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With an increase in space traffic in near-Earth and cislunar regimes, it is important to

concentrate new research on development of accurate and efficient Space Situational Awareness

(SSA) tools. One of the most significant discussions in SSA today is in accurate state uncertainty

representation and propagation, with a direct application in understanding conjunction possibilities.

Several analytical and semi-analytical methods have been developed that aim to efficiently achieve

an accurate capture of this uncertainty over long periods of time to achieve realistic future locations

without recurrent observations so as to alleviate the stress on observation resources.

This study presents a new method of nonlinear uncertainty propagation that combines several

existing and complex mathematical tools to capture the non-Gaussian evolution of the distribution.

An initial distribution is split into a Gaussian Mixture Model (GMM) to map the distribution piece-

wise. This mapping is performed using higher order State Transition Tensors (STTs) that have

the ability to capture higher order perturbations of the system dynamics. The STTs used to

map the GMM components are calculated using complex dynamical systems that allow realism

in the uncertainty propagation. For near-Earth applications, this is achieved using a Simplified

Dynamical System (SDS) that incorporates perturbations from J2 dynamics and Solar Radiation

Pressure (SRP). In cislunar space, the Circular Restricted Three-Body Problem (CR3BP) is used

in combination with these STTs to achieve the GMM component mapping. The combined mapped

GMM components result in a final non-Gaussian distribution.

The GMM-STT uncertainty mapping is combined with analytical conjunction formulas to

achieve a system collision probability. The cumulative probability of collision is achieved by com-

bining collision probabilities associated with a GMM component-by-component comparison for the

objects in conjunction. The final collision probability is compared to that from a Monte Carlo
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analysis to confirm validity. The new methods of uncertainty propagation and conjunction assess-

ment presented in this dissertation provide fast, accurate, and realistic results for short and long

duration conjunctions in near-Earth and cislunar domains.
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Chapter 1

Introduction

1.1 Challenges in Space Situational Awareness in Near-Earth and Cislunar

Regimes

The journey from Sputnik I’s launch to the hundreds of thousands of man-made objects

currently in space has been one of an exponential rate [72]. As a result, the near-Earth space

region has become increasingly crowded leading to a higher risk of collisions. Such collisions can

lead to hurdles in mission success, or even fragmentation [59], adding to a vicious cycle of debris

growth [57]. In addition to this congestion in near-Earth space, the cislunar domain is of increasing

interest in new space missions [33]. Space objects larger than 10 cm in diameter are tracked

routinely by the Space Surveillance Network, whereas smaller objects are generally detected by

ground-based radars, as needed. Such observation resources are limited in capacity leading to

intermittent observations of tracked objects. This is excessively prohibitive in cislunar space because

of an additional lack of the Global Positioning System (GPS) [63]. This means that in both, near-

Earth and cislunar regions, specific objects are not constantly monitored resulting in limited current

state and associated uncertainty information. This limited information requires gap-bridging of the

data or long-term consistent predictions of future locations of such objects. The nonlinear nature

of the space environment makes such long-term predictions of the state and uncertainty of these

objects nontrivial. This prediction of state and uncertainty is one of the most significant technical

discussions in Space Situational Awareness (SSA) [39, 28, 43, 64, 34, 35] today.

Uncertainty distributions lose their traditional Gaussian nature when propagated with dy-
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namics that exhibit nonlinear behaviour. Many linearized mapping methods, like State Transition

Matrices (STM) [70], assume a Gaussian nature and evolution of the distribution, which is incon-

sistent with the real world evolution with highly nonlinear space dynamics [44]. It is essential to

capture this nonlinear behaviour in a computationally efficient manner with the increasing need for

the development of accurate SSA tools. A major application of accurate and efficient uncertainty

representation and evolution is in conjunction analysis to avoid the involuntary growth of space

objects in the form of debris and to protect mission safety.

1.2 Review of Literature

Traditionally, computationally expensive numerical Monte Carlo methods have been used to

nonlinearly propagate a large ensemble of sample points. With enough sample points, these methods

can be used to estimate probability moments. Alternative options to such expensive methods aim to

reduce the number of sample points needed for the accurate capture of the nonlinear evolution of the

distribution. Many analytical and semi-analytical mathematical representations and expressions

of nonlinear uncertainty and its propagation have been presented in the SSA domain, such as

Gaussian sums using Gaussian Mixture Models (GMMs) [74, 39, 79, 78], higher order Taylor series

solutions using State Transition Tensors (STTs) [66, 73, 8, 30], Polynomial Chaos Expansions

(PCEs) [42, 43], and methods that use a combination of these techniques [81, 34]. Such analytical

and semi-analytical methods aim to reduce computational cost by minimizing the points in the

propagation and providing efficient propagation methods while maintaining statistical accuracy.

Using GMMs, a judicious selection of grouped distributions can be used to minimise cost [74].

Work by Terejanu et al. [74] adopts the GMM splitting to propagate the system probability

density function (PDF) to capture nonlinear behaviour. Horwood et al. [39] introduces multi-

directional splitting methods and a combination of GMMs with filtering approaches. Sorenson and

Alspach [6, 71] introduced a GMM approach to the Bayesian estimation problem that allows distri-

bution modelling using a GMM sum. Vittaldev and Russell [79] extends multi-directional splitting

in non-Gaussian uncertainty propagation. Work by DeMars et al. [24] introduce adaptive methods
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of GMM splits in uncertainty propagation. A similar approach is also applied to object tracking in

space in DeMars et al. [27].

STTs provide accurate and efficient moment mapping through a higher order capture of

advanced dynamical models. Park [66] introduced a method to use STTs for nonlinear mapping

of statistics. Elgohary and Turner [30] presents an analytical continuation to encompass Earth

oblateness effects in STT computations. Younes [8] extends this model to higher orders of the

STT. Park and Scheeres [65] illustrates a direct moment mapping using STTs combined with an

advanced dynamical system. PCEs allow a representation of the uncertainty using orthogonal

polynomials [42, 81]. Several combinations of these models have also been studied, such as GMMs

and PCEs [81]; and GMMs and STTs [34].

Several analytical [13, 53, 38] and semi-analytical [16, 23, 31, 62, 55, 7] solutions have been

previously developed to describe the motion of orbiting objects about a central body that take

into account additional perturbations such as Earth oblateness, Solar Radiation Pressure (SRP),

gravitational attraction due to additional bodies, and atmospheric drag. Park and Scheeres [65]

introduces such a semi-analytical method that goes one step further from the classical analytical

theory to achieve a combination of speed and accuracy in propagation using the Lie transformation

method defined by Deprit [29] to get separate representations of the secular, long-period, and

short-period variations from the perturbed dynamics. The Simplified Dynamical System (SDS)

introduced by Park and Scheeres reduces the nonlinearity of the dynamical system by eliminating

short-period variations in propagation, allowing efficiency in propagation.

Similar to the uncertainty evolution methods, the field of conjunction analysis generally

uses simple Monte Carlo methods [4] in collision probability computations. Point clouds from the

objects in conjunction are propagated to their times of closest approach to achieve the probability

associated with two objects colliding. Such methods are the most reliable and accurate with enough

sample points, leading to a concerning computation cost when the number of the sample points

increases. Several previous publications have introduced alternate analytical and semi-analytical

collision probability methods. These methods include those from Foster [32], Chan [19, 18, 17],
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DeMars [25, 26], Vittaldev [80], Brown [15], Coppola [21, 22], Jones [42], and many others. Many

of these assume a Gaussian distribution for uncertainty at the time of conjunction leading to

restrictive applications, whereas others combine methods such as GMMs [26] and PCEs [42] with

conjunction analysis methods. It is essential to understand the assumptions associated with each

of these methods to understand their applications.

Short and long duration conjunctions have been of interest in near-Earth space for a long

time due to the increased congestion caused by space objects [72]. In recent times, cislunar SSA

is also gaining importance due to a growing number of space missions in that region. Some recent

research in this emerging field has indicated a need for new and accurate SSA tools in uncertainty

propagation and conjunction analysis. Frueh et al. [33] presents the challenges in cislunar SSA and

draws parallels to known issues in the near-Earth realm.

1.3 Research Contributions

The work in this dissertation focuses on developing analytical and semi-analytical accurate

and efficient models of uncertainty propagation in the near-Earth and cislunar realm, along with

their applications in conjunction assessment. The primary contributions of this dissertation are the

development new techniques that use mathematical tools in combination with complex dynamical

models for realistic and fast propagation of uncertainty to compute statistically accurate collision

probability of two objects in conjunction. These new methods of conjunction assessment are shown

to perform well with significant improvements in computation speed and very high accuracy when

compared to the standard Monte Carlo methods.

This work leverages a spacial solution to the Fokker-Planck equations to map the moments of

the system PDF using higher order Taylor series expansions of the solution through STTs. These

STTs are leveraged to account for higher order perturbations from the chosen dynamical models,

starting with the two-body problem, and adding in J2 secular effects. To introduce dynamical re-

alism in the near-Earth propagation, a complex model from Park and Scheeres [65] is implemented

for a semi-analytical computation of these STTs to incorporate perturbations from Earth oblate-
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ness and SRP. This combination of the SDS and STTs allows for accurate, realistic, and efficient

nonlinear mapping of the moments of the system PDF. The SDS also opens the possibility of incor-

porating other higher order perturbations into this solution in the future, such as the gravitational

attraction due to additional objects.

GMMs are used to split the initial distributions into smaller distributions to allow: 1) reduced

nonlinearity in individual component propagation, and 2) easy extension using a higher number of

components for accuracy. The GMM split is achieved by extending a univariate library over a multi-

dimensional split in the equinoctial frame in near-Earth space. This Gaussian sum is combined

with the high order STTs for accurate nonlinear evolution of individual GMM components through

individual mean and covariance mapping. The propagated Gaussian mixture components give the

final non-Gaussian distribution through a weighted sum. This technique to combine the GMMs,

STTs, and the high fidelity SDS for accurate and efficient distribution mapping is one of the key

contributions from this dissertation. In near-Earth applications, the STTs about the nominal

trajectory are used for GMM component mapping, meaning that the number of GMMs can be

easily increased without a significant increase in computational load.

Although several alternative formulations of dynamical systems exist that allow the reduction

of nonlinearity in the uncertainty during propagation, such as work by Aristoff et al. [7], it is

important to note that the aim of the propagation methods developed in this dissertation is to

serve as an application in conjunction assessment. This means that even if the nonlinearity in

the selected coordinate system reduces further, the eventual comparison for conjunction analysis

will be performed in Cartesian coordinates. Therefore, GMMs will still be necessary to provide a

split nonlinear capture of the distribution. Additionally, the distributions will also intermediately

be converted to the Delaunay frame for the SDS propagation because the dynamics equations are

defined in this frame [55, 64, 65]. This means that the actual propagation occurs in the Delaunay

frame. All these different tools are defined in much more details in the following chapters of this

dissertation.

The GMM-STT propagated uncertainty is combined with an analytical formula of collision
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probability to achieve the cumulative probability of collision of the system. This cumulative proba-

bility is achieved using a double weighted sum of individual collision probabilities from an all-on-all

component-by-component comparison of the two objects in conjunction. In addition to improving

computation time, the individual GMM comparison can now be performed using analytical formu-

las that assume a Gaussian uncertainty because each GMM component remains nearly Gaussian

after propagation. Long duration conjunctions are complex to evaluate due to the lack of simpli-

fying assumptions, leading to a nontrivial triple integral over space and time that is cumbersome

to evaluate. An important realisation from the implementation of this GMM-STT propagation is

that when using enough GMM components in this analysis, such that each GMM component is

“small enough”, each component interaction behaves like a short duration conjunction which leads

to a simplification of the complex problem. This key result leads to a simplification of the complex

collision probability method within the double weighted sum to evaluate the system probability of

collision, which can now be applied to both short and long duration conjunctions.

The application of these tools in the cislunar space is another important contribution of this

work to support the growing efforts in cislunar SSA. A similar GMM-STT approach is applied

using modifications in cislunar space to evaluate conjunctions. The same method of GMM-STT

propagation is combined with the Circular Restricted Three-Body Problem (CR3BP) dynamics.

The GMM split is performed in the Cartesian frame and the STTs are computed using the CR3BP

dynamics.

The thesis statement is as follows:

Semi-analytical fast and accurate nonlinear uncertainty propagation can lead to a significant

improvement in tools used for conjunction assessment and orbit determination. Fast and accurate

nonlinear uncertainty propagation can be achieved by splitting the uncertainty distribution into

smaller components and propagating these components with State Transition Tensors. Incorporating

higher order dynamics in these tools allows for accurate real-world applications.



7

The contributions from this dissertation are listed below:

(1) Novel combinations of GMM-STT propagation with advanced dynamical systems for ac-

curate, efficient, and realistic uncertainty propagation.

(2) Application of the higher accuracy GMM-STT uncertainty mapping in short-term con-

junction analysis to dramatically reduce computation time while maintaining statistical

accuracy.

(3) Extension of the GMM-STT uncertainty mapping in long-term conjunction work using

short-term conjunction methods, greatly improving efficiency.

(4) An online GitHub-accessible toolkit for near-Earth short-term and long-term conjunctions.

(5) Applications of this new GMM-STT uncertainty propagation method in cislunar conjunc-

tion assessment using modified GMM splitting techniques in the Cartesian frame for accu-

rate and fast collision probability results.

1.4 Chapter Organization

Chapter 2 presents a variety of modeled dynamics that are used throughout the following

chapters. One of the key dynamical systems, the SDS, is crucial to real world applications of

the methods and provides a fast and accurate propagation technique. This SDS is achieved by

applying a Lie series transformation to the system Hamiltonian to separate the averaged dynamics

and analytical short-period variation equations. This allows a fast propagation with the averaged

dynamics and an addition of short-period variations using analytical equations at relevant times.

In addition to this, it also presents a solution to the Fokker-Planck equations that can be used

to propagate the PDF using direct moment mapping with STTs. A mathematical background of

STTs is presented, along with the analytical and semi-analytical methods of STT propagation.

Chapter 3 defines GMMs and lists the splitting methods used to achieve the splits in near-

Earth and cislunar space. In near-Earth space, this split is performed by extending a univariate
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library into a multi-directional split in the equinoctial frame to allow the nonlinearity to be focused

in one dimension. A similar method is used in the cislunar application of GMMs, just in the carte-

sian space. This adds more complexity in the choice of the splitting direction because nonlinearity

grows freely in all dimensions. Then, a method is proposed to propagate these GMMs using STTs

to capture the full nonlinear behaviour associated with propagating the distribution with nonlinear

orbit dynamics. This is the key hybrid method used for propagation to achieve a final non-Gaussian

distribution. Test cases are presented at the end in near-Earth and cislunar domains to confirm

the capture of nonlinear evolution of uncertainty.

Chapter 4 details the importance of uncertainty propagation in conjunction analysis meth-

ods. The categorization of conjunctions into short-term and long-term encounters is defined. Then,

the numerical Monte Carlo method of uncertainty propagation is presented, which can be used as

baseline truth to compare other methods against. The most important section of this chapter

presents a hybrid method that combines the GMM-STT uncertainty propagation techniques devel-

oped in the previous chapter with an analytical probability of collision calculation formula. This

method combines the collision probabilities from individual comparisons of GMM components of

the objects in conjunction to achieve a cumulative system probability of collision. This probability

of collision formula with the GMMs is converted to a reduced formula using simplifications that

arise from small individual GMM component interactions.

Chapter 5 presents the analysis and performance comparison of the hybrid method of uncer-

tainty propagation and conjunction analysis developed using mathematical tools throughout the

previous chapters, relative to a numerical Monte Carlo analysis. The performance analysis is run

with a variety of test cases in the near-Earth and cislunar regimes to demonstrate the statistical

accuracy and wide applicability of the hybrid method. These examples use the hybrid method

in combination with a variety of dynamical system formulations. A time comparison between the

Monte Carlo and hybrid methods is also presented in some test cases to demonstrate the significance

of this contribution.

Chapter 6 presents a code toolkit built using the hybrid method of uncertainty propagation
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and conjunction analysis developed and analyzed in the previous chapters. This toolkit is accessible

to the public through GitHub links provided in references [48, 47]. Some of the MATLAB tools

used to develop the hybrid method are defined, along with snippets of code development. Code

initialization parameters are defined and the setup of a test case is presented with the expected

outputs.

The contributions and results are summarised and the future directions of this research are

presented in Chapter 7.



Chapter 2

Mapping of Nonlinear System Dynamics

The evolution of uncertainty can be captured by propagating the underlying state probability

density function (PDF), which is governed by a system of partial differential equations called the

Fokker-Planck equations (FPEs). In Monte Carlo methods, the propagation of a collection of points

from the initial distribution mimics the FPE numerical solution for propagation of the system

PDF. One method to employ the FPEs in space is to implement a special solution to the FPE

for deterministic dynamical systems. This can be done by considering a direct moment evolution

using higher order solutions to the system dynamics [65, 67]. The moments of a distribution can be

propagated using a Taylor series expansion of the system dynamics to an arbitrary order using State

Transition Tensors (STTs) [66, 73, 8]. The dynamics used for the STT calculations are essential to

realistic applications of this approach. The dynamical environment of an object greatly effects its

motion in space. Depending on the region in space, different types of forces impact the motion. To

achieve accuracy, all high-impact forces are incorporated for accurate propagation. Several systems

of dynamical equations have been formulated for near-Earth and cislunar regimes.

In this chapter, a variety of dynamical systems are first introduced that will be later used in

combination with the STTs, which include the Two-Body Problem (2BP) dynamics, J2 secular dy-

namics, an advanced Simplified Dynamical System (SDS), and the Circular Restricted Three-Body

Problem (CR3BP). Then, a mathematical background is provided for the Taylor series expansion

of the system dynamics. The analytical and semi-analytical results for the STTs are presented for

the 2BP, J2 Secular dynamics, the SDS and the CR3BP.
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2.1 Near-Earth Regime

For the region near Earth, the primary forces that impact an object include the gravitational

force of the Earth, the gravitational potential forces due to the shape of the Earth, Solar Radiation

Pressure (SRP), atmospheric drag, etc. In this section we discuss the dynamical systems used

in near-Earth space in the order of their complexity and realistic applicability: 2BP, J2 secular

dynamics, and SDS.

2.1.1 Two-Body Problem

The simplest model for near-Earth dynamics is the Two-Body dynamics which makes the

following simplifying assumptions: there are only two bodies in the system, gravity is the only force

acting on each boy, the bodies are modeled as point and constant masses. In this simple Keplerian

motion, only the true anomaly (M) evolves over time, whereas the other orbital elements remain

constant. For a 2BP, the Equinoctial element set is defined using the classical orbital elements (a,

e, i, Ω, ω, M) as follows:

a = a h = e sin (ω +Ω) k = e cos (ω +Ω)

p =
sin (i) sin (Ω)

1 + cos (i)
q =

sin (i) cos (Ω)

1 + cos (i)
λ =M + ω +Ω (2.1)

The solution flow for an Equinoctial element set can now be defined using:

a(t) = ao h(t) = ho k(t) = ko

p(t) = po q(t) = qo λ(t) = λo + n∆t = λo +

√
µ

ao3
(t− to) (2.2)

Here, the superscript 0 represents each element at time, t0.
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2.1.2 2BP + J2 Secular Dynamics

Earth’s oblateness has a large impact on the motion of an object near Earth. In the second

dynamical system, the secular effects due to Earth J2 are considered in addition to the 2BP dy-

namics to propagate the information, and to compute the STTs. In this case, the classical orbital

elements: argument of periapsis (ω) and right ascension of ascending node (Ω) evolve over time

using constant quantities of ω̇ (Eq. 2.3) and Ω̇ (Eq. 2.4) respectively.

ω̇ =

[
−3

2

√
µJ2R

2

(1− e2)a7/2

](
5

2
sin2 (i)− 2

)
(2.3)

Ω̇ =

[
−3

2

√
µJ2R

2

(1− e2)a7/2

]
cos (i) (2.4)

This secular change in ω and Ω implies that the Equinoctial elements: h, k, p, q, and λ all

change over time.

2.1.3 Simplified Dynamical System

Non-Keplerian perturbations play a crucial role in near-Earth propagation. This means that

the dynamical system of choice makes a great difference in achieving the desired propagation.

To account for perturbations from non-Keplerian dynamics due to SRP and full J2, an advanced

dynamical system is introduced. The state (xdel) and the SDS equations of motion (EOMs: fdel)

of the objects are defined using a Delaunay element set: [L; G; H; l; g; h] in terms of classical

orbital elements ([a; e; i; Ω; ω; M ]):

L =
√
µa G = L

√
1− e2 H = G cos(i)

l =M g = ω h = Ω (2.5)
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The state and EOMs are represented as follows:

xdel = [l, g, h, L, G, H]

fdel = [l̇, ġ, ḣ, L̇, Ġ, Ḣ] (2.6)

The following subsections define the SDS from Park and Scheeres [65]. The solution flow of

a system can be presented as:

x = x0 + xsecular + xlong + xshort (2.7)

where, the initial state is propagated using three components of the dynamics: the secular

variations, the long-period variations, and the short-period variations. The short-period and long-

period terms are periodic, whereas the secular variations are not. The short-period variations add

the largest amount of computation time due to the large variability. These typically repeat on the

order of the satellite’s period or less [77]. Figure 2.1 from Vallado [77] shows the different variations

in the evolution of an orbital element.

