and boundary of the area encompassed by the four

inequality constraints. The time to find the optimal solution is quite high, at 24 hours, due to the

high cost of evaluating the gradient of the augmented Lagrangian. There are other ways to compute

the optimal solution in this situation. We could have used Algorithm 11 to compute the solution

with ω0 = 1.884444 and a Jacobi constant of 3.030083. However, in other cases the location of the

optimal solution may not be available. The family may not be known in great detail ahead of time,

or the location of the optimal solution may not be easy to determine.

6.7 Conclusion

This chapter utilizes the retraction of Chapter 5 to construct tools to optimize over families

of solutions. Three main tools were developed: a tool to precisely target the characteristics of a

solution, a tool to perform unconstrained optimization, and a tool to perform constrained opti-

mization. The tools apply to manifolds defined by the implicit function theorem. Each tool was
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tested on a variety of test cases within the 2-parameter family of Earth-Moon L2 quasi-halo orbits,

displaying novel capabilities for mission design. The cumulative results from all the cases show

the retraction is effective at methodically moving through multi-parameter families to find desired

orbits. Limited knowledge of an orbit family is needed to apply the tools, indicating a dense grid

of solutions is not needed, saving computation time, memory, and storage space.



Chapter 7

Concluding Remarks

7.1 Conclusion

Quasi-periodic invariant tori and their invariant manifolds organize the dynamics in astrody-

namics. These invariant structures unlock complex and efficient mission designs, enabling greater

scientific returns and the advancement of human civilization. Thus, it is of great importance to de-

velop the knowledge, tools, and framework to utilize quasi-periodic invariant tori in astrodynamics.

The work in this thesis aims to better understand quasi-periodic orbits, the families they compose,

and how to compute orbits meeting mission constraints. These goals were accomplished by pre-

senting in great detail a versatile single-parameter continuation method to compute d-dimensional

quasi-periodic invariant tori, computing and studying the Earth-Moon L2 quasi-halo orbit family,

and developing tools to precisely target orbits within single- and multi-parameter families.

This thesis is meant to be readable for a wide range of audiences with limited background.

Explaining complex material in a simple way without completely sacrificing the rigor provides a

good entry point into the field of quasi-periodic invariant tori. Many of the tools developed here are

applicable to fields outside of astrodynamics, so we attempted to keep discussions general. Each

chapter builds upon the previous chapters, so it is important to read each chapter in the order

they are presented. Chapter 2 sets the stage for the entire thesis. We provide the mathematical

framework on which this work is built, and define many of the terms used throughout the thesis.

We began with simple concepts, and gradually build up to more complicated ideas, introducing

commonly used terminology used throughout the literature.
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Chapter 2 begins with the ideas of quasi-periodic tori and moves to dynamical systems theory.

We explain the relevant types of invariant dynamical structures, allowing us to define quasi-periodic

invariant tori - the centerpiece of this thesis. From there we describe the circular restricted three-

body problem - the setting in which we compute quasi-periodic invariant tori. In this dynamical

system quasi-periodic invariant tori form 2- and 3-parameter families of quasi-periodic orbits. These

families of orbits construct Cantor manifolds which are regarded as smooth manifolds, thanks to

Whitney [168]. We explain the necessary concepts of smooth manifolds so we can appropriately

talk about the computations of families of quasi-period orbits. The computation of a single quasi-

periodic orbit involves solving a boundary value problem of an ordinary differential equation with

shooting methods. The computation of a family of a one-parameter family of quasi-periodic orbits

uses single-parameter continuation. Multiple-parameter families are compiled from many branches

of solutions. Lastly, we discuss the ideas of optimization theory. All the ideas of Chapter 2 come

together in Chapter 6, while most ideas are needed immediately beginning with Chapter 3.

Chapter 3 presents an already known method for continuing families of n-dimensional quasi-

periodic invariant tori in great detail with emphasis on numerical implementation. This method

was developed by Olikara and Scheeres with an emphasis on the theoretical development [140].

