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In many spacecraft control scenarios, the standard design procedure begins with a deterministic pro-

pellant minimization that does not consider random errors due to navigation uncertainty, control noise,

unknown parameters, or mismodeled dynamics. However, these random errors can render a deterministic

trajectory infeasible or result in large state deviations that are resource-intensive to correct. Therefore, a

deterministic design is followed by feasibility studies to ensure that potential errors will not compromise

the mission performance. Alternatively, this dissertation investigates the more direct approach of stochas-

tic optimal control. Stochastic control techniques include uncertainty within the optimization process such

that error statistics can be minimized or constrained directly. Two novel stochastic control problems are

investigated in this dissertation: 1) open-loop multi-objective trajectory optimization to minimize state er-

ror covariance and control energy using indirect methods and 2) closed-loop guidance to minimize mean

squared error using dynamic programming. These techniques may be employed independently or in tandem

to improve mission robustness. Both approaches consider control-dependent noise that is proportional to

the magnitude of the nominal control (a structure that is common in spacecraft thrusters). The stochastic

control methods in this dissertation are demonstrated for various mission scenarios including asteroid orbits

in microgravity and multi-body orbits in the Earth-Moon system.

Moreover, the growth of state uncertainty over time is dependent on the dynamical system in question,

with the degree of nonlinearity playing an important role. This dissertation also studies the relationship

between uncertainty and nonlinearity and proposes a semianalytical measure of nonlinearity that is based on

the eigenpairs of higher-order tensors. The nonlinearity measure can be used to identify regions of strong

nonlinearity, estimate the size of the “linear” region about a nominal trajectory, and inform navigation and

control algorithms. Collectively, this research results in a generalized guidance and control framework that

facilitates robust performance.
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Chapter 1

Introduction

Due to the extreme cost of delivering spacecraft mass to Earth orbit and beyond, propellant consump-

tion is a driving factor in spacecraft mission design — spacecraft trajectories are often designed to minimize

the propellant required to reach a destination. In addition to the baseline design, supplemental propellant is

needed to correct errors in flight that cause the spacecraft to deviate from its nominal trajectory. Without

frequent correction maneuvers, errors resulting from navigation uncertainty, thruster noise, or mismodeled

dynamics can lead to mission failure or large deviations that are expensive to correct (in propellant cost

and human effort). Because these errors are random and unknown during the design process, the simplest

approach is to optimize the baseline trajectory without considering errors (e.g., optimizing the deterministic,

nominal trajectory to minimize propellant cost). However, errors must still be accounted for, and the his-

torical procedure involves robustness analysis through linear covariance propagation methods and nonlinear

Monte Carlo simulations. If a baseline trajectory remains feasible with the inclusion of random errors, then

the trajectory design was successful; otherwise, the design and the robustness analysis must be iterated until

the trajectory is sufficiently robust. This process can be time consuming, and there is no guarantee that the

trajectory remains propellant-optimal in the presence of uncertainty and correction maneuvers.

Alternatively, this dissertation uses an approach where uncertain errors are considered in the design

stage, i.e., stochastic optimal control. Stochastic control methods account for uncertainty within an op-

timization process by incorporating randomness in the system model, the objective function, and/or the

problem constraints. This dissertation will use stochastic control to minimize error in the spacecraft state

directly. This approach can be thought of as maximizing the trajectory robustness. Although the errors
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affecting the spacecraft performance are random, such as a random solar radiation pressure perturbation, the

statistics of these random processes are assumed to be known. Moreover, the path taken by the spacecraft

determines how these random errors affect the spacecraft state uncertainty, and a control policy can be de-

signed to minimize the influence of random errors. The state uncertainty when the spacecraft arrives at its

target is of particular interest.

Control-dependent uncertainties, also referred to as maneuver execution errors, are considered through-

out this dissertation. Due to the increased complexity of control-dependent noise, it is often ignored during

trajectory optimization. However, experimental studies indicate that control-dependent noise can be signif-

icant. Notably, spacecraft electric propulsion engines experience noisy discharge current fluctuations that

are linearly proportional to the commanded thrust by up to 13% [1, 2]. Moreover, the widely-used Gates

model for maneuver execution error incorporates both fixed and proportional errors in thrust magnitude and

pointing [3–5]. In short, higher thrust levels produce larger thrust errors, and that effect will be modeled

throughout this dissertation. This proportional configuration will be referred to as “control-linear” noise.

Control-linear noise can also be viewed as a linearized approximation of control-dependent noise in gen-

eral, expanding the applicability of the control-linear model. Other instances of control-dependent noise can

be found in robotics motion planning and the human sensorimotor system [6], so the model is not limited to

space mission design.

Small body orbiters are among the missions that may benefit from uncertainty minimization, espe-

cially in the case of control-dependent noise. In the low gravity environment around asteroids, maneuvers

require very little propellant (e.g. ∆V s of millimeters per second can have a large effect [7, 8]). Unfortu-

nately, these trajectories are also highly sensitive to maneuver execution error and environmental noise. This

dissertation will demonstrate that, through stochastic optimization, significant error reduction is possible

with small penalties in propellant when compared to deterministic propellant-optimal solutions. Likewise,

any mission scenario that requires a high level of precision is a potential application for uncertainty mini-

mization, e.g. rendezvous and docking maneuvers or operations in highly-sensitive, unstable environments.

Both open and closed-loop control methods will be considered in this dissertation and demonstrated for a

variety of mission scenarios.
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In robust control, the underlying dynamics play an important role in the evolution and growth of

uncertainty over time. The degree of nonlinearity of the dynamical system is particularly important. Ac-

cordingly, this dissertation also proposes a novel measure of nonlinearity (MoN) that is based on tensor

eigenpairs. This MoN can be used to explore the relationship between uncertainty and nonlinearity and has

numerous applications in guidance, navigation, and uncertainty propagation.

1.1 Dissertation Overview

The research content in this dissertation is divided into five chapters: Chapter 2 covers robust, non-

linear, multi-objective trajectory optimization to minimize control energy and state error covariance using

indirect methods. Chapter 3 introduces closed-loop robust control for sampled linear systems using contin-

uous control inputs and dynamic programming. Chapter 4 builds on the foundation of Chapter 3, extending

the closed-loop method to a more general problem scenario with impulsive control inputs and applying the

robust control law as a neighboring guidance law. Chapter 5 expands the theory in Chapter 4 to the case of

imperfect navigation. Finally, Chapter 6 develops semianalytical measures of nonlinearity based on tensor

eigenpairs and discusses their applications in guidance, navigation, and control.

To the greatest extent possible, the notation is standardized throughout this document; however, each

chapter contains a nomenclature to define variables that are unique to that chapter. Each chapter includes an

introduction, background information, problem formulation, solution, pseudoalgorithms, numerical exam-

ples, and conclusions. Topics that appear in multiple chapters, e.g., the formulation of the circular-restricted

three-body problem, are described in a separate appendix.

1.2 Technical Contributions

This dissertation makes technical contributions in three major areas: robust nonlinear trajectory opti-

mization with control-dependent noise, closed-loop control with control-dependent noise and limited state

information, and semianalytical measures of nonlinearity.

Previous work in robust spacecraft trajectory optimization does not address the mutli-objective op-

timization of control energy and covariance, nor the problem of uncertainty minimization with control-
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dependent noise. In Chapter 2, a novel multi-objective optimization of control energy and covariance with

control-dependent noise is solved using indirect methods. The analytical nature of the indirect solution

provides valuable insight into the problem dynamics, and may serve as a validation method for numerical

optimization algorithms in the future. Chapter 2 also introduces the concept of proactive station-keeping

as an alternative to trajectory correction maneuvers. Rather than designing maneuvers to correct errors as

they appear along a ballistic trajectory, the proactive station-keeping scenario applies open loop control to

proactively manipulate the covariance in a way that reduces future state error without feedback control.

This dissertation provides an analytical solution to another novel optimization problem in Chapters 3

and 4: closed-loop control to minimize mean squared state error in the case of sampled measurements and

control-dependent noise. The algorithm is derived for a linear system, but will be applied to nonlinear astro-

dynamics systems as a neighboring guidance law (by linearizing state deviations about nominal trajectories).

Both continuous and impulsive control formulations are considered such that the results may be applicable

to a variety of spacecraft guidance scenarios. The closed-loop control laws presented in this dissertation

are derived analytically using dynamic programming. The result is a linear state feedback controller with

feedback gains that can be computed offline a priori. In Chapter 5, an analytical approach (using bounded

cost functions) is proposed to investigate a previously intractable problem — the optimal control of a linear

system with control-dependent noise and noisy, partial-state measurements.

Finally, a new nonlinearity measure based on tensor eigenpairs, the tensor eigenpair measure of non-

linearity (TEMoN), is introduced in Chapter 6. Earlier measures of nonlinearity require empirical sampling

or numerical optimization. Alternatively, the method developed in this dissertation is semianalytical. The

TEMoN can be used to study the evolution of nonlinearity along a spacecraft trajectory, identify regions

of strong nonlinearity, and quantify the size of the linear region about a nominal trajectory. Chapter 6 will

describe how this nonlinearity measure may be used alongside guidance and navigation algorithms.

Collectively, this research results in a generalized guidance and control framework that facilitates

robust performance. This dissertation takes an analytic-first approach to these problems. When compared

to numerical methods, the analytical techniques herein give broader insight into all aspects of a solution —

for example, the mathematical structure of a control profile, not simply the numerical value of the control.
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Thus, the results in this dissertation serve as an analytical foundation for future numerical methods.

1.3 Associated Publications

This dissertation is comprised of the following publications and related work.

1.3.1 Journal Publications

(1) E. L. Jenson, X. Chen, and D. J. Scheeres, “Optimal Control of Sampled Linear Systems with

Control-Linear Noise,” IEEE Control Syst. Lett., vol. 4, no. 3, pp. 650-655, Jul. 2020.

(2) E. L. Jenson, X. Chen, and D. J. Scheeres, “Optimal Spacecraft Guidance With Asynchronous

Measurements and Noisy Impulsive Controls,” IEEE Control Syst. Lett., vol. 5, no. 5, pp. 1813-

1818, Nov. 2021.

(3) E. L. Jenson and D. J. Scheeres, “Multi-Objective Optimization of Covariance and Energy for

Asteroid Transfers,” J. Guid. Control Dyn., vol. 44, no. 7, pp. 1253-1265, Jul. 2021.

(4) E. L. Jenson and D. J. Scheeres, “Semianalytical Measures of Nonlinearity Based on Tensor Eigen-

pairs,” (in review).

1.3.2 Conference Papers

(1) E.L. Jenson, D.J. Scheeres, “Robust Trajectory Optimization Using Minimum-Uncertainty Cost

Functions,” AAS/AIAA Astrodynamics Specialist Conference, Portland, ME, USA, Aug. 2019,

AAS 19-838.

(2) E.L. Jenson, D.J. Scheeres, “Trajectory Optimization Using Combined Minimum-Uncertainty and

Minimum-Energy Cost Functions,” 70th International Astronautical Congress, Washington D.C.,

USA, Oct. 2019, IAC-19-C1-1.8.

(3) E.L. Jenson, D.J. Scheeres, “Multi-Objective Optimization of Covariance and Energy for Aster-

oid Transfers,” AAS/AIAA Astrodynamics Specialist Conference, South Lake Tahoe, CA, USA
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(virtual), Aug. 2020, AAS-20-550.

(4) E.L. Jenson, D.J. Scheeres, “Semianalytical Measures of Nonlinearity Based on Tensor Eigenpairs,”

AAS/AIAA Astrodynamics Specialist Conference, Big Sky, MT, USA, (virtual), Aug. 2021, AAS

21-546.

(5) E.L. Jenson, D.J. Scheeres, X. Chen, “Robust Spacecraft Guidance with Control-Dependent Noise:

Analysis and Application,” AIAA SciTech Forum, San Diego, CA , USA, Jan. 2022.



Chapter 2

Robust Trajectory Optimization

Chapter 2 Nomenclature

A(X ′(t)) = linearized dynamics

aSRP = SRP acceleration

B = control matrix

d = central body distance from the Sun

F1 = Formulation 1 cost function

F2 = Formulation 2 cost function

f(X) = unforced nonlinear dynamics

g = terminal manifold constraint

H = Hamiltonian

Im×m = m×m identity matrix

JP = covariance cost function

Ju = energy cost function

J2 = second order zonal harmonic

J3 = third order zonal harmonic

m = number of control inputs

n = number of states

nb = mean motion at Bennu surface
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P` = `th Legendre polynomial

p0 = solar radiation pressure at 1 AU

R = energy cost weighting matrix

r = radius

r = position vector

T = orbit period

t = time

u(t) = control vector

Vg = gravitational potential

v = velocity vector

Wt = standard Wiener process

W = weighting matrix for Σ(tf )

W ′ = weighting matrix for ΦpΣ(tf )Φ>p

Xt = stochastic state vector

X ′(t) = nominal state vector

X̃(t) = nominal state vector augmented with Ju

xt = stochastic state error vector

Z = spacecraft mass-to-area ratio

∆V = impulsive velocity change

η = cost function weighting parameter

λ = costate vector

λX = position and velocity components of the costate vector

µ = gravitational parameter

ρ = spacecraft reflectance

Σ(t) = state error covariance matrix

σ = control noise factor

τ = nondimensional time



9

Φ(tj , ti) = state transition matrix from ti to tj

Φp = state transition matrix for covariance propagation after tf

ψ = vector of Lagrange multipliers

ω = rate of coordinate frame rotation

2.1 Introduction

This chapter is focused on stochastic trajectory optimization for nonlinear dynamical systems. A

multi-objective optimization will be performed to minimize both control energy and state error covariance.

The term “trajectory optimization” is used here to describe the design of an open-loop control strategy and

the corresponding nominal trajectory, i.e., feedback control is not included in this chapter.

The methods detailed here are not application specific, but will be demonstrated for orbit transfers

around a small asteroid. Other authors have utilized stochastic optimization techniques to tackle uncertainty

in the asteroid environment. The sequential optimization and reliability assessment (SORA) procedure has

been applied to asteroid soft landings: a deterministic propellant optimization and a reliability analysis

are iterated systematically until robustness requirements are met [9]. Other authors have designed risk-

aware trajectories by augmenting primer vector theory with deterministic and stochastic state inequality

constraints [10]. Unscented guidance has also been proposed for asteroid proximity operations, in which the

sigma points of an unscented transform are controlled [11]. In contrast to these techniques, the work in this

chapter seeks to minimize uncertainty directly.

To date, research in uncertainty minimization for astrodynamics trajectory design is limited. Relevant

previous work was done by Zimmer in [12] and Hu in [13]. Using indirect optimization methods, Zimmer

performed a weighted optimization of control energy and covariance by augmenting the state vector with

covariance terms, which were propagated linearly with additive white Gaussian noise. The minimum energy

solution was used as an initial guess, and a homotopy was performed by increasing the weights of covariance

terms in the cost function. Zimmer’s method can produce significant covariance improvement. However,

including covariance in the state vector increases the sensitivity of the problem and impedes convergence in
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shooting methods. For a six-dimensional position and velocity state, the covariance adds 21 unique costates,

and it is difficult to generate initial guesses independent of the minimum energy solution. By using the

minimum energy solution as an initial guess, the solution domain is restricted to a single homotopy, and

there is no guarantee that the true minimum covariance solution belongs to this homotopy. (The indirect

approach, homotopy processes, shooting methods, and the difference between control energy and propellant

are described in the next section.)

In [13], Hu considered a weighted propellant-and-covariance cost function and used desensitized

optimal control techniques to improve the accuracy of asteroid landing trajectories. The desensitized optimal

control method incorporates linear-quadratic regulator (LQR) feedback control, and dynamical uncertainties

are modeled as stochastic accelerations (additive noise). In [12, 13] the authors penalized covariance, but

did not seek covariance and energy Pareto fronts. Nor do these methods accommodate control-dependent

noise, which was identified as a significant source of uncertainty in Chapter 1.

The predominant contributions of this chapter are as follows: the method in [12] is extended to in-

clude control-linear noise, as described in Chapter 1, and a multi-objective approach is formalized to locate

trajectories that are Pareto-optimal in control energy and state error covariance. The first modification will

be to exclude covariance from the state vector, reducing sensitivity during shooting methods and elimi-

nating the need for a homotopy. This will improve flexibility, facilitate a broader characterization of the

solution domain, and enable a multi-objective optimization. The minimum propellant problem, also known

as minimum fuel, is not considered here. Rather, control energy is minimized to leverage structural simi-

larities between the energy and covariance cost functions (discussed further in Section 2.4). Moreover, the

continuous nature of the minimum energy control is more amenable to shooting methods [14].

Multi-objective optimization is a trade-off between distinct objectives. A feasible solution is said to

dominate another solution if it is superior in at least one objective and is no worse in all other objectives. All

non-dominated solutions form a Pareto front from which one objective cannot be improved without decreas-

ing performance in another objective. Thus, the multi-objective optimization seeks the set of Pareto-optimal

solutions. This chapter will consider two formulations for multi-objective optimization: 1) a combined co-

variance and energy minimization via weighted cost functions (weighted-sum method) and 2) a minimum
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covariance optimization with an energy constraint (ε-constraint method). Both involve scalarizing the prob-

lem as a single objective. In the weighted-sum case, multiple cost functions are linearly combined and their

relative influence is dictated by weighting parameters [15]. Alternatively, in the ε-constraint method, one

cost function is optimized while the others are treated as constraints [15, 16]

The weighted-sum method is simple to implement, but there is no guarantee that solutions will lie on

the Pareto front in general. Conversely, globally-optimal solutions to the ε-constraint problem are guaranteed

to lie on a Pareto front, making the ε-constraint method more rigorous. However, the ε-constraint method

requires additional constraints, and their attainable values must be determined. A theorem will be presented

in this chapter to prove that, in the case of covariance-and-energy optimization, the weighted-sum and ε-

constraint methods produce the same optimal trajectories. The simpler method (weighted sum) will be

implemented without sacrificing optimality, and the weighting parameters that correspond to Pareto-optimal

solutions will be derived.

More sophisticated, non-scalarized multi-objective optimization methods utilize non-dominance sort-

ing and genetic algorithms [17–19] or Multi Agent Collaborative Search [20]. These methods are not con-

sidered here. Instead, this chapter will prove analytically that the scalarized approach is sufficient despite

its simplicity. Due to the rigor of indirect methods and the ε-constraint approach, the results here may be

useful for validation of other covariance-and-energy optimizations.

The optimization methods presented in this chapter will be demonstrated for orbit transfers and phas-

ing maneuvers between Sun-terminator orbits in the Hill three-body problem (H3BP) augmented with solar

radiation pressure (SRP) and J2 and J3 spherical harmonics for the asteroid gravity field [21]. Terminator

orbits are SRP-perturbed orbits that lie in an asteroid’s Sun-terminator plane; their angular momentum vec-

tor is aligned with the sunlight direction. Due to their stability characteristics, terminator orbits provide a

suitable configuration for asteroid orbit operations (for example, the OSIRIS-REx mission to the asteroid

Bennu [22]). Three terminator orbit maneuver scenarios will be optimized in this chapter: orbit transfers,

phasing maneuvers, and “proactive station-keeping.”

Proactive station-keeping addresses a scenario in which a spacecraft is already on track to intersect

a target state in the absence of initial state error or noise; however, the existing trajectory has unfavorable
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uncertainty dynamics. Traditionally, errors would be estimated along the trajectory and retroactive corrective

maneuvers would be planned to target the nominal state. In the proactive station-keeping scenario, open-loop

control will be applied to alter the nominal trajectory in a way that produces favorable uncertainty dynamics.

Despite the addition of control-dependent noise, this chapter will demonstrate that proactive station-keeping

can greatly improve uncertainty performance and potentially eliminate the need for correction maneuvers in

flight.

This chapter is organized as follows. Section 2.2 provides background information on indirect meth-

ods, shooting methods, and homotopies. Section 2.3 formulates the trajectory optimization problem. Sec-

tion 2.4 discusses the optimal control derivation and result. An optimal control pseudoalgorithm is for-

malized in Section 2.5. Section 2.6 provides three examples of covariance-and-energy minimization: orbit

transfers, phasing maneuvers, and proactive station-keeping around the asteroid Bennu.

2.2 Background

2.2.1 Indirect Optimization

This section provides a brief description of the indirect optimization approach used throughout this

chapter. A trajectory optimization problem is a calculus of variations problem, i.e., an optimization of

functionals, which map functions (the control profile and trajectory dynamics) to scalars (the cost function).

With continuous control, the control problem is infinite-dimensional but may be reduced to finite dimensions

through either analytical analysis (indirect methods) or approximation (direct methods) [23]. In indirect

optimization, the necessary conditions for optimality are applied to derive expressions for the optimal control

profile and the costate (adjoint) differential equations. Then, the optimization problem is reduced to a

boundary value problem where only the states and costates at the boundary points must be determined.

Consider the cost function

J = K(X0, t0,Xf , tf ) +

∫ tf

t0

L(X,u, t)dt, (2.1)
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where the terms K and L are an unspecified terminal cost and a Lagrangian, respectively. This formulation

is often called a Bolza-type cost function. In general, a Hamiltonian is formed as follows

H = L(X,u, t) + λ>
dX(t)

dt
, (2.2)

in which λ denotes the costate vector. The optimal control must satisfy the following necessary condition

to produce a stationary point of the Hamiltonian.

∂H
∂u

∣∣∣∣
u∗

= 0 (2.3)

The optimal Hamiltonian, H∗, is computed by substituting u∗ in H. The costate dynamics are dictated by

the second necessary condition as follows.

λ̇ = −∂H
∗

∂X
(2.4)

With the state dynamics, costate dynamics, and optimal control being known, the next step is to determine

boundary values for the state and costate which lead to feasible solutions. Feasible solutions are those for

which no user-defined state or control constraints are violated. Additionally, optimal trajectories must satisfy

the following transversality conditions, which contribute more constraints at the initial and final times:

λ(t0)> = − ∂K

∂X0
− ψ> ∂g

∂X0
, (2.5)

λ(tf )> =
∂K

∂Xf
+ ψ>

∂g

∂Xf
, (2.6)

H(t0) =
∂K

∂t0
+ ψ>

∂g

∂t0
, (2.7)

H(tf ) = −∂K
∂tf
− ψ> ∂g

∂tf
. (2.8)

The variable ψ is a vector of Lagrange multipliers. The necessary conditions only guarantee stationary

points of the cost function, not global minima. Therefore, it is recommended to compare multiple solutions

to the necessary conditions.
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2.2.2 Shooting Methods

The necessary conditions reduce the optimal control problem to a boundary value problem. The

only remaining task is to determine states and costates at the boundary points that satisfy the user-defined

constraints and transversality conditions. If the problem is formulated with only two boundary points (at

the beginning and end of the trajectory), then the problem is called a two-point boundary value problem

(TPBVP). It is also possible to formulate a problem with multiple intermediate boundary points; in this

case, the problem is a multi-point boundary value problem (MPBVP) and additional constraints are required

to enforce state and costate continuity at the intermediate boundary points. Only TPBVPs are considered in

this chapter, and a single shooting method will be used to solve TPBVPs.