Figure 2.1: The secular, short-period, and long-period variations in the evolution of an orbital
element. [77]

The SDS aims to separate the short-period variations from the secular and long-period vari-

ations to allow faster propagation with averaged dynamics. The SDS uses Lie transformation

(defined by Deprit [29]) of the system Hamiltonian to achieve the mean Hamiltonian by averaging

over the mean anomaly, which is the fast variable in the orbit elements. The mean system dynamics
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EOMs (fdel) are derived using the partial derivatives of the mean Hamiltonian with respect to state

components. The new solution flow looks like:

x = x0 + xsecular + xlong + xshort (2.8)

where, the xshort term gets replaced by a constant term, xshort.

The Lie operator applied to the difference in the full system Hamiltonian and the mean

Hamiltonian produces the generating functions, which can be used to achieve the time dependent

analytical short-term variation offset equations that allow transformations between the mean and

osculating states of the object. For propagation, the osculating object state is first converted to

the mean state using the short-term variation equations to allow propagation using Deprit-Lie

averaged dynamical flow (Eq. (2.8)). At the end time, the mean state can be converted back to the

osculating state using the same time-dependent offset equations evaluated in the other direction.

The following subsections defined this process in detail.

2.1.3.1 System Hamiltonian

The Hamiltonian of a system specifies the total energy of the system based on the dynamical

flow. The analytical Hamiltonian function can be defined using the Delaunay state elements ([q;p]),

about a small parameter ϵ as follows:

H(q,p; ϵ) =

∞∑
n≥0

ϵn

n!
Hn(q,p) =

∞∑
n≥0

ϵn

n!
Hn,0(q,p) (2.9)

Due to the time dependency of sun’s ascending node (h⊙), the total Hamiltonian needs to

be augmented [65] to recover autonomy. A new conjugate variable pair (k⊙,K⊙) is introduced,

which gives us an augmented Hamiltonian (Ĥ) [65]. The new generalized coordinate and conjugate

moment are: k⊙ and K⊙, respectively. These new variables are defined in Eq. (2.10).
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k⊙ = νt+ constant (2.10a)

k̇⊙ =
∂Ĥ
∂K⊙

, K̇⊙ =
∂Ĥ
∂k⊙

(2.10b)

The state and EOMs are modified to accommodate the new generalised coordinates to be-

come:

xdel = [l, g, h, k⊙, L, G, H, K⊙] (2.11a)

fdel = [l̇, ġ, ḣ, k̇⊙, L̇, Ġ, Ḣ, K̇⊙] (2.11b)

The analytical augmented Hamiltonian can then be represented as:

Ĥ = νK⊙ +H (2.12)

This augmented Hamiltonian can be expanded as follows:

Ĥ = H0 + ϵH1 +
ϵ2

2!
H2 +

ϵ3

3!
H3 +

ϵ4

4!
H4 +

ϵ5

5!
H5 (2.13)

Each Hamiltonian component in the expression in Eq. (2.13) is associated with a correspond-

ing chosen dynamics [64, 55] as defined in Eq. (2.19). H0, H3, and H5 are the Hamiltonians asso-

ciated with the Keplerian motion, J2, and SRP, respectively. H2 appears due to the augmentation

to make the system autonomous.

H0 = − µ

2a
(Keplerian motion) (2.14a)

H2 =
2!

ϵ2
(νK⊙) (augmented Hamiltonian) (2.14b)

H3 =
3!

ϵ3

[
1

2

µ

r

(α
r

)2
J2

(
3

2
s2 − 3

2
s2 cos (2f + 2g)− 1

)]
(Earth oblateness) (2.14c)

H5 =
5!

ϵ5

[
−β r

r2⊙,sat

(Tc cos f + Tssinf)

]
(SRP) (2.14d)
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Here,

Tc =
1

4

[
(c+ 1)(c⊙ + 1) cos (g + h− h⊙ − k⊙)

+ (c− 1)(c⊙ − 1) cos (g − h+ h⊙ − k⊙)

− (c+ 1)(c⊙ − 1) cos (g + h− h⊙ + k⊙)

− (c− 1)(c⊙ + 1) cos (g − h+ h⊙ + k⊙)

+ 4ss⊙ sin (g) sin (k⊙)
]

(2.15a)

Ts =
1

4

[
(−c− 1)(c⊙ + 1) sin (g + h− h⊙ − k⊙)

− (c− 1)(c⊙ − 1) sin (g − h+ h⊙ − k⊙)

+ (c+ 1)(c⊙ − 1) sin (g + h− h⊙ + k⊙)

+ (c− 1)(c⊙ + 1) sin (g − h+ h⊙ + k⊙)

+ 4ss⊙ cos (g) sin (k⊙)
]

(2.15b)

The solar perturbation strength (β) is defined in Eq. 2.16:

β = (1 + ρ)
Asat

msat
PΦ (2.16)

The values of reflectivity (ρ) and the satellite area-to-mass ratio
(

Asat
msat

)
are set to be 0.2

and 2.0 m2

kg . PΦ is the solar constant. The small parameter, ϵ [65] (chosen to be 0.1), is used

for comparison against the magnitudes of constants ν, J2, and β to choose the placement of the

Hamiltonian components in the total Hamiltonian.

2.1.3.2 Lie Transformation

This subsection presents an overview of the Lie transformation defined by Deprit [29] to

investigate the Hamiltonian of a problem. The method generates a convergent, real valued series

expansion for the resultant transformation. Deprit [29] created a recursive transformation of an
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analytical function under the Lie transformation called the Depit Triangle:

H0,0

|

H1,0 − H0,1

| |

H2,0 − H1,1 − H0,2

| | |

H3,0 − H2,1 − H1,2 − H0,3

| | | |

H4,0 − H3,1 − H2,2 − H1,3 − H0,4

| | | | |

H5,0 − H4,1 − H3,2 − H2,3 − H1,4 − H0,5

| | | | | |

H6,0 − H5,1 − H4,2 − H3,3 − H2,4 − H1,5 − H0,6

| | | | | | |

The Deprit Triangle (2.18)
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This provides a simple way to compute the transformed Hamiltonian functions. Some exam-

ples of this computation are shown below:

O(ϵ0) : H(0)
0 = H0,0 (2.19a)

O(ϵ1) : H(1)
0 = H0,1 = H1,0 + LW1H0,0 (2.19b)

O(ϵ2) : H(2)
0 = H0,2 = H1,1 + LW1H0,1 = H2,0 + LW1(H1,0 +H0,1) + LW2H0,0

O(ϵ3) : H(3)
0 = H0,3 = H3,0 + LW1(2H2,0 +H0,2) + LW2(2H1,0 +H0,1) + LW3H0,0

+ LW1LW1H1,0 + LW1LW2H0,0

... (2.19c)

For every order of ϵ, the generating functions (W) can be written as a form of the partial

differential equation as follows:

L0(Wn) +Kn = H̃0,n (2.20)

This is called the homological equation. The Deprit-Lie method essentially allows a recursive

derivation of the mean Hamiltonian and the generating functions to allow a separate representation

of the mean (K) and short-period variation (W) terms of the total Hamiltonian. The generating

function of the transformation (W) can again be represented in a power series expansion:

W(q,p; ϵ) =

∞∑
n≥0

ϵn

n!
Wn+1(q,p) (2.21)

L0(−) represents the Lie operator:

L0(Wn) = {Wn, H0} =

N∑
i=1

(
∂H0

∂qi

∂Wn

∂pi
− ∂H0

∂pi

∂Wn

∂qi

)
(2.22)

The value of N = 4 is equal to the dimension of the q and p vectors.
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Kamel [46] proposed a generalise algorithm to apply such a transformation. The analytical

solutions for the mean and the generating functions can be obtained based on the theory of per-

turbations. This method uses the generating function (W) to perform a canonical transformation

ψ: (q̂, p̂; ϵ) 7−→ (q, q) defined by the solutions q(q̂, p̂; ϵ) and p(q̂, p̂; ϵ). The solution should satisfy:

dq

dt
=
∂W
∂p

,
dp

dt
= −∂W

∂q
(2.23)

where q(q̂, p̂; 0) = q̂ and p(q̂, p̂; 0) = p̂ [65].

The mean Hamiltonian (that contains the secular and long-period variations) can be com-

puted simply using averaging over the fast variable (mean anomaly):

Kn =
1

2π

∫ 2π

0
H̃0,ndl (2.24)

The Deprit triangle [29] leads to an additional J2
2 term in the mean Hamiltonian. Using the

same notations as the full Hamiltonian, the mean Hamiltonian can be represented as follows [65]:

K̂ = K0 + ϵK1 +
ϵ2

2!
K2 +

ϵ3

3!
K3 +

ϵ4

4!
K4 +

ϵ5

5!
K5 +

ϵ6

6!
K6 (2.25)

In Eq. (2.25), each component can be calculated using the mean anomaly averaging defined

above. The results from the MATLAB symbolic computer are shown in Eq. (2.26). K0, K3, and

K5 are the mean Hamiltonians associated with the Keplerian motion, J2, and SRP respectively. K2

is the averaged component of the augmentation. K6 is the additional J2
2 term that appears due to

the Deprit triangle from Eq. (2.18).
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K0 = − µ

2a
(2.26a)

K2 =
2!

ϵ2
(νK⊙) (2.26b)

K3 =
3α2J2µ(3s

2 − 2)

2a3η3ϵ3
(2.26c)

K5 = −180aβeTc
ϵ5

(2.26d)

K6 = −45α4J2
2µ

8a5η9ϵ6
[
6e2η2s2(15s2 − 14) cos (2g) + e2{−(3η2(5s4 + 8s2 − 8) + 4(2− 3s2)2)}

+ 4{3η3(2− 3s2)2 + η2(21s4 − 42s2 + 20) + (2− 3s2)2}
]

(2.26e)

The MATLAB symbolic computer is also used to derive the mean system Delaunay EOMs

using:

l̇ =
∂K̂
∂L

, ġ =
∂K̂
∂G

, ḣ =
∂K̂
∂H

, k̇⊙ =
∂K̂
∂K⊙

L̇ = −∂K̂
∂l
, Ġ = −∂K̂

∂g
, Ḣ = −∂K̂

∂h
, K̇⊙ = − ∂K̂

∂k⊙
(2.27)

The resultant mean equations of motion that account for the J2 and SRP perturbations are

shared in Appendix B.

The Lie operator from Eq. (2.22) can be used to back-solve for the generating functions (Wn)

using the definition:

L0(Wn) = H̃0,n −Kn (2.28)
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The generating functions corresponding to the system Hamiltonian are computed using the

MATLAB symbolic computer to be:

W3 =
3!

ϵ3
L3α2J2
4µa3η3

[
− 3s2

(
1

2
sin 2(f + g) +

1

2
e sin (f + 2g) +

1

6
e sin (3f + 2g)

)
+ (3s2 − 2)(f + e sin f − l)

]
(2.29a)

W5 =
30aβ

nϵ5
(
4e2Tc sinE + e(ηTs cos 2E − Tc(6E + sin 2E − 6l))− 4ηTs cosE + 4Tc sinE

)
(2.29b)

W6 =
45α4J2

2n

8a2eη9ϵ6
[
− 6e3η2s2(15s2 − 14)(f − l) cos 2g + 8(2− 3s2)2(e2 + η3 − 1) sin f

+ e{2(2− 3s2)2(e2 + η3 − 1) sin 2f + (f − l)(e2(3η2(5s4 + 8s2 − 8) + 4(2− 3s2)2)

− 4(η2(21s4 − 42s2 + 20) + (2− 3s2)2))}
]

(2.29c)

These generating functions are used to calculate the analytical offset equations to convert

between the mean and osculating states, as defined in the following sub-section.

2.1.3.3 Analytical Equations for Short-Period Variation Removal and Addition

For propagation with the SDS dynamics, the osculating state (q, p) is converted to the mean

state (q̂, p̂). This mean state is propagated to the desired time, t, using the averaged dynamics

defined in Eq. (2.27). Short-period variation offsets can be analytically computed at this given

time, t, and added back into the mean state to achieve the osculating state for accurate object

information.

The conversion from the osculating state to the mean state is achieved by removal of short-

period variations using offset correction [45, 64] given in Eq. 2.30:

q̂ = q
(0)
0 +

∑
n≥1

ϵn

n!
q
(n)
0 (2.30a)

p̂ = p
(0)
0 +

∑
n≥1

ϵn

n!
p
(n)
0 (2.30b)
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Here, q
(0)
0 and p

(0)
0 refer to the epoch osculating state, and q

(n)
0 and p

(n)
0 are:

q
(n)
0 = −q̂

(n)
0 +

∑
1≤j≤n−1

Cn
j Gj q̂

(n−j)
0 , (n ≥ 1) (2.31a)

p
(n)
0 = −p̂

(n)
0 +

∑
1≤j≤n−1

Cn
j Gjp̂

(n−j)
0 , (n ≥ 1) (2.31b)

q̂
(n)
0 and p̂

(n)
0 are:

q̂
(n)
0 =

∂Wn

∂p̂
+

∑
1≤j≤n−1

Cn−1
j Gj q̂

(n−j)
0 , (n ≥ 1) (2.32a)

p̂
(n)
0 = −∂Wn

∂q̂
+

∑
1≤j≤n−1

Cn−1
j Gjp̂

(n−j)
0 , (n ≥ 1) (2.32b)

Cn
k is the binomial coefficient and Gj is defined as follows:

Gj = Lj −
∑

0≤m≤j−2

Cj−1
m Lm+1Gj−m−1, (1 ≤ j ≤ n) (2.33)

where Lk is the Lie operator defined in Eq. 2.22.

The final mean state is converted back to the osculating state by adding back the short-period

variations using offset correction defined as follows [45, 64]:

q = q̂
(0)
0 +

∑
n≥1

ϵn

n!
q̂
(n)
0 (2.34a)

p = p̂
(0)
0 +

∑
n≥1

ϵn

n!
p̂
(n)
0 (2.34b)

This SDS dynamics propagation combines the speed of mean dynamics propagation with the

accuracy of converting back to the osculating state. The SDS propagation method is shown in

Fig. 2.2.



23

Figure 2.2: The initial osculating state is converted to the mean state for propagation with the
SDS. At the final time, the final mean state is converted back to an osculating state to get an
accurate final state. [50]

2.1.3.4 Simplified Dynamical System Propagation Demonstration

The SDS propagation method is also tested using an object with the set of orbital elements

shown in Table 2.1. The state is first propagated using full system dynamics with SRP and J2

perturbations. Then, the system is propagated using the SDS by converting to mean state at

epoch, propagating with the averaged dynamics, and converting to the osculating state at the last

orbit in this case.

Table 2.1: Orbital Elements at epoch for the SDS propagation example.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)
8000 0.15 60 0 0 0

Fig. 2.3 show that the Delaunay orbital elements when propagated with SDS, in addition to

osculating to mean and reverse conversions matches the trajectory propagated with full dynamics.

In this test plot, the mean to osculating offset is added at the last orbit to see a comparison against

the full dynamics propagated trajectory.

Figure 2.4 shows the short period variations in the Delaunay frame as the difference between

the full dynamics propagation and the SDS propagation. At the last orbit, when the variations are

added in, the difference between the two methods of propagation drops close to zero.
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Figure 2.3: A comparison of Delaunay elements propagated with full dynamics (blue solid line) vs
SDS (pink dashed line) with short-period variations added at the last orbit.

Figure 2.4: The difference between the Delaunay elements propagated with full dynamics vs SDS
with short-period variations added at the last orbit.

2.2 Cislunar Regime: The Circular Restricted Three-Body Problem

In the cislunar environment, the CR3BP dynamics are introduced with the following assump-

tions: there are three bodies in the system, the mass of body 3 is much less than that of primaries

1 and 2, primaries 1 and 2 travel in circular orbits about their mutual barycenter, and the masses

of the three bodies are modeled as point and constant masses. In the CR3BP, non-dimensional
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Figure 2.5: Earth, Moon, and a third body in the CR3BP rotating frame.

units are used for propagation, where the characteristic mass is the sum of the masses of the pri-

maries. The distance between these two masses is unity and the time is characterised such that the

non-dimensional gravitational constant is unity.

The non-dimensional EOMs (ẋ = f(x)) are defined using a pseudo-potential:

U(x) =
1− µ

r1
+
µ

r2
+

1

2
(x2 + y2) (2.35)

where r1 and r2 are the non-dimensional distances from the third body to the Earth and the

Moon, respectively. µ is the mass ratio defined by:

µ =
m2

m1 +m2
(2.36)

where m1 and m2 are the masses of the two primaries. x and y refer to the position of the

third body in the barycentric system.

Based on the system pseudo-potential function, the EOMs of the system can now be defined

as follows:

f(x) = [ẋ, ẏ, ż, 2nẏ + Ux,−2nẋ+ Uy, Uz]
T (2.37)

Here, Ux, Uy, and Uz are partial derivatives of the pseudo-potential with respect to the

rotating position coordinates. n represents the non-dimensional mean motion of the primary system.
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2.3 State Transition Tensors

STTs (Φ) are higher order expansions of a solution that allow nonlinear mapping from initial

to final state. The first term in this expansion about a nominal solution is the familiar State

Transition Matrix (a second order mathematical tensor), with the inclusion of higher order terms

resulting in higher order tensors. In case of simple Keplerian dynamics, these higher order STTs

can be computed purely analytically because the final state and initial state have a direct analytical

relationship. Because of the lack of this simple analytical mapping in the case of non-Keplerian

dynamics, STTs can be computed through numerical propagation. This is done by initiating the

STT with an identity matrix in the first order and zeros in all higher orders, and computing the

STT EOMs (Φ̇) using the system dynamics. In this work, second-order STTs are used to map

the means and covariances of each GMM component to the desired times. It is implied that as

nonlinearity growth increases there is a need to go to higher orders of the STTs for an accurate

uncertainty capture.

2.3.1 Mathematical Formulation

Suppose the EOMs that govern the motion of an orbiting object are:

ẋ = f(t,x(t)), x(t) = ϕ(t;x0, t0) (2.38)

with ϕ representing the solution flow.

Taking the Taylor series expansion of the solution function about some reference trajectory,

the state deviation (δx(t) = ϕ(t;x0 + δx0, t0)− ϕ(t;x0, t0)) with respect to the nominal trajectory

and its dynamics can be written using the Einstein summation with Dyadic notation [37] as follows:

δx(t) =

m∑
p=1

1

p!
Φi,k1...kpx

o
k1 ...x

o
kp (2.39a)

δẋ(t) =

m∑
p=1

1

p!
Ai,k1...kpxk1 ...xkp (2.39b)
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Here, i and kj stand for ith and kthj elements of the state vector, respectively, and m is the

order of the STT being calculated. The ith component is not summed over.

Given the dynamics, f , and the solution flow, ϕ, of an object, the STTs can now be calculated

by taking partial derivatives of the state at time t, with respect to the initial state, x0:

Φi,k1...kp =
∂pxi

∂xo
k1
...∂xo

kp

∣∣∣∣
∗

(2.40a)

Ai,k1...kp =
∂pf i

∂xk1 ...∂xkp

∣∣∣∣
∗

(2.40b)

Here, A denotes the local dynamics tensor (LDT) and the subscript ∗ implies that the STT

and the LDT are evaluated over the nominal trajectory.

The STT can be simply computed with time dependency where an analytical solution exists

between the initial and final states, such as 2BP and J2 secular dynamics. In these cases where

an analytical relationship exists, Eq. 2.40 gives an analytical expression for Φ. This analytical

computation for Φ makes the propagation purely analytical for 2BP and J2 secular cases.

On the other hand, when considering the averaged dynamics from the SDS and the CR3BP,

no such analytical state propagation relationship exists and the future state has to be calculated

through numerical integration. Therefore, Φ also needs to be numerically propagated to the final

time. This numerical integration is performed using an initial STT, Φ0, consisting of the identity

matrix at its first order (I6×6), and zeros everywhere else. The system of equations to propagate

Φ0 forward in time, can be calculated using Eq. 2.41:

Φ̇i,ab =

N∑
α=1

Ai,αΦα,ab +

N∑
α=1

N∑
β=1

Ai,αβΦαaΦβb (2.41)

where i, a, and b subscripts for Φ̇ represent the three dimensions of a second-order STT. The

LDTs (A) come from Eq. (2.40).
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2.3.2 Nonlinear Mapping of Moments with State Transition Tensors

A Gaussian PDF of the deviated system can be expressed using the initial mean of the

deviated state (δm) and the covariance (P ) associated with the system at a given time, where N

is the dimension of the state deviation, δx:

pg(δx) =
1√

(2π)N |P |
exp

{
−1

2
(δx− δm)TP−1(δx− δm)

}
(2.42)

Previous works [64] have shown that the moments of this PDF can be propagated using

STTs. The mean of the PDF can be propagated nonlinearly as:

δmi(t) =
m∑
p=1

1

p!
Φi,k1...kp E[δx0

k1 ...δx
0
kp ] (2.43)

Similarly, the covariance of the PDF can be propagated as:

P ij(t) =

(
m∑
p=1

m∑
q=1

1

p!q!
Φi,k1...kpΦj,l1...lqE[δx0

k1 ...δx
0
kpδx

0
l1 ...δx

0
lq ]

)
− δmi(t)δmj(t) (2.44)

Here, m stands for the order of STT being used. i, j, kb, and lc represent the ith, jth, kthb ,

and lthc elements of the state vector, respectively. δm is the mean offset and P is the covariance of

the system PDF.