The purpose of presenting the method in the way that we did is to allow researchers to easily

implement the method themselves, promoting the research of quasi-periodic invariant tori. We

use this algorithm to study the usefulness of various parametric constraints and employ a novel

parametric constraint. This parametric constraint generalizes the commonly used constant rotation

number parametric constraint to maintain a particular direction in frequency space. Furthermore,

we use a variety of parametric constraints to explore a 2- and 3-parameter family of quasi-periodic

orbits in the circular restricted three-body problem. Motivated by NASA’s Lunar Gateway, we

computed the Earth-Moon L2 quasi-halo orbit family. This family has been partially computed

in prior work by Gómez and Mondelo in [75]. We explore a larger portion of the family, and we

compute for the first time the 2- and 3-dimensional quasi-periodic invariant tori generated by the

stable halo orbits. In astrodynamics, engineers are often concerned with the amplitude of orbits,
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whether for mission constraints or for geometrical reference. We make a quantitative definition for

the amplitudes of quasi-periodic orbits irrespective of any reference orbits, and develop an algorithm

to compute the amplitudes. The algorithm is applicable to periodic orbits as well.

The analysis of the Earth-Moon L2 quasi-halo orbit family goes beyond the work of Gómez

and Mondelo to provide insight into the global orbital characteristics of the family relevant for

mission design. We compute characteristics such as the Jacobi constant, the stability characteristics,

perilune and apolune, amplitudes, and box size. We discover a stability bifurcation in the 2-

parameter family of quasi-periodic orbits generated by the stable halo orbits. The quasi-halo orbits

begin as elliptic and transition to partially elliptic just before the end of the computed family.

We also examine the unstable manifolds across the quasi-halo orbits generated by the unstable

halo orbits and observe three distinct behaviors. Moreover, we investigate transfers between the

quasi-halo orbits and the lunar surface. Surface transfers have been explored in great detail for

periodic orbits by Bury and McMahon in [43], though we show the extension to quasi-periodic

orbits provides larger coverage of the surface.

Resonances between the internal frequencies of a torus destroy the quasi-periodic structure,

reducing the dimension of the torus. Computing families of quasi-periodic orbits necessarily involves

the difficulties encountered with resonances. Previous work develop ways to avoid resonances by

introducing parametric constraints which guide the direction of the continuation, restricting the

exploration of multi-parameter families of quasi-periodic orbits. We take a different approach

to avoid resonances by choosing appropriate step sizes during the continuation. The step size

computation is informed by the current frequencies of the torus and the change in frequencies

according to the family tangent vector. Chapter 4 presents two methods to choose step sizes to

avoid resonances. Both methods are built from the ideas of Sander and Meiss who define a measure

of the irrationality of floating point number [152]. The first method chooses step sizes to predict

torus frequencies away from resonant values. The second method tracks the frequencies during the

continuation of tori to determine if the continuation is stuck near a resonance. The step size is

greatly increased in an attempt to hop beyond resonances. The benefit of these methods is the
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direction of the continuation is not restricted, allowing for freedom in exploring multi-parameter

families of quasi-periodic orbits.

In Section 3.5.5 we saw the quasi-periodic orbits generated from the period-doubling halo

orbit family are qualitatively different from the quasi-halo orbits, showing the period-doubling halo

orbit family is different from the periodic orbits that the quasi-halo orbits collapse to at the 2:1

resonance. An example of a quasi-halo near the 3:1 resonance was shown in the bottom left plot of

Figure 3.15. In this plot there are dark bands that give a preview of what periodic orbits on the 3:1

resonance line look like. It would also be of interest to study the 1-parameter families of periodic

orbits at specific resonances which cut through the quasi-halo family. These resonant periodic orbits

help structure the quasi-halo family and could provide insight into the overall structure. Moreover,

these resonant periodic orbits could be key to stepping beyond resonances or even generate new

families of quasi-periodic orbits.