In the single-shooting scheme, a guess of the free parameters at one boundary is generated, the trajec-

tory is integrated to the second boundary, the error in the terminal constraints and transversality conditions is

computed at the second boundary, and the free parameters at the first boundary are updated using a Newton-

Raphson update scheme. The update is iterated until convergence. Allow p to be a vector of free parameters

and c to be a vector of constraints. The following differential correction scheme will be used to update

p until constraints are satisfied. The parameter ζ is used to scale the size of the update step as needed to

improve convergence.

pi+1 = pi − ζ

∂c(p)

∂p

∣∣∣∣∣
pi

−1

ci (2.9)

For each initial guess, the correction is iterated until the constraint error is smaller than a set tolerance.

The generation of a “good” initial guess is often the most difficult step in an indirect optimization

problem. Initial guesses may be generated at random or systematically through techniques such as an

adjoint-control transformation [24]. In the latter case, the costates that form the primer vector are guessed

based on an intuitive guess for the optimal control. Another option is to solve a similar, but easier, optimiza-

tion problem and use that solution as the initial guess for a more complex problem. This technique is often

called a homotopy, and is described further in the next subsection.
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2.2.3 Homotopy Methods

Homotopy is a concept in topology that describes the continuous deformation from one function to

another. The term homotopy is often used informally in the optimization literature to describe a technique

that helps the user generate initial guesses for optimization problems, particularly in the case of indirect

methods. Consider two cost functions, Ja and Jb, and assume that Ja is easier to optimize. One problem

may be easier than another for numerous reasons: the cost function is less sensitive to the free parameters,

the equations are faster to integrate, the constraints are easier to satisfy, etc. In some cases, it is possible to

use a solution to Ja as an initial guess for Jb by defining a combined cost function as follows.

J = (1− η)Ja + ηJb (2.10)

Then, the scaling parameter η may be varied incrementally to transition a Ja solution to a Jb solution. By

using existing solutions as initial guesses and varying the weighting parameter η, homotopy solution families

can be generated. Homotopies may identify solutions in highly sensitive regions that would be difficult to

locate from random initial guesses.

One example is the homotopy between minimum energy and minimum propellant cost functions [25].

The minimum energy cost function typically refers to the integral of the squared L2 norm of the control:

Je =

∫ tf

t0

‖u(t)‖2dt, (2.11)

=

∫ tf

t0

u(t)>u(t)dt. (2.12)

Alternatively, the minimum propellant cost function refers to the integral of the L2 norm of the control:

Ju =

∫ tf

t0

‖u(t)‖dt. (2.13)

This problem is equivalent to maximizing the final mass, i.e., J = −mf . The minimum energy optimization

produces a continuous control profile that is less sensitive to shooting methods. However, the minimum pro-

pellant problem results in a bang-bang control structure that is more difficult to converge on using shooting

methods. It is possible to perform a homotopy between Je and Ju, as seen in [25]. Other homotopy use

cases include “turning on” a perturbation, improving integrator accuracy, or altering an ephemeris model.
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2.3 Trajectory Optimization Problem Formulation

2.3.1 Stochastic Dynamics

Consider the Itô form of a stochastic differential equation with Brownian motion [26]:

dXt = f(Xt,u(t), t)dt+ h(Xt,u(t), t)dWt. (2.14)

An overview of stochastic dynamics is given in Appendix A. If the dynamics are linear in the control and

control-linear noise is assumed, Eq. (2.14) simplifies to:

dXt = f(Xt, t)dt+Bu(t)(dt+ σdWt), (2.15)

in which Xt ∈ Rn is the nondeterministic position and velocity state of the system, f(Xt, t) ∈ Rn is the

natural system dynamics, u(t) ∈ Rm is the nominal control input, and Wt is a standard Wiener process

driving the control-dependent noise. To simplify the notation, the explicit time dependence of f(Xt, t) will

be suppressed moving forward. This formulation corresponds to a control-linear noise model, in which the

level of noise is proportional to the magnitude of the control input. The scalar constant σ dictates the level

of control noise (i.e. σ = 0.01 enforces a standard deviation of 1% of the control magnitude). The control

is assumed to be open-loop.

The state vector is specified Xt = [r>, v>],> where r ∈ Rn/2 and v ∈ Rn/2 are the position and

velocity vectors, respectively. The initial state Xt0 will be uncertain with known statistics. As is typical in

preliminary astrodynamics trajectory design, it is assumed that the acceleration is controlled directly such

that

B =

[0]m×m

Im×m

 . (2.16)

Due to initial state uncertainty and the Wiener process Wt, the true state dynamics dXt cannot be

known to the controller a priori (i.e. the true stateXt cannot be controlled and optimized). Alternatively, an

optimal control law will be designed for a deterministic nominal trajectory, X ′(t), that is not influenced by

initial state uncertainty or noise:

d

dt
X ′(t) = f(X ′(t)) +Bu(t). (2.17)
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The state error, xt, is defined as the difference between the true state Xt and the nominal state X ′(t) as

follows.

xt = Xt −X ′(t) (2.18)

The mean error is denoted x̄(t), and the error covariance is computed by

Σ(t) = E[(xt − x̄(t))(xt − x̄(t))>]. (2.19)

Unlike the stochastic state, X ′(t), x̄(t) and Σ(t) are deterministic and can be controlled and optimized.

Such is the foundation of the covariance minimization performed in this chapter.

This chapter will use a linearized approximation for x̄(t) and Σ(t), as described in Appendix A.

Using the Itô rule, the linearized state error covariance at the final time is

Σ(tf ) = Φ(tf , t0)Σ(t0)Φ(tf , t0)> + σ2

∫ tf

t0

Φ(tf , t)Bu(t)u(t)>B>Φ(tf , t)
>dt. (2.20)

The STM from ti to tj is denoted by Φ(tj , ti), and is computed by numerically integrating the following

differential equation with Φ(ti, ti) = I .

Φ̇(tj , ti) = A(X(tj))Φ(tj , ti) (2.21)

Additionally, the STM partial ∂Φ(tf , t)/∂X , which will be required in the optimal control solution,

is computed by numerically integrating the following equation with the initial condition ∂Φ(tf , tf )/∂X =

[0]n×n.

d

dt

(
∂Φ(tf , t)

∂X

)
=
∂A(X ′(t))

∂X
Φ(tf , t) +A(X ′(t))

∂Φ(tf , t)

∂X
(2.22)

2.3.2 Cost Functions

Section 2.4 will detail the multi-objective optimization of two cost functions. The first, JP , is a

measure of the size of the error covariance matrix:

JP = trace
(
W ′ΦpΣ(tf )Φ>p

)
,

= trace
(
WΣ(tf )

)
,

(2.23)
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whereW = Φ>pW ′Φp andW ′ ∈ Rn×n allows relative weighting between different elements of ΦpΣ(tf )Φ>p .

The term Φp denotes the STM from time tf to a future time tp; Φp enables covariance propagation for an

additional arc after the control cutoff at tf . Propagating the covariance further in time can prevent bad be-

havior, like a control spike at the final time. Because a spike in control noise does not inflate the covariance

instantaneously (the effect must be integrated into the dynamics over time), a control spike at the end of the

trajectory will not significantly increase the covariance at the final time. However, a control spike at the final

time can result in detrimental future uncertainty. Such behavior is corrected by propagating the covariance

for an additional period after the control cutoff.

The second cost function, Ju, encompasses the weighted energy cost of the control:

Ju =

∫ tf

t0

u(t)>Ru(t)dt, (2.24)

where R is a positive definite matrix.

Two multi-objective formulations will be considered for optimization of JP and Ju. The first, Formu-

lation 1 (weighted-sum), is considered for its ease of implementation. However, Formulation 2 (ε-constraint)

is a more rigorous approach to multi-objective optimization and is preferred. Both formulations, including

their cost functions (F1 and F2) and terminal manifold constraints (g1 and g2), are defined below. Neither

control nor path constraints are included in either formulation. The “*” superscript denotes an optimized

quantity.

Formulation 1. Covariance and energy are minimized simultaneously in F1, where JP and Ju are

relatively-weighted terms. The weighting parameter η is used to trade between JP and Ju. Note that

arbitrarily scaling the cost function F1 will not change the result. Therefore, optimizing F1 is equivalent

to optimizing F ′1 = (1 − η)JP + ηJu, and this approach resembles the homotopy method described in

Section 2.2.3. Setting η = 0 is equivalent to minimizing only covariance, and η ≈ 1 is equivalent to

minimizing only energy. The constraint g1 is only a function of the state and time at the beginning and end
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of the trajectory.

F1 = JP +
η

(1− η)
Ju for η ∈ [0, 1)(

X ′∗,u∗
)

= arg min F1

subject to g1

(
X ′∗(t0), t0, X

′∗(tf ), tf

)
= 0

(2.25)

Formulation 2. Covariance is minimized and energy is constrained; J ′u(tf ) is the desired final energy

cost. Therefore, F2 only includes JP . The constraint vector g2 includes g1 as well as terminal constraints

on Ju. The Ju constraint can be varied to form a JP vs. Ju Pareto front. The state is augmented with Ju,

and X̃(t) = [r′>, v′>, Ju]> is the augmented state vector. Thus, Ju can be constrained by simply adding a

final state constraint. Note that the Ju state dynamics are J̇u = u>Ru from Eq. (2.24).

F2 = JP(
X̃∗,u∗

)
= arg min F2

subject to g2 =
[
g1, Ju(t0), Ju(tf )− J ′u(tf )

]
= 0

(2.26)

The cost functions and terminal constraints are different in each formulation. In general, Formulation

1 is simpler to implement. When compared to Formulation 2, Formulation 1 requires one fewer state and

two fewer constraints. To explore the design space with Formulation 1, it is only necessary to vary the η

parameter between zero and one in all cases. Conversely, some additional work may be required to determine

the appropriate range of Ju(tf ) constraints to investigate when working with Formulation 2. Moreover,

feasible solutions are not guaranteed to exist for a particular value of Ju(tf ), which may necessitate the use

of an inequality constraint in Formulation 2. Regardless, Formulation 2 (ε-constraint) is more appropriate

for multi-objective optimization; globally-optimal solutions to Formulation 2 are guaranteed to lie on a two-

dimensional Pareto front of the two objectives. In contrast, the approach taken in Formulation 1 (weighted-

sum) does not guarantee Pareto-optimal solutions in general.

Despite these distinctions, Theorem 1 in the following section will posit that, for the special case of

covariance and energy optimization with control-linear noise, both formulations result in the same optimal

control necessary conditions and produce the same optimal trajectories. This equivalence will be used to

derive the Formulation 1 weighting parameters that produce Pareto-optimal solutions. The optimal control

problem will be solved during the proof of Theorem 1.
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2.4 Optimal Control Solution

First, note that cost functions F1 and F2 take the following forms:

F1 = trace
(
WΦ(tf , t0)Σ(t0)Φ(tf , t0)>

)
+

∫ tf

t0

u(t)>
(
σ2B>Φ(tf , t)

>WΦ(tf , t)B +
η

(1− η)
R
)
u(t)dt,

(2.27)

F2 = trace
(
WΦ(tf , t0)Σ(t0)Φ(tf , t0)>

)
+

∫ tf

t0

u(t)>σ2B>Φ(tf , t)
>WΦ(tf , t)Bu(t)dt. (2.28)

Both Eqs. (2.27) and (2.28) are of the Bolza type. Necessary and transversality conditions for indirect

optimization were summarized previously in Section 2.2.1. Given these preliminaries, Theorem 1 is stated

as follows.

Theorem 1. Consider the nominal dynamics in Eq. (2.17) and the state error covariance in Eq. (2.20). The

solutions to Formulations 1 and 2 are equivalent when

λJu =
η

1− η
, (2.29)

where λJu is the costate corresponding to Ju. The optimal control is

u∗(t) = −1

2

(
σ2B>Φ(tf , t)

>Φ>pWΦpΦ(tf , t)B +
η

1− η
R
)−1

λv, (2.30)

in which λv is the velocity costate. The position and velocity costates are equivalent in both formulations.

Proof of Theorem 1. First, it is convenient to express the Formulation 1 Hamiltonian, H1, in terms of the

time-varying matrixR1(t) as follows:

H1 = u(t)>R1(t)u(t) + λ>r v + λ>v (fv(X
′(t)) + u(t)), (2.31)

R1(t) = σ2B>Φ(tf , t)
>WΦ(tf , t)B +

η

(1− η)
R. (2.32)

With the addition of the state Ju in Formulation 2, the Formulation 2 Hamiltonian is

H2 = u(t)>σ2B>Φ(tf , t)
>WΦ(tf , t)Bu(t) + λ>r v + λ>v (fv(X

′(t)) + u(t)).

+λJuu
>(t)Ru(t).

(2.33)
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As in Eq. (2.31), it is also convenient to define a time-varying matrixR2(t) such that

H2 = u(t)>R2(t)u(t) + λ>r v + λ>v (fv(X
′(t)) + u(t)), (2.34)

R2(t) = σ2B>Φ(tf , t)
>WΦ(tf , t)B + λJuR. (2.35)

Throughout the remainder of the proof, terms that do not explicitly depend on the optimal control, the

costates, or Ri (e.g. v, fv(X), Φ(tf , t), ∂Φ(tf , t)/∂X , and K) are assumed to be equivalent — this

assumption will be valid when the optimal controls are shown to be equivalent. The transversality conditions

will be addressed first. From Eqs. (2.5)-(2.8), the Formulation 1 transversality conditions are:

λX(t0)> = − ∂K

∂X0
− ψ> ∂g1

∂X0
, (2.36)

λX(tf )> =
∂K

∂Xf
+ ψ>

∂g1

∂Xf
, (2.37)

H1(t0) =
∂K

∂t0
+ ψ>

∂g1

∂t0
, (2.38)

H1(tf ) = −∂K
∂tf
− ψ>∂g1

∂tf
. (2.39)

Alternatively, the Formulation 2 transversality conditions include an additional costate and two additional

constraints for Ju:

[
λX(t0)>, λJu(t0)

]
=

[
− ∂K

∂X0
,− ∂K

∂Ju(t0)

]
− [ψ>, ψJu(t0), ψJu(tf )]



∂g1
∂X0

∂g1
∂Ju(t0)

∂Ju(t0)

∂X0

∂Ju(t0)

∂Ju(t0)

∂Ju(tf )

∂X0

∂Ju(tf )

∂Ju(t0)


, (2.40)
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[
λX(tf )>, λJu(tf )

]
=

[
∂K

∂Xf
,

∂K

∂Ju(tf )

]
+ [ψ>, ψJu(t0), ψJu(tf )]



∂g1
∂Xf

∂g1
∂Ju(tf )

∂Ju(t0)

∂Xf

∂Ju(t0)

∂Ju(tf )

∂Ju(tf )

∂Xf

∂Ju(tf )

∂Ju(tf )


, (2.41)

H(t0) =
∂K

∂t0
+ [ψ>, ψJu(t0), ψJu(tf )]



∂g1

∂t0

∂Ju(t0)

∂t0

∂Ju(tf )

∂t0


, (2.42)

H(tf ) = −∂K
∂tf
− [ψ>, ψJu(t0), ψJu(tf )]



∂g1

∂tf
∂Ju(t0)

∂tf
∂Ju(tf )

∂tf

 . (2.43)

Recognizing that the initial and final states and times are independent, Eqs. (2.42) and (2.43) are reduced to

Eqs.(2.38) and (2.39), respectively. Moreover, Eqs. (2.40) and (2.41) are reduced to

[
λX(t0)>, λJu(t0)

]
=

[
− ∂K

∂X0
− ψ> ∂g1

∂X0
,−ψJu(t0)

]
, (2.44)

[
λX(tf )>, λJu(tf )

]
=

[
∂K

∂Xf
+

∂g1
∂Xf

, ψJu(tf )

]
. (2.45)

Thus,H(t0),H(tf ), λX(t0), and λX(tf ) are identical in both formulations. The next step of the proof is to

compare the necessary conditions. From Eq. (2.3), it follows that the optimal control for either formulations

is

u∗(t) = −
R−1
i λv
2

. (2.46)

Substituting u∗(t) intoHi,

H∗i = λ>r v + λ>v fv(X ′(t))− 1

4
λ>vR−1

i λv. (2.47)
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The costate dynamics for either formulation are derived from the necessary condition in Eq. (2.4):

λ̇ = − ∂

∂X

(
λ>r v + λ>v fv(X ′(t))

)
+

1

4
λ>v

∂R−1
i

∂X
λv. (2.48)

Employing a matrix identity for the derivative of an inverse matrix yields

λ̇ = − ∂

∂X

(
λ>r v + λ>v fv(X ′(t))

)
− 1

4
λ>vR−1

i

∂Ri
∂X
R−1
i λv. (2.49)

From Eq. (2.46), it is clear that the optimal control is identical in both Formulation 1 and Formulation 2 if

the velocity costates, λv, are identical and R1(t) = R2(t) for all time. The transversality conditions have

already shown that the costates are equivalent at the initial and final times. From Eq. (2.49), an additional

condition is required for the costate dynamics (and the control, by extension) to be equivalent between

Formulations 1 and 2: ∂R1(t)/∂X = ∂R2(t)/∂X for all time. From Eqs. (2.32) and (2.35)

∂R1

∂X
= σ2B>

(
∂Φ(tf , t)

>

∂X
WΦ(tf , t) + Φ(tf , t)

>W
∂Φ(tf , t)

∂X

)
B,

=
∂R2

∂X
,

(2.50)

where ∂Φ(tf , t)/∂X is computed from Eq. (2.22). Thus, ∂R1(t)/∂X = ∂R2(t)/∂X holds and R1(t) =

R2(t) is the only remaining condition needed for the control to be equivalent between both formulations.

The final step of the proof is to show that this is true given an appropriate selection of η. Recall that R2(t)

is a function of the energy costate λJu . From Eq. (2.4),

λ̇Ju(t) = 0, (2.51)

and λJu is constant. From Eqs. (2.32) and (2.35), R1(t) = R2(t) when λJu = η/(1 − η). It follows that

u∗(t) is equivalent in Formulation 1 and Formulation 2 when λJu = η/(1 − η). This completes the proof.

�

In summary, the optimal control law for either Formulation 1 or 2 is given in Theorem 1. The costate

dynamics are given in Eq. (2.49). It is important to note that both JP and Ju are quadratic in u(t). This

structural similarity is a special case that has enabled an equivalence between both formulations.
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2.5 Optimization Algorithm

Given the statement of Theorem 1, Formulation 1 and Formulation 2 will produce the same optimal

trajectories with the appropriate choice of η or J ′u, respectively. For example, consider a scenario in which

Formulation 1 is implemented with a weighting parameter of η′ and produces an optimal trajectory with an

energy cost of J ′u. If the optimization was instead performed using Formulation 2 and an energy constraint

of J ′u, the optimal λ∗Ju would be such that λ∗Ju = η′/(1−η′). As it is possible to locate the same trajectories

with both formulations, Formulation 1 will be applied due to its reduced complexity.

The optimization algorithm is detailed in Algorithm 1. The algorithm assumes that the initial and

final state and time are fully constrained. Optimal trajectories are located with backward single shooting

methods, as detailed in Section 2.2.2. From Eq. (2.30), the optimal control is a function of the STM from

the current time to the final time. The STM is computed by numerically integrating Eq. (2.21). If forward

shooting (integrating from t0 to tf ) is used, Φ(tf , t) is not available at time t, because the trajectory from t

to tf has not yet been realized. To accumulate Φ(tf , t), it is most convenient to use backward shooting. A

fixed-step Runge-Kutta fourth order integration scheme is used for all numerical integration.

The Algorithm 1 procedure is summarized as follows: at each value of η, a maximum of maxguess

initial guesses of λ(tf ) are attempted. Guesses are randomly sampled from zero-mean Gaussian distribu-

tions with covariance Σguess. If an initial guess produces a constraint error below the maximum accepted

value (emax), the algorithm proceeds to a differential corrector (Newton method). A maximum of itmax

iterations are allowed by the differential corrector. During each iteration, the step size is iteratively scaled

by a factor of scale until the constraint error improves or the step scale is smaller than ζmin (gradients

are not re-computed during the scaling process). If the constraint error is reduced below the desired toler-

ance (tol), the associated λ(tf ) is considered a solution to the necessary conditions. The algorithm can

terminated if one solution is repeated multiple times.

Solutions to the necessary conditions produce stationary points of the cost function, and may be in-

flection points, local maxima, or local minima. Sufficient conditions can be used to characterize a stationary

point as a local minima. Alternatively, the procedure in this paper is repeated for many initial guesses and
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Algorithm 1: Find feasible solutions that satisfy the necessary conditions.
Data for dynamics:
A(X ′(t)), f(X ′(t)), set of tcoast, set of tf ,W , time history of initial orbit: X ′(t), target final
state: X ′(tf ), set of η ∈ [0, 1), σ.
Data for differential corrector (DC):
Constraint function: g(X ′(t0)), emax, itmax, maxguess, maxrepeat, rmin, scale
∈ (0, 1), tol, set of Σguess, ζmin.
Result: A set of feasible solutions that satisfy the optimal control necessary conditions.
for all combinations tf , tcoast, η, Σguess do

initialize: guess = 0, repeat = 0
while guess < maxguess and repeat < maxrepeat do

update: guess = guess + 1
sample λ(tf ) ∼ N (0,Σguess);
integrate [X ′(t),λ(t)] from tf to t0;
compute g(X ′(t0)) and rmin;
initialize: iter = 0;
while tol < ‖g‖ < emax and iter < itmax do

update: iter = iter + 1;

compute
∂g

∂λ(tf )
;

initialize: ‖gnew‖ =∞ and ζ = 1;
while ‖gnew‖ > ‖g‖ and ζ > ζmin do

λnew(tf ) = λ(tf )− ζ
(

∂g

∂λ(tf )

)−1

g;

integrate [X ′new(t),λnew(t)] from tf to t0;
compute gnew(X ′new(t0)) and rmin;
update: ζ = scale × ζ

end
update: g = gnew and λ(tf ) = λnew(tf );

end
if ‖g‖ ≤ tol and rmin > rmin and solution is novel then

save feasible solution;
else if solution is repeated then

repeat = repeat + 1;
end

end
end
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the costs of all solutions are compared. Partial derivatives for differential correction are computed with for-

ward finite differences. However, analytic [27, 28] or automatic differentiation [29] is possible if improved

speed or accuracy is required. The algorithm is easily parallelized.

2.6 Terminator Orbit Transfers

Algorithm 1 has been applied to optimize asteroid orbit maneuvers in the H3BP augmented with SRP

and J2 and J3 spherical harmonics for the asteroid gravity field [21]. The H3BP system of equations and

terminator orbits are described in Appendix B. Spacecraft and dynamical parameters are chosen to represent

the OSIRIS-REx mission to the asteroid Bennu; all values are given in Table 2.1. Values are approximate and

are not meant to reflect the most up-to-date values for Bennu or the OSIRIS-REx mission. Coefficients J2

and J3 are unnormalized in Table 2.1. The set of energy costates, λJu , correspond to η ≈ {9.9×10−4, 9.9×

10−3, 9.1 × 10−2, 0.33, 0.50, 0.83, 0.90, 0.98, .99} respectively. The control-linear noise factor, σ, dictates

the level of control noise. Control noise is driven by engine hardware and operating conditions. Studies of

electric propulsion devices have found that root-mean-square discharge current fluctuations can reach up to

13% the nominal magnitude [2]; σ = 10−2 is selected for this application, corresponding to noise at 1% of

the nominal.