E represents the moments of the distribution [67]. Moments up to the fourth order are

plugged into Eq. (2.43) and Eq. (2.44) to achieve the second order mean and covariance propagation

equations, respectively:

E[δxi] = δmi

E[δxiδxj ] = δmiδmj + P ij

E[δxiδxjδxk] = δmiδmjδmk + (δmiP jk + δmjP ik + δmkP ij)

E[δxiδxjδxkδxl] = δmiδmjδmkδml + (δmiδmjP kl + δmiδmkP jl + δmiδmjP kl + δmjδmkP il+

δmiδmlP jk + δmjδmlP ik + δmkδmlP ij) + P ijP kl + P ikP jl + P ilP jk (2.45)
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These moments can be expanded to higher orders for propagation with higher order STTs.

2.3.3 State Transition Tensors for Near-Earth and Cislunar Regions

In this section, the STTs are computed directly for the 2BP and J2 secular dynamics, and

the STT EOMs are computed for the SDS and the CR3BP.

2.3.3.1 Two-Body Problem

Using Eq. (2.40) and the solution flow from Eq. (2.2), an STT of order p can be computed

using the partial derivatives to be:

Φi,k1...kp =



(−1)p
√
µ (2p+1)!

22pp!(a0)p+
3
2
∆t i = 1 and k1 = k2 = ... = kp = 1

1 p = 1 and k1 = i

0 elsewhere

(2.46)

This STT formulation can be used to directly map the deviated mean (δm) and covariance

(P ) of a system PDF using Eq. (2.43) and Eq. (2.44) to map the PDF in time.

2.3.3.2 J2 Secular Dynamics

Similar to the 2BP case, the STT for J2 secular dynamics can be compute using Eq. (2.40)

and the solution flow from Eq. (2.2):
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Φi,k1...kp =



(−1)p
√
µ (2p+1)!

22pp!(ao)p+
3
2
∆t k1 = k2 = ... = kp = 1 and i = 1

1 p = 1, k1 = i and i = 1, 6

cos (ω̇) p = 1, k1 = i and i = 2, 3

cos (Ω̇) p = 1, k1 = i and i = 4, 5

sin (ω̇) p = 1, k1 = 3 and i = 2

− sin (ω̇) p = 1, k1 = 2 and i = 3

sin (Ω̇) p = 1, k1 = 5 and i = 4

− sin (Ω̇) p = 1, k1 = 4 and i = 5

0 elsewhere

(2.47)

Same as before, this STT formulation can be used to map the system PDF to the desired

time.

2.3.3.3 Simplified Dynamical System

As described in previous sections, there is not direct analytical mapping between the final

and initial states in the SDS. This means that the STT needs to be numerically propagated to

the desired time using the STT EOMs (Eq. (2.41)), which are calculated using the LDTs. The

averaged dynamics solution flow from Eq. (2.27) is used to compute the LDTs from Eq. (2.40) in

the Delaunay frame:

A1st =
∂fdel(xdel)

∂xdel
, A2nd =

∂A1st

∂xdel
, ... (2.48)

The moment propagation process in the SDS is as follows. First, the osculating initial δm is

converted to the mean δm using Eq. (2.30). The STTs are propagated to the desired time using the

mean dynamics generated STT EOMs. The δm and P are mapped to this time using Eq. (2.43)

and Eq. (2.44). Then, the short-period variations are added to δm to achieve the osculating state
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mean using Eq. 2.34. This process is similar to that described previously in Figure 2.2, simply

replacing the numerical propagation with the STT mapping.

2.3.3.4 Cislunar Space: Circular Restricted Three-Body Problem

In the CR3BP, the STTs are again propagated numerically using the STT EOMs (Eq. (2.41)),

which are calculated using the LDTs. The CR3BP dynamics solution flow from Eq. (2.37) is used

to compute the LDTs from Eq. (2.40) in the Delaunay frame:

A1st =
∂f(x)

∂x
, A2nd =

∂A1st

∂x
, ... (2.49)

Once the STTs are mapped to the desired time, the moments of the PDF (δm and P ) can

simply be mapped to this time using Eq. (2.43) and Eq. (2.44)

2.4 Conclusion

In this chapter, a variety of dynamical systems are presented for use in near-Earth and

cislunar domains including; Two-Body Problem (2BP) dynamics, J2 secular dynamics, a Simplified

Dynamical System (SDS), and the Circular Restricted Three-Body Problem (CR3BP). A method is

developed to propagate the system probability density function (PDF) by direct moment mapping

using State Transition Tensors (STTs). STTs are higher order Taylor series expansions of the system

dynamical flow. After a mathematical background on STT calculations, equations are defined to

propagated mean and covariance associated with a system PDF. Then, STT computations are

defined for different dynamical systems of choice.



Chapter 3

Semi-Analytical Propagation of Uncertainty

In this chapter, we define a method of state and uncertainty propagation that combines two

mathematical tools: Gaussian Mixture Models (GMMs) and State Transition Tensors (STTs). The

initial Gaussian uncertainty of an object can be split into smaller Gaussian distributions using

GMM splitting. These smaller distributions preserve linearity for longer propagation times. STTs

are used to propagate these small individual GMM component distributions to the desired time.

Smaller distributions have a multi-fold purpose: due to their preservation of linearity they can be

more accurately mapped using lower order STTs, allowing lower computation costs; and the nearly-

Gaussian final individual GMM components can later be combined with conjunction methods that

assume Gaussian uncertainty for the objects in conjunction. A benefit of this method is that the

number of GMM components can be easily increased, without a major impact on the computation

time.

The outline of this chapter is as follows. First, the mathematical definition of GMMs is pre-

sented. This is followed by GMM splitting techniques. The GMM split is applied in the equinoctial

frame in near-Earth space using a suboptimal algorithm from Horwood et al. [39], that extends

a univariate library to apply it to a multi-directional split. A similar splitting process is imple-

mented in the cislunar space in the Cartesian frame using a combination of methods from Huber et

al. [40] and Vittaldev et al. [81, 80]. Then, the combination of these GMMs with STTs is defined

to achieve propagation with different dynamical systems. Lastly, two examples are presented, one

each in near-Earth and cislunar space, that demonstrate the ability of this uncertainty propagation
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method by validating it against numerically propagated distributions.

3.1 Gaussian Mixture Models

Given a mean (m) and covariance (P ) associated with an object at a given time, the Gaussian

PDF is defined as follows, where N is the dimension of the random variable, x:

pg(x) =
1√

(2π)N |P |
exp

{
−1

2
(x−m)TP−1(x−m)

}
(3.1)

This system PDF of x can also be expressed as a uniformly converging series of n Gaussian

PDFs, or GMMs, as shown below [34, 28]:

p(x) =
n∑

α=1

wαpg(x;µα,P α) (3.2)

where the weights associated with each GMM component are defined as:

0 ≤ wα ≤ 1, i ∈ {1, 2, 3, ...n} (3.3a)

n∑
α=1

wα = 1 (3.3b)

Here, µα and P α are the means and covariances of the αth GMM component.

A graphic of a nine-component GMM split is shown in Figure 3.1a. Here, the satellite

denotes the nominal state and the largest black ellipse represents the full uncertainty. The black

plus signs and the smaller ellipses correspond to the means and covariances associated with the

GMM components, respectively. The Figure shows weight gradation, where darker colors represent

higher component weights centered near the nominal. As previously explained, each individual

GMM component mean and covariance can be propagated to the final time and the weighted

sum of the final components (Eq. (3.2)) equals the final nonlinear distribution. Figure 3.1b shows

that even though each individual GMM component stays nearly Gaussian, the final non-Gaussian

distribution is captured by the combination of the propagated GMM components.
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(a) Gaussian split. The darker the blue of each
component, the higher the associated weight.

(b) Propagated GMM captures the non-
Gaussian evolution of the distribution.

Figure 3.1: These figures show the initial and final distributions constituting the GMM components.

The main reason behind performing such a split is to allow for “smaller” distributions to

be accurately mapped to a future time, which ensures that the linearity is preserved for a longer

amount of time. This way each propagated small distribution remains approximately Gaussian

for an accurate analytical conjunction analysis. The next section defines how this split can be

performed to retrieve weights, means, and covariances that can be combined in a weighted sum to

fully capture the distribution PDF.

3.2 Gaussian Mixture Model Splitting Methods

In this section, a variety of GMM splitting methods are defined that can accurately capture

the PDF of the distribution.

3.2.1 Near-Earth Region

Generally, the distribution is split along the direction of largest nonlinearity growth, so that

the components can be stretched along that direction. A concern with using Cartesian elements

is that nonlinearity grows in all six dimensions. This is why alternate element sets are considered

in near-Earth GMM splitting. In the equinoctial orbital elements, nonlinearity only grows in the

mean anomaly direction, when using Keplerian dynamics. With non-Keplerian dynamics, such as

perturbations from J2 and SRP, the nonlinearity still grows in that one dimension, with nearly-
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linear propagation in the other five dimensions. Due to this smoothing effect, element sets such as

the equinoctial element set are used in GMM splitting.

This growth of nonlinearity in one dimension means that in the near-Earth space, the GMM

split can be a convenient unidirectional split with the use of the equinoctial set, that allow the

largest uncertainty growth to be restricted to one dimension of the set. Horwood et al. [39] cre-

ated a sub-optimal algorithm that can be used to split the distribution into a desired number of

components. In applications of this GMM splitting, there need to be enough GMM components

to completely capture the full distribution. More GMM components imply that each GMM com-

ponent has a smaller associated covariance. Appropriate number of components allow for accurate

propagation and coverage of the entire distribution. The weights, means, and covariances of the

GMM components are computed using the Horwood algorithm. Figure 3.2 shows the weight dis-

tribution of a 37 component split, with respect to the component means. As expected, the highest

weighted component is nearest to the nominal trajectory and the further the component gets from

the nominal, the lower the associated weight. This is clear from Figure 3.2, where the weight

reduces exponentially the further you move from the center. The GMM split can be verified by

comparing the PDF of the total distribution to the weighted sum of the GMM component PDFs

(Eq. (3.2)).

Figure 3.2: The distribution of weights relative to the means of GMM components. [49]
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The optimization problem defined by Horwood et al. [39] is based in equinoctial frame to

allow the nonlinearity to be bound in one direction to allow a simple one-direction split that can

later be extended over the six-dimensional space. The L2 optimization problem introduced is solved

once offline to generate the univariate weights, means, and standard deviation to allow easy use

online. To avoid the complications that come with a non-smooth nonlinear optimization problem,

this method uses a suboptimal solution based on a cost function that compares the moments

of the total distribution with the summed total distribution. The refinement happens along the

semi-major axis direction to limit the uncertainty growth in-track. There are a few assumptions

made for simplification. One is that the means are fixed using a chosen value depending on the

standard deviation, and therefore the optimization is over weights only. Covariance sizes of all

GMM components are also set to be equal. Also the weights are restricted to between 0 and 1 and

the sum of weights is set to 1. All these simplifications work towards a ”fitting” problem to have

weights and means assigned to each component in turn also generating the same smaller covariance

for each GMM component. The Horwood suboptimal algorithm is adopted using a parameter, m

(use m = 4 for less than 17 components and m = 6 for a larger number of components), to initiate

the splitting process. Based on this, the following algorithm is set up.

The standard deviation is computed using:

σ =
2m

N − 1
(3.4)

where, N is the number of GMM components to split into.

For α = 1, ..., N , the univariate means can be calculated using:

µα = −m+ σ(α− 1) (3.5)

These weights, means, and σ can be used to compute matrix (M)αβ = N (να − νβ; 0, 2σ
2)

and vector (n)α = N (να; 0, σ
2 + 1) using function normpdf. An optimization problem is set

up using quadprog, with ‘ConstraintTolerance’ of 10−25 and ‘OptimalityTolerance’ of 10−25 to
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minimize: 1
2w

TMw − wTn over w subject to constraints:
∑N

α=1wα = 1 and wα ≥ 0, where

α = 1, ..., N . For same α, calculate w̃α =
√
2π√

1−σ2
wαexp

[
µ2
α

2(1−σ2)

]
, µ̃α = µα

1−σ2 , and σ̃2 = σ2

1−σ2 .

Compute µ̂α = ν1 +
√
Q1µ̃α, ŵα = w̃α, and σ̂

2 = σ̃2Q11.

Based on this, the GMM component covariance becomes: Q̄ = (σ̂−2e1e
T
1 +Q−1)−1, the GMM

component means are: ν̄α = Q̄(σ̂−2µ̂αe1+Q−1ν), and w̄α = ŵαN (µ̂α−eT1 ν; 0, σ̂
2+eT1 Qe1), where

e1 = (1, 0, ..., 0)T ∈ R. Lastly, re-normalize the weights: w̄α = w̄α/
∑N

β=1 w̄β.

This algorithm outputs the desired weights, means, and covariances for a GMM mixture with

N components.

3.2.2 Cislunar Region

Previous works [39] have developed efficient methods of using one-dimensional GMM splitting

that can then be extended to achieve the full six-dimensional sets of each component. Work by

Horwood et al. [39] performs such a one-dimension split for an equinoctial element set in near-

Earth applications. In cislunar space, the initial distribution needs to be split in the Cartesian

frame, where nonlinearity grows in all six-dimensions. This means that the direction chosen for the

unidirectional split becomes important to capture the largest direction of nonlinearity growth.

The multivariate Gaussian distribution in cislunar space is approximated by GMMs by ap-

plying a unidirectional splitting library along a desired direction. The univariate splitting library,

precomputed in Huber et al. [40] for up to 39 components, defines the locations of means, weights,

and standard deviations to approximate the standard normal distribution. The multi-directional

split is achieved by applying this library along a desired column of the covariance matrix of the initial

Gaussian distribution. The multivariate split ensures a better approximation of the non-Gaussian

final PDF. To achieve the best split to capture this final non-Gaussian PDF, it is essential to apply

the univariate library in the direction of largest nonlinear behaviour.

Huber et al. [40] and DeMars et al. [25] use eigen factorization of the initial covariance ma-

trix to account for the largest direction of nonlinearity. The eigenvector associated with the largest

eigenvalue of this initial covariance matrix provides the direction of largest initial uncertainty, mean-
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ing that the GMM components get spread out over this largest uncertainty nonlinearity direction

at the initial split. In this section, eigen factorization is one of the methods used to select the

direction of GMM splitting. Eq. (3.6) shows the eigen decomposition of the covariance matrix, P :

P = V ΛV T (3.6)

Here, V is a matrix containing all eigenvectors of the covariance matrix. Λ is a diagonal

matrix whose diagonal elements correspond to the eigenvalues of the matrix.

Although a great preliminary splitting direction, the eigen factorization of the initial covari-

ance matrix only gives us the largest nonlinearity direction of the initially chosen covariance. It

does not consider the largest direction of nonlinearity growth because of the system dynamics. In

many problems, where the covariance is large, this can be sufficient to capture the spread of the

propagated uncertainty. However, in some cases, with smaller initial covariances and/or long prop-

agation times, it is also important to consider the nonlinearity growth direction based on the system

dynamics. Therefore, another method is tested where the eigen decomposition of the propagated

covariance is used to determine the direction of split. This leads to the coverage of the nonlinearity

from the covariance size and STT nonlinearity growth direction.

Eigen factorization is just one method that allows a direction selection for the GMM split. It

is important to have a parameter that can be used to compute the nonlinearity growth in different

directions to quantify the most useful direction to split the GMM. To quantify the nonlinearity

growth in different test directions, Vittaldev et al. [81] develops a nonlinearity metric that deviates

the nominal trajectory in the chosen test direction and propagates the deviated trajectory to

compute the offset from the nominal at the final time. This allows the nonlinearity growth to be

captured. Vittaldev et al. [81] recommends testing along the following directions: rx, ry, rz, vx,

vy, vz, rr, rv, rh, rt, vr, vv, vh, vt. Here, the last eight vector subscripts r, v, h, and t stand for

the position and velocity vectors computed along unit vector directions of: r, v, h = r × v, and

t = h × r, respectively. The splitting direction choice is based on the direction associated with
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the largest value of the nonlinearity parameter from Vittaldev et al. [81], among the test directions

mentioned above. In addition to these test directions, our paper also tests this parameter using the

initial eigen vectors and the propagated covariance eigen vectors.

The Vittaldev nonlinearity parameter [79] for any chosen direction, a, is defined as follows,

with deviations measured about the nominal initial state, x̄:

ϕ =

∣∣∣∣∣
∣∣∣∣∣f(x̄+ h̃σ||ââ) + f(x̄− h̃σ||ââ)− 2f(x̄)

2h̃2

∣∣∣∣∣
∣∣∣∣∣
2

(3.7)

where h̃ =
√
3 and

σ||â = ||S−1â||−1
2 (3.8)

Here, S is the square-root factor of the covariance matrix, P , such that P = SST .

Larger values of ϕ correspond to more nonlinear behaviour, whereas smaller values correspond

to less nonlinearity. Upon testing different directions with this metric, the split is performed along

the direction with the largest ϕ value, indicating the largest nonlinearity growth direction. This also

introduces the possibility of multi-directional splits, by allowing the ranking of different directions

by their nonlinear behaviours. For instance, if the highest two ϕ values are close to each other, the

split can be performed in both directions one after the other to capture nonlinearity growth more

closely [81].

Once a direction of splitting is established, the splitting can be performed as follows:

mi = m+miSâ∗ (3.9a)

P i = S[I6 + (σ2i − 1)â∗â
T
∗ ]S

T (3.9b)

Here, m is the nominal state and mi and P i are the mean and covariance associated with

the ith GMM component, respectively. The vector â∗ is:

â∗ =
S−1a

|S−1a|
(3.10)
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mi, σi, and weights associated with each component are introduced from the precomputed

libraries from Huber et al. [40].

3.3 Combining Gaussian Mixture Models and State Transition Tensors

As described in the previous chapter, STTs can be computed using the chosen dynamics in

near-Earth and cislunar space. These STTs are used to map the means and covariances of the

GMM components to the desired time. This mapping is performed using:

δmα
i (t) =

m∑
p=1

1

p!
Φi,k1...kp E[δx0

k1 ...δx
0
kp ] (3.11a)

P α
ij(t) =

(
m∑
p=1

m∑
q=1

1

p!q!
Φi,k1...kpΦj,l1...lqE[δx0

k1 ...δx
0
kpδx

0
l1 ...δx

0
lq ]

)
− δmi(t)δmj(t) (3.11b)

Here, m stands for the order of STT being used, which is two in this case. i, j, kb, and

lc represent the ith, jth, kthb , and lthc elements of the state vector, respectively. δmα is the mean

offset and P α is the covariance of the αth GMM component of the distribution. E represents the

moments of the distribution [67], as defined in Eq. (2.45).

The GMM components are individually propagated using STTs to capture the final nonlinear

uncertainty distribution. Each GMM component mean and covariance is individually propagated

using STTs. The final distribution is captured by a weighted sum of these propagated GMM

components. Figure 3.3 demonstrates the nonlinear evolution of the distribution and its capture

using the GMM-STT propagation.

Figure 3.3: Propagation of uncertainty using the GMM-STT method. [49]
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As described in the previous chapter, the 2BP and J2 secular STTs are purely time-dependent

and computed analytically. On the other hand, the Simplified Dynamics System (SDS) and Circular

Restricted Three-Body Problem (CR3BP) STTs are computed by propagating the STT Equations

of Motion (EOMs). In each condition, these propagated STTs are used to map GMM components

to the desired final time. The mapping in 2BP dynamics, J2 dynamics, and CR3BP dynamics in

straight forward. Whereas, combining SDS with the GMM-STT propagation is more complex.

To utilise the SDS dynamics with this GMM-STT uncertainty propagation method, the initial

state is converted from osculating to mean elements to ensure that the propagation is performed

in the mean element space. Once the δm and P are mapped to the desired time, the short-

period variations are added to δm to achieve the osculating state mean. Figure 3.4 summarises the

propagation process. The initially offset mean of the GMM component is mapped with the mean

dynamics STT, then offset using the short-period analytical equations to get the final osculating

GMM mean. This is similar to the description in Figure 2.2, except for the mapping of the

component mean to the final time using STTs.

Figure 3.4: The final δmf added to the nominal final state gives the final averaged GMM component
mean. To improve accuracy, this final SDS mean state is converted to its corresponding osculating
state to get the final GMM component mean [50].