The precise computation of quasi-periodic orbits is enabled by the retraction in Chapter 5

which leverages the implicit function theorem. The retraction modifies the continuation method

which computes quasi-periodic orbits in two main ways. The first alteration is to leverage the

newly developed constant slope parametric constraint from Chapter 3 to control the direction of

the continuation. The second alteration keeps track of the distance traveled in frequency space

and conducts a line search to target a specified distance. Together, these two alterations provide

precise control over the mapping from the tangent space of a family of quasi-periodic orbits about

a given orbit to the family of quasi-periodic orbits. The retraction can be used in a variety of

settings wherein the family of orbits is an implicitly defined manifold, including periodic orbits.

The retraction enables the development of other tools to precisely target quasi-periodic orbits - the

focus of Chapter 6.

Chapter 6 imports tools from optimization, bringing forth novel capabilities for the design

of orbits within multi-parameter families. Gradient-based optimization uses the gradient to de-

termine search directions to minimize functions. The gradient of a function with respect to the

orbit frequencies provides a direction in frequency space for a continuation method to compute or-
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bits. The retraction is paired with a gradient descent method to optimize functions over the space

of quasi-periodic orbits. The optimization problem is similar to a class of optimization problems

called PDE-constrained optimization. We use the retraction to absorb equality constraints, re-

quiring the use of manifold gradients, making the optimization problem formulation lie somewhere

between PDE-constrained optimization and optimization on smooth manifolds. The modified gra-

dient descent method is sufficient to solve unconstrained and equality constrained optimization

problems. To solve inequality constrained problems, the modified gradient descent method is com-

bined with an augmented Lagrangian method. We also develop a modified Newton’s method to

target quasi-periodic orbits with specified orbital characteristics. Similar to the optimization tools,

the modified Newton’s method takes derivatives with respect to the orbit frequencies to predict the

frequencies of the orbit which will attain the desired characteristics. The retraction then computes

the quasi-periodic orbit with the updated frequencies.

7.2 Avenues for Future Work

There are several interesting future investigations based on the work developed and presented

in this thesis. To date, a full 3-parameter family of quasi-periodic orbits has not been computed. In

this thesis we examined two, 2-parameter family slices of the 3-parameter family. A general purpose

multi-parameter continuation method has been developed by Henderson [85], and successfully used

by Henry and Scheeres to compute 3-parameter families of heteroclinic connections between families

of quasi-periodic orbits [89]. We attempted to use the same multi-parameter continuation tool for

the 3-parameter family of quasi-halo orbits with little success. It would be of interest to develop a

multi-parameter continuation tool which leverages the dynamics and the subtleties of quasi-periodic

invariant tori to study the 3-parameter family of quasi-halo orbits as a whole, and 2-parameter

families with the same Jacobi energy. A tool of this sort would be advantageous as many families

of quasi-periodic orbits in astrodynamics are 2- and 3-parameter families.

Chapter 3 shows the quasi-halo orbits are self-intersecting, family-intersecting, and intersect

halo orbits. The intersections provide numerous opportunities for impulsive transfers to either
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change phase or change orbits, however they also provide numerous opportunities for spacecraft

to collide with each other. The opportunities for collision allude to the necessity of a framework

to ensure spacecraft on these orbits do not collide. With this we also need to study the effects

of uncertainty in the torus states on the resulting trajectories. Henry and Scheeres have started

the framework for these analyses in [88] where they create expansion maps and find certain phase

offsets where the spacecraft would crash into one another at a future point in time.

The resonance avoidance methods developed in this thesis perform well to mitigate the effects

of resonances on the continuation of families of quasi-periodic orbits, however we believe there is

further room for improvement to increase the freedom in exploring multi-parameter families of

quasi-periodic orbits. In Chapter 4 we proposed a way to hop over resonances in a perpendicular

sense to increase the likelihood of computing an orbit on the other side of the resonance. For

general exploration of a family this is sufficient, but if the original branch of solutions is of interest,

then hopping a resonance this way results in the computation of an orbit off the original branch.