2.6.1 Maneuver Scenarios

Three maneuver scenarios are considered which involve two terminator orbits: Orbit 1 and Orbit 2.

Orbits 1 and 2 are non-circular, but are designed to have radii approximately equal to r0 ≈ 1.5 km and

rf ≈ 500 m, respectively. Although these orbits are not periodic, approximate orbit periods will be used

as a time reference (e.g. Tf = 2π(r3
f/µ)1/2 will be used as an approximate period for Orbit 2). The three

maneuver scenarios are

(1) orbit transfers from Orbit 1 to Orbit 2,

(2) 180◦ phasing maneuvers on Orbit 1, and

(3) proactive station-keeping for three orbits on Orbit 1.
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Table 2.1: Terminator Orbit Parameters for Trajectory Optimization

Parameter Symbol Value Unit
Minimum accepted altitude - 50 m
Error tolerance - 10−10 -
Bennu distance from Sun [8] d 1.126 AU
Second-order zonal harmonic [30] J2 0.039156 -
Third-order zonal harmonic [30] J3 -0.014843 -
Initial position variance Σxx(t0),Σyy(t0),Σzz(t0) 1 m2

Initial velocity variance Σẋẋ(t0),Σẏẏ(t0),Σżż(t0) 1 mm2/s2

Σ(t0) off-diagonal terms - 0 -
SRP at 1 AU p0 4.5 ×10−6 N/m2

Energy weight matrix R I3×3 -
Asteroid mean radius [30] rb 246 m
Approx. large orbit radius r0 1.5 km
Approx. small orbit radius rf 500 m
Weight matrix for ΦpΣ(tf )Φ>p W ′ 10−10Σ(t0)−1 -
Spacecraft mass-to-area ratio [8] Z 62 kg/m2

Energy costates, η/(1− η) λJu
{10−3, 10−2, 10−1, 0.5,
1, 5, 10, 50, 100}

-

Gravitational parameter [31] µ 4.892 m3/s2

Spacecraft reflectance [8] ρ 0.4 -
Control noise factor σ 10−2 -
Integration time step ∆τ 5 ×10−2 -

Orbit Transfer Phasing Maneuver

Figure 2.1: Two mission scenarios: an orbit transfer and a phasing maneuver. X(t0),X(tcoast), andX(tf ) are fixed
for each initialization of the optimization.

Proactive station-keeping describes a scenario in which the spacecraft is already on the nominal orbit (in

expectation, but with some uncertainty). It is desired for the spacecraft to remain on the nominal orbit after

some time (in this case, three approximate orbit periods). Therefore, the minimum energy solution is simple

— no control is required. However, the nominal orbit exhibits rapid uncertainty growth. Rather than risking

large errors along the nominal orbit, it is possible that applying some control to alter the orbit geometry can
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proactively reduce covariance inflation.

As illustrated in Figure 2.1, each scenario assumes an identical initial state and covariance at t0 := 0.

The maneuver begins after a coast arc of fixed duration, tcoast. The final time and state, tf and X ′(tf ), are

also fixed during each initialization of the optimization. The algorithm is repeated for different combinations

of tcoast and tf . For each application, the value of tcoast will be varied between zero and tf . In each case,

JP is configured to minimize the trace of the covariance after propagating for an additional orbit period

beyond the control cut-off (i.e. Φp is the STM for one approximate period of the final orbit). The additional

propagation prevents control spikes at the final time. Trajectories that encroach below a minimum accepted

radius of 50 m are discarded.

2.6.2 Algorithm Inputs

Inputs to Algorithm 1 are summarized in Table 2.2. Each solution is evaluated for uniqueness. If the

difference between two λ(tf ) solutions has a norm greater than utol, the solutions are considered unique;

otherwise, the solutions are considered repeated.

For each mission scenario, multiple solutions have been found (using Algorithm 1) that satisfy the

necessary conditions for multi-objective optimization of covariance and energy. Figure 2.2 shows the total

number of solutions for each maneuver scenario and value of λJu . Among these solutions, the differential

corrector required averages of 9, 10, and 13 λ(tf ) iterations (quantity iter in Algorithm 1) for orbit

Table 2.2: Algorithm 1 Inputs

Parameters (all nondimensional) Symbol Value
Maximum error allowed to proceed to differential corrector emax 15
Maximum number of initial guesses maxguess 40
Maximum number of differential corrector steps itmax 30
Minimum radius allowed for a feasible solution rmin 1.2
Step scale reduction factor scale 0.7
Maximum number of repeated solutions repeat 3
Error tolerance tol 10−10

Uniqueness tolerance utol 10−8

Covariance matrices for initial guess Σguess ρ2I6×6

Standard deviations of initial guess ρ {10−6, 10−4, 10−2}
Minimum step scale ζmin 10−2
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0 5 10 15 20 25 30

Figure 2.2: Total number of solutions found.

transfers, phasing maneuvers, and proactive station-keeping, respectively. Roughly 8% of initial guesses

converged to feasible solutions. In the following subsections, all solutions are plotted in Jp vs. Ju vs. τf

space (where τf is nondimensional time).

2.6.3 Scenario 1: Orbit Transfer

Figure 2.3 shows all trajectories that satisfy necessary conditions for the orbit transfer scenario plotted

in Jp vs. Ju vs. τf space. A JP vs. Ju Pareto-front is formed by the set of solutions from which JP cannot

be decreased without an increase in Ju, and vice versa. An example Pareto-optimal trajectory is identified

in Figure 2.3, which will be compared alongside the minimum covariance and minimum energy trajectories

in Figure 2.4. Figure 2.4 shows the three trajectories in position space and their corresponding covariance

ellipses. Covariances are propagated for an additional orbit after the control cutoff (as was done in the

optimization). The minimum covariance solution maintains a reasonable energy cost that is equivalent to a

∆V of 7.70 cm/s, whereas the minimum energy solution requires a ∆V of 4.24 cm/s. The control profiles

are plotted in Figure 2.5.
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Figure 2.3: Transfers from Orbit 1 to Orbit 2 that satisfy the necessary conditions; Jp, Ju, and τf are nondimensional.
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Figure 2.5: Control profiles for three Pareto-optimal orbit transfers. The minimum covariance solution was found to
have a shorter transfer duration, and is therefore terminated sooner.

2.6.4 Scenario 2: 180◦ Phasing Maneuver

The target final state is chosen by integrating the nominal initial stateX(t0) for the approximate orbit

period of Tf (for this scenario, Tf is the period of a circular orbit with radius r0). Thus, 180◦ phasing is

accomplished by reaching the final state at a final time of either 1/2, 3/2, or 5/2 Tf . Figure 2.6 shows all

trajectories that satisfy the necessary conditions plotted in JP vs. Ju vs. tf/Tf space. A Pareto-optimal

example trajectory is selected in Figure 2.6. The minimum covariance, minimum energy, and Pareto-optimal

example trajectories and their final covariance ellipses are plotted in Figure 2.7. The minimum covariance

and minimum energy phasing maneuvers require ∆V ’s of 2.79 cm/s and 1.20 cm/s, respectively.
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where Tf denotes the approximate period of Orbit 1.



34

-1000

0

1000

1000 0 0-1000

-1000

0

1000

1000 0 0-1000

-1000

0

1000

1000 0 0-1000

-20 0 20

-10

0

10

-1 0 1 2

-1

0

1

-0.1 0 0.1

-1

0

1

0 200 400 600

-200

0

200

-10 0 10

-200

0

200

-0.05 0 0.05

-0.04

-0.02

0

0.02

0.04

-200 0 200

-200

0

200

-1 0 1
-1

0

1

Minimum Covariance Pareto-Optimal Minimum Energy Initial Orbit

Final 2-  Covariance EllipsesTrajectories
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compared (right). Magenta boxes use dissimilar axis scaling for visibility.
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2.6.5 Scenario 3: Proactive station-keeping

The proactive station-keeping scenario is equivalent to a phasing maneuver of zero degrees. The target

final state is selected by integrating the nominal initial state X ′(t0) for three approximate orbit periods:

tf = 3Tf . The minimum energy solution is to do nothing — no control is required to reach the final state.

However, the JP vs. Ju results show that it is possible to minimize covariance at the expense of Ju. Two

Pareto-optimal examples are selected in Figure 2.8. Both example trajectories, as well as the minimum

covariance trajectory, are plotted in Figure 2.9 along with their final covariance ellipses. The minimum

energy trajectory provides significant covariance improvement at the ∆V cost of 2.53 cm/s.
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Figure 2.8: All proactive station-keeping maneuvers that satisfy the necessary conditions are plotted in nondimensional
Jp vs. Ju space. All solutions have a final time of tf = 3Tf .

2.6.6 Monte Carlo Validation

Finally, Monte Carlo simulations are used to compare the linear covariance dynamics to a true non-

linear covariance propagation. Only results for the proactive station-keeping scenario are included here, but

other scenarios were found to produce similar results. Specifically, the minimum covariance result in Figure

2.10 below corresponds to the top left trajectory in Figure 2.9. For both minimum covariance and mini-

mum energy solutions, 2000 noisy trajectories were simulated by randomly sampling the initial state and

approximating the control noise with a zero-order hold. The control noise standard deviation was adjusted
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Figure 2.9: Three Pareto-optimal proactive station-keeping maneuvers are plotted (left), and their final 2-σ covariance
ellipses are compared (right). Magenta boxes use dissimilar axis scaling for visibility.

appropriately given the relationship between continuous and discrete white noise:

σ2δKronecker
∆τ

= σ2δDirac (2.52)

(i.e. in discrete time the control noise is randomly sampled with a standard deviation of σ2/∆τ , where ∆τ is

the integration time step) [32]. The nonlinear covariance is simply computed by calculating the covariance of

all noisy final states. The linear propagation and the nonlinear propagation are compared in Figure 2.10. For
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Figure 2.10: Comparing linear and nonlinear (Monte Carlo, N = 2000) 2-σ covariance propagation for proactive
station-keeping maneuvers.

the minimum covariance trajectory, the linear propagation appears to adequately capture the true dynamics.

However, the minimum energy trajectory appears to be more nonlinear. The trajectories in Figure 2.10 have

the same initial and final times, so their sizes cannot be attributed to a difference in simulation time.

2.7 Discussion

In all three asteroid orbiter scenarios, the results indicate that significant covariance reduction is pos-

sible with relatively low energy costs. When compared to minimum energy solutions, minimum covariance

solutions are achievable with ∆V increases of only centimeters per second (thus, minimum covariance op-

timization is well-motivated by asteroid missions). However, the difference between minimum covariance

and minimum energy solutions does correspond to energy increases of roughly 50% or more. Therefore, for

applications that are more propellant-expensive than the asteroid environment, a different Pareto-optimal

trajectory is likely more appropriate than the minimum covariance trajectory. Overall, trajectories with
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smaller final uncertainty are structurally similar — covariance reduction appears to correspond to lower av-

erage radii and more revolutions over the course of a maneuver. Thus, lower altitude maneuvers produce

more favorable uncertainty dynamics than higher altitude maneuvers.

This behavior is even seen in the proactive station-keeping scenario, in which no control is required

for the nominal initial state to reach the final target state. However, the unforced uncertainty propagation

along the large orbit (Orbit 1) results in a significant amount of covariance growth as seen in Figure 2.9.

Alternatively, lowering the orbit radius improves covariance performance. This example demonstrates how

maneuvering can reduce uncertainty despite the addition of control noise. Here it is instructive to revisit

Eq. (A.9). The term σ2Bu(t)u>(t)B> is guaranteed to be a positive definite contribution to the covariance

dynamics. However, A(t)Σ(t) and its transpose are not positive definite. Therefore, it is possible for a

reduction in A(t)Σ(t) (through applied control) to outweigh the influence of σ2Bu(t)u>(t)B.> This co-

variance improvement is the result of complex interactions between u(t), A(t), and Σ̇. These complexities

make the covariance behavior difficult to predict qualitatively, further establishing the need for a rigorous

optimization procedure. Additional work is required to determine when proactive station-keeping maneu-

vers are propellant-saving, likely through the application of brute force Monte Carlo. Proactive maneuvering

could also be used to reduce the need for human-in-the-loop when retroactive maneuvers cannot be planned

autonomously.

Monte Carlo results in Figure 2.10 indicate that the linear regime is sufficient for covariance propa-

gation about the minimum covariance solution. However, the minimum energy trajectory is more nonlinear.

For the results in Figure 2.10, both the minimum energy and minimum covariance trajectories are con-

strained to have the same final time. Thus, the nonlinearity of the minimum energy solution is not due to a

longer final time. Monte Carlo simulations for other scenarios produced similar results. This suggests that

minimizing covariance also corresponds to reduced nonlinearity. Additional work is required to investigate

this relationship and its advantages. Because uncertainty characteristics of minimum covariance trajectories

are well captured by the linear regime, these trajectories may be more conducive to linear filtering and con-

trol algorithms (e.g. Kalman filters or linear-quadratic controllers). This phenomenon is explored further

in Chapter 6. Additional future work includes incorporating a higher-order covariance propagation to cap-
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ture nonlinearity as trajectories deviate from the minimum covariance solution. A higher-order propagation

can be achieved by maintaining higher-order terms in the Taylor series expansion (TSE) of the state error

dynamics.

With some modification, the method in this chapter could also accommodate additive dynamical noise

due to stochastic accelerations. For example, Eq. (2.15) could be modified as follows:

dXt = f(Xt)dt+Bu(t)(dt+ σdWt) +G(t)dνt, (2.53)

where νt is a vector of Wiener processes. Then, the final covariance would become:

Σ(tf ) = Φ(tf , t0)Σ(t0)Φ(tf , t0)> + σ2

∫ tf

t0

Φ(tf , t)Bu(t)u(t)>B>Φ(tf , t)
>dt

+

∫ tf

t0

Φ(tf , t)G(t)G(t)>Φ(tf , t)
>dt

(2.54)

In [13], uncertain gravitational parameters are modeled by additive noise — this simplification may be suf-

ficient in some cases. Alternatively, uncertain parameters can be included in the state vector as nondynamic

“states” with some initial uncertainty. Additive noise and uncertain parameters are left for the future work.

2.8 Conclusions

This chapter developed a method for multi-objective energy and covariance optimization. Linear

covariance propagation was used with initial state uncertainty and control-dependent noise. Two optimal

control formulations were considered: 1) a combined covariance and energy cost function (weighted-sum

method) and 2) a covariance cost function with an energy constraint (ε-constraint method). In general, the

first method is easier to apply, but the second is more rigorous for multi-objective optimization. However, a

theorem was proven to demonstrate that the two formulations are equivalent for the case of covariance and

energy optimization with control-dependent noise and a linear covariance propagation. The theorem enabled

the simpler method (Formulation 1) to be implemented without loss of optimality. The optimization was

demonstrated for asteroid orbit maneuvers in the H3BP with SRP and J2 and J3 zonal harmonics. Three

maneuver scenarios were optimized: orbit transfers, phasing maneuvers, and proactive station-keeping.

In proactive station-keeping, control is applied to alter a nominal trajectory in a way that produces

favorable uncertainty dynamics. In each scenario, covariance-and-energy Pareto fronts indicate that signif-
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icant covariance reduction is possible with feasible penalties in energy (corresponding to centimeters per

second of ∆V in the asteroid environment). Moreover, Monte Carlo simulations demonstrated that linear

covariance propagation was sufficient to capture the uncertainty of the minimum covariance trajectories

designed in this chapter.



Chapter 3

Continuous Closed-Loop Robust Control

Chapter 3 Nomenclature

A = LTI dynamics matrix

B = LTI control matrix

I = identity matrix

J = cost function

Kk(t) = state feedback gain after kth measurement

Lk(t) = target state feedback gain after kth measurement

m = dimension of control input

n = dimension of system state

N = number of measurements

R = positive definite matrix

t = time

tk = time of kth measurement

tf = final time

u(t) = control

Vk = value function from tk to tf

dWt = scalar Wiener process

x0 = known initial state
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xt = stochastic system state at time t

yt = perfect, full-state measurement

zf = target state

Σ = state error covariance

σ = control-linear noise factor

τk = time between measurements, tk+1 − tk

Φ = state transition matrix from initial to final time, eAtf

Φk = state transition matrix between measurements, eAτk

3.1 Introduction

A theory for closed-loop control of sampled linear systems with control-linear noise is developed in

this chapter. This chapter sets the foundation for Chapter 4, in which linear control laws are applied for

neighboring guidance about nonlinear spacecraft trajectories. The term “sampled” refers to a control system

that only receives a finite number of measurements, i.e., the controller does not have access to continuous

state information. This setup may also be described as intermittent control, a medium between discrete

and continuous control wherein control policies are only updated at specific intervals. For example, if

state measurements are sampled and controls are only updated at the measurement times, the controls are

effectively open-loop during the period between two measurements. This formulation is also appropriate for

spacecraft that cannot continuously prioritize navigation and receive limited navigation updates.

This chapter focuses on a special class of continuous-time, stochastic linear systems with control-

linear (or control-multiplicative) noise. The control-linear noise model was motivated in Chapter 1. In

short, it has been observed that higher levels of commanded thrust cause larger thrust errors. This chapter

will develop a linear state feedback control law to minimize mean squared errors about a target state in the

presence of control-linear noise.

Optimal feedback control that is linear in states or measurement outputs is certainly not new. This

is a common property shared by solutions to a broad class of optimal control problems, including the clas-
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sical LQR and the linear quadratic Gaussian (LQG) control problems. Moreover, many existing works on

stochastic systems with control-dependent noise address problems of feedback stabilization, i.e., problems

of minimizing certain (quadratic) cost functions in both the state and control. Often, an assumption is made

that the controller can access noiseless, full-state measurements at any time so that the optimal feedback

control laws are functions of the current states. These works include [33], McLane’s seminal work in the

1970s [34, 35], and many more [6, 36–40].

However, the problem addressed in this chapter is different from the aforementioned work, with the

first difference being the inclusion of a target state. Rather than feedback stabilizing the system at the

origin, a control law will be derived to steer the system from an initial state to a final state that is as close

as possible to a given (but arbitrary) target state. Note that if the target state happens to be the origin,

then the problem is reduced to the problem of feedback stabilization. “Closeness” will be measured by

the mean squared deviation of the final state from the target state. This problem is similar to the problem

of stochastic reachability [41, 42] — the technical core of the reachability analysis is the minimization of

mean squared state deviations. However, for the control-dependent case, the authors of [41, 42] assumed

that the controller can access noiseless, full-state measurements at any time. Unlike in the previous work

on feedback stabilization and stochastic reachability, this chapter assumes a more realistic measurement

process where only a finite number of sampled measurements are available over a given time period.

The main contribution of this chapter is to provide a complete solution to the aforementioned optimal

control problem using dynamic programming. In dynamic programming, a complex optimization problem

is broken into recursive, manageable sub-problems at different instances in time. Despite the fact that the

noise is control-linear and explicit solutions are often hard to obtain beyond the class of linear-quadratic

Gaussian (LQG) problems, an explicit formula for the optimal feedback control law will be derived in this

chapter. In particular, the control law will be linear in the initial state, the target state, and the sampled

measurement outputs. The matrix-valued feedback state gains are time-varying, piecewise differentiable

and can be computed offline by the algorithm provided in this chapter.

The remainder of the chapter is organized as follows: the problem is formulated in Section 3.2.

The main result is presented as a Theorem in Section 3.3. A proof of the Theorem is also provided in
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Section 3.3. Finally, numerical examples are given in Section 3.4, wherein it is demonstrated that the mean

squared deviation decays to a limiting value as the number of measurement outputs approaches infinity.

3.2 Continuous Closed-Loop Control Problem Formulation

This chapter addresses linear time-invariant stochastic systems with control-linear noise. Let xt ∈ Rn

be the state of the system at time t, u(t) ∈ Rm be the nominal control input, and ytk be the sampled

measurement outputs at time tk. The system dynamics are given by
dxt = Axtdt+Bu(t)(dt+ σdWt),

ytk = xtk 0 < t1 < t2 < · · · ,

(3.1)

where A and B are n×n and n×m matrices, respectively, and Wt is a scalar Wiener process. The constant

σ regulates the standard deviation of the control noise (i.e. σ = 0.1 corresponds to a standard deviation of

10% of the control magnitude). The initial state x0 at time t = 0 is assumed to be known to the controller.

The full-state measurement outputs ytk are noiseless and the measurement times tk are scheduled a priori.

A feedback control law is desired to steer the system in Eq. (3.1) from a known initial state x0 to a

final state xtf such that the squared deviation of xtf from a target state zf is minimized in expectation. It is

assumed that there are N measurement outputs yt1 , . . . ,ytN , with 0 < t1 < · · · < tN < tf , available over

the period [0, tf ]. At any time t ∈ [0, tf ], the control u(t) is allowed to depend on all past measurements

ytk(= xtk), for all tk < t, as well as the initial state x0. Then, the optimization problem can be stated as

follows.

Continuous Closed-Loop Control Problem: Consider the stochastic control system in Eq. (3.1). Given an

initial state x0, a target state zf at a final time tf , and N measurement outputs ytk , find the optimal control

law u∗(t) over [0, tf ] that minimizes the following cost function:

J := E

[
‖xtf − zf‖

2 +

∫ tf

0
u>(τ)Ru(τ)dτ

∣∣∣∣x0

]
, (3.2)

where R is an m ×m positive definite matrix. The first term penalizes deviation of the final state from the

target, and the second term penalizes energy consumption over the period. The positive-definiteness of R
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Figure 3.1: Illustration of the system model in Eq. (3.1). The controller can access sampled measurements, and the
goal is to generate feedback control inputs that steer the system as close as possible to a target state. The graphic
depicts communication with a ground station, but an onboard controller is also possible.

is a regularization condition which guarantees that the optimal control u∗(t) will be unique. The condition

can be relaxed in some cases, as will be discussed later.

Notation: Throughout this chapter, τk := tk+1−tk is the time between two consecutive measurements. The

STM from the measurement at tk to the measurement at tk+1 is denoted Φk := eAτk . The STM from the

initial time, t0 = 0, to the final time, tf is denoted by Φ := eAtf . A superscript “*” indicates an optimized

quantity.

3.3 Continuous Closed-Loop Control Result

A complete solution to the optimization problem in Eq. (3.2) is provided in this section. The final

result is summarized in Theorem 2. Like the LQR or LQG problems, the optimal feedback control law will

be linear in the initial state x0, the target state zf , and the measurements ytk . Moreover, the state feedback

gains can be computed offline using Algorithm 2 given below. The offline computation is analogous to

the standard LQR/LQG problem in which one computes the solution of the differential Riccati equation to

obtain the state feedback gains.

Theorem 2. Consider the stochastic system in Eq. (3.1) and the optimal control problem in Eq. (3.2). The

optimal control law u∗(t) over the time period [0, tf ] is given by

u∗(t) = Kk(t)ytk + Lk(t)zf , for t ∈ [tk, tk+1), (3.3)

for all k = 0, . . . , N , where y0 is identified with x0. The minimized cost function is a quadratic form given
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by:

J∗ = x>0 W0x0 − 2x>0 C0zf + z>f F0zf . (3.4)

All the matrices Kk(t), Lk(t), W0, C0, and F0 in the above expressions are computed in Algorithm 2.