The application of GMM-STT analytical or semi-analytical propagation in near-Earth space

can be simply achieved by propagating these GMM components using the STT computed using

the nominal trajectory. In cislunar environment, the process becomes more complex due to the

chaotic nature of dynamics in that region. A way to capture the motion for GMM distributions

further away from the nominal trajectory is to compute these STTs more locally around the GMM

means of each GMM distribution. This GMM-STT semi-analytical process of propagation using



42

non-nominal STTs is demonstrated further in the following sections.

The second order STT sufficiently captures the nonlinearity in mapping for the short-duration

or short-term conjunctions. Even for long-term conjunctions, second order STTs give statistically

good results, but with lower associate uncertainties, possibly indicating a need for higher order

STTs for accurate mapping. This will demonstrated in more detail in later chapters.

3.4 Uncertainty Propagation using Gaussian Mixture Models and State

Transition Tensors

Previous sections in this chapter define GMMs, describe the splitting methods to achieve

GMMs, and list the equations used to propagate the GMM components. In this section, exam-

ples from near-Earth and cislunar regions are generated to understand the capture of nonlinear

behaviour in the propagated distribution through these splitting processes.

3.4.1 Near-Earth Case

First, a test case is introduced in near-Earth space using simple 2BP dynamics and the

Horwood splitting method. The orbital elements at epoch are listed in Table 3.1 and the initial

covariance is non-diagonal of the order of 100 m in position and 10 cm/s in velocity. This state and

uncertainty is split into a GMM mixture using the suboptimal Horwood algorithm [39] described

in the previous section. The means, weights, and standard deviation library generated for a 15

component split at the epoch are shown in Table 3.2.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)

8000 0.15 60 0 0 0

Table 3.1: Orbital Elements at epoch for the near-Earth GMM-STT propagation test.

A thousand points chosen from the initial distribution are propagated numerically for seven

orbit periods, approximately 14 hours, using 2BP solution flow from Eq. (2.2). Then, the 15 initial

GMM means and covariances form the splitting process are propagated using Eq. (3.11) with 2BP
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GMM Component (i) σi wi mi

1 0.57143 2.1567e-06 -4
2 0.57143 4.4497e-05 -3.4286
3 0.57143 0.00064899 -2.8571
4 0.57143 0.0057422 -2.2857
5 0.57143 0.031346 -1.7143
6 0.57143 0.10533 -1.1429
7 0.57143 0.21799 -0.57143
8 0.57143 0.27779 0
9 0.57143 0.21799 0.57143
10 0.57143 0.10533 1.1429
11 0.57143 0.031346 1.7143
12 0.57143 0.0057422 2.2857
13 0.57143 0.00064899 2.8571
14 0.57143 4.4497e-05 3.4286
15 0.57143 2.1567e-06 4

Table 3.2: Univariate split library for near-Earth test case.

STTs from Eq. (2.46) calculated about the nominal trajectory. These numerically propagated

points and analytically propagated means and covariances are plotted in Figure 3.5.

Figure 3.5: GMM-STT propagated example. Here, the 1000 yellow dots represent the MC prop-
agated points, the black plus symbols represent the propagated GMM component means and the
blue ellipses represent the propagated component covariances.

It is clear that the means and covariances fully capture the distribution in an expected

manner, where the nonlinearity of the distribution is captured by the propagated GMM components.

The Horwood algorithm gives a nice coverage to the distributions. The propagated covariances will

be compared to compute the probability of collision and tested for statistical accuracy in later

chapters. In addition to the 2BP dynamics, cases will also be presented with J2 secular dynamics
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and the SDS.

3.4.2 Cislunar Case

In the cislunar test case, it is important to test the different splitting directions to ensure the

validity of the nonlinearity parameter from Vittaldev et al. [81]. In addition to this, an interesting

observation was that the STT calculated using the nominal trajectory did not account for the

nonlinear growth in the dynamics. The reason for this is likely the chaotic dynamical environment

in cislunar space. To circumvent this issue, the STTs are computed at the means associated with

each GMM for the highest level of accuracy. In this subsection, a test case is presented where

different directions of GMM splitting are tested for accurate capture of the nonlinear evolution,

and a comparison is shown between the GMMs propagated with the nominal STT and the GMMs

propagated with the non-nominal STTs calculated with the individual GMM mean trajectories.

The state at epoch is shown in Table 3.3 and a diagonal covariance is chosen to be 315 m in

position and 3.15 mm/s in velocity. The initial distribution is split into an 11 component GMM

using the univariate library from Huber et al. [40], with the standard deviation, weights, and means

shown in Table 3.4.

State [nd] x y z ẋ ẏ ż

0.9874 -4.9076E-05 0.0085907 0.049661 1.60214 0.015030

Table 3.3: State at epoch for cislunar GMM-STT propagation test.

To perform the split, the nonlinearity parameter from Eq. (3.7) is computed for all the chosen

test directions previously defined. Table 3.5 shows the computed ϕ values in each of these directions.

The smallest and largest ϕ values are considered to see the worst and best capture of the nonlinear

behaviour with the GMM-STT propagation method, respectively. In this test case, The direction

that should perform the worst is vh, and the direction that should best capture the nonlinear

evolution of the distribution is rv.
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GMM Component (i) σi wi mi

1 0.30151 0.0061199 -2.6705
2 0.30151 0.02545 -2.0287
3 0.30151 0.066272 -1.4777
4 0.30151 0.12422 -0.96797
5 0.30151 0.17792 -0.47937
6 0.30151 0.20003 0
7 0.30151 0.17792 0.47937
8 0.30151 0.12422 0.96797
9 0.30151 0.066272 1.4777
10 0.30151 0.02545 2.0287
11 0.30151 0.0061199 2.6705

Table 3.4: Univariate split library for cislunar test case.

GMM split direction Nonlinearity Parameter (ϕ)

rx 0.00010766
ry 7.6303E-05
rz 0.00017149
vx 1.1993E-06
vy 1.634E-06
vz 2.5246E-05
rr 0.00011823
rv 0.00027509
rh 2.1979E-05
rt 0.00021521
vr 1.5672E-06
vv 2.8021E-05
vh 3.5355E-08
vt 2.6484E-05

eig0 1.1993E-06
eigT 2.2609E-05

Table 3.5: Directions and nonlinear parameter values from Eq. (3.7).

500 trajectories from this initial distribution are propagated numerically for approximately

ten days using CR3BP dynamics from Eq. (2.37). Then, 11 GMM components from the initial GMM

split are propagated for the same time period using Eq. (3.11) with CR3BP STTs from the previous

section calculated at individual GMM means. The multi-directional split is first implemented using

the smallest nonlinearity parameter ϕ direction (vh) indicating the smallest direction of nonlinearity

growth. This is purely to see an inaccurate capture of the nonlinear behaviour of the propagated

distribution. Figure 3.6 shows the GMM components propagated using STTs mapped over the

numerically propagated points.
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Figure 3.6: GMM-STT propagated example in cislunar space using the lowest ϕ or the smallest
nonlinearity growth direction mapped with the non-nominal STTs. Here, the 500 yellow dots repre-
sent the MC propagated points, the black plus symbols represent the propagated GMM component
means and the blue ellipses represent the propagated component covariances.

For the second test, the same split is performed in the direction associated with the largest ϕ

(rv) indicating the capture of the most nonlinearity growth. Figure 3.7 plots the new split propa-

gated components overlapping the numerically propagated distribution. Figure 3.7 demonstrated a

much better visual capture of the six-dimensional distribution after propagation. This shows that

using the largest direction of nonlinearity from the test directions does provide a better estimate

of the final nonlinear distribution.

Now that a direction of split is established, a similar run is performed with 11 GMM com-

ponents split along the highest direction of nonlinearity mapped using the STT propagated about

the nominal trajectory. Figure 3.8 plots the new split propagated components overlapping the

numerically propagated distribution. It is clear that the nominal STT is not enough to capture the

nonlinear evolution of the distribution in the cislunar environment.

In summary, in cislunar GMM-STT propagation it is important to use the STTs computed

about the non-nominal individual GMM means to fully capture the evolution of the distribution.
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Figure 3.7: GMM-STT propagated example in cislunar space using the highest ϕ or the largest
nonlinearity growth direction mapped with the non-nominal STTs. Here, the 500 yellow dots repre-
sent the MC propagated points, the black plus symbols represent the propagated GMM component
means and the blue ellipses represent the propagated component covariances.

Figure 3.8: GMM-STT propagated example in cislunar space using the highest ϕ or the largest
nonlinearity growth direction mapped with the nominal STTs. Here, the 500 yellow dots represent
the MC propagated points, the black plus symbols represent the propagated GMM component
means and the blue ellipses represent the propagated component covariances.
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In addition to this, it is crucial that the GMM split is performed along the largest direction

of nonlinearity growth which can be established using nonlinearity parameters, such as the one

developed by Vittaldev et al. [81].

3.5 Conclusion

This chapter describes a method that combines Gaussian Mixture Models (GMMs) and State

Transition Tensors (STTs) to map a distribution to the final time, and accurately capture the

nonlinear behaviour of the uncertainty evolution. An initial distribution is split into a Gaussian

mixture using a suboptimal algorithm in the equinoctial frame in the near-Earth space and a multi-

directional splitting method in the Cartesian frame in the cislunar space. These GMM components

from the split are mapped using analytically computed STTs when using the Two-Body dynamics

and J2 Secular dynamics; or using semi-analytically computed STTs when using the Simplified

Dynamics System or the Circular Restricted Three-Body Problem.

The final GMM components, when combined, represent a nonlinear final distribution which

captures the boundaries of the numerically propagated population. This GMM-STT method is key

to a fast and accurate alternate method to propagate an initial distribution. Multiple methods

of splitting a GMM are described for near-Earth and cislunar space. Lastly, two test cases are

presented in near-Earth and cislunar regions to demonstrate the GMM-STT mapping method and

the capture of the final distribution.



Chapter 4

Probability of Collision

An important application of accurate uncertainty tracking is in the field of conjunction assess-

ment. Historically, Monte Carlo numerical methods are used to compute the probability of collision

between two objects by propagating a point cloud from the initial uncertainty of each object. With

a large number of trajectories these methods [4] provide accurate probability of collision results,

but are computationally expensive. To surpass this expense, analytical formulas are developed

that use the means and covariances of the two object distributions at the time of closest approach

to approximate the probability of collision [32, 5, 19, 18, 21, 28]. It is important to consider the

assumptions associated with each of these methods to understand applicability.

In this chapter, a hybrid conjunction analysis method is developed with the semi-analytical

uncertainty propagation using Gaussian Mixture Models (GMMs) and State Transition Tensors

(STTs) that allows the use of propagated state and uncertainty information in a combination with

an analytical probability of collision formula. This Chapter first defines the necessity of accurate

uncertainty propagation method in conjunction analysis. It then categorizes collisions into two

types: short-term and long-term conjunctions, depending on the conjunction duration. After this,

two main probability of collision methods are defined: 1) the numerical Monte Carlo analysis that

is considered to be the baseline truth and 2) the hybrid conjunction analysis method.
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4.1 Uncertainty Propagation in Conjunction Analysis

As described in previous chapters, uncertainty becomes non-Gaussian when propagated with

nonlinear orbit dynamics. In two dimensions this looks like an evolution from an ellipse to a crescent

shape. Even if the nominal trajectories of two objects do not cross, an overlap in this propagated

uncertainty can lead to a conjunction (Figure 4.1). Due to this uncertainty distortion, it becomes

important to incorporate the non-Gaussian nature of the propagated uncertainty in conjunction

assessment methods for accurate probability of collision calculations.

Figure 4.1: Uncertainty overlap at a future time. The initially Gaussian uncertainty distributions
loose their Gaussianity when propagated using nonlinear dynamics. A conjunction can occur when
there is an overlap in object uncertainties. [50]

Numerical Monte Carlo methods propagate a large number of points from the initial un-

certainty of the two objects using the system dynamics to capture the nonlinear evolution of the

distribution in time. With enough points, the non-Gaussian behaviour of the distribution is cap-

tured accurately. The points from the two objects are compared at their respective times of closest

approach to achieve a probability of collision. More and more points are needed as the propagation

time increases or the overlap between the two objects reduces to accurately capture the probability

of collision.
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To achieve the same nonlinear capture using analytical conjunction methods, it is important

to consider the loss of accuracy that comes with some analytical propagation methods. Several

analytical and semi-analytical methods can be used to propagate the object distributions, achieve

a time of closest approach, and compute the probability [58]. Many of these methods assume a

Gaussian distribution associated with the objects in conjunction at the time of closest approach,

which can lead to oversimplification of the conjunction analysis problem due to the nonlinear be-

haviour in orbital dynamics and non-Gaussian evolution of uncertainty. To avoid this, it is essential

to capture the nonlinear evolution of uncertainties accurately and to evaluate the conjunction con-

sidering non-Gaussian distributions at the time of closest approach. One such method is discussed

in the later sections.

4.2 Conjunction Models

There are two encounter models that are defined based on the duration of the conjunction.

The short-term conjunctions are of short or instantaneous duration, such that the objects pass each

other quickly, and assume rectilinear motion for the two objects at the point of closest approach [5,

32, 58]. The long-term conjunctions span over longer conjunction times, meaning that the object

uncertainty distributions need to be compared over longer time periods [18, 21, 10, 58]. This makes

the long-term conjunction problem much more complex.

4.2.1 Short-Term Conjunctions

A conjunction is considered to be short-term if the encounter time is very short, ranging

from a fraction of a second to a few seconds [58]. This means that the relative velocity between the

two objects is very large, such that the motion near the conjunction time is considered as uniform

rectilinear motion [5]. The position uncertainty is considered to be constant due to the short

duration and the velocity uncertainty to be negligible due to a comparatively high relative velocity.

These simplifications allow the use of simple analytical conjunction analysis techniques [32, 5, 22,

21, 3] in evaluating short-term conjunctions.
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Figure 4.2 shows an example of a short-term conjunction. Figure 4.2a shows trajectories of

the two objects that cross at a singular point. Figure 4.2b shows the relative distance between the

two objects in conjunction with respect to the orbit periods of object 1. This relative distance plot

is over 3 days, with the nominal time of closest approach between the trajectories at 1.5 days from

epoch. The plot shows a quick dip in the relative distance of the two objects. The short-duration

pass means that the velocity uncertainty is insignificant compared to the position uncertainty [22] in

the small encounter time. In addition to this, the uncertainty ellipsoid can be considered constant

over time [22].

(a) An example of a short-term conjunction. Or-
bits, initial locations, and nominal conjunction
points of the two objects. [50]

(b) Relative distance between objects in conjunc-
tion.

Figure 4.2: Short-term conjunction example. (a): The blue ellipse is the trajectory of object 1,
whereas the yellow is the trajectory of object 2. The black point is the initial location of object 1,
and the red is the initial location of object 2. The violet star is the nominal conjunction point of
the two objects. (b): Relative distance between the two objects over 3 days.

In such short-term encounters, simplified techniques are used to evaluate the conjunction.

Typically, a two-dimensional integral in the encounter plane is used to calculate the collision prob-

ability [32, 5]. In this encounter plane, the axes are oriented along the relative position and the

relative velocity directions.
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4.2.2 Long-Term Conjunctions

When it comes to long-term encounters, a lot of the assumptions made for short-term en-

counters are no longer valid, adding complexity to the problem. For instance, velocity uncertainty

can no longer be ignored and the full state uncertainty ellipsoid can no longer be assumed constant

over the conjunction period.

An example of such a long-term conjunction is shown in Figure 4.3. Figure 4.3a shows the

trajectories of the two objects and Figure 4.3b shows the distance between the two objects in

conjunction with respect to the orbit periods of the primary over 3 days. Same as the short-term

example in Figure 4.2, the nominal time of closest approach is 1.5 days after the epoch. The two

objects stay in the vicinity of each other for a long time with a slow dip in the relative distance. The

red dashed line in Figure 4.3b shows an arbitrary threshold, below which the objects are considered

to be in a conjunction. This threshold is specified based on the uncertainty associated with the

object states.

(a) Long-term conjunction example. [51]
(b) Relative distance between objects in conjunc-
tion. [51]

Figure 4.3: Long-term conjunction example. (a): Orbits, initial locations, and nominal conjunction
points of the two objects. The blue ellipse is the trajectory of object 1, whereas the yellow is the
trajectory of object 2. The black point is the initial location of object 1, and the red is the initial
location of object 2. The violet star is the nominal conjunction point of the two objects. The
black stars show the beginning and end of the conjunction. (b): Relative distance between the two
objects over 3 days. Red dashed line represents an arbitrary line of the distance below which the
objects are considered to be in a conjunction.

In a long-term conjunction, the period of time in close proximity is non-instantaneous. This
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means that we need an additional integration for the change in the six-dimensional uncertainty

ellipsoid over the period of conjunction.

4.3 Monte Carlo Method

The Monte Carlo analysis use a point cloud generated from the object uncertainty and prop-

agates this forward to capture the final uncertainty distribution. In collision analysis applications,

the uncertainty of the two objects in conjunction are propagated forward using numerical propaga-

tion and compared to get the probability of collision [2]. With enough points, usually a significant

amount of points, the Monte Carlo analysis gives a true solution to compare other probability of

collision results against [26].

First, the actual time of closest approach is calculated between the chosen pair of trajectories

in the Monte Carlo evaluation. The actual time of closest approach is computed using a simple

stepping method [1] in case of the short-term encounters because the pass is instantaneous, leading

to a drastic drop in the relative position. The time step is simply:

∆t =
∆r.∆v

|∆v|2
(4.1)

where ∆r and ∆v are the relative position and velocity vectors between the two objects,

respectively. The method is initiated with the nominal time of closest approach as the initial guess.

Each step brings the objects closer and reduces the step size. Once the step size reduces below a

small chosen threshold, the time is considered to have converged. This is the final time of closest

approach.

In case of long-term conjunctions, the stepping method fails because the drop in the relative

distance near the nominal time of closest approach is gradual. The MATLAB ‘event’ function is

used to find a global minima for the objects in these cases because the objects are in the proximity

for a longer period of time. This is also initiated using the nominal time of closest approach as the

starting point and moving away from the nominal time until the event function triggers a stopping
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point at a minima, which denotes the actual time of closest approach.

Once the actual time of closest approach is computed in either conjunction case, the distance

of closest approach (DCA) is compared to the combined radii of the two objects (R = r1 + r2).

If DCA is less than the combined radii, it’s considered to be a collision. This set of points is

discarded and a new set of points is chosen for the same evaluation. The number of points that

collide compared to the total number of points in the analysis (ten million) gives the total probability

of collision:

Pc,MC =
# Sample conjunctions where DCA <R

# Total conjunctions tested
(4.2)

Figure 4.4 summarises the Monte Carlo method of probability of collision calculations.

Figure 4.4: In the Monte Carlo method, (from left to right) points from initial distribution of
each object are propagated to the final time, where their distance of closest approach informs the
collision probability in a one-on-one analysis.

Adding confidence bounds around the Monte Carlo probability of collision allow a compar-

ison with other probability of collision methods. These bounds are computed using the normal

approximation of the binomial confidence interval [54].

CI = z

√
Pc,MC(1− Pc,MC)

y
(4.3)

Here, the z-value for a 95% confidence is 1.96. y is ten million, which denotes the total

number of Monte Carlo points in the analysis. If the probability of collision from the analytical

methods being tested falls within a confidence interval (CI) of the Monte Carlo probability of



56

collision (Pc,MC), it is considered to be accurate with a 95% confidence.

Pc,bounds = Pc,MC ± CI (4.4)

4.3.1 Test Case for Monte Carlo with the Simplified Dynamical System

The computational time with this Monte Carlo analysis increases with an increase in modeled

dynamics fidelity. When full J2 and Solar Radiation Pressure (SRP) perturbations are added, the

full dynamics Monte Carlo takes a long time to run. To ease the computational burden, a similar

Monte Carlo approach is developed using the Simplified Dynamical System (SDS). To use the SDS

for propagation in the Monte Carlo analysis, the osculating object states are converted to mean

states at epoch for propagation using mean dynamics and converted back to the osculating state

at the desired times for accurate distance of closest approach calculations. Work from Park and

Scheeres [65] shows that the SDS propagation is statistically accurate relative to the full dynamics

Monte Carlo. This reduces the computational burden tremendously, by outputting an accurate

truth probability of collision without the need to use the full system dynamics. The full dynamics

and the SDS dynamics Monte Carlo results are compared in a test cases to verify accuracy.

The orbital elements for the test case are shown in Table 4.1. The nominal time of closest

approach is at 1.5 days from epoch. The initial uncertainty associated with the two objects are of

the order of 100 m in position and 10 cm/s in velocity. The Monte Carlo method is run with 10

million points to evaluate the probability of collision using: 1) full dynamics with J2 and SRP and

2) SDS with J2 and SRP.