Algorithm 11 from Section 6.4 can be used to move back to the original branch to reinitialize the

branch on the appropriate side of the resonance.

Algorithm 11 was tested on a 2-parameter family to find a quasi-halo orbit satisfying g(z) = 0

with g : RD+2 → Rt for the case t = 1 and t = 2. For t = 1 there were an infinite number of

solutions, and for t = 2 there was a single, unique solution. It would be interesting to test the

over constrained case t > 2 where there does not exist a solution z∗ such that g(z∗) = 0. We

speculate the algorithm is will converge to a local minimum of g so that for any z ∈ Br(z
∗),

∥g(z)∥ ≥ ∥g(z∗)∥.

In PDE-constrained optimization, a retraction-like function is typically put inside the cost

function, equality constraints, and inequality constraints, so the optimizer is only aware of the

parameters as the only variables in the problem. Putting the retraction inside the cost function

and constraint functions allows for the use of off-the-shelf optimization packages at the expense

of repeated computations due to the repeated, independent calls to the retraction inside the con-

straint functions. The optimization routines in this thesis were custom-made. This was done with



208

the intention of creating numerically efficient algorithms and avoid repeated computations at the

expense of a less robust optimizer. It would be interesting to restructure the problem and the

code to use an off-the-shelf optimizer such as IPOPT or NLopt and compare the performance to

the approach taken in this thesis. The better approach can be turned into an easy-to-use publicly

available tool for mission designers to use.

Lastly, we mention all the tools developed or presented in this thesis can come together

to create a comprehensive and versatile trajectory design tool to efficiently construct databases of

quasi-periodic orbits, look up orbit families and specific orbits, and display families in various views.

The idea complements the work of Folta et al., Cox et al., and Guzzetti et al. which have created a

similar tool for rapid trajectory design in the circular restricted three-body problem [52, 67, 68, 79].

The work in this thesis provides the capabilities to compute higher-dimensional quasi-periodic

invariant tori in autonomous and non-autonomous dynamical systems, provides different views to

study the families, enables the precise computation of specific orbits given various constraints.

Combining their pre-existing trajectory design tool with the tools in this thesis will result in a

stronger mission design tool.
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quasi-bicircular problem. Celestial Mechanics and Dynamical Astronomy, 135(2), 2023.

[150] A. E. Roy. The Foundations of Astrodynamics. CRC Press, New York, 2005.

[151] R. J. Sacker and G. R. Sell. A spectral theory for linear differential equations. Journal of
Differential Equations, 27(3):320–358, 1978.

[152] E. Sander and J. D. Meiss. Birkhoff averages and rotational invariant circles for area-
preserving maps. Physica D, 411:132569, 2020.

[153] H. Schaub and J. L. Junkins. Analytical Mechanics of Space Systems. American Institute of
Aeronautics and Astronautics, Inc., 4 edition, 2018.

[154] D. J. Scheeres. Orbital Motion in Strongly Perturbed Environments: Applications to Asteroid,
Comet and Planetary Satellite Orbiters. Springer, Heidelberg, 2012.

[155] F. Schilder, H. M. Osinga, and W. Vogt. Continuation of quasi-periodic invariant tori. Journal
of Applied Dynamical Systems, 4(3):459–488, 2005.

[156] G. R. Sell. Hyperbolic almost periodic solutions and toroidal limit sets. Proc Nat Acad Sci,
USA, 74, 1977.

[157] G. R. Sell. The structure of a flow in the vicinity of an almost periodic motion. Journal of
Differential Equations, 27(3):359–393, 1978.

[158] R. Seydel. Practical Bifurcation and Stability Analysis. Springer, New York, NY, 2010.

[159] C. L. Siegel and J. K. Moser. Lectures on Celestial Mechanics. Springer Berlin, Heidelberg,
1995.

[160] M. R. Somayaji, M. Xenos, L. Zhang, M. Mekarski, and A. A. Linninger. Systematic design
of drug delivery therapies. Computers & Chemical Engineering, 32(1):89–98, 2008. Process
Systems Engineering: Contributions on the State-of-the-Art.