Algorithm 2: Offline computation of state feedback gains for optimal continuous control law.
Data: Matrices A, B, R, scalar σ, measurement times t1, . . . , tN , and final time tf =: tN+1.
Result: Matrices Kk(t) and Lk(t) for all k = 0, . . . , N .
initialize;

WN+1 := I; FN+1 := I; CN+1 := I.

for k := N to 0 do
Qk(t) := R+ σ2B>eA

>(τk−t)Wk+1e
A(τk−t)B;

Mk :=

∫ τk

0
eA(τk−τ)BQ−1

k (τ)B>eA
>(τk−τ)dτ ;

Wk := Φ>k [W−1
k+1 +Mk]

−1Φk;

Fk := Fk+1 − C>k+1Mk[I +Wk+1Mk]
−1Ck+1;

Ck := Φ>k [I +Wk+1Mk]
−1Ck+1;

Obtain Kk(t) and Lk(t), for t ∈ [tk, tk+1), by

Kk(t) := −Q−1
k (t− tk)B>eA

>(tk−t)Wk;

Lk(t) := Q−1
k (t− tk)B>eA

>(tk−t)Ck;

end

Remark 1. In Algorithm 2, each Mk is positive semi-definite. They will be positive definite if (A,B) is a

controllable pair, but that condition is not assumed here. Additionally, each Wk is positive definite. Thus,

the inverse [W−1
k+1 +Mk]

−1 exists and,

[W−1
k+1 +Mk]

−1W−1
k+1 = [I +Wk+1Mk]

−1. (3.5)

Therefore, the inverse [I +Wk+1Mk]
−1 also exists and the algorithm is well behaved.

Some important notes on the solution are given below. Let x̄∗(t) be the expected value of xt for

system (3.1) driven by the optimal feedback control law u∗(t). With the control law given in Theorem 2,

x̄∗(tk) for k = 1, . . . , N + 1 (with tN+1 = tf the final time) can be obtained as follows:

x̄∗(tk) = [I +Mk−1Wk]
−1(Φk−1ytk−1

+Mk−1Ckzf ). (3.6)
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This expression is validated later in the proof of the main theorem. Note, in particular, that x̄∗(tf ) is not

necessarily equal to the target zf . This makes the optimal control u∗(t) essentially different from the one

for stochastic linear systems with strictly additive noise.

It is possible to impose the constraint x̄(tf ) = zf , but the optimal control law for the constrained

problem does not necessarily minimize the squared deviation. In fact, the constrained formulation will

result in a significant increase in the cost (3.2), especially when measurements are taken near the final time

(i.e., tf − tN is small). The reason for this behavior is that significant control effort is required to steer

the expected value of the system from xtN to the target ztf (so as to meet the constraint), introducing a

significant amount of control-dependent noise during the end of the trajectory.

Including
∫ tf

0 u>(τ)Ru(τ)dτ in J guarantees that Q(t) is positive definite and thus invertible, even

when B is not full column rank. In cases where B is full column rank, a positive semidefinite R (or even a

zero matrix) is permissible. Because the expected value of the final state is unconstrained, over-weightingR

will lead to a large “miss” of the target state: as R→∞, x̄∗tf → Φx0. Care should be taken when selecting

R to avoid over-penalizing control effort.

3.3.1 Special Case: Optimal Open-Loop Control

Before providing a proof of Theorem 2, the simple open-loop control case will be addressed; results

from the open-loop case will become useful during the proof of Theorem 2. The open-loop case does not

include measurement outputs, i.e., N = 0. Following Algorithm 2, let

K(t) := −Q−1(t)B>eA
>(tf−t)(M + I)−1Φ, (3.7)

L(t) := Q−1(t)B>eA
>(tf−t)(M + I)−1, (3.8)

where Q(t) and M are given by

Q(t) := R+ σ2B>eA
>(tf−t)eA(tf−t)B, (3.9)

M :=

∫ tf

0
eA(tf−τ)BQ−1(τ)B>eA

>(tf−τ)dτ. (3.10)

Correspondingly, Theorem 2 is reduced to the following:
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Proposition 1. Consider system (3.1) without measurement outputs. The optimal control u∗(t) for minimiz-

ing Eq. (3.2) is

u∗(t) = K(t)x0 + L(t)zf , (3.11)

where K(t) and L(t) are given by Eqs. (3.7) and (3.8). The minimized cost is given by

J∗ = (Φx0 − zf )>(M + I)−1(Φx0 − zf ), (3.12)

where M is given in Eq. (3.10).

Some preliminaries are required to establish Prop. 1. Recall that x̄(t) is the expected value of xt, and

let

Σ(t) := E[(xt − x̄(t))(xt − x̄(t))>] (3.13)

be the covariance matrix at time t. By the Itô rule and the expectation rule (see Appendix A), the dynamics

of x̄(t) and Σ(t) obey the following linear differential equations for a given open-loop control input:

˙̄x(t) = Ax̄(t) +Bu(t), (3.14)

Σ̇(t) = AΣ(t) + Σ(t)A> + σ2Bu(t)u>(t)B>. (3.15)

The initial condition, x0, of system (3.1) is known such that Σ(0) = 0. The differential equations can be

solved explicitly:

x̄(tf ) = Φx0 +

∫ tf

0
eA(tf−τ)Bu(τ)dτ, (3.16)

Σ(tf ) = σ2

∫ tf

0
eA(tf−τ)Bu(τ)u>(τ)B>eA

>(tf−τ)dτ. (3.17)

With the above expressions, the cost function in Eq. (3.2) is rewritten as follows. For the first term,

E
[
‖xtf − zf‖

2
]

= E
[
‖(xtf − x̄(tf )) + (x̄(tf )− zf )‖2

]
,

= tr(Σ(tf )) + ‖x̄(tf )− zf‖2.
(3.18)

This expansion is analogous to a bias-variance decomposition. Combining the solution of Σ(t) provided in

Eq. (3.17) with the second term of Eq. (3.2) results in

J =

∫ tf

0
u>(τ)Q(τ)u(τ)dτ + ‖x̄(tf )− zf‖2, (3.19)

where Q(t) is given in Eq. (3.9). Using the preliminaries above, Prop. 1 is proven below.
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Proof of Proposition 1. From Eq. (3.16), x̄(tf ) is linear in u(t), so by Eq. (3.19), J is quadratic in u(t).

The optimal control u∗(t) can be obtained by first-order analysis. Consider adding a small perturbation

δu(t) to the optimal control. Then, the variation of the cost J = J∗ + δJ , up to the first order, is given by

δJ = 2

∫ tf

0
δu>(τ)

(
Q(τ)u∗(τ) +B>eA

>(tf−τ)(x̄∗(tf )− zf )
)
dτ. (3.20)

A necessary condition for u∗(t) to be optimal is that δJ vanishes for all δu:

Q(τ)u∗(τ) +B>eA
>(tf−τ)(x̄∗(tf )− zf ) = 0. (3.21)

It follows that

u∗(t) = −Q−1(τ)B>eA
>(tf−t)(x̄∗(tf )− zf ). (3.22)

Combining the above equation with Eq. (3.16),

x̄∗(tf ) = (M + I)−1(Φx0 +Mzf ). (3.23)

The optimal control u∗(t) is then obtained by replacing x̄∗(tf ) in Eq. (3.22) with the above expression.

Moreover, the minimized cost can be obtained by Eq. (3.19):

J∗ = (x̄∗(tf )− zf )>(M + I)(x̄∗(tf )− zf ), (3.24)

= (Φx0 − zf )>(M + I)−1(Φx0 − zf ). (3.25)

This completes the proof. �

3.3.2 General Case: Optimal Feedback Control

Theorem 2 is proven in this subsection. The problem will be solved backwards in time using dynamic

programming [23]. To that end, the following value functions are introduced: For any k = 0, . . . , N , any

state xtk , and any feedback control law u over [tk, tf ] (feedback in the sense that u(t) can depend on the

measurements ytk′ , for tk ≤ tk′ < t, where xtk = ytk ), the value function is defined as

Vk(xtk , zf ,u) := E

[
‖xtf − zf‖

2 +

∫ tf

tk

u>(τ)Ru(τ)dτ

∣∣∣∣xtk] , (3.26)
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where xtf is the solution of system (3.1) and xtk is the initial condition at time tk. For ease of notation, E[·]

will be written instead of E[·|xtk ] to denote the conditional expectation. Thus, the original cost J given in

Eq. (3.2) is simply V0(x0, zf ,u). Similarly, let

V ∗k (xtk , zf ) := min
u

Vk(xtk , zf ,u). (3.27)

Dynamic programming will be used to generate a recursive formula for V ∗k backward in time. In particular,

each V ∗k is a quadratic form in xtk and zf .

Proof of Theorem 2. The proof begins with VN . Because xtN is known to the controller (by the full-state,

noiseless measurement output) and because there is no measurement output over the time interval (tN , tf ),

the problem of minimizing VN is the same as the open-loop control problem solved in Section 3.3.1. From

Prop. 1,

V ∗N (xtN , zf ) = x>tNWNxtN − 2x>tNCNzf + z>f FNzf . (3.28)

The three matrices WN , CN , and FN are given by

WN = Φ>N (M + I)−1ΦN , (3.29)

CN = Φ>N (M + I)−1, (3.30)

FN = (M + I)−1. (3.31)

The matrix M is defined in Eq. (3.10) (but with the lower limit of the integral replaced with tN ). This result

is consistent with Algorithm 2; the algorithm generates the same values for matrices WN , CN , and FN . It

also follows from Prop. 1 that the optimal control u∗(t) over the period [tN , tf ] is given by

u(t) = KN (t)xtN + LN (t)zf , (3.32)

where KN and LN are computed in Algorithm 2. The two matrices agree with K(t) and L(t) in Eq. (3.7) if

one replaces Φ with ΦN = eA(tf−tN ) and changes the lower limit of the integral in Eq. (3.10) to tN .

Now that the problem has been solved for the final segment of the trajectory, the next step is to

consider VN−1 and solve the optimal control u∗(t) over the segment [tN−1, tN ). Note that the following
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relation between VN−1 and VN holds:

VN−1(xtN−1 , zf ,u) = E
[
VN (xtN , zf ,u|[tN ,tf ])

]
+

∫ tN

tN−1

u>(τ)Ru(τ)dτ, (3.33)

where u|[tN ,tf ] indicates that the control input is restricted to the last segment [tN , tf ] and the expectation is

with respect to xtN . Although a noiseless measurement ytN will be taken at tN , the state is still unknown

immediately before the measurement. Note that xtN also depends on u|[tN−1,tN ). By the principle of

optimality, the following holds:

V ∗N−1(xtN−1 , zf ) = min
u|[tN−1,tN )

[
E [V ∗N (xtN , zf )] +

∫ tN

tN−1

u>(τ)Ru(τ)dτ

]
. (3.34)

The optimization of V ∗N−1 is solved below. For ease of notation in the following equations, u will indicate

the control law over this segment. First, note that the quadratic form of V ∗N is given in Eq. (3.28), so

Eq, (3.34) can be reduced to

V ∗N−1(xtN−1 , zf ) = min
u

[
E[x>tNWNxtN ]− 2x̄(tN )CNz

>
f +

∫ tN

tN−1

u>(τ)Ru(τ)dτ

]
+z>f FNzf . (3.35)

Recall that x̄(tN ) = E(xtN ) is the mean state. Similar to Section 3.3.1, the term E[x>tNWNxtN ] can be

decomposed as follows:

E[x>tNWNxtN ] = tr(Σ(tN )WN ) + x̄(tN )>WN x̄(tN ). (3.36)

Equation (3.36) results from replacing xtN with (xtN − x̄(tN )) + x̄(tN ). Next, note that both the mean

x̄(tN ) and the covariance Σ(tN ) are functions of u as follows:

x̄(tN ) = ΦN−1xtN−1 +

∫ tN

tN−1

eA(tN−τ)Bu(τ)dτ, (3.37)

Σ(tN ) = σ2

∫ tN

tN−1

eA(tN−τ)Bu(τ)u>(τ)B>eA
>(tN−τ)dτ. (3.38)

The derivations of the above expressions are similar to the derivations of Eqs. (3.16) and (3.17). Combining

the above equations,

V ∗N−1(xtN−1 , zf )

= min
u

[∫ tN

tN−1

u>(τ)QN−1(τ)u(τ)dτ + x̄>(tN )WN x̄(tN )− 2x̄>(tN )CNzf

]
+ z>f FNzf . (3.39)
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The matrix QN−1(t) is positive definite and matches the result in Algorithm 2.

The optimization problem in Eq. (3.39) is again quadratic in u (noting that x̄(tN ) depends linearly in

u). Repeating the first-order analysis, the optimal control u∗ takes the following form for all t ∈ [tN−1, tN ).

u∗(t) = −Q−1
N−1(t)B>eA

>(tN−t)(WN x̄(tN )− CNzf ) (3.40)

Combining the above expression with Eq. (3.37),

x̄∗(tN ) = [I +MN−1WN ]−1(ΦN−1xtN−1 +MN−1CNzf ). (3.41)

Therefore, the optimal control u∗(t) for all t ∈ [tN−1, tN ) is given by

u∗(t) = KN−1(t)xtN−1 + LN−1(t)zf , (3.42)

where the matrices KN−1(t) and LN−1(t) match the results provided by Algorithm 2. Likewise, the above

expression for the mean x̄∗(tN ) matches the expression given previously in Eq. (3.6).

The optimal value function V ∗N−1 can be evaluated with the optimal control u∗ and the corresponding

x̄(tN ) computed above. It directly follows that

V ∗N−1(xtN−1 , zf ) = x>tN−1
WN−1xtN−1 − 2x>tN−1

CN−1zf + z>f FN−1zf . (3.43)

where the matrices WN−1, CN−1, and FN−1 follow the update rule given in Algorithm 2. The above

procedure can be repeated to solve all V ∗k and u∗|[tk,tk+1) backward in time, and the solutions match the

results provided in Algorithm 2 and Theorem 2. �

3.4 Continuous Closed-Loop Control Example

This section provides numerical examples of the result in Theorem 2. First, the change in the mini-

mized cost J∗ with the increase of measurement outputs, N , is investigated. Using the explicit expression

for J∗ given in Theorem 2, J∗ is computed with N ranging from 0 to 50 for four two-dimensional linear

systems. In each system, (A,B) takes the following form:

A =

0 1

β 0

 , B =

0

1

 , (3.44)
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Figure 3.2: Numerical simulations of J∗ vs. N for the system in Eq.(3.44) (tf = 1, σ = 0.2, x0 = [1, 1]>,
zf = [0, 0]>, R = 0). For each case, J∗ asymptotically decays and approaches a positive value as its limit. The stable
case appears to provide a lower bound for other cases.

where β ∈ {−25, 10, 25, 50} corresponds to one stable system and three hyperbolically unstable systems,

respectively. For all simulations, tf = 1, σ = 0.2, x0 = [1, 1]>, and zf = [0, 0]>. Measurement times

tk are evenly spaced such that tk = tk−1 + tf/(N + 1). The B matrix is full column rank, so a positive

semidefinite R matrix is permissible; R = 0 is chosen for all simulations.

Figure 3.2 shows the relationship between J∗ and N for β ∈ {−25, 10, 25, 50}. Numerical simula-

tions show that J∗ monotonically decreases as N grows. Moreover, in each simulation J∗(N) asymptoti-

cally decays and approaches a positive value as its limit. This behavior is expected; even with continuous

measurements, the final mean squared state deviation will be nonzero due to the influence of control-linear

noise.

It is also interesting to study the trajectory of x̄∗(t), i.e., the mean of xt. Next, the system in Eq. (3.44)

is simulated with β = 10. For the purpose of demonstration, the sampled measurements are chosen to be

the mean state, i.e., ytk = x̄∗(tk). Figure 3.3 shows the corresponding trajectory of x̄∗(t) as well as the

optimal control law u∗(t) for three cases: N = 0, 3, and 10. The simulation results show that as the number

of measurements is increased, x̄∗(tf ) gets closer to the target state zf . Regarding the optimal control law

u∗(t), Figure 3.3 indicates that for positive N , the magnitude of u∗(t) is close to zero in the last few

segments. However, this is not the case if N = 0. The same figure also indicates that, within each segment,
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Figure 3.3: Trajectory for x̄∗(t) = [x̄∗1(t), x̄∗2(t)]> and the optimal control law for system (3.44) with β = 10 (tf = 1,
σ = 0.2, x0 = [1, 1]>, zf = [0, 0]>, R = 0). Let ytk = x̄∗(tk) for all k = 1, . . . , N . Note that x̄∗(tf ) gets closer to
zf as N increases.

the optimal control reserves control effort until the end of the segment. The reason may be the following:

The uncertainty caused by the control-linear noise introduced toward the end of a segment can be quickly

remedied by a new measurement output. This behavior may be problematic if a measurement is lost.

3.5 Discussion and Conclusions

This chapter addressed the feedback control of stochastic linear systems with control-linear noise,

sampled measurement outputs, and continuous control. An optimization problem was formulated to steer

a stochastic system from an initial condition to a final state that minimizes mean squared deviation from

a target state. A complete solution to the problem was derived using dynamic programming. In particu-

lar, it was demonstrated that the optimal control law is linear in the initial state, the target state, and the

measurement outputs. Moreover, the state feedback gains can be computed explicitly a priori, as given in

Algorithm 2. Numerical simulations showed that the mean squared deviation decays dramatically as the

number of measurement outputs increases, especially for systems with unstable modes.
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Some interesting problems are left for the future work. Specifically, optimal measurement schedul-

ing may produce greater cost reduction. Additionally, the loss of scheduled measurements may pose an

issue. The numerical simulations in this chapter indicated that the optimal control inputs tend to increase in

magnitude in anticipation of upcoming measurements. These spikes in control effort may cause significant

covariance inflation if scheduled measurements are lost, and future work is needed to evaluate robustness to

missed measurements.

In the next chapter, these results are extended to linear time-varying systems with additive noise,

multiple sources of control-linear noise, and impulsive control inputs that are asynchronous with measure-

ment outputs. This chapter assumed that all sampled measurements were perfect (non-noisy) and full-state.

Noisy, partial-state measurements will be addressed in Chapter 5.



Chapter 4

Impulsive Closed-Loop Robust Control

Chapter 4 Nomenclature

A(t) = linearized dynamics

B0(t), . . . , B`(t) = control matrices

f(Xt) = nonlinear state dynamics

G(t) = additive noise matrix

I = identity matrix

J = cost function

Kk,j = state feedback gain

Lk,j = target state feedback gain

` = number of control-linear noise sources

m = dimension of control input

n = dimension of system state

N = number of measurements

pk = number of controls in segment k

R = positive definite matrix

r = position vector

t = time

tk = time of kth measurement
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tk,j = time of jth control after the kth measurement

tf = final time

∆uk,j = jth impulsive control after the kth measurement

Vk = value function

v = velocity vector

dWt = Wiener process

Xt = stochastic nonlinear system state at time t

X ′(t) = nominal nonlinear system state at time t

x0 = known initial state of linear (or linearized) system

xt = stochastic linear (or linearized) system state at time t

x̂t = state estimate at time t

yt = perfect, full-state measurement

zf = target state

Σ = state covariance

σadd = additive noise standard deviation

σSRP = SRP noise standard deviation

τ = variable of integration

Φ = state transition matrix from initial to final time, eAtf

Φk = state transition matrix from tk to tk+1

Φk,j = state transition matrix from tk,j to tk+1

Φτ = state transition matrix from τ to tk+1

4.1 Introduction

This chapter extends the results in the previous chapter to the spacecraft guidance problem, and

addresses the optimal intermittent control of hybrid, stochastic linear systems with time-varying dynamics,

sampled measurements, additive noise, and noisy impulsive control inputs. The control law will be derived



58

for linear systems, but will be applied to nonlinear astrodynamics systems as a neighboring guidance law by

linearizing state deviations about nominal trajectories.

The term hybrid refers to a dynamical system with piecewise continuous states and discrete state

jumps, i.e., the system dynamics are in continuous time, and the impulsive controls give rise to state jumps.

Due to impulsive control fluctuations, the differences between the states before and after jumps will be

treated as random variables, which obey Gaussian distributions. This system model is motivated by space-

craft maneuver design in which short-duration thrust accelerations are often approximated as instantaneous

velocity changes. Other examples of hybrid systems (with impulsive controls) are given in [43] and include

mechanical systems with impacts that induce instantaneous state changes, financial systems where a mone-

tary deposit is an instantaneous state change, and ecological systems where the number of individuals in a

species population varies instantaneously with birth, death, capture, and release.

As in the previous chapter, the goal is to develop an optimal feedback control law to minimize the

mean squared deviation of the final system state from a target state. This chapter will also consider additive

noise in the continuous-time dynamics and a more versatile control-linear noise model. The model in this

chapter will allow multiple sources of control-linear noise, and each noise source may act in an arbitrary

direction. In the case of spacecraft guidance, this model can accommodate independent noise from multiple

thrusters simultaneously, as well as thrust direction uncertainty.

During the derivation of the optimal control law, sampled measurements are again assumed to be

perfect and full-state. However, noisy measurements will be introduced in some of the simulations later in

this chapter and will be investigated further in Chapter 5. The measurements are not required to occur at the

same times as the impulsive controls, i.e., the controls and measurements are asynchronous.

The sampled measurement model with impulsive control is motivated by operational constraints that

are common in spacecraft guidance. With limited power and computational resources, spacecraft cannot

prioritize measurement and control at all times. For example, maneuvers cannot be performed while the

spacecraft is maintaining a fixed orientation for scientific observation, transceiving, or solar panel charging.

Likewise, measurements can also be limited. Common measurement types include range and range rate

from a ground station, and these measurements are only available when the ground station is in the space-
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craft’s line-of-sight and the spacecraft is pointing its antenna appropriately. In practice, navigation updates

and trajectory correction maneuvers often involve a human in-the-loop and are planned in an ad hoc man-

ner. However, autonomous guidance is desirable when continuous human input is impractical or becomes

prohibitively expensive, e.g., for the growing number of low-cost missions in cislunar and deep space.

The major contribution of this chapter is to provide a complete solution to the optimal control problem

described above. As in the previous chapter, the optimal controls will be linear state feedback and feedback

gains can be computed offline before flight. Therefore, the method is computationally efficient and may be

appropriate for autonomous guidance. The example applications in this chapter will demonstrate that the

algorithm can be applied as a neighboring guidance algorithm about a nonlinear spacecraft trajectory. To

illustrate the effectiveness of this robust guidance law, its performance will be compared to a deterministic

guidance law — an LQR that is modified to have the same measurement and control schedule as the robust

guidance law.

This chapter is organized as follows. The optimization problem is formulated in Section 4.2. The main

result and proof are provided in Section 4.3. In Section 4.4, the optimal guidance algorithm is demonstrated

for an asteroid orbiter through numerical simulations. In Section 4.5, the robust guidance law is compared

to a deterministic guidance law and the validity of the perfect measurement assumption is investigated.