Table 4.1: Orbital Elements for the SDS Monte Carlo example.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)
Object 1 8000 0.15 60 0 0 0
Object 2 9843.3 0.241038 61.8685 -10.9875 55.5795 -87.5619

Table 4.2 shows the results from the two Monte Carlo runs. The collision probability from the

two runs with the full dynamics and the SDS dynamics differ by 4.40E−06. The SDS Monte Carlo
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collision probability does fit within the 97th percentile normal approximation confidence bounds

of the full dynamics Monte Carlo result. The Monte Carlo run with the SDS demonstrates a

significant computational burden reduction when compared to the full dynamics model.

Table 4.2: Probability of collision for the Monte Carlo method with different dynamics.

Dynamics Probability of collision Runtime (s)
Full Dynamics 4.67E-05 457302 (≈ 5.3 days)

SDS 5.11E-05 18888 (≈ 5.25 hours)

This result signifies that the Monte Carlo probability of collision evaluated using SDS can

be used as baseline truth to compare probability computed using analytical methods that use the

SDS. It also justifies the use of the SDS in combination with the GMM-STT propagation model.

4.4 The Hybrid Method of Uncertainty Propagation and Conjunction Anal-

ysis

In this section, a hybrid method of uncertainty propagation is combined with analytical con-

junction analysis methods to achieve a fast and accurate solution for collision probability. The

semi-analytical uncertainty propagation is performed by splitting the initial uncertainty of the ob-

jects in conjunction into a GMM and propagating individual GMM components using higher order

STTs. These previously defined mathematical concepts are combined with chosen dynamical mod-

els: two-body dynamics, J2 secular dynamics, a Simplified Dynamical System (SDS), or a Circular

Restricted Three-Body Problem (CR3BP) dynamics in case of cislunar space. In near-Earth ap-

plications, the SDS provides an efficient and accurate dynamical system that uses non-Keplerian

motion under perturbations due to J2 gravity field harmonics and Solar Radiation Pressure (SRP)

for propagation. This is achieved through propagation with averaged dynamics and addition of

analytical short-period variations at the final time for accuracy (Simplified Dynamical System +

short-period variations = SDS+SP dynamics). This combination of the GMM-STT model with the

SDS dynamics allows for real-world conjunction analysis applications of this method in near-Earth

space. The propagated GMM components associated with the non-Gaussian uncertainties of the
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two objects are compared to each other using analytical conjunction assessment formulas.

Most analytical equations of probability of collision evaluation assume a Gaussian distribution

for both objects in conjunction. In this work, the individual GMMs propagated using the STTs

stay nearly-Gaussian after propagation to the actual times of closest approach. This means that the

individual GMM components of the two objects can even be compared using probability of collision

methods that assume Gaussian distributions for the objects in conjunction. In this hybrid approach,

an all-on-all analysis is used to compute the probability of collision between each individual GMM

components associated with two objects in conjunction at their respective actual times of closest

approach using propagation with SDS-STTs. Then, these individual probabilities of collision are

combined using a double weighted sum using the GMM component weights associated with the

GMM components in comparison.

The typical approach to compare the individual GMM components depends on the duration

of the conjunction. In case of short-term conjunctions, there are several simple analytical proba-

bility of collision solutions that can be used to compare Gaussian distributions [58]. With enough

GMM components, each small distribution of a GMM components can be treated as a Gaussian

distribution, allowing easy comparisons with such analytical probability of collision techniques. On

the other hand, in case of the long-term conjunctions, the objects stay in the vicinity of each other

for longer duration, meaning that simplified short-term conjunction techniques can not be imple-

mented with ease. Very few analytical techniques for evaluation of long-term collision probability

exist [58]. Coppola’s triple integral formula [21] that takes into account both position and velocity

uncertainty is primarily used in long-term conjunction analysis. A key find in this research is that

these small GMM components, when compared individually for long-term probability of collision

calculations can be evaluated using simplified short-term conjunction formulas when these com-

ponents are “small enough”. This is because each individual interaction behaves as a short-term

conjunction.

Figure 4.5 summarises the hybrid method of uncertainty propagation and conjunction anal-

ysis for near-Earth and cislunar applications. In near-Earth applications, the initial cartesian
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distribution of the two objects is converted to the Equinoctial frame [12] to allow a split using a

suboptimal algorithm defined in Chapter 3. The individual components of this distribution are

propagated using the STTs computed with the chosen dynamics, as described in Chapter 2. The

final distribution is converted back to the cartesian frame for a comparison to evaluate the prob-

ability of collision. In cislunar space, the initial distribution in the cartesian frame is split into a

GMM (Chapter 3) which is propagated using the CR3BP STTs (Chapter 2). The final cartesian

GMM components are compared to evaluate the probability of collision.

Figure 4.5: Uncertainty propagation and conjunction assessment toolkit process summary.

Coppola’s triple integral [21] is a general approach that applies to all types of conjunctions.

Over the next sections, the general probability of collision from Coppola [21] is described, followed

by the modifications from DeMars [26] that add GMMs into this generalised formula. At the end

of this section, certain assumptions are made and applied to this formula to achieve the simplified

formula used in the hybrid collision probability analysis.

4.4.1 Coppola’s Conjunction Analysis Formula

Coppola proposed a probability of collision formula that uses the state and velocity uncer-

tainty of an object to evaluate the conjunction without restricting the relative motion of the two
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objects in conjunction [21]. The formula assumes Gaussian uncertainty for the duration of the con-

junction. This method of conjunction analysis tracks the influx of the relative position probability

distribution into a hardball of the combined radii of the two objects fixed at one of the objects

in conjunction [26, 21]. With simplification Coppola reduces a 12-dimensional integral into a 2-

dimensional integral of a sphere and a 1-dimensional integral of time. In application of the hybrid

method, the probability of collision at epoch is assumed to be zero, because the chosen nominal

conjunction time is chosen in the future. Coppola [21] uses the mean cartesian relative state of the

two objects (µ) and the combined covariance associated with them (P = P 1 + P 2) to defined the

probability of collision.

The six dimensional cartesian covariance can be split into four 3x3 parts:

P =

A BT

B C

 (4.5)

Here, A and C are symmetric positive-definite 3x3 matrices. The mean relative state can be

split into mean relative position (3x1) and mean relative velocity (3x1):

µ =

[
µr µv

]T
(4.6)

Using this relative state and combined covariances, Coppola [21] defines the probability of

collision as follows:

PI =

∫ t0+T

t0

∫ 2π

0

∫ π
2

−π
2

N3(r;µr(t),A(t))ν(r̂, t)R2 cos θ dθ dϕ dt (4.7)

Here, T is the duration of conjunction, r is the relative position between the two objects in

conjunction, µr(t) is the mean relative position, A(t) is the combined covariance of the relative

position, and ν(r̂, t) is a parameter introduced to account for combined velocity uncertainty. (θ,ϕ)

are spherical parameters parameterizing r̂. ν(r̂, t) is defined as follows:
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ν(r̂, t) =
σ(r̂, t)√

2π
H(ν̃) (4.8a)

H(ν̃) = e−ν̃2 −
√
πν̃(1− erf(ν̃)) (4.8b)

ν̃ =
ν0(r̂, t)√
2σ(r̂, t)

(4.8c)

ν0(r̂, t) = r̂T [µv +BA−1(Rr̂ − µr)] (4.8d)

Here, σ(r̂, t) is the standard deviation of the relative velocity uncertainty in the r̂ direction:

σ2 = r̂T (C −BA−1BT )r̂ (4.9)

DeMars et al. [26] applies this conjunction formula from Eq. (4.7) to a GMM distribution

such that the cumulative probability of collision can be computed using a double weighted sum

of the individual GMM component interactions. The next section shows the evolution of these

equations.

4.4.2 Combining General Conjunction Formula with GMMs

DeMars et al. [26] achieves this combination of collision probability equations with GMMs

by replacing the combined object pdf from Eq. (4.7) with the weighted sum pdf of the form of

Eq. (3.2).

The relative state of the second object at a time, t, (xb,t) relative to the first object (xa,t)

can be represented as:

xb,t = xa,t + xt (4.10)

The pdf of the relative state (xt) can be given by marginalization over xa,t:

p(xt) =

∫
p(xa,t,xb,t)dxa,t =

∫
p(xa,t,xa,t + xt)dxa,t (4.11)
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Each object pdf is then split into GMMs with La and Lb components respectively. w
(i)
a (t)

and w
(j)
b (t) are the weights associated with the ith and jth components of objects 1 and 2 respec-

tively. Assuming independent states, the product of the pdfs of the two objects can be defined by

substituting the individual pdfs with the weighted sums of GMM components of each object:

p(xa,t)p(xb,t) =

La∑
i=1

Lb∑
j=1

w(i)
a (t)w

(j)
b (t)pg(xa,t;m

(i)
a,t,P

(i)
a,t)pg(xa,t + xt;m

(j)
b,t ,P

(j)
b,t ) (4.12)

Following the steps from Coppola [21], the pdf from Eq. (4.7) can be substituted with a

combined pdf (left hand of Eq. (4.12)). The double weighted sum (right side of Eq. (4.12)) can

be introduced in place of the combined pdfs to achieve the new DeMars et al. [26] equation that

combines GMM distributions with Coppola’s probability of collision formula, as shown in Eq. (4.13).

p(xt) =

La∑
i=1

Lb∑
j=1

w(i)
a (t)w

(j)
b (t)pg(xt;µ

(ij)
t ,P

(ij)
t ) (4.13a)

Pc =

∫ t0+T

t0

R2
La∑
i=1

Lb∑
j=1

w(i)
a (t)w

(j)
b (t)

∫ 2π

0

∫ π
2

−π
2

N3(r;µ
(ij)
r (t),A(ij)(t))ν(r̂, t) cos θ dθ dϕ dt

(4.13b)

DeMars et al. [26] proposes using trapezoidal integration to perform the time integration and

methods like the Newton Cotes quadrature [68] to perform the spherical integration. This reduces

computational expense, while ensuring user defined accuracy. A major drawback to this approach

is that the time step in the trapezoidal integration is arbitrary, too small of a time step to increase

accuracy leads to an increase in computational expense. Lebedev’s grid [56] can be used to perform

the spherical integration for the probability of collision evaluation.

Due to the computational expense associated with the tedious triple integration, the formula

from Eq. (4.13) is investigated in more depth. As previously mentioned, when using the GMM-STT

uncertainty propagation method for long-term conjunction evaluation, individual GMM component

interactions start behaving like short-term interactions when there are enough GMM components
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split from the initial distribution. Next section shows the reduction of this general conjunction

formula defined in Eq. (4.13) to a short-term GMM component interaction formula.

4.4.3 New Approach to Improve Speed

The individual GMM component interactions are now introduced with a closer inspection

within the weighted sum. Firstly, in the case of short-term conjunctions, each individual interaction

uses nearly-Gaussian uncertainties at the times of closest approach to evaluate the probability of

collision. This means that the probability of collision within the weighted sum for these short-term

conjunctions can be simplified using assumptions including: rectilinear motion of the two objects

at the time of closest approach, no velocity uncertainty due to the short duration of the pass, and

a constant uncertainty ellipsoid over the short duration of the conjunction. These simplifications

are applied in this section to achieve a simple conjunction formula.

Secondly, in the case of long-term conjunctions, as the number of components increase in

the weighted sums of the two objects, the component covariance reduces in size, which results

in a decrease in the time of interaction between each component. This means that short-term

conjunction assumptions can be applied within the weighted sum for such short-duration component

interactions in the long-term conjunction assessment. Therefore, same as in the case of short-

term conjunctions, the probability of collision equations can be simplified further. These identical

reductions output a single simplified conjunction formula that applied to both, short-term and

long-term conjunctions.

In the hybrid method developed in this section, the GMM component weights are computed

at the epoch and remain constant throughout the propagation. This means that the probability of

collision equation from Eq. (4.13) can be rewritten as follows:

Pc =

La∑
i=1

Lb∑
j=1

w(i)
a w

(j)
b

∫ t0+T

t0

∫ 2π

0

∫ π
2

−π
2

N3(r;µ
(ij)
r (t),A(ij)(t))ν(r̂, t) R2 cos θ dθ dϕ dt (4.14)

Each interaction inside the weighted double sum is the same as the triple integral from
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Coppola’s general probability of collision equation from Eq. (4.7). Previous works from Foster [32]

and Alfriend et al. [5] show the reduction of such a general triple integral formula to a short-

term conjunction formula with the following simplifying assumptions: no velocity uncertainty, a

short encounter time, and that time integrates out. Applying these assumptions, Coppola [21]

reduces the general conjunction formula from Eq. (4.7) to a short-term conjunction formula. This

transformed short-term formula is a double integral over a circle of the combined radii projected

onto an encounter plane ([̂i; ĵ; k̂]):

i =
ρ0

ρ0
, j =

vR

vR
, k = i× j (4.15a)

Pc =

∫∫
|ζ|<R

N2(ζ,µζ0
,PC)dζ (4.15b)

Using the nominal time of closest approach, relative distance (ρ0) and relative velocity (vR).

Here, PC is the combined covariance of the relative position projected onto this plane. This

probability of collision formula can be re-written as follows:

Pc,ij =
1

2π
√

|P ∗|

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

exp (−A∗) dz dx (4.16)

The relative state and combined covariance are transformed into the encounter frame and

the probability of collision is computed using the relative position of the two objects at the nominal

time of closest approach (s0) and the actual time of closest approach (s).

s = xi+ zk, s0 = x0i+ z0k (4.17a)

A∗ = (s− s0)
TP ∗−1(s− s0)/2 (4.17b)

Pc,ij =
1

2π
√

|P ∗|

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

exp (−A∗) dz dx (4.17c)

Same as before, the cumulative probability of collision is calculated using the double weighted

sum of these individual GMM component interactions. Eq. (4.14) can be re-written using the

shortened probability of collision formula as shown in Eq. (4.18).
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Pc =

La∑
i=1

Lb∑
j=1

w(i)
a w

(j)
b Pc,ij

=
1

2π
√

|P ∗|

La∑
i=1

Lb∑
j=1

w(i)
a w

(j)
b

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

exp (−A∗,ij) dz dx (4.18)

Note that this is a simplified version of Eq. (4.14). This is a very powerful result that allows

short-term analytical equations to be utilised in both short-term and long-term conjunction cases.

This makes a significant difference in reducing computation cost, for both these conjunction types,

still giving accurate probability of collision results due to the use of the semi-analytical uncertainty

propagation approach with GMMs. Figure 4.6 shows a component wise comparison of the two

propagated distributions.

Figure 4.6: The total probability of collision in the GMM-STT method is an all-on-all analysis
between propagated GMM components of objects 1 (blue) and 2 (yellow). Pc,ij is a comparison
between ith and jth GMM components from objects 1 and 2 respectively. The highlighted GMM
components are the ones being compared for the probability of collision calculations.[50]

4.5 Conclusion

This chapter describes the importance of accurate nonlinear uncertainty propagation in con-

junction analysis methods. After this, two conjunction models are defined based on their duration:

short-term and long-term conjunctions. A Monte Carlo method is defined that can generate an

accurate collision probability with a significant number of points from the initial distributions prop-

agated numerically. As an alternate to this expensive method, a hybrid method is presented that
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propagates the uncertainty fast and accurately to achieve the final distribution using a combina-

tion of Gaussian Mixture Models (GMMs) and State Transition Tensors (STTs). The propagated

components from the GMMs are compared in an all-on-all analysis to achieve the probability of

collision of the system. Test cases are presented in the next chapter to validate this hybrid method

of collision probability computations.



Chapter 5

Conjunction Assessment Test Cases

To evaluate the performance of the proposed hybrid uncertainty propagation and conjunction

analysis method from chapter 4, a variety of conjunction cases are tested using different dynamics

models. A combination of Gaussian Mixture Models (GMMs) and State Transition Tensors (STTs)

is used to propagate the object distributions. In an all-on-all analysis, the initial distribution

of each object is split into GMMs, which are compared to achieve the collision probability. In

each comparison, the GMM components are propagated to their respective actual times of closest

approach using STTs computed with chosen dynamics. Then, all GMM component comparisons

are combined using a double weighted sum. The probability of collision from this hybrid method

is compared against the Monte Carlo probability to test the statistical accuracy.

In this chapter, test cases are presented in near-Earth space using two-body (2BP) dynamics,

J2 secular dynamics, and a Simplified Dynamical System (SDS) that adds perturbations from full

J2 and Solar Radiation Pressure (SRP). A repeating conjunction study is presented using the 2BP

dynamics to understand the evolution of the GMM-STT propagation method over time. Short-

term and long-term conjunction cases are tested in the SDS dynamics subsection. In the end,

test cases are presented for different orbits in cislunar space using the Circular Restricted Three-

Body Problem (CR3BP). For each of these test cases, the initial conditions to test are found by

propagating a chosen trajectory to the chosen nominal time of closest approach (TCA), shifting

the position and velocity by a chosen amount, and back-propagating to achieve the second orbital

element set at epoch. The propagation is performed using the chosen dynamics model.
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5.1 Near-Earth Region

5.1.1 Two-Body Dynamics Test Case

The orbital elements for both objects at epoch are shown in Table 5.1. Fig. 5.1a shows the

two orbits and the initial locations of each object.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)

Object 1 8000 0.15 60 0 0 0
Object 2 6801.6 0.013155 0.37645 90 -0.5016 262.32

Table 5.1: Orbital Elements for the 2BP example.

(a) Orbits and initial locations of the two objects
in the 2BP example.

(b) Uncertainty distribution of the two objects in
the 2BP example.

Figure 5.1: Subfig. (a) Orbits and initial locations of the two objects in the 2BP example. The
blue ellipse is the trajectory of object 1, whereas the yellow is the trajectory of object 2. The black
point is the initial location of object 1 and the red is the initial location of object 2. Subfig. (b)
Uncertainty distribution of the two objects in the 2BP example at their nominal TCA. The blue
and yellow points represent the Monte Carlo propagated points from the initial uncertainties of
objects 1 and 2 respectively.

A large non-diagonal initial covariance is chosen for both objects of the order of 100 m in

position and 10 cm/s in velocity. The nominal TCA is 1.5 days from epoch. The probability of

collision is computed using Monte Carlo and hybrid methods, and compared to understand the

accuracy of the latter. Fig. 5.1b shows the Monte Carlo uncertainty distribution of the two objects



69

at the nominal conjunction time.

As mentioned previously, to compute the GMM-STT method probability, first the GMM

components are computed using the Horwood algorithm. The means and covariances of each of

these components are propagated using the 2BP STTs (Eq. 2.46).

Fig. 5.2 shows that as the number of components increases, the GMM-STT probability of

collision converges with the Monte Carlo truth value CI bounds at about 100 GMM components.

(a) Probability of collision comparison. (b) Relative error plot.

Figure 5.2: Subfig. (a) shows the GMM-STT collision probability vs Monte Carlo results for the
2BP example, whereas Subfig. (b) shows the relative error in the GMM-STT results wrt the Monte
Carlo ones. The solid blue line represents the Monte Carlo probability of collision, the dashed
blue lines represent the 95% confidence bounds, and the yellow diamonds represent the GMM-STT
probability of collisions at different number of GMM mixture components.

5.1.2 2BP Repeating Conjunction Study

In this special case, the unique condition of 2BP repeating conjunctions is observed. The

main purpose of this experiment is to understand the change in the GMM-STT method probability

of collision solution convergence to the Monte Carlo solution as the propagation time increases. This

can only be observed in the 2BP scenario, because the objects return to the same configuration

periodically. Three cases presented here increase sequentially in propagation time to demonstrate

the change in distribution, probability of collision, and hybrid method convergence. The first case

is at the 5th conjunction from the epoch time, the second case is at the 10th, and the third case is

at the 20th conjunction from epoch. A large non-diagonal initial covariance is chosen of the order

of 100 m in position and 10 cm/s in velocity.
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Table 5.2 shows the orbital element set chosen to perform this study and Fig. 5.3 shows the

two nominal orbits and object initial locations.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)

Object 1 8000 0.15 60 0 0 0
Object 2 9033.94588 0.01838 94.37746 0 0 30

Table 5.2: Orbital Elements for the Repeating Conjunctions example.

Figure 5.3: Orbits and initial locations of the two objects in the Repeating Conjunction example.
The blue ellipse is the trajectory of object 1, whereas the yellow is the trajectory of object 2. The
black point is the initial location of object 1 and the red is the initial location of object 2.

Same as before, the collision probability is computed using the Monte Carlo method and the

hybrid method. Fig. 5.4a, 5.4b, and 5.4c show the distributions for the repeating conjunctions at

the nominal times of closest approach associated with the different cases. The distribution spreads

out further towards its ends as the propagation time increases, leading to fewer points intersecting.

The collision probability from the hybrid method converges with that from the Monte Carlo

analysis. Fig. 5.4d, 5.4e, and 5.4f show the respective hybrid method convergence. The probability

of collision from the Monte Carlo method decreases in value with an increase in propagation time

because fewer points are in the vicinity of each other for probability of collision computations. The

probability of collision from the GMM-STT method takes a sequentially larger number of mixture

components to converge with the Monte Carlo probability of collision. This increase is because



71

(a) Case 1 uncertainty distribu-
tion.

(b) Case 2 uncertainty distribu-
tion.

(c) Case 3 uncertainty distribu-
tion.