219

[161] V. Szebehely. Theory of Orbits: The Restricted Problem of Three Bodies. Academic Press,
New York and London, 1967.

[162] Joan Pau Sánchez, David Morante, Pablo Hermosin, Daniel Ranuschio, Alvaro Estalella,
Dayana Viera, Simone Centuori, Geraint Jones, Colin Snodgrass, Anny Chantal Levasseur-
Regourd, and et al. Esa f-class comet interceptor: Trajectory design to intercept a yet-to-be-
discovered comet. Acta Astronautica, 188:265–277, 2021.

[163] M. R. Thompson, A. J. Zara, C. Ott, M. Bolliger, E. Kayser, and D. C. Davis. Compar-
isons of filtering algorithms for orbit determination in near rectilinear halo orbits. In 2022
Astrodynamics Specialist Conference, 2022.

[164] J. O. Toilliez and A. J. Szeri. Optimized translation of microbubbles driven by acoustic fields.
The Journal of the Acoustical Society of America, 123(4):1916–1930, 04 2008.

[165] D. A. Vallado. Fundamentals of Astrodynamics and Applications. Springer New York, NY,
4 edition, 2013.

[166] D. Villegas-Pinto, N. Baresi, S. Locoche, and D. Hestroffer. Resonant quasi-periodic near-
rectilinear halo orbits in the elliptic-circular earth-moon-sun problem. Advances in Space
Research, 71(1):336–354, 2023.

[167] R. J. Whitley and R. M. Martinez. Options for staging orbits in cislunar space. In 2016 IEEE
Aerospace Conference, Big Sky, Montana, March 5-12, 2016. IEEE.

[168] H. Whitney. Analytic extensions of differentiable functions defined in closed sets. Transactions
of the American Mathematical Society, 36(1):63–89, 1934.

[169] J. Williams, D. E. Lee, R. J. Whitley, K.A. Bokelmann, D. C. Davis, and C. F. Berry.
Targeting cislunar near rectilinear halo orbits for human space exploration. In NASA Center
for AeroSpace Information, Hampton, Virginia, February 5, 2017. NASA/Langley Research
Center.

[170] M. Wyczalkowski and A. J. Szeri. Optimization of acoustic scattering from dual-frequency
driven microbubbles at the difference frequency. The Journal of the Acoustical Society of
America, 113(6):3073–3079, 05 2003.

[171] D. Wysham. Reducibility, Manifolds, and Bifurcations of Invariant Tori in Dynamical
Systems. PhD thesis, University of Colorado, 2000.

[172] Y. Yao and R. de la Llave. Computing the invariant circle and the foliation by stable manifolds
for a 2-d map by the parameterization method: Numerical implementation and results, 2021.

[173] S. Yun, K. Tuggle, R. Zanetti, and C. D’Souza. Sensor configuration trade study for navigation
in near rectilinear halo orbits. Journal of Astronautical Sciences, 67:1755–1774, 2020.

[174] E. M. Zimovan-Spreen. Dynamical structures nearby nrhos with applications to transfer
design in cislunar space. The Journal of the Astronautical Sciences, 69(3), 2022.



Appendix A

Publicly Available Code

Many of the functions created during the work on this thesis are publicly available on Github

at https://github.com/dlujan17/QPOs. At this location one will find functions to compute n-

dimensional quasi-periodic invariant tori and various other routines mentioned throughout this

thesis. The work of Chapter 3 was done in Matlab, while the work of Chapters 4, 5, and 6 was

done in Julia. A Python version of the function which continues families of 2-dimensional quasi-

periodic invariant tori was created to satisfy obligations for a grant, though we never worked in

Python. Therefore, the most developed codebase is in Julia. The functions used to complete the

work in Chapters 5 and 6 are available upon request by emailing david.lujan@colorado.edu.

https://github.com/dlujan17/QPOs
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