4.2 Impulsive Closed-Loop Control Problem Formulation

This chapter addresses the closed-loop control of linear time-varying stochastic systems with sam-

pled measurements, control-linear noise, additive noise, and impulsive controls. Section 4.3 will describe

how the result may be applied as a neighboring guidance law for a nonlinear system. First, consider a

continuous-time, linear time-varying stochastic system in the Itô sense, with noisy impulsive control inputs.

Itô stochastic differential equations are described in Appendix A. Let xt ∈ Rn be the system state at time

t, ytk be the sampled measurement output at tk, and ∆uk,j ∈ Rm be a nominal impulsive control input at

times tk,j . The system state is discontinuous at impulse times tk,j . The states before and after an impulse
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are denoted x−tk,j and x+
tk,j

, respectively. Given the notation above, the system dynamics are

dxt = A(t)xtdt+G(t)dWt,

x+
tk,j

= x−tk,j +

[
B0(tk,j) +

∑̀
i=1

Bi(tk,j)ei

]
∆uk,j ,

ytk = xtk , 0 < t1 < t2 < · · ·

(4.1)

where dWt is a standard Wiener process in Rq, ei ∼ N (0, 1) are independent and identically distributed

normal random variables, and A(t), G(t), and B0(t) . . . B`(t) are matrices of appropriate dimensions. Each

impulse injects ` independent sources of error.

It is assumed that the initial state x0 is known to the controller, the final time tf is fixed, and the

measurements and impulsive controls are scheduled a priori. The controller receives N full-state, noiseless

measurement outputs yt1 , . . . ,ytN at times t1 < t2 < · · · < tN < tf . The full-state, noiseless measurement

assumption is key to enabling the analytical optimization performed in this chapter; relaxing this condition

presents significant challenges that are discussed in the next section.

The period between two measurements ytk and ytk+1
is referred to as segment k. During segment k,

pk impulsive control inputs ∆uk,j occur at times tk,j where tk ≤ tk,1 < · · · < tk,pk < tk+1. See Figure 4.1

for illustration. At each impulse time tk,j , the control is allowed to depend on all past measurements yti , for

ti ≤ tk,j , as well as the known initial state x0.

Problem: Consider the stochastic control system in Eq. (4.1). Given an initial condition x0, a target state

zf , a final time tf , N measurement outputs ytk , and the fixed times of
∑N

k=0 pk total impulsive control

Figure 4.1: Illustration of the system model (4.1) over segment k. The controller receives sampled measurements
at times tk (and tk+1) and sends impulsive controls occurring at times tk,j , for j = 1, . . . , pk. The graphic depicts
communication with a ground station, but an onboard controller is also possible.
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inputs, find the optimal impulsive controls ∆uk,j that minimize the following cost function:

J := E

‖xtf − zf‖2 +
N∑
k=0

pk∑
j=1

∆u>k,jR∆uk,j

 (4.2)

where R is positive definite. The first term of Eq. (4.2) penalizes deviation of the final state from the target.

The second term penalizes impulsive control effort over the period and is a regularization condition that

guarantees that the optimal controls ∆u∗k,j are unique. However, R need not be positive definite in all cases,

and the positive-definite restriction will be relaxed later in this section.

Notation: In the sequel, let Φk be the STM associated with the matrixA(t) from tk to tk+1, Φk,j be the STM

from tk,j to tk+1, and Φτ be the STM from τ to tk+1, where τ is a variable of integration. Some expected

values are denoted by overbars as in E[xt] = x̄(t). A superscript * indicates an optimized quantity.

4.3 Impulsive Closed-Loop Control Result

The result of the optimization problem is stated in Theorem 3 and will be proven below. The feedback

controls that minimize Eq. (4.2) are linear in the initial state x0, the target state zf , and the measurements

ytk . The state feedback gains can be computed offline using Algorithm 3.

Theorem 3. Consider the stochastic system in Eq. (4.1) and the optimal control problem in Eq. (4.2). The

optimal impulsive controls ∆u∗k,j are given by

∆u∗k,j = Kk,jytk + Lk,jzf , (4.3)

for k = 0, . . . , N and j = 1, . . . , pk, where y0 is identified with x0. The minimized cost function is a

quadratic form:

J∗ = x>0 W0x0 − 2x>0 C0zf + z>f F0zf + ϕ0. (4.4)

The scalar ϕ0 and the matrices Kk,j , Lk,j , W0, C0, and F0 in the above expressions are computed in

Algorithm 3.

Before the proof of Theorem 3, some notes will be made on the optimal control result. From Re-

mark 1, inverses [W−1
k+1 + Mk]

−1 and [I + Wk+1Mk]
−1 are guaranteed to exist, and Algorithm 3 is well
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Algorithm 3: Offline computation of state feedback gains and coefficients of the quadratic form
J∗.

Data: Matrices A(t), B0(t), . . . B`(t), R, measurement times t1, . . . , tN , impulse times
tk,1, . . . , tk,pk , for all k = 0, . . . , N , and final time tf =: tN+1.

Result: Scalar ϕ0, matrices W0, C0, F0, Kk,j and Lk,j for all k = 0, . . . , N and j = 1, . . . , pk.
initialize; WN+1 := I; FN+1 := I; CN+1 := I; ϕN+1 := 0.
for k := N to 0 do

for j := 1 to pk do

Qk,j := R+
∑̀
i=1

Bi(tk,j)
>Φ>k,jWk+1Φk,jBi(tk,j);

end

Mk :=

pk∑
j=1

Φk,jB0(tk,j)Q
−1
k,jB0(tk,j)

>Φ>k,j ;

Wk := Φ>k [W−1
k+1 +Mk]

−1Φk;

Ck := Φ>k [I +Wk+1Mk]
−1Ck+1;

Fk := Fk+1 − C>k+1Mk[I +Wk+1Mk]
−1Ck+1;

Γk :=

∫ tk+1

tk

ΦτG(τ)G(τ)>Φ>τ dτ ;

ϕk := ϕk+1 + tr
(
Wk+1Γk

)
;

and
Kk,j := −Q−1

k,jB0(tk,j)
>Φ>k,j [W

−1
k+1 +Mk]

−1Φk;

Lk,j := Q−1
k,jB0(tk,j)

>Φ>k,j [I +Wk+1Mk]
−1Ck+1;

end
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behaved. Another consideration is the rank of Qk,j . Assuming that R is positive definite guarantees the

existence of Q−1
k,j . However, by inspection of Algorithm 3 it is clear that R is not required to be positive

definite in all cases; R can be positive semidefinite (or simply zero), if

∑̀
i=1

Bi(tk,j)
>Φ>k,jWk+1Φk,jBi(tk,j) (4.5)

is invertible.

As in Chapter 3, the mean of the optimal final state x̄∗(tf ) differs from the target state zf . Applying

the optimal control in Theorem 3 to system (4.1) will result in

x̄∗(tf ) = [I +MNWN+1]−1
(
ΦNytN +MNCN+1zf

)
. (4.6)

The discrepancy between x̄∗(tf ) and zf is due in part to the control penalty term in Eq. (4.2). However,

x̄∗(tf ) and zf will still differ when R = 0. Steering the system to the target state in expectation can require

large impulsive controls and introduce large amounts of control-linear noise that inflate the mean squared

deviation. Thus, it is undesirable to constrain x̄∗(tf ) to match the target, as was observed in the continuous

control case.

The full-state and noiseless measurement assumption enables a complete and analytical solution to

the optimization problem. Although the impulsive controls are allowed to depend on all prior measurements,

the solution is Markovian in the sense that each optimal impulsive control depends only on the most recent

measurement. However, in the case of partial and noisy measurements, the optimal impulsive control at

tk,j may depend on all past measurements and may no longer be linear in those measurements. One may

consider replacing the perfect, full-state measurement ytk with an estimate of the state xtk obtained by

running a Kalman filter, but the control is not guaranteed to be optimal in that case — this approach is

investigated in Section 4.5. The case of partial and noisy measurements is discussed further in the next

chapter.

4.3.1 Guiding a Nonlinear System

Algorithm 3 is optimized for linear systems. From a practical point of view, the algorithm may be

applied to nonlinear systems by linearizing the dynamics about certain nominal trajectories. This process is
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often called neighboring guidance. Let Xt ∈ Rn be the state of a stochastic, hybrid nonlinear system and

X ′(t) ∈ Rn be the state of a nominal trajectory which is deterministic. The dynamics of X ′(t) and Xt are

given by

Ẋ ′(t) = f(X ′(t)), (4.7)


dXt = f(Xt, t)dt+G(t)dWt,

X+
tk,j

= X−tk,j +

[
B0(tk,j) +

∑̀
i=1

Bi(tk,j)ei

]
∆uk,j .

(4.8)

Consider the deviation xt := Xt − X ′(t). The dynamics of xt can be approximated by the following

stochastic linear system: 
dxt = d(Xt −X ′(t)) ≈ A(t)xtdt+G(t)dWt,

x+
tk,j

= x−tk,j +

[
B0(tk,j) +

∑̀
i=1

Bi(tk,j)ei

]
∆uk,j ,

(4.9)

where A(t) := ∂f(X)/∂X|X=X′(t). Then, Algorithm 3 can simply be applied to the linearized dynamics.

However, it is important to keep in mind that the linearization is an approximation of the dynamics and

the control law is not guaranteed to be optimal for the linearized system, especially when considering large

deviations from the nominal trajectory.

4.3.2 Proof of Theorem 3

As in the Chapter 3, dynamic programming is used to solve the Hamilton-Jacobi-Bellman equa-

tion and prove Theorem 3. First, some preliminaries are needed. To simplify the notation, let ∆uk :=

(∆uk,1, . . . ,∆uk,pk) denote all impulsive control for segment k. Next, define a value function Vk that

encompasses the cost from measurement time tk to the final time tf :

Vk(xtk , zf ,∆uk, . . . ,∆uN ) := E

‖xtf − zf‖2 +
N∑
i=k

pi∑
j=1

∆u>i,jR∆ui,j

 , (4.10)

for any k = 0 . . . N , any initial statextk (= ytk ), and any set of impulsive feedback controls ∆uk, . . . ,∆uN .

Each ∆ui,j can depend on the measurements yti′ for ti′ ≤ ti < ti,j . The goal is to optimize Vk over
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∆uk, . . . ,∆uN :

V ∗k (xtk , zf ) := min
∆uk,...,∆uN

Vk(xtk , zf ,∆uk, . . . ,∆uN ). (4.11)

Let

Σ(t) := E[(xt − x̄(t))(xt − x̄(t))>] (4.12)

be the covariance of xt at time t. When there is no sampled measurement or impulsive control event, the

mean x̄(t) and the covariance Σ(t) obey the following linear differential equations:

˙̄x(t) = A(t)x̄(t), (4.13)

Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)> +G(t)G(t)>. (4.14)

Given initial conditions x̄+(tk,j) and Σ+(tk,j) immediately following a measurement or an impulsive con-

trol input, the solutions to the above equations can be computed as follows:

x̄(t) = Φ(t, tk,j)x̄
+(tk,j), (4.15)

Σ(t) = Φ(t, tk,j)Σ
+(tk,j)Φ(t, tk,j)

> +

∫ t

tk,j

Φ(t, τ)G(τ)G(τ)>Φ(t, τ)>dτ. (4.16)

Next, consider discontinuities in x̄(t) and Σ(t) due to the impulsive controls. From Eq. (4.1),

x̄+(tk,j) = x̄−(tk,j) +B0(tk,j)∆uk,j , (4.17)

Σ+(tk,j) = Σ−(tk,j) +
∑̀
i=1

Bi(tk,j)∆uk,j∆u
>
k,jBi(tk,j)

>. (4.18)

Further, recall that x̄+(tk) = ytk and Σ+(tk) = 0 after the measurement at tk. Using Eqs. (4.15) and (4.16)

to propagate x̄ and Σ when there is no impulsive control input, and using Eqs. (4.17) and (4.18) to update x̄

and Σ right after the inputs,

x̄−(tk+1) =

pk∑
j=1

Φk,jB0(tk,j)∆uk,j + Φkytk , (4.19)

Σ−(tk+1) = Γk +

pk∑
j=1

∑̀
i=1

Φk,jBi(tk,j)∆uk,j∆u
>
k,jBi(tk,j)

>Φ>k,j , (4.20)

where Γk is defined for convenience:

Γk :=

∫ tk+1

tk

ΦτG(τ)G(τ)>Φ>τ dτ. (4.21)
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Proof of Theorem 3. Using dynamic programming backwards in time, a recursive equation will be derived

for V ∗k beginning with the last segment [tN , tf ]. Using the bias-variance decomposition from Section 3.3,

the first term of Eq. (4.10) can be rewritten as

E
[
‖xtf − zf‖

2
]

= tr(Σ(tf )) + ‖x̄(tf )− zf‖2. (4.22)

It follows that VN can be expressed as:

VN (xtN , zf ,∆uN ) = tr(Σ(tf )) + ‖x̄(tf )− zf‖2 +

pN∑
j=1

∆u>N,jR∆uN,j . (4.23)

To develop a recursive formula for Vk, the scalar ϕN+1 := 0 and the matrices WN+1 := I , CN+1 := I , and

FN+1 := I are introduced. These values are used to simplify the notation in future calculations, and their

purpose will become apparent as the optimization progresses backwards in time. These quantities can be

introduced in Eq. (4.23) without changing the value function as follows:

VN (xtN , zf ,∆uN ) = ϕN+1 + tr(Σ(tf )WN+1) + x̄(tf )>WN+1x̄(tf )− 2x̄(tf )>CN+1zf

+ z>f FN+1zf +

pN∑
j=1

∆u>N,jR∆uN,j (4.24)

Using Eq. (4.20), Σ(tf ) is expanded as follows

VN (xtN , zf ,∆uN ) = ϕN+1 +tr(ΓkWN+1)+

pN∑
j=1

∑̀
i=1

∆u>N,jBi(tN,j)
>Φ>N,jWN+1ΦN,jBi(tN,j)∆uN,j

+ x̄(tf )>WN+1x̄(tf )− 2x̄(tf )>CN+1zf + z>f FN+1zf +

pN∑
j=1

∆u>N,jR∆uN,j . (4.25)

Next, terms that are explicitly quadratic in ∆uN,j are grouped together:

VN (xtN , zf ,∆uN ) = ϕN+1 + tr(ΓkWN+1) + x̄(tf )>WN+1x̄(tf )− 2x̄(tf )>CN+1zf

+ z>f FN+1zf +

pN∑
j=1

∆u>N,jQN,j∆uN,j , (4.26)

where the matrices QN,j match the ones given in Algorithm 3. From Eq. (4.19), x̄(tf ) is linear in each

∆uN,j . Then, from Eq. (4.26), VN is quadratic in ∆uN,j . Therefore, each ∆uN,j can be optimized indi-

vidually by setting ∂VN/∂∆uN,j = 0. The optimal controls ∆u∗N,j are

∆u∗N,j = KN,jytN + LN,jzf , (4.27)
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and the corresponding minimized V ∗N is

V ∗N (xtN , zf ) = ϕN + y>tNWNytN − 2y>tNCNzf + z>f FNzf . (4.28)

The quantities KN,j , LN,j , ϕN , WN , CN , and FN match the ones given in Algorithm 3. The mean of the

optimal final state in Eq. (4.6) can be obtained by substituting ∆u∗N,j in the update equation for x̄(t) given

in Eq. (4.19).

The next step is to move backwards in time and optimize over segment N − 1, i.e., [tN−1, tN ]. First,

the following relationship between VN and VN−1 is noted:

VN−1(xtN−1 , zf ,∆uN−1,∆uN ) = E [VN (xtN , zf ,∆uN )] +

pN−1∑
j=1

∆u>N−1R∆uN−1,j . (4.29)

The expectation is taken with respect to xtN , which depends on ∆uN−1. From Bellman’s Principle of

Optimality,

V ∗N−1(xtN−1 , zf ) = min
∆uN−1

[
E [V ∗N (xtN , zf )] +

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

]
. (4.30)

Expanding V ∗N in Eq. (4.30),

V ∗N−1(xtN−1 , zf ) = min
∆uN−1

[
ϕN + E

[
x>tNWNxtN

]
− 2x̄−(tN )>CNzf + z>f FNzf

+

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

]
. (4.31)

Similar to Eq. (4.22), E
[
x>tNWNxtN

]
is also expanded as follows:

E
[
x>tNWNxtN

]
= tr(Σ−(tN )WN ) + x̄−(tN )>WN x̄

−(tN ). (4.32)

Therefore,

V ∗N−1(xtN−1 , zf ) = min
∆uN−1

[
ϕN+tr(Σ−(tN )WN )+x̄−(tN )>WN x̄

−(tN )−2x̄−(tN )>CNzf+z>f FNzf

+

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

]
. (4.33)

Note that Eq. (4.33) has the same quadratic structure as in Eq. (4.24). Moreover, the quantities ϕN , WN ,

CN , and FN are not functions of the state or control. The exact process that was used for optimizing VN
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can be used to optimize VN−1 such that

∆u∗N−1,j = KN−1,jytN + LN−1,jzf , (4.34)

V ∗N−1(xtN−1 , zf ) = ϕN−1 + y>tN−1
WN−1ytN−1 − 2y>tN−1

CN−1zf + z>f FN−1zf . (4.35)

KN−1,j , LN−1,j , ϕN−1, WN−1, CN−1, and FN−1 follow the recursive update equations in Algorithm 3.

This procedure can be repeated backwards in time for all Vk, and the solution matches the results in Theo-

rem 3 and Algorithm 3. This completes the proof. �

4.4 Asteroid Orbiter Robust Guidance

In this section, the optimal control law will be applied as a neighboring guidance law about a space-

craft trajectory. Consider a spacecraft orbiting a small near-Earth asteroid. Let X ′ = [r′>,v′>]> be the

nominal, six-dimensional position and velocity state of the spacecraft. The spacecraft dynamics are de-

scribed by the H3BP, which is detailed in Appendix B. The asteroid is assumed to be in a circular orbit

about the Sun and only two known forces act on the spacecraft: asteroid point-mass gravity and SRP. The

“cannonball” SRP model is assumed [44]. Under these assumptions, the nominal spacecraft acceleration

without noise and control is given by

dr′

dt
= v′ (4.36)

dv′

dt
= −2Ωêz × v′ + Ω2(3êxê

>
x − êzê>z )− µA

r′3
r′ + aSRP êx (4.37)

where r′ = ‖r′‖. All constants are defined in Table 4.1.

In addition to the nominal dynamics given above, the stochastic system will also include additive

noise and control-linear noise. Additive noise is included along each axis with a standard deviation of σadd

to account for dynamical mismodeling. A fourth additive noise process is included along the êx axis for

SRP acceleration uncertainty with a standard deviation of σSRP . Accordingly, G is defined by

G =


03×3 03×1

σaddI3

σSRP
02×1



 . (4.38)
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The stochastic dynamics now become

drt = dvtdt, (4.39)

dvt = −2Ωêz × vtdt+ Ω2(3êxê
>
x − êzê>z )dt− µA

r3
t

rtdt+ aSRP êx +GdWt, (4.40)

where rt = ‖rt‖. Letxt := Xt−X ′(t). As described in Section 4.3.1, the dynamics ofxt are approximated

by the stochastic linear system in Eq. (4.9), with A(t) given by:

A(t) :=

 03×3 I3

∂(dv/dt)

∂r

∂(dv/dt)

∂v


∣∣∣∣∣∣∣
X=X′(t)

. (4.41)

The hybrid system will also include impulsive control inputs. It is assumed that the spacecraft attitude

is fixed with respect to the Sun and the spacecraft is equipped with six axially-aligned thrusters in the ±êx,

±êy, and ±êz directions that produce impulsive velocity changes. In this configuration, a maneuver may

require the use of up to three thrusters simultaneously. These will be control inputs ∆uk,j added to the

stochastic dynamics. The corresponding control matrices are given by:

B0 =

03×3

I3

 , B1 =



03×3

ε‖ 0 0

ε⊥ 0 0

ε⊥ 0 0


, B2 =



03×3

0 ε⊥ 0

0 ε‖ 0

0 ε⊥ 0


, B3 =



03×3

0 0 ε⊥

0 0 ε⊥

0 0 ε‖


, (4.42)

where ε‖ and ε⊥ dictate parallel and perpendicular control-linear noise and are given in Table 4.1. Thus,

B1, B2, and B3 serve to inject uncertainty parallel and perpendicular to the axis of each thruster when the

thruster is in use.

The nominal trajectory will be a frozen Sun-terminator orbit [21] with dynamics (4.37). The initial

state of the nominal orbit is X ′(t0) = [19.8, 912, 0, 0, 0, 0.0772]> (m,m/s), assuming t0 = 0 and

tf = 24 hr. A target of zf = 0 is chosen to reduce mean squared deviation about the nominal orbit, and

R = 0 is chosen to omit the control penalty term in Eq. (4.2). To facilitate unbiased minimization of both

position and velocity deviations when minimizing the mean squared deviation of xtf , xt is scaled such

that the nominal position and velocity states have the same order of magnitude. Accordingly, the problem
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Table 4.1: Terminator Orbit Parameters for Robust Guidance

Symbol Description Value Units
Ω Rate of coordinate frame rotation 2× 10−7 s−1

µA Asteroid gravitational parameter 5 m3/s2

aSRP SRP acceleration magnitude 1.064× 10−4 mm/s2

σadd Std. dev. of additive noise 10−3µA/r
′2
0 m/s2

σSRP Std. dev of aSRP 10−2aSRP mm/s2

ε‖ Along-axis ∆u uncertainty factor 10% -
ε⊥ Off-axis ∆u uncertainty factor 5% -

is nondimensionalized by r′0 in the length scale (r′0 is the nominal orbit radius at t0) and
√
r′30 /µA in the

time scale before executing Algorithm 3. This scaling also ensures that Wk is well-conditioned and can be

inverted without large numerical error. The original scaling is used in the following results.

First, a single sample path is simulated with N = 3, pk = 6 for all k, and the large initial state

deviation xt0 = [−200, 100, 200, 10,−5,−100]> (m, mm/s). The measurements and control impulses are

evenly distributed. The initial state xt0 is not included in N . Thus, a measurement occurs every tf/(N +

1) = 6 hr. The result is shown in Figure 4.2. Although the linear model is used to compute the optimal

controls, both red and blue trajectories in Figure 4.2 are sample paths generated by the nonlinear stochastic
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Figure 4.2: Algorithm 3 is demonstrated for guidance about a nominal asteroid orbit (N = 3, pk = 6). Red and blue
trajectories are sample paths generated by the nonlinear stochastic dynamics. Impulses are scaled for visibility.
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Figure 4.3: The simulation in Figure 4.2 is repeated for (N = 3, pk = 25).

dynamics. The optimal control requires an impulsive velocity change of 6.23 cm/s in total and achieves a

final mean state deviation of x̄∗(tf ) = [3.0 × 10−3, 1.1,−0.66, 4.3 × 10−3,−0.035,−0.026] (m, mm/s)

about the nominal trajectory as computed from Eq. (4.6).

The simulation is then repeated for N = 3 and pk = 25, and the result is shown in Figure 4.3.

The pk = 25 case requires 7.5 cm/s of impulsive control and results in a final mean state deviation of

x̄∗(tf ) = [0.059, 0.20,−0.19,−4.1× 10−3,−5.4× 10−3, 7.8× 10−3] (m, mm/s).