(d) Case 1 GMM-STT-Pc vs
MC-Pc.

(e) Case 2 GMM-STT-Pc vs
MC-Pc.

(f) Case 3 GMM-STT-Pc vs
MC-Pc.

Figure 5.4: Subfig. (a), (b), and (c) show the uncertainty distribution in the Repeating Conjunction
example. The blue and yellow points represent the Monte Carlo propagated points from the initial
uncertainties of objects 1 and 2 respectively.
Subfig. (d), (e), and (f) show the GMM-STT collision probability vs Monte Carlo probability for
the Repeating Conjunction example. The solid blue line represents the Monte Carlo probability
of collision, the dashed blue lines represent the 95% confidence bounds, and the yellow diamonds
represent the GMM-STT probability of collisions at different numbers of Gaussian mixture com-
ponents.
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longer propagation time means that more (and smaller) initial distribution mixture components

will be needed to accurately capture the propagation nonlinearity. Also, as the propagation time

increases, the STT calculations about the nominal trajectory lose accuracy.

5.1.3 2BP + J2 Secular Dynamics Test Case

In this example, the secular effects due to Earth J2 are considered in addition to the 2BP

dynamics to propagate the states in the Monte Carlo analysis, and to compute the STTs. Given

the solution flow, the new STT from Eq. 2.47 is used in the hybrid method. The epoch states for

the objects in this example are shown in Table 5.3. Fig. 5.5a shows the nominal propagated orbits

and initial locations of the two objects.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)

Object 1 8000 0.15 60 0 0 0
Object 2 6881.49141 0.254197 54.34536 8.76088 -110.10574 22.92517

Table 5.3: Orbital Elements for the J2 Secular example.

A large non-diagonal initial covariance is chosen for both objects of the order of 100 m in

position and 10 cm/s in velocity. The nominal TCA is 1.5 days from epoch. Fig. 5.5b shows the

uncertainty distribution of these two objects at the nominal TCA. Same as in the 2BP dynamics

example, the Horwood GMM method is used to split the individual uncertainties into smaller

distributions. Again, the collision probability is calculated using the Monte Carlo and the hybrid

methods.

Figure 5.6 shows that the cumulative hybrid probability of collision converges with the Monte

Carlo probability of collision with 100 components.
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(a) Orbits and initial locations of the two objects
in the J2 Secular example.

(b) Uncertainty distribution of the two objects in
the J2 Secular example.

Figure 5.5: Subfig. (a) Orbits and initial locations of the two objects in the J2 Secular example. The
blue ellipse is the trajectory of object 1, whereas the yellow is the trajectory of object 2. The black
point is the initial location of object 1 and the red is the initial location of object 2. Subfig. (b)
Uncertainty distribution of the two objects in the J2 Secular example at the nominal TCA. The
blue and yellow points represent the Monte Carlo propagated points from the initial uncertainties
of objects 1 and 2, respectively.

(a) Probability of collision comparison. (b) Relative error plot.

Figure 5.6: Subfig. (a) shows the GMM-STT collision probability vs Monte Carlo probability for
the J2 Secular example, whereas Subfig. (b) shows the relative error between the two. The solid
blue line represents the Monte Carlo probability of collision, the dashed blue lines represent the
95% confidence bounds, and the yellow diamonds represent the GMM-STT probability of collisions
at different number of GMM mixture components.

5.1.4 Simplified Dynamical System Test Case

This Section presents two case studies, one each for a short-term conjunction and a long-term

conjunction. For each of these test cases, the initial conditions to test are found by propagating
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a chosen trajectory to the chosen nominal TCA, shifting the position and velocity by a chosen

amount, and back-propagating to achieve the second orbital element set at epoch. The propagation

is performed using the SDS dynamics. The initial covariance choice is critical because it drives the

number of GMM components necessary for accurate capture of the propagated uncertainty and

probability of collision calculations.

The probability of collision is computed using: 1) the Monte Carlo method and 2) the hybrid

method developed in chapter 4. The latter is compared to the Monte Carlo probability of collision

with a 95% confidence interval.

5.1.4.1 Short-Term Encounter

Table 5.4 shows the initial conditions of the two objects in conjunction. A large non-diagonal

initial covariance is chosen for both objects of the order of 100 m in position and 10 cm/s in velocity.

The nominal TCA is 1.5 days from epoch. Figure 5.7a shows the epoch locations of the two objects,

their trajectories, and their conjunction point. Figure 5.7b shows the Monte Carlo SDS dynamics

propagated uncertainty of the two objects at the nominal TCA.

Table 5.4: Orbital Elements for the SDS example. [50]

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)
Object 1 8000 0.15 60 0 0 0
Object 2 9843.3 0.241038 61.8685 -10.9875 55.5795 -87.5619

In the Monte Carlo conjunction analysis, the points are propagated numerically to evaluate

the conjunction. In this test case, the Monte Carlo analysis is first performed using full dynamics

with SRP and J2 perturbations. Then, the same analysis is performed using the SDS dynamics

with SRP and J2 to confirm the use of the latter as a baseline truth. In the semi-analytical GMM-

STT analysis, the initial distribution is split into Gaussian components that are propagated using

SDS-STTs, as previously described.

Figure 5.8a shows the GMM-STT probability of collision compared to the two types of Monte

Carlo probability of collision. The plot shows that: 1) The SDS Monte Carlo probability of collision



75

(a) Initial orbits.
(b) Uncertainty distributions at the nominal
TCA.

Figure 5.7: (a): Orbits, epoch locations, and the conjunction point of the two objects. Object 1
trajectory is represented in blue and object 2 trajectory is represented in yellow. The black point
denotes the initial location of object 1, and the red point denotes that of object 2. The purple star is
the conjunction point of the two objects. (b): Uncertainty distribution of the two objects. The blue
and yellow points represent the Monte Carlo propagated points of objects 1 and 2 respectively. [50]

is within 95% of the full dynamics Monte Carlo solution for probability of collision, and 2) the GMM-

STT probability of collision is also accurate to within the 95% of the full dynamics Monte Carlo

probability of collision using more than about 100 components. Figure 5.8b shows the relative error

of the GMM-STT probability of collision wrt the full dynamics Monte Carlo probability of collision.

This implies that the GMM-STT semi-analytical method of probability of collision is accurate with

a 95% confidence.

The short-term probability of collision results are computed using the University of Col-

orado Boulder Research Computing Summit Supercomputer (Intel Xeon E5-2680 v3 @2.50GHz 2

CPUs/node, 24 cores/node, 2133 MT/s, Dual Rank, x4 Data Width RDIMM, 4.84 GB/core). The

runtimes for each previously listed method are listed in Table 5.5. It is clear from the above re-

sults that the GMM-STT method with 100 GMM components associated with each object achieve

accuracy to within 95% of the Monte Carlo results with a speed of 1700 times faster than the full

dynamics Monte Carlo analysis.

Note that due to the extreme difference in the runtimes between the full dynamics Monte
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(a) Probability of collision comparison. (b) Relative error plot.

Figure 5.8: Subfig. (a) shows the GMM-STT results and the SDS Monte Carlo results vs the
full dynamics Monte Carlo probability of collision, whereas Subfig. (b) shows the relative error in
the GMM-STT probability of collision wrt the full dynamics Monte Carlo probability of collision.
The solid blue line shows the full dynamics Monte Carlo probability of collision, the dashed blue
lines represent the 95% confidence bounds, the red dashed line represents the SDS Monte Carlo
probability of collision, and the pink diamonds represent the GMM-STT probability of collisions
at different numbers of GMM mixture components each. [50]

Table 5.5: Runtimes of different methods. [50]

Method Runtime (s)
Full (non-simplified) Dynamics Monte Carlo 457302 (≈ 5.3 days)

SDS dynamics Monte Carlo 18888 (≈ 5.25 hours)
SDS 101 GMM-STT 266 (≈ 4.43 minutes)

Carlo and the SDS dynamics Monte Carlo, along with the statistical agreement between the two,

it is appropriate to use the SDS Monte Carlo results for verification of the GMM-STT method

probability of collision.

5.1.4.2 Long-Term Encounter

Table 5.6 shows the orbital elements at epoch of the two objects in a long-term conjunction.

Similar to the short-term conjunction example, the nominal TCA is 1.5 days from epoch and the

uncertainty associated with the objects is non-diagonal with the order of 100 m in position and 10

cm/s in velocity.

Table 5.6: Orbital Elements for the example.

Orbital Elements a (km) e i (deg) Ω (deg) ω (deg) M (deg)
Object 1 42000 0.1 45 0 0 0
Object 2 42096.4927 0.0976 44.9276 -0.0070 -0.9984 3.0654
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Figure 5.9a shows the nominal orbits of the two objects in conjunction. Figure 5.9b shows the

relative orbits of the two objectives, along with the duration of the conjunction where the objects

are within an arbitrary distance threshold. Figure 5.9c shows the relative distance between the two

objects over time. The long time that the dip stays underneath the arbitrary distance threshold

is significant to note, because in short-term conjunctions there is an instantaneous dip and rise

in similar plots. Figure5.9d shows the uncertainty distributions of the two objects at the nominal

TCA.

To forego the long computation time for the full dynamics Monte Carlo, and with the con-

clusion from the previous test case, the Monte Carlo calculations are only performed using the SDS

dynamics in this test case. In addition to this, the GMM-STT probability of collision is computed

using the same method as before. Figure 5.10a shows the comparison of the two probability of

collision results, from the SDS Monte Carlo analysis and the GMM-STT method. Figure 5.10b

show that even with a significantly large number of GMM components the probability of collision

converges to a 25% error and does not decrease even with an increase in components.

To understand the reasoning behind this lack of convergence, the same test is run with lower

covariance values of 45 m in position and 4.5 cm/s in velocity. Figures 5.11a and 5.11b show that

with this lower uncertainty test, there is a convergence of the GMM-STT probability of collision

results to within the desired 95% confidence.

This is an important result because it shows that the model functions well with lower un-

certainty long-term conjunction cases. A potential issue could be the limitation of using 2nd order

STTs in the analysis. As the order of the STTs increases, so does the computation cost because

the STTs are propagated to the desired time numerically. The same examples were tested with 3rd

order STTs. This output nearly identical results to the 2nd order STT propagation results shown

here. It is possible that to capture the higher uncertainty case, increasing the STT orders further

can potentially lead to results with lower relative error.
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(a) Nominal trajectories of the two objects. (b) Relative orbit.

(c) Relative distance between the two objects.
(d) Uncertainty distribution of the two objects
at the nominal TCA.

Figure 5.9: (a): The blue ellipse and yellow ellipses are the trajectories of objects 1 and 2, respec-
tively. The black and red points are the initial locations of object 1 and 2, respectively. The purple
star is the nominal conjunction point of the two objects. The black stars show the beginning and
end of the conjunction period. (b): The blue line represents the relative orbit. The purple star
is the conjunction point of the two objects. The black stars show the duration of the conjunction
period. (c) The blue line shows the relative distance between objects and the red dashed line shows
an arbitrary threshold below which distance the objects are considered to be in a conjunction. (d)
The blue and yellow points represent the Monte Carlo propagated points associated with objects 1
and 2, respectively, at the nominal TCA.

Using a personal ThinkPad laptop for computation, the approximate runtimes of different

methods for the low uncertainty case are listed in Table 5.7. An additional test is run using the

GMM-STT conjunction method with the long-term Coppola analytical formula using 101 GMM

components associated with each object, to see a difference in computational time. The GMM-STT

method run with both types of conjunction formulas (Coppola and reduced short-term formula)
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(a) GMM-STT-Pc vs MC-Pc. (b) Relative error.

Figure 5.10: High uncertainty case: (a) and (b): The solid blue line represents the SDS dynamics
Monte Carlo probability of collision, the dashed blue lines represent the 95% confidence bounds,
and the pink diamonds represent the semi-analytical probability of collisions at different numbers
of GMM mixture components.

(a) GMM-STT-Pc vs MC-Pc. (b) Relative error.

Figure 5.11: Low uncertainty case: (a) and (b): The solid blue line represents the SDS dynamics
Monte Carlo probability of collision, the dashed blue lines represent the 95% confidence bounds,
and the pink diamonds represent the semi-analytical probability of collisions at different numbers
of GMM mixture components.

output nearly the same results with a large difference in computation time. The semi-analytical

uncertainty propagation approach run with the simplified short-term conjunction formula provides

statistically accurate results ≈ 72 times faster than the SDS Monte Carlo method. This is, again,

a significant improvement in computation expense.

Table 5.7: Runtimes of different methods. [50]

Method Runtime
SDS dynamics Monte Carlo ≈ 30 hours

SDS 101 GMM-STT with Coppola formula ≈ 16 hours
SDS 101 GMM-STT with reduced formula ≈ 25 minutes
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5.2 Cislunar Region

A broad array of orbits and nominal TCAs are chosen to test the validity of the method.

This section details the test cases and the respective results.

5.2.1 Lyapunov Orbit Test Case

An orbit is selected from a family of planar Lyapunov orbits near the L1 libration point in

the Earth-Moon region. The epoch state of this orbit is propagated to approximately 6.86 days

using CR3BP dynamics. The state at this final time is deviated to achieve a final state of the

second object in conjunction. The final deviated state of object 2 is propagated back to the epoch

to achieve the epoch state for object 2. The states of the two objects in this conjunction at epoch

are listed in Table 5.8.

Orbital Elements x y z ẋ ẏ ż

Object 1 0.8971 0 0 0 -0.38874 0
Object 2 1.09352 -0.09259 0.01176 -0.17283 0.093228 -0.08352

Table 5.8: Orbital Elements for the first test case. Object 1 is in an L1 Lyapunov orbit.

An initial uncertainty of about 200 m in position and 2 mm
s in velocity is assigned to both

objects. Ten million points are randomly generated from this initial uncertainty distribution of

each object and are propagated to compute the Monte Carlo probability of collision, as detailed

in previous sections. Figure 5.12a shows the two orbit trajectories in the x-y plane over the 7

days period in the nondimensional rotating frame and Figure 5.12b shows the 3D paths of these

objects. Figure 5.12c shows the numerically propagated object uncertainties at the nominal TCA.

The uncertainty looks linear even after 7 days of propagation, which is much longer than the shorter

periods within which the uncertainty becomes nonlinear in near-Earth cases [50].

Figure 5.13a shows the comparison of the semi-analytical uncertainty propagation proba-

bility of collision vs the Monte Carlo probability of collision and Figure 5.13b shows the relative

error between the two. The results show that with an increase in GMM components, the results



81

(a) Planar trajectories of the two objects in con-
junction. (b) 3D trajectories.

(c) Uncertainty of the two objects propagated to
the nominal TCA.

Figure 5.12: Lyapunov test case: (a) and (b) show the trajectories on the two objects in conjunction
in 2D and 3D views, respectively. The blue orbit is the Lyapunov orbit and the yellow trajectory
represents the second object in conjunction. (c) shows the propagated uncertainty of the two
objects at the nominal TCA.

get progressively close to the Monte Carlo probability of collision. As the uncertainty size and

propagation time increases, so would the number of components needed for accurate probability

of collision capture. In addition to being accurate, this semi-analytical method also shows a great

improvement in computation time. The Monte Carlo probability of collision computation runs in

5.35 days, whereas the semi-analytical method calculated the probability of collision using 1, 15,

and 31 components in 1 second, 118 seconds, and 503 seconds, respectively.
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Method RunTime

Monte Carlo 5.35 days
1 component GMM-STT method 1 second
15 component GMM-STT method 118 seconds
31 component GMM-STT method 503 seconds

Table 5.9: Time comparison of the semi-analytical uncertainty propagation method vs the Monte
Carlo method for probability of collision computation.

(a) Semi-analytical method probability of colli-
sion vs the Monte Carlo results.

(b) Relative error between the semi-analytical
method and the Monte Carlo results.

Figure 5.13: Lyapunov test case: These plots show the comparison of the probability of collision
from the semi-analytical method developed in this paper to the Monte Carlo probability of collision.
The solid blue line shows the Monte Carlo probability of collision, the dashed blue lines show the
99% error threshold, and the pink diamonds show the probability of collision computed using the
semi-analytical uncertainty propagation.

5.2.2 Halo Orbit Test Case

5.2.2.1 Example 1

In addition to the Lyapunov orbit, an orbit was chosen from the L1 Halo family to test the

method. Similar to the previous test case, the Halo orbit is propagated to the chosen nominal TCA

of about 4.24 days (half its orbit period). The deviated final state is propagated back to epoch

to get the initial states of both objects. The states at epoch are used to compute the probability

of collision, using both the Monte Carlo method and the semi-analytical uncertainty propagation

method. Table 5.10 shows the orbital elements at epoch for both objects.

Orbital Elements x y z ẋ ẏ ż

Object 1 0.89615 0 -0.1991 0 0.19234 0
Object 2 0.720946 0.094853 -0.20361 0.37510 0.362113 0.08011

Table 5.10: Orbital Elements for the first test case. Object 1 is in an L1 Halo orbit.
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The initial covariance is set at 100 m in position and 1 mm
s in velocity. Figure 5.14a shows the

two nominal trajectories in consideration in a two dimensional view, whereas Figure 5.14b shows

the same trajectories in a three dimensional view. Figure 5.14c shows the propagated uncertainties

of the two objects at the nominal TCA.

(a) Planar trajectories of the two objects in con-
junction. (b) 3D trajectories.

(c) Uncertainty of the two objects propagated to
the nominal TCA.

Figure 5.14: Halo test case 1: (a) and (b) show the trajectories on the two objects in conjunction
in 2D and 3D views, respectively. The blue and yellow trajectories refer to the Halo orbit and the
secondary object orbit, respectively. (c) shows the propagated uncertainty of the two objects at
the nominal TCA.

Figure 5.15a shows the results of the probability of collision computed using the semi-

analytical uncertainty propagation in a comparison against that computed using the Monte Carlo

Method. Figure 5.15b shows the relative error between the two probability of collisions.
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(a) Semi-analytical method probability of colli-
sion vs the Monte Carlo results.

(b) Relative error between the semi-analytical
method and the Monte Carlo results.

Figure 5.15: Halo test case 1: These plots show the comparison of the probability of collision from
the semi-analytical method developed in this paper to the Monte Carlo probability of collision.
The solid blue line shows the Monte Carlo probability of collision, the dashed blue lines show the
99% error threshold, and the pink diamonds show the probability of collision computed using the
semi-analytical uncertainty propagation.

It is clear from these plots that the probability of collision from the semi-analytical method

stays close to the same relative error as we increase the number of components. This is because of

the lower initial uncertainty choice. It is important to note that, as the time of propagation and

the uncertainty increases, more components are needed to achieve the same accuracy.

5.2.2.2 Example 2

Another test was run with a longer propagation time to study the change in convergence

and the number of GMM components needed to capture the propagation for collision probability

calculations. The first trajectory is the same Halo orbit as the subsection above. The epoch states of

the two objects are listed in Table 5.11. The TCA is about 16.8 days and the covariance associated

with object 1 is 173 m in position and 1.73 mm
s in velocity. Figure 5.16a shows the nominal

trajectories of the two objects in a two dimensional view, Figure 5.16b shows the trajectories in a

three dimensional view, and Figure 5.16c shows the uncertainty overlap of the distributions at the

nominal TCA.

The Monte Carlo analysis is performed using ten million points and the hybrid method of

collision probability is also run using a variety of GMM components to capture the probability. Same

as the previous cases, Figures 5.17a and 5.17b show that the hybrid collision probability matches
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Orbital Elements x y z ẋ ẏ ż

Object 1 0.89615 0 -0.1991 0 0.19234 0
Object 2 -0.62924 -0.69684 0.05471 -0.070547 0.059268 0.22747

Table 5.11: Orbital Elements for the second Halo test case. Object 1 is in an L1 Halo orbit.

(a) Planar trajectories of the two objects in con-
junction. (b) 3D trajectories.

(c) Uncertainty of the two objects propagated to
the nominal TCA.

Figure 5.16: Halo test case 2: (a) and (b) show the trajectories on the two objects in conjunction
in 2D and 3D views, respectively. The blue and yellow trajectories refer to the Halo orbit and the
secondary object orbit, respectively. (c) shows the propagated uncertainty of the two objects at
the nominal TCA.

the Monte Carlo collision probability even with a low number of components. It is possible that

this can be attributed to the low covariances values associated with the two objects in conjunction.
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(a) Semi-analytical method probability of colli-
sion vs the Monte Carlo results.

(b) Relative error between the semi-analytical
method and the Monte Carlo results.

Figure 5.17: Halo test case 2: These plots show the comparison of the probability of collision from
the semi-analytical method developed in this paper to the Monte Carlo probability of collision.
The solid blue line shows the Monte Carlo probability of collision, the dashed blue lines show the
95% error threshold, and the pink diamonds show the probability of collision computed using the
semi-analytical uncertainty propagation.

5.2.3 NRHO Test Case

Another example is run using a Near Rectilinear Halo Orbit (NRHO) about Lagrange Point

2 (L2) [75]. The states at epoch are listed in Table 5.12. The nominal TCA is about 9.9 days. A

diagonal initial covariance is set at 315 m in position and 3.15 mm
s in velocity for object 1, and

173 m in position and 1.73 mm
s in velocity for object 2.

Orbital Elements x y z ẋ ẏ ż

Object 1 1.0224 0 -0.18236 0 -0.10408 0
Object 2 1.0113 0.021088 -0.041604 -0.011389 -0.095117 0.44639

Table 5.12: Orbital Elements for the NRHO test case. Object 1 is in an L2 NRHO orbit.

Figure 5.18a shows the nominal trajectories of the two objects in a two dimensional view,

Figure 5.18b shows the nominal trajectories in a three dimensional view, and Figure 5.18c shows

the uncertainties of the two objects propagated to the nominal TCA.

The Monte Carlo analysis is run using ten million points and the hybrid method is run using

a varying number of GMMs. To demonstrate the importance of the splitting direction, two results

are produced, one with the GMM splits in a low nonlinearity splitting direction and one with the

GMM splits performed in the highest nonlinear splitting directions.
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(a) Planar trajectories of the two objects in con-
junction. (b) 3D trajectories.

(c) Uncertainty of the two objects propagated to
the nominal TCA.

Figure 5.18: NRHO test case: (a) and (b) show the trajectories on the two objects in conjunction
in 2D and 3D views, respectively. The blue and yellow trajectories refer to the NRHO orbit and
the secondary object orbit, respectively. (c) shows the propagated uncertainty of the two objects
at the nominal TCA.

Figure 5.19a and Figure 5.19b compare the Monte Carlo and GMM-STT methods of collision

probability calculations, where the GMM split for the two objects is performed in a low nonlinearity

splitting direction. Figure 5.20a and Figure 5.20b compare the numerical and hybrid methods to

analyze the accuracy of the method with GMM split for the two objects performed in their respective

highest nonlinearity directions.

Even though the figures don’t show a convergence to a 95% confidence interval in this case,

the relative error improves greatly for the high nonlinearity splitting direction compared to the low
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nonlinearity splitting direction. In this “good” or high nonlinear splitting direction, the relative

error is settles at just below 20%. A potential cause for the relative error to converge outside

of the 95% confidence bounds could be the splitting direction choice. Even though the GMM

split is performed in the highest nonlinearity direction, the choice is still made from a finite set of

predetermined directions as explained in chapter 3. It is possible that exploring more directions

or computing the direction in a more complex way could lead to a better convergence with the

numerical collision probability. Additionally, performing recursive splits in multiple directions of

high nonlinearity could also improve the results.

(a) Semi-analytical method probability of colli-
sion vs the Monte Carlo results.

(b) Relative error between the semi-analytical
method and the Monte Carlo results.

Figure 5.19: NRHO test case with “bad” GMM splitting: These plots show the comparison of
the probability of collision from the semi-analytical method developed in this paper to the Monte
Carlo probability of collision. The solid blue line shows the Monte Carlo probability of collision,
the dashed blue lines show the 95% error threshold, and the pink diamonds show the probability
of collision computed using the semi-analytical uncertainty propagation.
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(a) Semi-analytical method probability of colli-
sion vs the Monte Carlo results.

(b) Relative error between the semi-analytical
method and the Monte Carlo results.

Figure 5.20: NRHO test case with “good” GMM splitting: These plots show the comparison of
the probability of collision from the semi-analytical method developed in this paper to the Monte
Carlo probability of collision. The solid blue line shows the Monte Carlo probability of collision,
the dashed blue lines show the 95% error threshold, and the pink diamonds show the probability
of collision computed using the semi-analytical uncertainty propagation.

5.3 Discussion

In this chapter, various test cases are presented in near-Earth and cislunar regimes to test

the accuracy of the hybrid uncertainty propagation and conjunction analysis method developed

in chapter 4. The following examples are presented: a Two-Body (2BP) dynamics test case, a

repeating conjunction study with the 2BP dynamics, a J2 secular dynamics test case, two test cases

using the Simplified Dynamics System: short-duration and long-duration conjunctions, and lastly

four cislunar test cases with Circular Restricted Three-Body Problem dynamics: an L1 Lyapunov

orbit test case, two L1 Halo orbit test cases, and an L2 Near Rectilinear Halo orbit example. All

test cases prove the validity of this method with test cases showing varying, but low relative errors.

Some test cases also demonstrate the significant improvement in time in comparison to numerical

Monte Carlo collision probability calculations.



Chapter 6

Near-Earth GitHub-Accessible Toolkits

The hybrid conjunction analysis techniques developed for near-Earth region in the previous

chapters are coded in MATLAB to test cases. Some of these results are presented in chapter 5.

This chapter presents the MATLAB conjunction toolkits applicable to short-term and long-term

conjunctions. It takes inputs such as orbital parameters and generates a probability of collision

using the hybrid semi-analytical uncertainty propagation conjunction analysis. The MATLAB

scripts for this toolkit have been uploaded to GitHub and can be accessed using short-term [48]

and long-term [47] repositories. The code implementation and initialization are defined in this

paper.

First, the code implementation of the method of semi-analytical uncertainty propagation and

probability of collision calculations is described. This is followed by a detailed implementation of

the Monte Carlo probability of collision calculations. After the method implementations, the code

initialisation parameters are defined and a test case is presented. Additionally, the parameters for

the test case are listed and the outputs from the code are presented. This toolkit is accessible for

public use and can be used to test short and long duration conjunction in the near-Earth space.
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6.1 Semi-Analytical Uncertainty Propagation and Probability of Collision

Calculation Implementation

Fig. 6.1 summarises the semi-analytical method of uncertainty propagation used for proba-

bility of collision calculations in near-Earth realm in the script ‘ComputeGMMSTTMethodPc.m’.

The initial distribution is transformed to an Equinoctial element set using a Jacobian matrix (‘Jaco-

bianCalc.m’) and a sub-optimal algorithm from Horwood et al. [39] is used to split this uncertainty

into a chosen number of GMM components. These smaller distributions are converted to Delaunay

frame using another Jacobian matrix for propagation using the STTs. Hamiltonian averaging is

used to compute mean dynamics and the analytical time-dependent short-period variation equa-

tions. The mean dynamics are used to compute the STTs for the GMM component propagation.

Figure 6.1: A summary of the semi-analytical uncertainty propagation and conjunction analysis
method. [51]

The propagated GMM components are then compared in an all-on-all analysis to calculate

the probability of collision. These probabilities are combined using a double weighted sum to
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achieve a cumulative probability of collision of the system. A benefit of this is that the individual

GMM components maintain Gaussianity and thus, can be combined with the Foster method of

probability of collision calculation [32].

6.1.1 Gaussian Mixture Model Splitting

The GMM is split using the Horwood et al. [39] sub-optimal algorithm. This section is set up

using the optimization toolbox in MATLAB. A parameter m = 6 is defined to initiate the splitting

process. Based on this, the following algorithm is set up:

(1) σ = 2m
N−1 , where N is the number of GMM components to split into.

(2) For α = 1, ..., N , µα = −m+ σ(α− 1)

(3) Compute matrix (M)αβ = N (να − νβ; 0, 2σ
2) and vector (n)α = N (να; 0, σ

2 + 1) using

function normpdf.

(4) Define an optimization using quadprog, with ‘ConstraintTolerance’ of 10−25 and ‘Opti-

malityTolerance’ of 10−25 to minimize: 1
2w

TMw − wTn over w subject to constraints:∑N
α=1wα = 1 and wα ≥ 0, where α = 1, ..., N

(5) For same α, calculate w̃α =
√
2π√

1−σ2
wαexp

[
µ2
α

2(1−σ2)

]
, µ̃α = µα

1−σ2 , and σ̃
2 = σ2

1−σ2

(6) Compute µ̂α = ν1 +
√
Q1µ̃α, ŵα = w̃α, and σ̂

2 = σ̃2Q11

(7) Based on this, Q̄ = (σ̂−2e1e
T
1 +Q−1)−1, ν̄α = Q̄(σ̂−2µ̂αe1 +Q−1ν), and w̄α = ŵαN (µ̂α −

eT1 ν; 0, σ̂
2 + eT1 Qe1), where e1 = (1, 0, ..., 0)T ∈ R

(8) For α = 1, ..., N , compute re-normalized weights w̄α = w̄α/
∑N

β=1 w̄β

This splitting function ‘GMM Component Calcs.m’ uses the number of components, nominal

mean, nominal covariance, and a test flag as inputs. It outputs the GMM component weights (w̄),

means (µ̄), and covariance (Q̄).
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6.1.2 Simplified Dynamical System

The MATLAB symbolic computer is used to develop the Hamiltonian averaging equations

to compute the mean dynamics equations and the time-based short-period variation equations in

the script ‘SDSGenerator.m’. As described in previous chapters, the SDS in the toolkit uses non-

Keplerian perturbations from Solar Radiation Pressure (SRP) and J2 gravitational harmonics. The

state and state Equations of Motion (EOMs) are represented as follows:

xdel = [l, g, h, k⊙, L, G, H, K⊙]

fdel = [l̇, ġ, ḣ, k̇⊙, L̇, Ġ, Ḣ, K̇⊙] (6.1)

The mean Hamiltonian and generating function equations are shown in Appendix A. The

mean dynamics are stored in the function: ‘MeanDynamicsFunction.m’ and the short-period offsets

from mean to osculating and vice-versa are stored in ‘getInitialDelOffset.m’ and ‘getFinalDelOff-

set.m’, respectively. These offset functions can be accessed using the script ‘getOffset.m’ that uses

state, time, constants, and a direction flag as inputs. It outputs the offset in the chosen direction.

6.1.3 State Transition Tensors

MATLAB symbolic computer is used to compute the STT EOMs. These EOMs are then

used to propagate the STTs to the final time. The propagated STTs are used to map the mean

and covariance of the GMM components to the final time using the following set of equations:

Φ̇i,ab =

N∑
α=1

Ai,αΦα,ab +

N∑
α=1

N∑
β=1

Ai,αβΦαaΦβb (6.2)

Here, Φα,ab is a second order STT, Φαa and Φαb are first order STTs, Ai,α is the first order

Local Dynamics Tensor (LDT), and Ai,αβ is the second order LDT. N denotes the state dimension.

i, a, and b are the three dimensions of the STT EOMs. The LDTs are computed using partials

of the system dynamics with respect to the state about the nominal trajectory (denoted by *) as

shown in the following equation.
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Ai,k1...kp =
∂pfdeli

∂xdelk1 ...∂xdelkp

∣∣∣∣
∗

(6.3)

where, i and kj are the dimensions of the LDT.

The LDT calculations are performed using the MATLAB symbolic computer by taking sym-

bolic partial derivatives of the Delaunay mean dynamics from the SDS with respect to the state in

function: ‘SymbolicSDSJ2Computer.m’. ‘propagateWithDynamics.m’ script is used to propagated

the STTs alongside the state using ode113, with 10−13 as the relative and absolute tolerances.

6.1.4 Time of Closest Approach Finder

The function ‘FindTCAGMMSTTMethod.m’ is used to find the time of closest approach

(TCA) between two chosen GMM components. Fig. 6.2 shows the propagation process for the

GMM component means. The means of the GMM components are mapped to the final propagation

time using the STTs computed with the mean dynamics using the function ‘STTcalcs2BP.m’:

δmi(t) =

m∑
p=1

1

p!
Φi,k1...kp E[δx0

k1 ...δx
0
kp ] (6.4)

where, the moments, E, are defined in functions ‘E1calc.m‘ and ‘E2calc.m’ using:

E[δxi] = δmi

E[δxiδxj ] = δmiδmj + P ij

E[δxiδxjδxk] = δmiδmjδmk + (δmiP jk + δmjP ik + δmkP ij)

... (6.5)

The TCA approach between two GMM components is calculated using a stepping method

that uses the time update:

t =
∆r.∆v

|∆v|2
(6.6)
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Figure 6.2: The initial GMM component mean is a deviation from the nominal mean state. This
GMM mean is mapped to the final time using STTs and it is converted back to the osculating
state. [51]

where ∆r and ∆v are the relative position and velocity vectors respectively. Each time update

ensures a smaller difference in the relative distance between the two objects at the next time. The

final converged time is the actual TCA. The covariance is mapped (‘Covariance Propagation.m’)

to this actual TCA using the second order STTs, as described in the equation below:

P ij(t) =

(
m∑
p=1

m∑
q=1

1

p!q!
Φi,k1...kpΦj,l1...lqE[δx0

k1 ...δx
0
kpδx

0
l1 ...δx

0
lq ]

)
− δmi(t)δmj(t) (6.7)

The means and moments are the same as those described in Eq. 3.11 and Eq. 2.45, respec-

tively.

6.1.5 Probability of Collision Calculations

Each propagated GMM components associated with the objects in conjunction are compared

in an all-on-all analysis at their respective actual TCAs to achieve the cumulative probability of col-

lision, as demonstrated in Fig. 6.3. This is done using the function script: ‘GMM Pc Calcs Fun.m’.

The individual probability of collision between the ith and jth components of objects 1 and 2

respectively, can be computed using:

Pc,ij =
1

2π
√

|P ∗|

∫ R

−R

∫ √
R2−x2

−
√
R2−x2

exp (−A∗) dz dx (6.8)
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P ∗ is the combined covariance of the two objects and A∗ is defined as follows:

s = xi+ zk, s0 = x0i+ z0k (6.9a)

A∗ = (s− s0)
TP ∗−1(s− s0)/2 (6.9b)

where, s and s0 are the relative positions in the encounter plane at the actual and nominal

TCA, respectively.

The individual probabilities are combined using a double weighted sum:

Pc =

La∑
i=1

Lb∑
j=1

w(i)
a w

(j)
b Pc,ij (6.10)

where, w
(i)
a and w

(j)
b are the weights associated with the ith and jth GMM components of

objects 1 and 2, respectively. The double integral to compute the total probability of collision is

implemented using ‘integral2’ in MATLAB.

Figure 6.3: Each GMM component from object 1 is compared to that from object 2 to compute
the cumulative probability of collision. [50]

6.2 Monte Carlo Method

In the Monte Carlo analysis, a cloud of points is propagated numerically to evaluate the

probability of collision in the function script: ‘Compute MC Pc Cart 1on1.m’.
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A random point is generated for each object in conjunction from the nominal states and epoch

covariances using ‘mvnrnd’. These points are propagated using ‘propagateWithDynamics.m’ to find

the actual TCA, as shown in Fig. 6.4. The actual TCA is found using ‘FindTCAMCMethod.m’

with ‘while’ loops, using the nominal TCA as an initial guess. Same as before, the time update is

computed as described in Eq. 6.6 using the relative position and velocity of the two objects.

Figure 6.4: The initial state is converted to a mean state and is mapped to the final time using
STTs, where it is converted back to the osculating state. [51]

The probability of collision in the Monte Carlo analysis is calculated by comparing the number

of objects closer than the combined hard body radii of the two objects, to the total number of points

in the analysis.:

MC Pc =
Conjunctions where DCA <R

Total number of conjunctions tested
(6.11)

The binomial confidence bounds are found using the normal approximation [54]:

CI = MC Pc ± z

√
MC Pc(1−MC Pc)

n
(6.12)

z = 1.96 for a 95% confidence interval and n denotes the number of points in the Monte

Carlo analysis.

6.3 Code Initialization

To initiate the code, the only scripts that need to be edited are: ‘Main Code.m’ and ‘con-

stantsAndInitialState.m’. The states and uncertainties of the two objects in conjunction and some
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constant parameters need to be defined. The input parameters that are required to run the code

and that can be changed without needing code updates include:

————————–
Main Code.m
————————–
runMonteCarlo: When toggled to 1, this flag allows the Monte Carlo probability of colli-

sion calculation process to run, using a chosen number of points.
runGMMSTTMethod: When toggled to 1, this flag allows the semi-analytical GMM-STT prob-

ability of collision calculation process to run, using a chosen number of
points.

plotThings: Flag to plot probability of collision results.
saveResultsToText: Save results to an output file.
————————–
constantsAndInitialState.m
————————–
[a e i O w M]: [km and rad] Classical orbital elements (COEs) defining the epoch states

of the two objects in conjunction.
P and P2: [km and km/s] Cartesian covariance of both objects in conjunction.
constants.case flag: Pre-coded sample test cases can be accessed using this variables.
constants.points: Number of Monte Carlo points currently being evaluated for each object.
constants.JMAX: List of number of GMM components to split each object into. The only

limitation is that this script cannot split the distribution into less than
15 components.

constants.testFig2: When toggled to 1, this test flag plots the GMM mean spread for ob-
ject 1 at the nominal TCA using 15 components. ‘runMonteCarlo’ and
‘runGMMSTTMethod’ must be toggled to 1 to run this.

constants.plot GMM ell:When toggled to 1, this test flag plots the GMM covariances, in addition
to their means. ‘runMonteCarlo’ and ‘runGMMSTTMethod’ must be
toggled to 1 to run this.

constants.testFig4: When toggled to 1, this test flag plots the weights against the means of
the GMM distribution. ‘runGMMSTTMethod’ must be toggled to 1 to
run this.

constants.par: Allow parallel runs in MATLAB.
constants.nodes: Number of nodes allowed for the parallel MATLAB runs.
usePredefinedCases: When toggled to 1, this flag allows the predefined test cases to be ac-

cessed, using constants.case flag.
constants.P prop: Define Nominal TCA.
ICState.obj2.COE: Define the COE for object 2.
r1: Hard body radius of object 1.
r2: Hard body radius of object 2.
constants.rho: Reflectivity of the objects.
constants.Aom: Area over mass ratio of objects.
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6.4 Test Case

A case for the short-term conjunction case is setup below and the code is initiated for a test

run.

6.4.1 Example Setup

The inputs and constants to run this example test case are listed in the initialization table

below. The initial states and epochs are introduced. The flags: ‘runMonteCarlo’ and ‘runGMM-

STTMethods’ are toggled to 1 to run the probability of collision calculations using both methods.

‘plotThings’ is 1 to allow plotting of the results. 107 points are generated associated with object

and tested for probability of collision calculations. No test figures are plotted and parallelization

is turned off. Nominal TCA is set to 1.5 days. The hard body radii of the two objects and other

parameters are also defined in the table.

Fig 6.5a shows the nominal trajectories of the two objects and their conjunction point.

Fig. 6.5b shows the uncertainty distribution of the two objects at the nominal TCA.

(a) Nominal trajectories. [50]
(b) Uncertainty distribution at the nominal
TCA.

Figure 6.5: (a) Blue and yellow trajectories show the nominal trajectories of objects 1 and 2, re-
spectively. The black dot and red dot denote the initial locations of objects 1 and 2, respectively.
Purple star denotes the conjunction point. (b) The blue points and yellow points show the uncer-
tainty distributions at the nominal TCA of objects 1 and 2, respectively.

The probability of collision for this test case is first computed with the Monte Carlo analysis,

followed by the semi-analytical approach. This allows a comparison between the two results.
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————————–
Main Code.m
————————–
runMonteCarlo: 1
runGMMSTTMethod: 1
plotThings: 1
saveResultsToText: 0
————————–
constantsAndInitialState.m
————————–
[a e i O w M]: [km and deg] [8000; 0.15; 60; 0; 0; 0]
P and P2: [km and km/s] [0.0067664 -0.0029183 0.0027112 -9.9816E-7 -1.7636E-

7 2.1797E-6;... -0.0029183 0.005348 -0.0011671 -1.5861E-6 -3.5203E-7
3.3414E-6;...
0.0027112 -0.0011671 0.001087 -3.9883E-7 -7.5945E-8 8.6148E-7;...
-9.9816E-7 -1.5861E-6 -3.9883E-7 9.4587E-9 -1.1375E-10 1.1511E-9;...
-1.7636E-7 -3.5203E-7 -7.5945E-8 -1.1375E-10 9.8844E-9 8.5671E-11;...
2.1797E-6 3.3414E-6 8.6148E-7 1.1511E-9 8.5671E-11 7.2859E-9]

constants.case flag: 1
constants.points: 1E7
constants.JMAX: [37;101;301;501]
constants.testFig2: 0
constants.plot GMM ell:0
constants.testFig4: 0
constants.par: 0
constants.nodes: 4
usePredefinedCases: 0
constants.P prop: 1.5 days
ICState.obj2.COE: [km and deg] [9843.3; 0.241038; 61.8685; -10.9875; 55.5795; -87.5619]
r1: 20 m
r2: 20 m
constants.rho: 0.2
constants.Aom: 2E-6
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6.4.2 Results

The Monte Carlo scripts outputs a probability of collision of 4.67×10−5 in 5.3 hours [50] (when

run with 24 parallel nodes on the CU Boulder supercomputer), when using the SDS dynamics. The

semi-analytical GMM-STT script outputs a probability of collision of: 3.8894×10−5, 4.8952×10−5,

4.8659 × 10−5, 4.8560 × 10−5 with 37, 101, 301, and 501 components, respectively. The semi-

analytical computation with 101 components takes 4.43 minutes [50] (when run with 24 parallel

nodes on the CU Boulder supercomputer).