Next, a broader numerical study is conducted by repeating Algorithm 1 for multiple values of N ∈

[0, 25] and pk ∈ [1, 25], assuming pk are the same across all segments. Because the performance is de-

pendent upon the initial state deviation xt0 , a Monte Carlo simulation at each combination of (N, pk) is

conducted by randomly selecting 100 values of xt0 . For the purpose of the simulation, initial variances of

2500 m2 in position and 100 mm/s2 in velocity are considered for xt0 (off-diagonal terms in the covariance

matrix are zero). Figure 4.4 shows a contour plot of E[J∗] for each combination of (N, pk), in which J∗ is

computed from Theorem 3. The results indicate that as N and/or pk increase, E[J∗] decays asymptotically.
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Figure 4.4: Numerical simulation of E[J∗] vs. N and pk for guidance about an asteroid orbiting trajectory. E[J∗]
asymptotically decays to a positive value as (N, pk) are increased.

4.5 Deterministic Guidance Comparison: Modified LQR

In this section, the robust guidance law will be compared to a deterministic feedback control law

— an LQR that is configured to have the same measurement and control schedules as the robust guidance

law. The deterministic control law will be referred to as a “modified LQR” or simply “LQR” throughout

this section. The robust guidance law and the modified LQR will be compared for two mission scenarios:

near-rectilinear halo orbits (NRHOs) in the Earth-Moon system and asteroid Sun-terminator orbits. Both

orbits are detailed further in Appendix B.

The southern L2 9:2 synodic resonant NRHO is of particular interest, as it represents the planned

orbit for the NASA Lunar Gateway [45]. As a crewed spacecraft, the Gateway will benefit from extensive

navigation and maneuver design resources. Proposed station-keeping methods for the Gateway include

x-axis crossing and Cauchy-Green Tensor targeting. Both methods involve a human in-the-loop or are

computationally expensive for onboard implementation [46]. Conversely, other spacecraft in nearby orbits

are likely to be budgeted fewer resources than the Gateway and may also suffer from larger orbit insertion

errors and less precise actuators. These lesser spacecraft are candidates for robust, autonomous guidance.

Because the robust guidance law is a linear feedback controller with feedback gains that can be computed

offline, the guidance law has potential for autonomous, onboard implementation. Asteroid orbiters may also

benefit from autonomous guidance due to long transmission delays between asteroids and the Earth.
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These applications are chosen for two major reasons: 1) they are relevant to current and planned

space missions and 2) they experience very different dynamics. In the NRHO case, the orbital dynamics are

strongly nonlinear near perilune and relatively linear near apolune [47]. Guidance on NRHOs may be highly

sensitive to navigation and control scheduling, i.e., the control performance may depend on the proximity of

these events to perilune. However, the dynamics of the asteroid Sun-terminator orbit are similar to that of a

circular orbit, and the degree of nonlinearity is fairly constant throughout. Thus, terminator orbit guidance

is likely less sensitive to event scheduling.

By design, the robust guidance law will outperform the LQR in the presence of control-dependent

noise, using mean squared deviation as the performance metric. However, the relative improvement of the

robust guidance law depends on many factors, including the contribution of control noise when compared

to other sources of uncertainty and the accuracy of the linearized dynamics model.

The hybrid system dynamics are given by Eq. (4.8). The most significant variation in this section is the

inclusion of navigation uncertainty in the control simulation. The algorithm is unchanged from Algorithm 3,

but navigation uncertainty will be included in the numerical simulation to investigate the effect of imperfect

navigation on the control performance. It is assumed that navigation updates (i.e., state estimates) are

generated via an external, unspecified estimation process. Let X̂tk be the estimated system state at time tk.

We assume that the controller receives a total of N navigation updates, which are scheduled a priori and

discretize the trajectory into segments. The period between two state updates X̂tk and X̂tk+1
is still referred

to as segment k. During segment k, a total of pk impulsive control inputs ∆uk,j will be applied as before.

Using the methodology in Section 4.3.1, the dynamics of xt are approximated by the following stochastic

linear system: 

dxt ≈ A(t)xtdt+G(t)dWt,

x+
tk,j

= x−tk,j +

[
B0(tk,j) +

∑̀
i=1

Bi(tk,j)ei

]
∆uk,j ,

x̂tk = X̂tk −X ′(tk),

(4.43)

where the linear dynamics matrix is evaluated along the nominal trajectory: A(t) := ∂f(X, t)/∂X|X=X′(t).

In this section, the robust guidance algorithm will be applied to the case of imperfect state estimates
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by simply replacing each perfect, full-state measurements with the imperfect state estimate at time tk:

(∆u∗k,j) ≈ Kk,jx̂tk + Lk,jzf . (4.44)

Although the robust guidance algorithm assumes perfect, full-state measurements, the following results will

show that good performance can still be achieved with imperfect state estimates.

In the following examples, stochastic sample paths are generated from the nonlinear dynamics. Dy-

namics are propagated with a variable-step Runge-Kutta 78 (7th-order integrator with an 8th-order error

estimate). The relationship in Eq. (2.52) is used to approximate continuous additive noise in discrete time.

4.5.1 Modified LQR

In order to demonstrate the advantage of stochastic control, the robust guidance law will be compared

to a modified LQR that has no knowledge of the system’s additive or control-dependent noise. The modified

LQR assumes the following dynamics:
dx̃

dt
= A(t)x̃(t),

x̃+
tk,j

= x̃−tk,j +B0(tk,j)∆uk,j ,

(4.45)

where x̃ is a fictitious state deviation from the nominal trajectory (assuming deterministic dynamics) that is

used in the derivation of the modified LQR solution. The LQR cost function is given below.

JLqr := ‖x̃(tf )− zf‖2 +
N∑
k=0

pk∑
j=1

∆u>k,jR∆uk,j (4.46)

To enable a one-to-one comparison of both control laws, Eq. (4.46) is modified from the classical finite-

horizon LQR cost to have a target state of zf , as well as the same measurement and control schedules as the

robust guidance algorithm. Moving forward, this setup will simply be referred to as the “LQR” although it

is slightly different than the standard LQR problem. The optimal LQR control inputs can also be derived

from dynamic programming:

(∆u∗k,j)Lqr = K̃k,jx̃(tk) + L̃k,jzf (4.47)

≈ K̃k,jx̂tk + L̃k,jzf (4.48)
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Algorithm 4: Offline computation of state feedback gains.

Data: Matrices A(t), R, measurement times t1, . . . , tN , impulse times tk,1, . . . , tk,pk , for all
k = 0, . . . , N , and final time tf =: tN+1.

Result: Matrices K̃k,j and L̃k,j for all k = 0, . . . , N and j = 1, . . . , pk.
initialize; W̃N+1 := I; C̃N+1 := I;
for k := N to 0 do

Q̃k :=

pk∑
j=1

Φk,jB0(tk,j)R
−1B0(tk,j)

>Φ>k,j ;

W̃k := Φ>k [W̃−1
k+1 + Q̃k]

−1Φk;

C̃k := Φ>k [I + W̃k+1Q̃k]
−1C̃k+1;

K̃k,j := −R−1B0(tk,j)
>Φ>k,j [W̃

−1
k+1 + Q̃k]

−1Φk;

L̃k,j := R−1B0(tk,j)
>Φ>k,j [I + W̃k+1Q̃k]

−1C̃k+1;

end

As in Eq. (4.44), the fictitious state x̃(tk) is replaced with the best state estimate at that time. The control

gain matrices K̃k,j and L̃k,j are computed via the recursive equations in Algorithm 4. Note that neglecting

additive noise in Eq. (4.45) does not disadvantage the LQR with respect to the robust guidance law. In the

robust guidance law, the additive noise only serves to inflate the mean squared deviation (i.e., to increase the

cost function), but does not alter the optimal controls (see Algorithm 3).

4.5.2 Control Midpoints

The robust and LQR guidance laws are derived with a fixed final time. When applying guidance over

a long horizon, the trajectory may be segmented into arcs of shorter duration. For example, a trajectory

may be controlled with a final time of tf in Algorithm 3. Alternatively, Algorithm 3 could be applied to

two separate arcs, such as [t0, tf/2] and [tf/2, tf ]. The latter example corresponds to one control midpoint

at tf/2. By including control midpoints in this manner, the guidance laws will minimize state deviations

at intermediate points along the trajectory, as well as the final time. Note that the nominal orbit does not

change in this case, and all control gain matrices can still be computed offline regardless of the number of

control midpoints.
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Table 4.2: NRHO Baseline Values

Initial state error 3σ Navigation error 3σ Additive noise, σadd Control-linear noise, (ε‖, ε⊥) R
10 km, 10 cm/s 10 m, 1 mm/s 10−10 m/s2 5%, 1.5% 10−12I3

4.5.3 NRHO Application

In this section, robust and LQR guidance laws will be applied to an NRHO modeled in the CR3BP.

The nominal orbit is a southern L2 9:2 synodic resonant NRHO in the Earth-Moon system (representative

of the Lunar Gateway orbit). The CR3BP dynamics and the 9:2 NRHO are detailed further in Appendix B.

Baseline uncertainty values are given in Table 4.2. It is assumed that

G =

 03×3

σaddI3

 , (4.49)

and Bi matrices are given in Eq. (4.42).

Four NRHO mission scenarios are summarized in Table 4.3. All simulations begin with an initial

state at apolune (farthest from the Moon). In each case, it is assumed that impulsive controls are applied 12

hours after navigation updates. Scenario 1 involves short horizon guidance over two orbits (approximately

two weeks) with two navigation updates/controls per orbit. The navigation and control schedule for this

scenario can be seen in Figure 4.5 (left). In Scenario 1, events are not scheduled near perilune. Scenario

2 involves short horizon guidance with three navigation updates and controls per orbit. In this case, a

navigation update occurs at perilune, where dynamics are strongly nonlinear. The navigation and control

schedule for the second scenario can also be seen in Figure 4.5 (right). Scenario 3 involves long horizon

guidance over eight orbits (approximately 2 months) with two navigation updates/controls per orbit and

without control midpoints (refer to Section 4.5.2). Finally, Scenario 4 involves long horizon guidance over

eight orbits with two navigation updates/controls per orbit and three control midpoints at tf/4, tf/2, and 3tf/4.

Thus, the control algorithms are applied to the time segments [t0, tf/4], [tf/4, tf/2], [tf/2, 3tf/4], and [3tf/4, tf ]

independently. Scenarios 3 and 4 are also illustrated by Figure 4.5 (left).

Table 4.3 lists the final mean squared deviation and mean ∆V of each mission scenario, computed via

Monte Carlo simulation. Figure 4.7 shows final deviations from the nominal state for each mission scenario.
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Figure 4.5: Navigation update and control scheduling for NRHO Scenarios 1 through 4. The spacecraft is orbiting
counter-clockwise from this perspective.

In terms of mean squared deviation, the robust guidance law outperforms the LQR in each scenario, with

varying degrees of improvement. The results are further described below:

Scenario 1: The robust guidance law significantly reduces the mean squared deviation at the cost of

roughly 4 cm/s of ∆V , when compared to the LQR.

Scenario 2: In this scenario, events are scheduled in the highly sensitive region near perilune. The

robust guidance law reduces mean squared deviation by three orders of magnitude, corresponding to an

improvement of nearly one order of magnitude in state error (non-squared deviations). This increased ro-

bustness also results in significant ∆V improvement. These results suggest that the robust guidance law

performs better in regions with sensitive, strongly nonlinear dynamics. This characteristic of the robust

guidance law will be discussed further in the next section. Figure 4.6 shows one sample path for Scenario

2 (∆V s are plotted for visibility and are not true to scale). It is clear in Figure 4.6 that the robust and LQR
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Table 4.3: NRHO Mission Scenarios and Results for 1000-trial Monte Carlo

Scenario: 1 2 3 4
Description: Short Short horizon, Long Long horizon,

horizon meas. at perilune horizon control midpoints
# of orbits 2 2 8 8
Control midpoints (see Sec. 4.5.2) - - - tf/4, tf/2, 3tf/4
# of nav. updates & controls 4 6 16 16
Mean ∆V , robust (cm/s) 9.75 25.5 3.54 137
Mean ∆V , LQR (cm/s) 5.96 202 3.27 138
Mean squared deviation, robust 2.30× 10−10 8.21× 10−10 2.37× 10−8 5.48× 10−12

Mean squared deviation, LQR 1.75× 10−9 6.74× 10−7 4.10× 10−8 1.72× 10−8

guidance laws produce very different solutions.

Scenario 3: This is the long horizon case without control midpoints. The robust guidance law pro-

vides a relatively small improvement in mean squared deviation when compared to the LQR. No control

midpoints are included in Scenario 3, so state deviations are only minimized at the final time.

Scenario 4: This is the long horizon case with three control midpoints. In this case, the guidance

laws will minimize state deviations at the final time, as well as three intermediate times (i.e., every two or-

bits). The robust guidance law outperforms the LQR significantly — robust guidance reduces mean squared

deviation by four orders of magnitude, corresponding to two orders of magnitude of improvement in state

error (non-squared deviations). The ∆V is comparable for both methods.

Next, both guidance laws are analyzed as the state error, navigation error, additive noise standard

deviation, and control-linear noise factors are scaled in Scenario 1. The Monte Carlo simulation is repeated

as the scaling parameters in Table 4.2 are varied. Figure 4.8 shows the mean squared deviation as each

parameter is varied individually. The robust guidance law continues to outperform the LQR in terms of mean

squared deviation the initial state error, control noise, and additive noise are scaled. The robust guidance

law is notably more robust to initial state error. In the case of navigation error, however, the robust guidance

law fails to outperform the LQR for large values of navigation error — this is the point at which the perfect

navigation assumption (and the approximation in Eq. (4.44) begins to break down. Figure 4.9 shows the

∆V performance of both guidance laws as the parameters in Table 4.2 are increased. In mission Scenario 1,

the LQR consistently outperforms the robust guidance law in terms of ∆V .
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Table 4.4: Terminator Orbit Baseline Values

Description Value
Gravitational parameter, µA 5 m3/s2

Initial semimajor axis 1500 m
Initial eccentricity 0.0684
Initial inclination 0 rad
Initial RAAN -π/2 rad
Initial argument of periapsis π/2 rad
Initial true anomaly 0 rad
Orbit period, TP 1.9 days
Coordinate frame rotation rate, Ω 2× 10−7 s−1

SRP acceleration magnitude, aSRP 1.064× 10−4 mm/s2

Initial state error 3σ 1 m, 0.1 mm/s
Navigation error 3σ 1 m, 0.1 mm/s
Additive noise, σadd 0.001% (µA/r

′2
0 ) m/s2

SRP noise, σSRP 0.1% aSRP mm/s2

Control-linear noise, (ε‖, ε⊥) 5%, 1.5%
R 10−12I3

4.5.4 Asteroid Sun-Terminator Orbit Application

The next example considers a spacecraft orbiting a small near-Earth asteroid modeled in the H3BP

with SRP. All constants are defined in Table 4.4, and are chosen to be representative of the OSIRIS-REx

mission to the asteroid Bennu [8,30,31]. The nominal orbit is a Sun-terminator orbit with a semimajor axis

of roughly 1500 m. The initial state is computed using the shifted origin and eccentricity corrections in [21],

and the orbital elements of the initial state are given in Table 4.4. It is assumed that G is given in Eq. (4.38)

and Bi matrices are given in Eq. (4.42). Before applying Algorithm 3 and Algorithm 4, the dynamics are

nondimensionalized by r′(t0) in the length scale and
√
r′(t0)3/µA in the time scale. Scaling the dynamics

enables unbiased minimization of position and velocity state deviations and facilitates numerical stability in

Algorithms 3 and 4.

Monte Carlo simulations with 1000 trials are conducted for the robust and LQR asteroid guidance

scenarios. The baseline values for all scenarios are given in Table 4.4. As in the previous example, naviga-

tion updates have a zero-mean state error. The 3σ initial state error and navigation errors in Table 4.4 are

comparable to simulations of autonomous asteroid guidance and navigation in [48]. Control-linear noise
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one month scenario, this schedule is applied four consecutive times.

with 5% along-axis uncertainty and 1.5% cross-axis uncertainty is also included — these values are compa-

rable to those observed on the OSIRIS-REx mission [49]. The control weighting matrix, R, will be set to

10−12I3 to prioritize the minimization of state deviations rather than control effort.

The two asteroid mission scenarios are summarized in Table 4.5. In each case, the controls are applied

one hour after navigation updates. The first scenario occurs over a period of four orbits (roughly one week)

with eight navigation updates/controls and without control midpoints. The controls are evenly spaced over

the one week period. The second scenario occurs over a period of 16 orbits (roughly one month) with a

control midpoint placed every four orbits (at 4TP , 8TP , and 12TP , where TP is the orbit period) and eight

evenly-spaced navigation updates/controls during each of the following segments: [0, 4TP ], [4TP , 8TP ],

[8TP , 12TP ], and [12TP , 16TP ]. Thus, the one month scenario is equivalent to repeating the one week

scenario four consecutive times. The navigation and control schedules for either scenario are shown in

Figure 4.10.

Table 4.5 lists the final mean squared deviation and mean ∆V of each mission scenario, computed

via Monte Carlo simulation. Table 4.5 also provides statistics for the number of Monte Carlo samples that
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Table 4.5: Terminator Orbit Mission Scenarios and Results for 1000-trial Monte Carlo

Scenario: 1 2
Description: ∼1 week ∼1 month
Number of orbits 4 16
Control midpoints 0 4TP , 8TP , 12TP
(see Sec. 4.5.2)
Number of nav. updates & 8 32
controls
Mean ∆V , robust (mm/s) 1.14 5.42
Mean ∆V , LQR (mm/s) 0.763 4.00
Mean squared deviation, robust 7.66× 10−5 5.27× 10−3

Mean squared deviation, LQR 7.95× 10−5 0.400
Samples that escape, robust 0% 0.4%
Samples that escape, LQR 0% 34%

escape the asteroid’s orbit, i.e., the percentage of failed cases. Figure 4.11 shows final deviations about the

nominal mean state for each mission scenario. The performance in each scenario is further described below:

Scenario 1: In the one week scenario, the robust guidance law provides a marginal improvement

in mean squared deviation; this small improvement likely does not justify the increased propellant cost of

the robust guidance law. Thus, it can be concluded that control-linear noise is not a dominant source of

uncertainty in this scenario. Note that no Monte Carlo sample paths escaped the asteroid system for both

methods.

Scenario 2: In the one month scenario, however, 34% of LQR Monte Carlo trials escaped the aster-

oid’s orbit, whereas only 0.4% of robust guidance trials escaped. Therefore, control-dependent noise has a

significant affect on performance in Scenario 2, and the robust guidance law is far superior to the LQR in

this scenario.
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Figure 4.12 shows one sample path of the one week scenario — it is clear that the robust and LQR

algorithms produce very different control laws. Additionally, Figure 4.13 shows a simulation where the

control penalty matrix R is increased from 10−12I3 to I3 . In this case, the influence of control-dependent

noise in the robust guidance law (Algorithm 3) is dominated by R, and the robust guidance solution is

indistinguishable from the LQR.

Finally, it is instructive to visualize the distribution of control effort for each guidance law. The one

week guidance scenario includes a total of eight individual controls. In Figure 4.14, the mean magnitude

of each control impulse is computed from the Monte Carlo simulation. Figure 4.14 shows that the LQR

performs larger controls toward the end of the simulation, whereas the robust guidance law performs larger

controls earlier in the trajectory. By front-loading the control in this way, robust guidance tends to steer the

system closer to the nominal trajectory earlier in the simulation. Immediately driving the system close to the

nominal trajectory is advantageous when applying neighboring guidance, as this is more likely to maintain

the spacecraft in the linear region and maintain the accuracy of the linear dynamics approximation. This

behavior may explain why the robust guidance law produces far better performance than the LQR in the one

month scenario (as well as the NRHO Scenario 3), i.e. the LQR solution drifts beyond the linear region and

the linearization fails.
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4.6 Discussion and Conclusions

This chapter addressed the optimal control of stochastic linear time-varying systems with additive

noise, impulsive control inputs, and sampled measurements. Measurement and control schedules were

allowed to be asynchronous, and the model accommodates arbitrarily many sources of control-linear noise in

any direction. The system model is motivated by, but not exclusive to, applications in space flight dynamics.

An optimal feedback control law was derived to steer the system from a known initial state to a final state

that minimizes mean squared deviation about a target state. The optimal control is linear in the initial state,

the target state, and the measurement outputs, and the state feedback gains can be computed offline, such

that the control has the potential for autonomous, on-board implementation.

By linearizing spacecraft dynamics about nominal trajectories, the optimal control law was demon-

strated for neighboring guidance about an asteroid Sun-terminator orbit and an NRHO. In both cases, the

robust guidance law was compared to a deterministic control law: an LQR that was modified to have the

same asynchronous measurement and control schedule as the robust guidance law. Overall, robust guidance

outperforms the LQR in terms of mean squared state deviations and is capable of minimizing final state

error by orders of magnitude at reasonable ∆V costs. It was also observed that the robust guidance law

tends to concentrate control effort toward the beginning of the trajectory, which drives the spacecraft closer

to the nominal trajectory earlier in the period — this behavior has the secondary benefit of maintaining the

spacecraft in the linear region and the robust guidance law outperformed the LQR significantly when the

dynamics of the nominal trajectory were strongly nonlinear.

The applicability of the perfect measurement assumption was also investigated numerically by in-

troducing noisy navigation updates in Monte Carlo simulations. As expected, the perfect measurement

assumption breaks down when large navigation error is present. The next chapter delves further into the

problem of noisy measurements.

Future work includes the problem of optimal measurement and control scheduling. Additionally, the

timing of measurements and controls can also be made non-deterministic, and evaluating the robustness of

the guidance law to delayed or missed measurements/control is another area for future work.



Chapter 5

Guidance with Noisy Measurements

Chapter 5 Nomenclature

A(t) = linearized dynamics

B0(t), . . . , B`(t) = control matrices

D(t) = measurement error covariance

G(t) = additive noise matrix

H(t) = linear measurement model

I = identity matrix

J = cost function

J ′ = cost function lower bound

J ′′ = cost function upper bound

Kk,j = state feedback gain

Lk,j = target state feedback gain

` = number of control-linear noise sources

m = dimension of control input

n = dimension of system state

N = number of measurements

pk = number of controls in segment k

R = positive definite matrix
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t = time

tk = time of kth measurement

tk,j = time of jth control after the kth measurement

tf = final time

∆uk,j = jth impulsive control input after the kth measurement

Vk = value function

dWt = standard Wiener process

x0 = known initial state of linear (or linearized) system

xt = stochastic linear system state at time t

yt = state measurement

zf = target state

νt = measurement error

Σ = state covariance

τ = variable of integration

Φ = state transition matrix from initial to final time, eAtf

Φk = state transition matrix from tk to tk+1

Φk,j = state transition matrix from tk,j to tk+1

Φτ = state transition matrix from τ to tk+1

5.1 Introduction

The full-state, noiseless measurement assumption was the key to generating analytical solutions in

Chapters 3 and 4. Although the controls were allowed to depend on all previous measurements, the optimal

controls were simply linear in the prior measurement when that measurement was full-state and noiseless.