Fig 6.6a shows the comparison between the Monte Carlo results and those from the semi-

analytical method. Fig. 6.6b shows the relative error between these two results. It is clear that

above 101 components, the results have converged with the Monte Carlo probability of collision.

This confirms the validity of the method and provides a demonstration of the toolkit.

(a) Probability of collision results. [50] (b) Relative error in results.

Figure 6.6: (a) The solid blue line refers to the Monte Carlo probability of collision and the
dashed blue lines are the confidence intervals around this result. The pink diamonds show the
semi-analytical approach probability of collision at different number of GMM components. (b)
The dashed line shows the binomial normal approximation 95% confidence interval line. The pink
diamonds show the semi-analytical approach results for the probability of collision.

6.5 Conclusion

This chapter provides a semi-analytical uncertainty propagation conjunction analysis (SAUPCA)

toolkit that can propagate the uncertainty and evaluate the probability of collision results in an

accurate and efficient manner. The chapter describes the implementation of different components

of the coded toolkit and the parameters that need to be defined to initiate the code. A test case is

presented that is set up using defined constants and initial states and covariances of the two objects
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in conjunction. The probability of collision is calculated using the Monte Carlo analysis and the

SAUPCA toolkit to test the output and compare the final results. The plotted results show a con-

vergence of the SAUPCA probability of collision with those from the Monte Carlo analysis, hence

demonstrating a successful run. The toolkit can be accessed through GitHub repositories [48, 47]

online.



Chapter 7

Conclusions and Future Work

7.1 Conclusions

An increasing need for Space Situational Awareness (SSA) tools in near-Earth and cislunar

space has motivated research in analytical and semi-analytical methods of uncertainty propagation

and conjunction analysis. This work presents a new method of semi-analytical uncertainty propa-

gation that accurately captures nonlinear evolution of the distribution with high fidelity dynamics

and captures the collision probability with high levels of accuracy. Several mathematical tools used

in this methodology are presented with their backgrounds, along with evidence of their function-

ality and applicability. Additionally, a variety of test cases are used to demonstrate the statistical

accuracy and speed of this method.

Chapter 2 begins with a mathematical background on low and high fidelity dynamics that

can be used for propagation. A high fidelity model is presented that can incorporate perturbations

without compromising on computation speed. This Simplified Dynamical System (SDS) adds J2

and Solar Radiation Pressure perturbations to allow realistic propagation. In addition to this, the

Circular Restricted Three-Body Problem (CR3BP) is described for use in cislunar applications.

State Transition Tensors (STTs) are defined and applied for direct moment mapping of the system

probability density function (PDF). These STTs are computed analytically for the Two-Body

Problem (2BP) and for J2 secular perturbed dynamics, and semi-analytically for the SDS and the

CR3BP. Once computed, the STTs can be used to map the mean and covariance of a distribution

to desired times with speed and accuracy.
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Chapter 3 provides a mathematical introduction to Gaussian Mixture Models (GMMs) which

allow the system PDF to be represented as a Gaussian sum. Propagating each component from this

sum maintains individual component linearity over long propagation times. Splitting methods are

presented for the near-Earth and cislunar applications. STT propagation is introduced to accurately

map individual components means and covariances with chosen dynamical models. A weighted

sum of these mapped GMM components gives the total distribution. Test cases are presented

demonstrating a capture of the final nonlinear distribution using GMM-STT propagation in both

near-Earth and cislunar cases.

Chapter 4 introduces probability of collision methods. A Monte Carlo method is first pre-

sented that can be used to establish baseline truth to compare analytical and semi-analytical meth-

ods against. A general probability of collision equation is combined with a weighted GMM sum to

allow the calculation of a cumulative probability by using individual interactions between GMM

components mapped with STTs. Then, starting from the general probability of collision equation,

a reduced probability formula is achieved through simplifications that arise from propagation with

the GMM-STT method. This reduced formula of probability of collision is applicable to short and

long duration conjunctions, with implementations in near-Earth and cislunar domains.

In chapter 5, a series of test cases are presented to evaluate the collision probability techniques

developed throughout the previous chapters. Examples are developed for 2BP dynamics, J2 secular

dynamics, the SDS, and the CR3BP to test the validity of these methods. Performance analysis is

run to test the statistical accuracy of the collision probability calculated using the analytical and

semi-analytical methods against the Monte Carlo results, along with a time comparison between

the different methods.

Chapter 6 shares two Github-accessible toolkits for near-Earth short and long duration con-

junctions. It discusses the implementation of the previously defined uncertainty propagation and

conjunction analysis methods, along with code initialization parameters and a test case to evaluate

a run. These online toolkits are available for public use.

This dissertation presents and tests new methods of conjunction analysis in near-Earth and
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cislunar realms. The analysis verifies that the techniques developed are accurate, efficient, and

realistic in their application in short and long duration conjunctions.

7.2 Future Work

There are many possible extensions and applications of the techniques and methods developed

in this dissertation. In this section, we briefly list future research avenues that can be explored.

• Additional dynamical perturbations can be incorporated in near-Earth applications by sim-

ply adding perturbations to the SDS [64], and in cislunar applications by combining more

advanced dynamical models in the GMM-STT uncertainty propagation method. Forces

to be considered for near-Earth applications include: higher accuracy spherical harmonics

models, third-body effects, and non-conservative forces such as drag.

• Adaptive/automated GMM component selection: The method can be improved by imple-

menting additional automation, such that the number of components needed to accurately

capture the nonlinear evolution of a distributions are precomputed. This avoids the addi-

tional computations with a different number of GMM components until convergence with

the Monte Carlo method is observed. Several previously developed methods that use GMMs

have proposed ways of detecting nonlinearity in the system, such as work by DeMars et

al. [24].

• In this work, the cislunar Gaussian mixture sum is gathered using a split in the largest

nonlinearity direction. This GMM split can be performed repeatedly and recursively [79]

in case of multiple directions with high nonlinearity to capture the uncertainty evolution

with more accuracy. This could reduce the relative error between the GMM-STT collision

probability and the Monte Carlo results.

• Another addition to the future work is using this nonlinear semi-analytical GMM-STT un-

certainty propagation method to develop semi-analytical filtering techniques. Our method
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of uncertainty propagation would allow the evolution of the probability function to be

tracked, hence allowing us to associate measurements with the respective distributions.

This work will be a continuation of work by Fujimoto [36], where similar object association

is performed using analytical uncertainty propagation methods.

• Cislunar controls techniques have been developed using STTs [9]. It is possible to combine

Gaussian sums in similar applications for accuracy.
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Appendix A

Transformations of State and Uncertainty Coordinates

This Appendix details some of the conversions between the Cartesian, equinoctial, and Delau-

nay coordinates for the state and uncertainty of an object. These transformations are essential for

the full implementation of this method since the initial distribution is in the Cartesian coordinates

and the near-Earth GMM split is applied in the Equinoctial coordinates, whereas, the Simplified

Dynamical System is defined in the Delaunay coordinates.

Some conversions are achieved using Jacobians (J) that include the partials of the state

representation in one coordinate frame vs the second, whereas, others are defined using a sequence

of rotations about chosen axes. Generally, simple transformations are defined and modified as

needed for the application. For instance, the conversion between IJK and PQW [77] frames is

defined, along with a Jacobian for PQW relative to classical orbital elements (COE) [11], and

combined to achieve a transformation between the original Cartesian state and covariance to COE.

A state conversion is a simple multiplication of the transformation matrix and the state

vector. Whereas, the covariance transformation is achieved by multiplying the conversion matrix

before and after, as shown below:

QCOE = JPQWtoCOE ∗ JIJKtoPQW ∗QIJK ∗ JIJKtoPQW ∗ JPQWtoCOE (A.1)

The conversion between IJK and PQW frames can be defined as follow using the classical

orbital elements (a,e,i,Ω,ω,M):
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JIJKtoPQW = [ROT3(−Ω)][ROT1(−i)][ROT3(−ω)] (A.2)

where ROT stands for 3× 3 rotation matrix, the subscript for the rotation matrix is the axis

about which to rotate: x̂, ŷ, and ẑ, and the angle of rotation is listed in the parenthesis.

The Jacobian between the PQW frame and COE is defined by Broucke [11]:

Partials /∂a /∂e /∂M

∂X / 1
a(X − 3t

2 Ẋ) L Ẋ
n

∂Y / 1
a(Y − 3t

2 Ẏ ) M Ẏ
n

∂Ẋ / − 1
2a(Ẋ − 3µXt

r3
) L̇ −n(ar )

3X

∂Ẏ / − 1
2a(Ẏ − 3µY t

r3
) Ṁ −n(ar )

3Y

Table A.1: Caption

L =
a2

r
(e cosE − 1− sin2E) (A.3a)

M =
a2 sinE

r
√
1− e2

(cosE − e) (A.3b)

L̇ =
na4

r3
(e− 2 cosE + e cos2E) sinE (A.3c)

Ṁ =
na4

r3
√
1− e2

(e2 − 1− e cosE + 2 cos2E − e cos3E) (A.3d)

(A.3e)

Similarly, the inverse partials are also defined by Broucke [11].

The Jacobian between the PQW frame and equinoctial elements was defined by Broucke [12]

using a group of intermediate variables.

The conversion to Delaunay element sets is achieved by taking partials between Equinoctial

and Delaunay sets using the MATLAB symbolic computer:



115

∂COE

∂Delaunay
=



0 0 0 5.017556E − 06 ∗ L 0 0

0 0 0 G2/(L3 ∗ (1−G2/L2)(1/2)) −G/(L2 ∗ (1−G2/L2)(1/2)) 0

0 0 0 0 H/(G2 ∗ (1−H2/G2)(1/2)) −1/(G ∗ (1−H2/G2)(1/2))

0 0 1 0 0 0

0 1 0 0 0 0

1 0 0 0 0 0


(A.4)

and using the chain rule:

∂Equinoctial

∂Delaunay
=
∂Equinoctial

∂COE
∗ ∂COE

∂Delaunay
(A.5)

Similarly, ∂Delaunay
∂COE can be calculated using the symbolic computer and using chain rule:

∂Delaunay

∂Equinoctial
=
∂Delaunay

∂COE
∗ ∂COE

∂Equinoctial
(A.6)



Appendix B

Simplified Dynamical System: Mean Dynamics Equations

This chapter lists the dynamical equations of motion calculated for the mean dynamics from

the Simplified Dynamical System (SDS) defined in chapter 2. These are computed using the

MATLAB symbolic computer using Eq. (2.27).
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l̇ = µ2/L3 − (3 ∗ L ∗ β ∗ (1−G2/L2)(1/2) ∗ ((cos(g + h− h⊙ − k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4−

(cos(g − h+ h⊙ + k⊙) ∗ (H/G− 1) ∗ (c⊙ + 1))/4− (cos(g + h− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))

/4 + (cos(g − h+ h⊙ − k⊙) ∗ (H/G− 1) ∗ (c⊙ − 1))/4 + s⊙ ∗ sin(g) ∗ sin(k⊙) ∗ (1−H2/G2)1/2))/µ

+ (3 ∗ J2 ∗R2
E ∗ µ4 ∗ ((3 ∗H2)/G2 − 1))/(4 ∗G3 ∗ L4)− (3 ∗G2 ∗ β ∗ ((cos(g + h− h⊙

− k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4− (cos(g − h+ h⊙ + k⊙) ∗ (H/G− 1) ∗ (c⊙ + 1))/4− (cos(g + h

− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))/4 + (cos(g − h+ h⊙ − k⊙) ∗ (H/G− 1) ∗ (c⊙ − 1))/4+

s⊙ ∗ sin(g) ∗ sin(k⊙) ∗ (1−H2/G2)(1/2)))/(2 ∗ L ∗ µ ∗ (1−G2/L2)(1/2))+

(J22 ∗R4
E ∗ µ6 ∗ ((G2/L2 − 1) ∗ (4 ∗ ((3 ∗H2)/G2 − 1)2 + (3 ∗G2 ∗ (5 ∗ (H2/G2 − 1)2−

(8 ∗H2)/G2))/L2) + 4 ∗ ((3 ∗H2)/G2 − 1)2 + (12 ∗G3 ∗ ((3 ∗H2)/G2 − 1)2)/L3 + (4 ∗G2∗

(21 ∗ (H2/G2 − 1)2 + (42 ∗H2)/G2 − 22))/L2 − (G2 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)

/G2 − 1) ∗ ((6 ∗G2)/L2 − 6))/L2))/(128 ∗G9 ∗ L2) + (J22 ∗R4
E ∗ µ6 ∗ ((36 ∗G3 ∗ ((3 ∗H2)

/G2 − 1)2)/L4 + (2 ∗G2 ∗ (4 ∗ ((3 ∗H2)/G2 − 1)2 + (3 ∗G2 ∗ (5 ∗ (H2/G2 − 1)2 − (8 ∗H2)

/G2))/L2))/L3 + (8 ∗G2 ∗ (21 ∗ (H2/G2 − 1)2 + (42 ∗H2)/G2 − 22))/L3 + (6 ∗G2∗

(G2/L2 − 1) ∗ (5 ∗ (H2/G2 − 1)2 − (8 ∗H2)/G2))/L3 − (12 ∗G4 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1)∗

((15 ∗H2)/G2 − 1))/L5 − (2 ∗G2 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2

− 6))/L3))/(128 ∗G9 ∗ L) (B.1)
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ġ = (3 ∗G ∗ β ∗ ((cos(g + h− h⊙ − k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4− (cos(g − h+ h⊙ + k⊙) ∗ (H/G− 1)∗

(c⊙ + 1))/4− (cos(g + h− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))/4 + (cos(g − h+ h⊙ − k⊙) ∗ (H/G

− 1) ∗ (c⊙ − 1))/4 + s⊙ ∗ sin(g) ∗ sin(k⊙) ∗ (1−H2/G2)(1/2)))/(2 ∗ µ ∗ (1−G2/L2)(1/2))

− (3 ∗ L2 ∗ β ∗ (1−G2/L2)(1/2) ∗ ((H ∗ cos(g + h− h⊙ + k⊙) ∗ (c⊙ − 1))/(4 ∗G2)− (H ∗ cos(g−

h+ h⊙ − k⊙) ∗ (c⊙ − 1))/(4 ∗G2)− (H ∗ cos(g + h− h⊙ − k⊙) ∗ (c⊙ + 1))/(4 ∗G2) + (H ∗ cos(g−

h+ h⊙ + k⊙) ∗ (c⊙ + 1))/(4 ∗G2) + (H2 ∗ s⊙ ∗ sin(g) ∗ sin(k⊙))/(G3 ∗ (1−H2/G2)(1/2))))/

(2 ∗ µ) + (3 ∗H2 ∗ J2 ∗RE2 ∗ µ4)/(2 ∗G6 ∗ L3)− (J22 ∗RE4 ∗ µ6 ∗ ((G2/L2 − 1) ∗ ((6 ∗G ∗ (5∗

(H2/G2 − 1)2 − (8 ∗H2)/G2))/L2 + (3 ∗G2 ∗ ((16 ∗H2)/G3 − (20 ∗H2 ∗ (H2/G2 − 1))

/G3))/L2 − (48 ∗H2 ∗ ((3 ∗H2)/G2 − 1))/G3) + (2 ∗G ∗ (4 ∗ ((3 ∗H2)/G2 − 1)2 + (3 ∗G2 ∗ (5∗

(H2/G2 − 1)2 − (8 ∗H2)/G2))/L2))/L2 + (36 ∗G2 ∗ ((3 ∗H2)/G2 − 1)2)/L3 + (8 ∗G∗

(21 ∗ (H2/G2 − 1)2 + (42 ∗H2)/G2 − 22))/L2 − (4 ∗G2 ∗ ((84 ∗H2)/G3 + (84 ∗H2 ∗ (H2/G2

− 1))/G3))/L2 − (48 ∗H2 ∗ ((3 ∗H2)/G2 − 1))/G3 − (144 ∗H2 ∗ ((3 ∗H2)/G2 − 1))/L3−

(12 ∗G3 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)/G2 − 1))/L4 + (30 ∗H2 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1)

∗ ((6 ∗G2)/L2 − 6))/(G ∗ L2) + (2 ∗H2 ∗ cos(2 ∗ g) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2 − 6))/

(G ∗ L2)− (2 ∗G ∗ cos(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2 − 6))/L2))/

(128 ∗G9 ∗ L) + (3 ∗ J2 ∗RE2 ∗ µ4 ∗ ((3 ∗H2)/G2 − 1))/(4 ∗G4 ∗ L3) + (9 ∗ J22 ∗RE4 ∗ µ6∗

((G2/L2 − 1) ∗ (4 ∗ ((3 ∗H2)/G2 − 1)2 + (3 ∗G2 ∗ (5 ∗ (H2/G2 − 1)2 − (8 ∗H2)/G2))/L2)

+ 4 ∗ ((3 ∗H2)/G2 − 1)2 + (12 ∗G3 ∗ ((3 ∗H2)/G2 − 1)2)/L3 + (4 ∗G2 ∗ (21 ∗ (H2/G2 − 1)2

+ (42 ∗H2)/G2 − 22))/L2 − (G2 ∗ cos(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2

− 6))/L2))/(128 ∗G10 ∗ L) (B.2)
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ḣ = (3 ∗ L2 ∗ β ∗ (1−G2/L2)(1/2) ∗ ((cos(g + h− h⊙ + k⊙) ∗ (c⊙ − 1))/(4 ∗G) + (cos(g − h+ h⊙+

k⊙) ∗ (c⊙ + 1))/(4 ∗G)− (cos(g + h− h⊙ − k⊙) ∗ (c⊙ + 1))/(4 ∗G)− (cos(g − h+ h⊙ − k⊙) ∗ (c⊙

− 1))/(4 ∗G) + (H ∗ s⊙ ∗ sin(g) ∗ sin(k⊙))/(G2 ∗ (1−H2/G2)(1/2))))/(2 ∗ µ)−

(J22 ∗RE4 ∗ µ6 ∗ ((G2/L2 − 1) ∗ ((48 ∗H ∗ ((3 ∗H2)/G2 − 1))/G2 − (3 ∗G2 ∗ ((16 ∗H)/G2−

(20 ∗H ∗ (H2/G2 − 1))/G2))/L2) + (48 ∗H ∗ ((3 ∗H2)/G2 − 1))/G2 + (4 ∗G2 ∗ ((84 ∗H)/G2+

(84 ∗H ∗ (H2/G2 − 1))/G2))/L2 + (144 ∗G ∗H ∗ ((3 ∗H2)/G2 − 1))/L3 − (30 ∗H ∗ cos(2 ∗ g)∗

(H2/G2 − 1) ∗ ((6 ∗G2)/L2 − 6))/L2 − (2 ∗H ∗ cos(2 ∗ g) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2−

6))/L2))/(128 ∗G9 ∗ L)− (3 ∗H ∗ J2 ∗RE2 ∗ µ4)/(2 ∗G5 ∗ L3) (B.3)

L̇ = 0 (B.4)

Ġ = (3 ∗ L2 ∗ β ∗ (1−G2/L2)(1/2) ∗ ((sin(g + h− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))/4− (sin(g − h

+ h⊙ − k⊙) ∗ (H/G− 1) ∗ (c⊙ − 1))/4− (sin(g + h− h⊙ − k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4 + (sin(g

− h+ h⊙ + k⊙) ∗ (H/G− 1) ∗ (c⊙ + 1))/4 + s⊙ ∗ cos(g) ∗ sin(k⊙) ∗ (1−H2/G2)(1/2)))/(2 ∗ µ)

+ (J22 ∗RE4 ∗ µ6 ∗ sin(2 ∗ g) ∗ (H2/G2 − 1) ∗ ((15 ∗H2)/G2 − 1) ∗ ((6 ∗G2)/L2 − 6))/

(64 ∗G7 ∗ L3) (B.5)

Ḣ = −(3 ∗ L2 ∗ β ∗ (1−G2/L2)(1/2) ∗ ((sin(g + h− h⊙ − k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4− (sin(g − h

+ h⊙ − k⊙) ∗ (H/G− 1) ∗ (c⊙ − 1))/4− (sin(g + h− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))/4 + (sin(g

− h+ h⊙ + k⊙) ∗ (H/G− 1) ∗ (c⊙ + 1))/4))/(2 ∗ µ) (B.6)

k̇⊙ = ν (B.7)
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K̇⊙ = (3 ∗ L2 ∗ β ∗ (1−G2/L2)(1/2) ∗ ((sin(g + h− h⊙ − k⊙) ∗ (H/G+ 1) ∗ (c⊙ + 1))/4 + (sin(g − h

+ h⊙ − k⊙) ∗ (H/G− 1) ∗ (c⊙ − 1))/4 + (sin(g + h− h⊙ + k⊙) ∗ (H/G+ 1) ∗ (c⊙ − 1))/4 + (sin(g

− h+ h⊙ + k⊙) ∗ (H/G− 1) ∗ (c⊙ + 1))/4 + s⊙ ∗ cos(k⊙) ∗ sin(g) ∗ (1−H2/G2)(1/2)))/(2 ∗ µ)

(B.8)
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