However, full-state measurements are rarely available in reality and noiseless measurements are highly

improbable, necessitating the inclusion of a state estimation process. In the case of partial-state or noisy

measurements with an estimator, it is likely that the optimal controls depend on all past measurements and
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are no longer linear in those measurements. Moreover, the “separation principle” for control and estimation

no longer holds in the case of control-dependent noise with an estimator. Rather, the control-dependent noise

results in a complex dependency between controller and estimator, and analytical solutions are intractable

in most cases.

The simplest solution to the noisy measurement problem is to replace each perfect measurement by

the best state estimate at that time, as was done in Section 4.5. However, this approach requires time-

consuming analysis to guarantee performance, as the guidance law is not optimized under those conditions.

In [6], the authors develop a sub-optimal iterative algorithm to preserve the separation principle in the

discrete time problem with control-dependent noise and noisy measurements. The control is optimized

assuming a fixed uncertainty. The uncertainty is then updated as a function of the control, and the process

is repeated until convergence. Although the iterative method may produce better results than if one ignored

control-dependent noise entirely, it is sub-optimal because the coupling between control and estimation is

neglected during the optimization step.

Alternatively, a bounded cost function approach is proposed in this chapter. Upper and lower bounds

for the true cost function, J , will be selected such that

J ′∗ ≤ J∗ ≤ J ′′∗. (5.1)

The bounds J ′ and J ′′ are chosen to be quadratic in the control and can be optimized analytically. The

bounding method does not produce an optimal control for the true cost. However, J ′∗ and J ′′∗ provide a

metric for evaluating candidate controls.

5.2 Bounded Cost Function Problem Formulation

Consider the linear dynamical system from the previous chapter, but with the noisy, partial state

measurements ytk : 

dxt = A(t)xtdt+G(t)dWt,

x+
tk,j

= x−tk,j +

[
B0(tk,j) +

∑̀
i=1

Bi(tk,j)ei

]
∆uk,j ,

ytk = H(tk)xtk + νtk , 0 < t1 < t2 < · · ·

(5.2)
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where νt is a random vector, and E[νtν
>
t ] = D(t). Assume that H is of rank n. For a linear system with

white Gaussian noise, the Kalman filter will be the optimal state estimator.

The bounded cost function approach in this chapter may also be applied to the linearization of a

nonlinear system, but the bounds are not guaranteed to be strict bounds in that case, just as the robust

guidance law and Kalman filter are not guaranteed to work for the linearized system (especially for large

deviations from the reference trajectory).

For compactness in future equations, let

H(t) = H(t)>D(t)−1H(t), (5.3)

and assume that H(tk)
−1 exists. As before, Σ(t) is the state covariance at time t. Allow x̂tk to be a state

estimate at time tk, and assume that state estimates and covariance updates are generated from a standard

Kalman filter:

Σ⊕(tk) =
[(

Σ	(tk)
)−1

+H(tk)
]−1

, (5.4)

Kk = Σ	(tk)H(tk)
>
[
H(tk)Σ

	(tk)H(tk)
> +D(tk)

]−1
, (5.5)

x̂tk = x̄(tk) +Kk (ytk −H(tk)x̄(tk)) , (5.6)

where superscripts 	/⊕ indicate quantities before/after a Kalman filter update and Kk is the Kalman gain.

Again, consider the cost function in Eq. (4.2). Some preliminaries are needed before suitable bounds

for the cost can be identified. First, the value function at tN is computed in the same manner as Section 4.3.

With the inclusion of the partial, noisy state measurement and Kalman filter update at time tN , the value

function VN is now a function of the state estimate and state error covariance as follows:

VN (x̂tN ,∆uN , zf ,Σ
⊕(tN )) = ϕN+1 + tr(Σ	(tf )WN+1) + x̄(tf )>WN+1x̄(tf )− 2x̄(tf )>CN+1zf

+ z>f FN+1zf +

pN∑
j=1

∆u>N,jR∆uN,j . (5.7)

This is in contrast to Eq. (4.24), which was only a function of the controls uN , the target state zf , and

the perfect, full-state measurement at time tN . Following the same first-order optimization process as Sec-
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tion 4.3, the optimal value function is given by

V ∗N = x̂>tNWN x̂tN − 2x̂>tNzf + z>f FNzf + ϕN + tr
(

Φ>NWN+1ΦNΣ⊕(tN )
)

(5.8)

and the optimal control is linear in the state estimate and target state:

u∗N,j = KN,jx̂N + LN,jzf . (5.9)

The gain matrices during the final segment from tN to tf are still computed from Algorithm 3, i.e, relaxing

the full-state measurement assumption does not change the gain matrices in the final segment of the trajec-

tory. However, the problem will become intractable as the computation proceeds backwards in time. Recall

that

V ∗N−1 = min
∆uN−1

E (V ∗N ) +

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

 . (5.10)

It follows that

V ∗N−1(x̂tN−1 ,∆uN−1, zf ,Σ
⊕(tN−1)) = min

∆uN−1

[
− 2x̄(tN )>CNzf + z>f FNzf + ϕN

+ tr
(

Φ>NWN+1ΦNΣ⊕(tN )
)

+

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

+ E
{

[x̄(tN ) +KN (ytN −H(tN )x̄(tN ))]>WN [x̄(tN ) +KN (ytN −H(tN )x̄(tN ))]
}]

. (5.11)

With some manipulation, the cost function can be expressed more simply as

V ∗N−1 = min
∆uN−1

{
x̄(tN )>WN x̄(tN )− 2x̄(tN )>CNzf + z>f FNzf + ϕN +

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

+ tr
(
WNΣ	(tN )

)
+ tr

[(
Φ>NWN+1ΦN −WN

)
Σ⊕(tN )

]}
. (5.12)

First, note that the covariance immediately after the Kalman filter state update at tN , i.e., Σ⊕(tN ), is non-

linear in the controls during segment (N − 1):

Σ⊕(tN )

=

[(
ΦN−1Σ(tN−1)⊕Φ>N−1+ΓN−1+

pN−1∑
j=1

∑̀
i=1

ΦN−1,jBi∆uN−1,j∆u
>
N−1,jB

>
i Φ>N−1,j

)−1

+H(tN )

]−1

.

(5.13)
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Because Σ⊕(tN ) appears in the value function V ∗N−1, it is clear that the optimization problem with noisy,

partial-state measurements is not quadratic in the controls and first-order methods are no longer sufficient.

However, Eqs. (5.12) and (5.13) do give sufficient insight to develop upper and lower bounds for V ∗N−1 (and

all V ∗k , by extension).

Begin by noting that[(
ΦN−1Σ(tN−1)⊕Φ>N−1 + ΓN−1

)−1

+H(tN )

]−1

≤ Σ⊕(tN ). (5.14)

Moreover, assume that

Φ>NWN+1ΦN −WN (5.15)

is positive semidefinite (which must be verified numerically during implementation). Then, a lower bound

on the value function at tN−1 can be defined such that

V ′∗N−1 ≤ V ∗N−1. (5.16)

Using the substitution in inequality (5.14), the lower bound in question is

V ′∗N−1 = min
∆uN−1

{
x̄(tN )>WN x̄(tN )− 2x̄(tN )>CNzf + z>f FNzf + ϕN +

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

+tr
(
WNΣ	(tN )

)
+tr

[(
Φ>NWN+1ΦN −WN

)((
ΦN−1Σ(tN−1)⊕Φ>N−1 + ΓN−1

)−1

+H(tN )

)−1
]}
(5.17)

which is quadratic in the control. Thus, the optimal control and optimal value of the lower bound can be

computed analytically using first-order methods as before. Certainly, the problem will continue to become

non-quadratic in the controls as the dynamic programming strategy proceeds backwards in time to each

new segment. Accordingly, a similar substitution to inequality (5.14) must be made for each time segment.

Because the equations are recursive and exhibit a repeating pattern, the details are omitted here.

The problem of generating a close upper bound is more difficult. By inspection of Eq. (5.4),

Σ⊕(tN−1) =
[
Σ	(tN−1)−1 +H(tN−1)

]−1
, (5.18)

≤ H(tN−1)−1. (5.19)
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From Eq. (5.13),

Σ⊕(tN ) ≤[(
ΦN−1H(tN−1)−1Φ>N−1+ΓN−1+

pN−1∑
j=1

∑̀
i=1

ΦN−1,jBi∆uN−1,j∆u
>
N−1,jB

>
i Φ>N−1,j

)−1

+H(tN )

]−1

.

(5.20)

Using Lemma 1 below, it can be concluded that

Σ⊕(tN ) ≤

[(
ΦN−1H(tN−1)−1Φ>N−1 + ΓN−1

)−1

+H(tN )

]−1

+ Ψ−1

pN−1∑
j=1

∑̀
i=1

ΦN−1,jBi∆uN−1,j∆u
>
N−1,jB

>
i Φ>N−1,j

Ψ−>, (5.21)

where Ψ is defined for compactness:

Ψ = I +
(

ΦN−1H(tN−1)−1Φ>N−1 + ΓN−1

)−1
H(tN ). (5.22)

Assuming again that expression (5.15) is positive semidefinite, an upper bound can be defined such that

V ∗N−1 ≤ V
′′∗
N−1, (5.23)

V
′′∗
N−1 = min

∆uN−1

{
x̄(tN )>WN x̄(tN )− 2x̄(tN )>CNzf + z>f FNzf + ϕN +

pN−1∑
j=1

∆u>N−1,jR∆uN−1,j

+ tr
(
WNΣ	(tN )

)
+ tr

[(
Φ>NWN+1ΦN −WN

)((
ΦN−1H(tN−1)−1Φ>N−1 + ΓN−1

)−1

+H(tN )

)−1
]

+ tr

(Φ>NWN+1ΦN −WN

)
Ψ−1

pN−1∑
j=1

∑̀
i=1

ΦN−1,jBi∆uN−1,j∆u
>
N−1,jB

>
i Φ>N−1,j

Ψ−>

}.
(5.24)

The upper bound is quadratic in the control, enabling the use of first-order methods. The upper bound also

has a physical interpretation: it corresponds to an approximation of the value function when the control

noise is assumed to be small in comparison to the navigation uncertainty (see Remark 2). As with the lower

bound, the solution to the upper bound will also become non-quadratic at every step, and a substitution

similar to inequality (5.21) must be repeated at every time segment.
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Lemma 1. For positive definite matrices X and Y and arbitrary matrix Z,[(
Y + ZZ>

)−1
+X

]−1

≤
(
Y −1 +X

)−1
+ (I + Y X)−1 ZZ> (I +XY )−1 . (5.25)

Proof of Lemma 1. Using the Woodbury matrix identity,

(
Y + ZZ>

)−1
= Y −1 − Y −1Z

(
I + Z>Y −1Z

)−1
Z>Y −1, (5.26)

It follows that[(
Y + ZZ>

)−1
+X

]−1

=

[
Y −1 +X − Y −1Z

(
I + Z>Y −1Z

)−1
Z>Y −1

]−1

. (5.27)

For compactness, allow the following temporary substitutions:

A = Y −1 +X, (5.28)

B = Y −1Z, (5.29)

C =
(
I + Z>Y −1Z

)−1
, (5.30)

such that [(
Y + ZZ>

)−1
+X

]−1

=
[
A−BCB>

]−1
. (5.31)

Applying the Woodbury identify for a second time results in

[
A−BCB>

]−1
= A−1 +A−1B

(
C−1 −B>A−1B

)−1
B>A−1. (5.32)

From Eqs. (5.28) through (5.30),

C−1 −B>A−1B = I + Z>Y −1
[
Y −

(
Y −1 +X

)−1
]
Y −1Z. (5.33)

Because X is positive semidefinite,

Y −1 +X ≥ Y −1, (5.34)(
Y −1 +X

)−1 ≤ Y, (5.35)

Y −
(
Y −1 +X

)−1 ≥ [0] . (5.36)
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By extension,

C−1 −B>A−1B ≥ I, (5.37)(
C−1 −B>A−1B

)−1
≤ I, (5.38)

A−1B
(
C−1 −B>A−1B

)−1
B>A−1 ≤ A−1 +A−1BB>A−1. (5.39)

Finally, making the reverse substitution produces the result in Lemma 1. This completes the proof. �

Remark 2. Assume ‖Y ‖ � ‖ZZ>‖, e.g., the control noise is small in Eq. (5.13). Then,[(
Y + ZZ>

)−1
+X

]−1

≈
[
Y −1 − Y −1ZZ>Y −1 +X

]−1
(5.40)

≈
[(
Y −1 +X

)
− Y −1ZZ>Y −1

]−1
(5.41)

Next, assuming ‖Y −1 +X‖ � ‖Y −1ZZ>Y −1‖,

[(
Y −1 +X

)
− Y −1ZZ>Y −1

]−1
≈
(
Y −1 +X

)−1
+
(
Y −1 +X

)−1
Y −1ZZ>Y −1

(
Y −1 +X

)−1

(5.42)

≈
(
Y −1 +X

)−1
+ (I + Y X)−1 ZZ> (I +XY )−1 (5.43)

With the appropriate substitutions, the approximation in Eq. (5.43) is identical to the right-hand side of the

inequality in (5.21).

5.3 Bounded Cost Function Result

Theorem 4. Consider the stochastic system in Eq. (5.2) and the optimal control problem in Eq. (4.2). The

optimal cost can be bounded such that

V ′∗0 ≤ J ≤ V ′′∗0 (5.44)

where

V ′∗0 = x̂>t0W
′
0x̂t0 − 2x̂>t0C

′
0zf + z>f F

′
0zf + ϕ′0, (5.45)

V ′′∗0 = x̂>t0W
′′
0 x̂t0 − 2x̂>t0C

′′
0zf + z>f F

′′
0 zf + ϕ′′0. (5.46)
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The optimal controls associated with the upper and lower bounds are denoted u′∗k,j and u′′∗k,j , respectively

and are given by

u′∗k,j = K ′k,jx̂tk + L′k,jzf , (5.47)

u′′∗k,j = K ′′k,jx̂tk + L′′k,jzf , (5.48)

for all k = 0, . . . , N , and j = 0, . . . , pk, where x̂tk is the Kalman filter state estimate at time tk. The

quantities K ′k,j , L
′
k,j , W

′
0, C ′0, F ′0, ϕ′0, K ′′k,j , L

′′
k,j , W

′′
0 , C ′′0 , F ′′0 , and ϕ′′0 in the above expressions are

computed in Algorithms 5 and 6.

The proof of Theorem 4 follows the same procedure as the proof of Theorem 3. To preserve the

quadratic structure of lower and upper bounds, substitutions similar to inequalities (5.14) and (5.21) are

repeated for each segment of the dynamic programming solution.

5.4 Bounded Cost Function Simulation

The following examples use the same problem setup as in Section 4.4. The problem is nondimen-

sionalized by the initial orbit radius in the length scale and the mean motion in the time scale. Each example

in this section considers an initial nominal state ofX ′(t0) = [19.8, 912, 0, 0, 0, 0.0772]> (m,m/s) and an

initial state error of xt0 = [2, −10, −2, 6× 10−4, −10−3, 3× 10−4]> (m,mm/s). The goal is to minimize

the final mean squared state deviation after one asteroid Sun-terminator orbit. Full-state noisy measurements

are assumed such that

H = I, D = σ2
mI (5.49)

in Eq. (5.2). State estimates are generated from a Kalman filter as in Eqs. (5.4) through (5.6). Because the

noisy measurement problem with control-dependent noise cannot be solved analytically, Theorem 4 will be

used to generate upper and lower bounds on the optimal cost, J∗ for J given in Eq. (4.2).

The following simulations will show how the bounds V ′∗0 and V ′′∗0 change as a number of parameters

are varied from a set of baseline parameters, which are given in Table 5.1. All measurements and maneuvers
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Algorithm 5: Lower Bound
Data: Matrices A(t), B0(t), . . . B`(t), R, G(t),H(t), Σ⊕(t0), measurement times t1, . . . , tN ,

impulse times tk,1, . . . , tk,pk , for all k = 0, . . . , N , and final time tf =: tN+1.
Result: Scalar ϕ′0, matrices W ′0, C ′0, F ′0, K ′k,j and L′k,j for all k = 0, . . . , N and j = 1, . . . , pk.
initialize;

W ′N+1 := I; F ′N+1 := I; C ′N+1 := I; ϕ′N+1 := 0.

for k := N to 0 do
if k < N and

(
Φ>k+1W

′
k+2Φk+1 −W ′k+1

)
is negative definite then

Algorithm is invalid; terminate Algorithm.

end
for j := 1 to pk do

Q′k,j := R+
∑̀
i=1

Bi(tk,j)
>Φ>k,jW

′
k+1Φk,jBi(tk,j);

end

M ′k :=

pk∑
j=1

Φk,jB0(tk,j)Q
′−1
k,j B0(tk,j)

>Φ>k,j ;

W ′k := Φ>k [W ′−1
k+1 +M ′k]

−1Φk;

C ′k := Φ>k [I +W ′k+1M
′
k]
−1C ′k+1;

F ′k := F ′k+1 − C ′>k+1M
′
k[I +W ′k+1M

′
k]
−1C ′k+1;

Γk :=

∫ tk+1

tk

ΦτG(τ)G(τ)>Φ>τ dτ ;

ϕ′k := ϕ′k+1 + tr
(
W ′k+1Γk

)
;

and

K ′k,j := −Q′−1
k,j B0(tk,j)

>Φ>k,j [W
′−1
k+1 +M ′k]

−1Φk;

L′k,j := Q′−1
k,j B0(tk,j)

>Φ>k,j [I +W ′k+1M
′
k]
−1C ′k+1;

end

ϕ′0 = ϕ′0 + tr
(

Φ>0 W
′
1Φ0Σ⊕(t0)

)
;

β0 := Σ⊕(t0);

for k := 1 to N do

βk :=

[(
Φk−1βk−1Φ>k−1 + Γk−1

)−1
+H(tk)

]−1

;

ϕ′0 = ϕ′0 + tr [( Φ>kW
′
k+1Φk −W ′k )βk] ;

end
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Algorithm 6: Upper Bound

Data: Matrices A(t), B0(t), . . . B`(t), R, G(t),H(t), Σ⊕(t0), measurement times t1, . . . , tN ,
impulse times tk,1, . . . , tk,pk , for all k = 0, . . . , N , and final time tf =: tN+1.

Result: Scalar ϕ′′0 , matrices W ′′0 , C ′′0 , F ′′0 , K ′′k,j and L′′k,j for all k = 0, . . . , N and j = 1, . . . , pk.
initialize;

W ′′N+1 := I; F ′′N+1 := I; C ′′N+1 := I; ϕ′′N+1 := 0.

for k := N to 0 do

Γk :=

∫ tk+1

tk

ΦτG(τ)G(τ)>Φ>τ dτ ;

if k = N then

Ωk := W ′′k+1;

ϕ′′k := ϕ′′k+1 + tr
(
W ′′k+1Γk

)
else

If
(
Φ>k+1W

′′
k+2Φk+1 −W ′′k+1

)
is negative definite, Algorithm is invalid; terminate

Algorithm.

Λk :=
[
I +H(tk+1)

(
ΦkH(tk)

−1Φ>k + Γk

)]−1
;

Ωk := W ′′k+1 + Λk

(
Φ>k+1W

′′
k+2Φk+1 −W ′′k+1

)
Λ>k ;

ϕ′′k := ϕ′′k+1 + tr
(
W ′′k+1Γk

)
+ tr

[ (
Φ>k+1W

′′
k+2Φk+1 −W ′′k+1

)(
ΦkH(tk)

−1Φ>k + Γk

)
Λk

]
;

end
for j := 1 to pk do

Q′′k,j := R+
∑̀
i=1

Bi(tk,j)
>Φ>k,jΩkΦk,jBi(tk,j);

end

M ′′k :=

pk∑
j=1

Φk,jB0(tk,j)Q
′′−1
k,j B0(tk,j)

>Φ>k,j ;

W ′′k := Φ>k [W ′′−1
k+1 +M ′′k ]−1Φk;

C ′′k := Φ>k [I +W ′′k+1M
′′
k ]−1C ′′k+1;

F ′′k := F ′′k+1 − C ′′>k+1M
′′
k [I +W ′′k+1M

′′
k ]−1C ′′k+1;

and

K ′′k,j := −Q′′−1
k,j B0(tk,j)

>Φ>k,j [W
′′−1
k+1 +M ′′k ]−1Φk;

L′′k,j := Q′′−1
k,j B0(tk,j)

>Φ>k,j [I +W ′′k+1M
′′
k ]−1C ′′k+1;

end

ϕ′′0 = ϕ′′0 + tr
(

Φ>0 W
′′
1 Φ0Σ⊕(t0)

)
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are evenly spaced in time. Figures 5.1 through 5.5 show how the bounds vary with the increase of along-

axis control noise, measurement noise, initial state uncertainty, number of measurements, and number of

controls, respectively. The problem dynamics and baseline parameters dictate how the bounds evolve, and

the values in these plots are specific to the example given here. However, the trends provide insight for other

scenarios.

Figure 5.1 addresses the control noise case. Note that the lower bound was derived by assuming

that the Kalman filter has no knowledge of the control noise and is overly confident in the state estimate.

Therefore, the lower bound will be tight when the control noise is small and becomes less accurate as the

control noise is increased. Additionally, from Remark 2, the upper bound resembles an approximation of

the cost function when the control noise is small. Thus, the upper bound is also most accurate for small

control noise. As expected, Figure 5.1 shows that the bounds diverge as the control noise is increased.

Despite this divergence, the bound are relatively close for realistic levels of control noise, e.g., for a

control noise factor of 0.05 (5% magnitude uncertainty), the bounds differ by roughly 6%. Although the true

value of the optimal cost is unknown, the optimal cost has been approximated with an accuracy of 6%. The

bounds also provide a metric for evaluating candidate controls — if a control produces a cost that lies within

the bounds, it is close to optimal. Moreover, the controls associated with the bounds provide an initial guess

for the optimal control.

Figures 5.2, 5.3, and 5.4 also show that the bounds diverge as the measurement noise, initial state

uncertainty, and number of measurements are increased. The measurement noise standard deviation in

Table 5.1: Baseline Parameters with Noisy Measurements

Symbol Description Value Units
N Number of measurements 3 -
pk Number of controls per segment 10 -
σadd Std. dev. of additive noise 10−3µA/r

′2
0 m/s2

σSRP Std. dev of aSRP 10−2aSRP mm/s2

ε‖ Along-axis ∆u uncertainty factor 5% -
ε⊥ Off-axis ∆u uncertainty factor 0.5% -
σm Std. dev. of nondimensionalized measurement noise 10−3 -

Σ⊕(t0) Initial state error covariance s× diag (100, 100, 100, 1, 1, 1) m2, (mm/s)2

s Initial covariance scaling parameter 1 -
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Figure 5.1: Divergence of upper and lower cost function bounds as the level of along-axis control noise is increased.

Figure 5.2 is nondimensionalized. In this case, the baseline control noise corresponds to a standard deviation

of 1 m in position and 0.07 mm/s in velocity. The bounds quickly diverge as the measurement noise is

increased. Thus, the measurement noise is likely the deciding factor that determines whether the bounded

cost function method is useful.

Finally, Figure 5.5 shows how the bounds vary as the number of controls per segment is increased.

Both upper and lower bounds converge to a positive limiting value as the number of controls increases (as

was also seen in Section 4.4 for the perfect measurement case). The percent difference between the bounds

also appears to converge to a positive value.

5.5 Discussion and Conclusions

The problem of optimal control with noisy measurements and control-dependent noise is difficult to

solve analytically, and a bounded cost method has been introduced in this chapter to analytically bound the

optimal cost. The upper and lower bounds are chosen to be quadratic in the controls so that they can be

optimized using first-order methods. The bounds provide a metric for evaluating candidate controls — if

a set of controls produce a solution that lies within the bounds, then the control is close to optimal. The
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solution to each bound also provides a set of controls that can serve as an initial guess for the true optimal.

A conservative approach would be to apply the control associated with the upper bound, because the true

cost is guaranteed to be less than or equal to the upper bound for a particular set of controls. The level

of measurement noise is likely the driving factor that determines whether the bounds are tight enough to

provide useful information.
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Figure 5.2: Divergence of upper and lower cost function bounds as the level of measurement noise is increased.
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Figure 5.3: Divergence of upper and lower cost function bounds as the initial state uncertainty is increased.
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Figure 5.4: Divergence of upper and lower cost function bounds as the number of measurements are increased.
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Figure 5.5: Variation of upper and lower cost function bounds as the number of maneuvers per segment is increased.



Chapter 6

Tensor Eigenpair Measure of Nonlinearity

Chapter 6 Nomenclature

A = linear dynamics matrix

A(m) = mth-order local dynamics tensor

f = system dynamics

Lk = Lagrangian

l = linear model

m = tensor order

n = dimension of state/model

nq, nw = dimensions of q, w

q,w = two parameterizations of a system state

p = TSE order

ST ,m = S-TEMoN

TT ,m = TEMoN

t = time

T (m) = generic mth-order tensor

v = real-valued deviation vector

v̂∗k = direction of maximum kth-order nonlinearity

x = dynamical system state
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z = alternative parameterization of v

ℵT ,m = mth-order nonlinearity measure

α = magnitude of v

γ = Lagrange multiplier

η = nonlinear model

λ = tensor Z-eigenvalue

τk = kth-order term in TEMoN

Φ = state transition matrix

Φ(m) = mth-order state transition tensor

φ = solution flow

Ω (m) = mth-order transformation-propagation-transformation tensor

6.1 Introduction

A correlation between uncertainty and nonlinearity was observed in Chapter 2. Nonlinearity measures

may be used to further investigate that relationship. This chapter proposes a novel method to measure

the nonlinearity of static and dynamic systems. Nonlinearity is the crux of analytical dynamics, and local

linearization (based on the TSE) is a common practice used to facilitate analytical solutions. Some nonlinear

models are “less nonlinear” than others and are more amenable to these linear approximations. In turn, linear

control, navigation, and uncertainty propagation methods (e.g. an LQR or a Kalman filter) may be applicable

to weakly nonlinear models. For a strongly nonlinear system, however, the linear approximation may only

be valid in a very limited region, rendering linear methods insufficient. As a result, numerous measures of

nonlinearity (MoN) have been proposed to quantify relative degrees of nonlinearity, and their applications

vary greatly.

For example, MoN can be used to compare the nonlinearity of different state parameterizations, eval-

uate the relative nonlinearity of different trajectories, and study the evolution of nonlinearity along a single

trajectory. MoN have been used to explore the influence of coordinate frame selection on the accuracy of
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uncertainty propagation [50] and to govern the splitting of Gaussian mixture models [51–53]. In control

theory, MoN have been utilized to trigger sensitivity updates in model predictive control [54] and identify

regions of strong nonlinearity that may necessitate frequent gain scheduling [55]. In estimation, MoN have

been applied to predict performance degradation due to nonlinearities in different measurement models [56].

They have also been used extensively to justify the selection of linear versus nonlinear filters [57–61].

In the field of astrodynamics, nonlinearity is often accepted as an unfortunate and unavoidable aspect

of space mission design. However, an understanding of nonlinearity and its effects during mission planning

can enhance spacecraft guidance, navigation, and control performance. A detailed analysis of nonlinearity

can enable mission designers to avoid strongly nonlinear regions, configure maneuver and navigation sched-

ules to better leverage linear techniques, and determine when nonlinear methods are truly necessary. In this

way, MoN can be a useful tool in the mission design process.

This chapter proposes a MoN that is based on tensor eigenpairs — the tensor eigenpair measure

of nonlinearity (TEMoN). Unlike many heuristic MoN in the literature, the TEMoN is semianalytical and

its computation does not rely on empirical sampling or numerical optimization. This method will utilize

tensor eigenpairs to locate directions of strong nonlinearity. The relevant tensors will be derived from

the higher-order terms in a TSE, such as the local dynamics tensors (LDTs) and state transition tensors

(STTs). LDTs and STTs constitute the higher-order terms in a TSE of a system’s dynamics and solution

flow, respectively [62]. LDTs and STTs are natural mechanisms for studying nonlinearity; for a linear

model, these higher-order terms are zero. Therefore, the model nonlinearity is dictated by higher-order

tensors. The TEMoN will also be applied to parameter transformations.

This chapter begins with an extensive background section. Existing MoN are reviewed in Section

6.2.1. Tensor operations and eigenpairs are described in Section 6.2.2. Relevant TSE, including LDTs and

STTs, are introduced in Section 6.2.3. The TEMoN is detailed in Sections 6.3 and 6.4. Finally, the TEMoN

is applied to LDTs, STTs, and nonlinear parameter transformations in Section 6.5 through 6.7.
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6.2 Background

6.2.1 Measures of Nonlinearity

To streamline this discussion, MoN will be grouped into two categories: deviation-based and curvature-

based. Deviation MoN are based on measuring deviations between nonlinear functions and linear approxi-

mations and they include the earliest examples of MoN in the literature. Alternatively, curvature MoN are

based on differential geometry. Nonlinearity measures also exist for time series data as a part of system

identification [63], but time series methods are not considered here. Within these two categories, MoN may

be local or global. Local MoN measure nonlinearity about a single point (often the linearization point in a

TSE), whereas global MoN measure nonlinearity over the entire solution locus. MoN can be further dis-

tinguished by the models that they address: static and/or dynamic, open and/or closed-loop, deterministic

and/or stochastic, and derivative and/or derivative-free.

6.2.1.1 Deviation-Based MoN

The first local MoN was proposed by Beale in 1960 to determine confidence regions for least-squares

estimates [64, 65]. Beale’s MoN measures the deviations between a nonlinear function and nearby approx-

imations of the nonlinear function that are based on the TSE. In practice, the MoN may be computed via

empirical sampling. Beale also proposes an intrinsic MoN that corresponds to the state parameterization

which minimizes the MoN, as well as a theoretical MoN that corresponds to an infinite number of sampling

points.

Desoer proposed a global MoN to study the linearizing effect of feedback control. The Desoer MoN

measures the deviation between a nonlinear function (η) and its best linear approximation (l), over a subset

of input values (u), as follows [66]:

inf
l

sup
u
|η(u)− l(u)|. (6.1)

The minimax optimization in Eq. (6.1) varies in difficulty based on the nonlinear system in question, and

the result is influenced by the allowable subset of inputs, u ∈ U .

Helbig et al proposed a modified version of Desoer’s MoN that also accounts for the initial conditions
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of a dynamical system:

inf
l

sup
u,

xN (t0)

inf
xL(t0)

|η(u,xN (t0), t)− l(u,xL(t0), t)|
|η(u,xN (t0), t)|

, (6.2)

where t ≥ t0 is some future time and xN (t0) and xL(t0) are the initial conditions of nonlinear and lin-

ear dynamical systems, respectively [67]. Like the Desoer MoN, the Helbig MoN is disadvantaged by its

difficult computation; numerical optimization methods are typically required.

Liu and Li proposed a global MoN for nonlinear estimation that accommodates noise:

rmse :=
√

min
l,ψ(ω,ν)

E [‖l(x,ω)− η(x, ν)‖2], (6.3)

where η is a nonlinear function (measurement) of the state x, ν is the measurement noise with a known

cumulative distribution function (CDF), l is an affine function of x, ω is zero-mean additive noise, and

ψ(ω,ν) is the joint CDF of w and ν [68]. In other words, this measure is the minimum root mean square

error (rmse) when approximating the nonlinear function η with a linear function L. In general, numerical

minimization of the rmse in Eq. (6.3) is difficult; however, the problem can be converted to a simpler

parameter optimization with some approximation.

Junkins and Singla proposed nonlinearity indices (NLI) that measure the distance between two linear

systems: (1) a nonlinear system linearized about its mean state and (2) the same nonlinear system linearized

about worst-case state deviations [50]. The NLI may be applied to static (algebraic) or dynamic systems. In

the static case, the NLI is computed as the supremum difference in the linearization matrix, A(x), due to

worst-case deviations in x:

NLIs := sup
i=1,...,N

‖A(xi)−A(x̄)‖
‖A(x̄)‖

, A(xi) =
∂η(x)

∂x

∣∣∣∣
xi

, (6.4)

where η is a nonlinear static system, x̄ is the mean state, xi are worst-case deviated states, N is the total

number of sampled deviated states, andA is the Jacobian matrix of η with respect to x. Note thatAmay also

be the instantaneous linearized dynamics matrix of a dynamical system. For example, given the dynamical

system

ẋ(t) = f(x, t), (6.5)
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the linearized dynamics matrix at time t may be computed

A(xi(t), t) =
∂f(x(t), t)

∂x(t)

∣∣∣∣
xi(t)

, (6.6)

and Eq. (6.4) is applied directly. For dynamical systems over a period of time, the dynamic NLI measures

the supremum difference in the state transition matrix (STM) due to worst-case deviations in the initial state:

NLId := sup
i=1,...,N

‖Φi(t, t0)− Φ∗(t, t0)‖
‖Φ∗(t, t0)‖

, (6.7)

where Φ∗ is the STM computed from the mean initial state and Φi are computed from deviated initial states.

To compute Eqs. (6.4) and (6.7), deviations from the mean are uniformly sampled from the n-dimensional

hypersurface of worst-case state deviations. To facilitate ease of uniform sampling, the dynamics are scaled

such that the worst-case surface forms a unit hypersphere. State deviations may also be sampled randomly

from a probability distribution, but uniform sampling is recommended in [50] to reduce the necessary num-

ber of sampling points. The worst-case hypersurface and the number of sampling points will influence

the result, and these selections must be justified. Repeating the process for different worst-case surfaces

and/or sampling schemes can be time-consuming, particularly in the case of Eq. (6.7) where STMs must be

numerically integrated.

Park and Scheeres defined a local nonlinearity index (LNLI) to incorporate higher-order terms of

the TSE [62]. Like the NLI, the LNLI is also based on empirical sampling. Other authors have proposed

the gap metric as a measure of closed-loop nonlinearity [69–71]. The gap metric is a topological measure

that quantifies the distance between two linear systems (or two linearizations of a nonlinear system). The

gap metric has many advantageous properties; however, the gap between two linear systems is a debat-

able measure of nonlinearity. Hahn and Edgar propose a local, Gramian-based MoN in which a system’s

controllability and observability Gramians at a nominal point are compared to Gramians computed from em-

pirical sampling [72]. The Gramian method suggests that nonlinearity is only relevant if it affects a system’s

controllability and observability. Lyapunov exponents may also be used as a MoN [50].
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6.2.1.2 Curvature MoN

Bates and Watts proposed relative curvature measures of nonlinearity (CMoN), based on differential

geometry [73]. CMoN measure the curvature of a nonlinear function with respect to its tangent plane

approximation (linearization). Consider a point in parameter space, θ0, which maps to a point on the solution

locus, η(θ0). An arbitrary straight line through θ0 in the direction v can be denoted

θ(b) = θ0 + bv, (6.8)

where b is the independent variable. This line in parameter space maps to a curve on the solution locus,

denoted ηv(b). The tangent to this curve at b = 0 is the first derivative of ηv, i.e. η̇v = dηv/db|b=0. The

second derivative, η̈v, can also be computed in a similar manner. Note that the first and second derivatives

can be related to the Jacobian and Hessian terms in a TSE of η. A general CMoN can be defined as

CMoN := max
v

‖η̈v‖
‖η̇v‖2

. (6.9)

The vector η̈v can be decomposed into the components η̈Nv and η̈Tv , which are normal and parallel to the

tangent hyperplane, respectively. These components form the basis of intrinsic (CMoNN ) and parameter-

dependent (CMoNT ) curvature measures.

CMoNN := max
v

‖η̈Nv ‖
‖η̇v‖2

(6.10)

CMoNT := max
v

‖η̈Tv ‖
‖η̇v‖2

(6.11)

The vector η̈v is decomposed via projection onto the tangent hyperplane. Note that if θ and η are of the same

dimension, the projection matrix is an identity matrix, i.e., the vector already lies in the tangent hyperplane

and there is no intrinsic curvature. The vector v that maximizes the CMoN can be determined through

numerical optimization or sampling. The CMoN does not consider derivatives of higher order, which also

contribute to nonlinearity.
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6.2.1.3 Tensor Eigenpair Measure of Nonlinearity

The aforementioned MoN all require some level of empirical sampling or numerical optimization

for their computation and many of the methods are heuristic. The semianalytical CMoN is equivalent to

normalizing the Hessian term in a TSE (the local curvature) by the squared norm of the linear term (the

tangent vector). The TEMoN proposed in this chapter will extend this concept to an arbitrary number of

higher-order TSE terms. Consider a general nonlinear function η(V ). Let v = V − V ∗, where V ∗ is the

nominal value of the parameters V . The TSE of η with respect to V ∗ can be written as

δη =

∞∑
k=1

1

k!

∂kη

∂V k

∣∣∣∣
V ∗
vk (6.12)

using the notation described further in Section 6.2.2 for tensor-vector multiplication. Thus, δη is the sum-

mation of one linear term and a series of multilinear (higher-order) terms. The TEMoN will quantify the

influence of multilinear terms on the squared norm of δη:

δη>δη = v>
∂η

∂V

> ∂η

∂V
v +N (v3,v4, . . . ,v∞). (6.13)

The term N is comprises the model nonlinearity, i.e., it is dependent on the multilinear terms in δη. If η

is linear, then N = 0. Therefore, the tensors in N can be used to quantify nonlinearity with respect to the

input v. The TEMoN will use tensor eigenpairs to evaluate nonlinearity and identify directions of strong

nonlinearity.

6.2.2 Tensor Operations and Eigenpairs

Tensors are the generalization of scalars, vectors, and matrices to mth-order multiway arrays. The

tensor order (m) is the number of indices needed to define the tensor, i.e., {i1, i2, . . . , im}. The dimension

nik defines the range of index ik. The following convention will be used throughout this chapter: n1-

dimensional vectors are first-order tensors, n1 × n2 matrices are second-order tensors, n1 × n2 × n3 arrays

are third-order tensors, and so on.
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6.2.2.1 Multilinear Forms

The superscript (·) will be used to specify the tensor order. First, consider an mth-order tensor T (m)

over the real field with dimensions n = n1 = n2 = · · · = nm. The tensor T (m) consists of nm real entries

indexed by

Ti1i2...im , for 1 ≤ i1, i2, . . . , im ≤ n. (6.14)

A multilinear form defined by the tensor T (m) can be written as

T (m)vm = Ti1i2...imvi1vi2 . . . vim (6.15)

for the vector v ∈ Rn. The notations on the left- and right-hand sides of Eq. (6.15) will be used interchange-

ably. This chapter uses a summation convention (similar to Einstein summation) in which all indices i that

appear exclusively on the right-hand side of an equation indicate a summation over i ∈ {1, . . . , ni}. Thus,

Eq. (6.15) is equivalent to

T (m)vm =
n∑

i1,...,im=1

Ti1i2...imvi1vi2 . . . vim . (6.16)

When indices appear on both sides of an equation, the summation is only performed over indices that are

unique to the right-hand side, e.g., for the generic second-order tensors B, C, and D, the expression

Bi1i2 = Ci1kDki2 (6.17)

is equivalent to

Bi1i2 =

n∑
k=1

Ci1kDki2 . (6.18)

Equation (6.15) represents a scalar-valued mth-order homogeneous polynomial of the variables v1

through vn. The elements of T (m) dictate the coefficients of the homogeneous polynomial. Equation (6.15)

can also be thought of as multiplying the vector v by all “modes” of the tensor to produce a scalar output.

This is analogous to pre- and post-multiplying an n×n matrix T (2) by the vector v to produce a scalar. The

result is a second-order homogeneous polynomial of the variables v1 through vn:

v>T (2)v = Ti1i2vi1vi2 . (6.19)
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A multilinear form may also exclude one or more tensor modes. If the first mode is excluded, then

T (m)vm−1 is a column n-vector whose jth entry is defined by

(T (m)vm−1)j = Tji2...imvi2 . . . vim . (6.20)

Each element of the vector T (m)vm−1 is an (m − 1)th-order homogeneous polynomial of the variables v1

through vn. In the matrix case, Eq. (6.20) is equivalent to multiplying a matrix on the right-hand side by a

vector, producing a column vector output:

T (2)v =


(T (2)v)1

...

(T (2)v)n

 =


T1i2vi2

...

Tni2vi2

 . (6.21)

Regarding tensors that have indices of different dimension, only one case is relevant in this chapter: U (m)

for n = n2 = n3 = · · · = nm and n1 6= n. Thus, U (m) is indexed by

Ui1i2...,im , for


1 ≤ i1 ≤ n1

1 ≤ i2, i3, . . . , im ≤ n
. (6.22)

It follows that

(U (m)vm−1)j = Uji2...imvi2 . . . vim . (6.23)

6.2.2.2 Tensor Supersymmetry

Tensors are considered supersymmetric if they are invariant under permutations of their indices. Con-

sider a generic non-symmetric tensor T (m) of dimensions n1 = n2 = · · · = nm. A supersymmetric tensor

S(m) may be generated such that

S(m)vm = T (m)vm. (6.24)

For example, consider a multilinear form based on the second-order, two-dimensional tensor T (2):

T (2)v2 = T11v
2
1 + (T12 + T21)v1v2 + T22v

2
2. (6.25)
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The tensor S(2) that satisfies S(2)v2 = T (2)v2 is given by

S11 = T11, (6.26)

S12 = (T12 + T21)/2, (6.27)

S21 = (T12 + T21)/2, (6.28)

S22 = T22. (6.29)

(6.30)

This concept of “symmetrization” extends to tensors of higher order and dimension. This chapter uses the

“symmetrize” function in the Tensor Toolbox to generate supersymmetric tensors [74]. The gradient of a

supersymmetric multilinear form is easily computed as follows [75]:

∇v
(
S(k)vk

)
= kS(k)vk−1. (6.31)

6.2.2.3 Tensor Eigenpairs

Tensor eigenpairs were originally introduced by Lim and Qi [76, 77]. Just as matrix eigenpairs are

only defined for square matrices, tensor eigenpairs are only defined for tensors in which all indices are of

equal dimension, i.e., the tensor in Eq. (6.14). The tensor eigenpair problem is inherently more complex

than the matrix problem, leading to numerous tensor eigenpair definitions. In the matrix scenario, right-hand

eigenvectors are standard and matrix eigenpairs are often defined by the equation

Mvr = λrvr, (6.32)

where M is a matrix, vr is a right-hand eigenvector of M , and λr is the corresponding eigenvalue. Equa-

tion (6.32) describes a right-hand eigenpair, as vr appears on the right-hand side of M . Although less

common in applied mathematics, left-hand eigenpairs are also valid:

vlM = λlvl. (6.33)

By extension, an mth-order tensor has m eigenpair modes. Equation (6.32) describes the mode-1 eigenpairs

of a second-order tensor, whereas Eq. (6.33) describes mode-2 eigenpairs.
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In Eqs. (6.32) and (6.33), the eigenvector appears once in each term and can be scaled arbitrarily. In

contrast, some tensor eigenpair definitions do not allow arbitrary scaling of the eigenvectors. For example,

the following equation is a common mode-1 tensor eigenpair definition in which (λ,v) is an eigenpair of

the mth-order tensor T (m) [77]:

T (m)vm−1 = λv, vTv = 1. (6.34)

If λ ∈ C and v ∈ Cn, the pair is referred to as an E-eigenpair [77]. Otherwise, if λ ∈ R and v ∈ Rn, the pair

is a Z-eigenpair [78]. Equation (6.34) may appear similar to Eq. (6.32). However, form > 2, the eigenvector

cannot be scaled arbitrarily and must be normalized. In addition to E- and Z-eigenpairs, numerous eigenpair

definitions exist, including many in which the eigenvector may be scaled arbitrarily. Generalized eigenpairs

have also been proposed to consolidate existing eigenpair definitions in a unified framework [78,79]. In this

chapter, the Z-eigenpair is used to compute the TEMoN. Therefore, other eigenpair definitions are omitted

here.

Computing tensor eigenpairs involves solving a large system of polynomials. The results in this

chapter will use the dynamical systems (DS) method in [80, 81], which can locate Z-eigenpairs of super-

symmetric and non-symmetric tensors. In [80], the DS method is shown to be faster than other, less flexible

eigenpair methods including the shifted symmetric higher-order power method [74, 82] and semidefinite

programming [83]. The DS method is based on an observation relating tensor and matrix eigenvectors: a

tensor Z-eigenvector must also be an eigenvector of the “collapsed” tensor. Collapsing a tensor refers to a

tensor-vector multiplication that excludes the first and second tensor modes to produce a matrix output. A

mapping function is then formulated to locate an eigenvector of the collapsed tensor. The mapping func-

tion is incorporated in a dynamical system that must converge on a tensor eigenvector, and eigenvectors are

computed through numerical integration.

In this chapter, the DS method is implemented with a fourth-order Runge-Kutta (RK4) using the

default tolerance in [81]. Mapping functions are selected to target eigenvectors which correspond to the

largest algebraic eigenvalue, the largest magnitude eigenvalue, the second-largest algebraic eigenvalue, the

second-largest magnitude eigenvalue, the smallest algebraic eigenvalue, and the second-smallest algebraic
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eigenvalue. Other mapping functions are possible, but are not utilized here. The algorithm is repeated for

multiple random initial guesses to converge on different eigenvectors. The number of initial guesses and the

maximum number of RK4 iterations is varied based on application and tensor order.

Some properties of Z-eigenpairs can be used to accelerate the eigenpair computation. For an even-

order tensor, if (λ,v) is an eigenpair, then (λ,−v) is also an eigenpair. Alternatively, for an odd-order

tensor, if (λ,v) is an eigenpair, then (−λ,−v) is also an eigenpair. Moreover, the number of real eigenpairs

is bounded by ((m − 1)n − 1)/(m − 2) [84] for m ≥ 3 (m = 2 corresponds to the matrix eigenpair

problem). Thus, a six-dimensional, third-order tensor may have up to 63 eigenpairs, a six-dimensional

fourth-order tensor may have up to 364 eigenpairs, and so on.

6.2.3 Taylor Series Expansions

This section describes some TSE of interest, including expansions of state dynamics, solution flows,

and parameter transformations. Consider the general nonlinear function η(V ) and allow v = V − V ∗,

where V ∗ are the nominal parameters. The TSE of η with respect to V ∗ was given previously in Eq. (6.12).

For simplicity of notation, each tensor can be replaced by T (m) such that

δη = T (2)v +
1

2!
T (3)v2 +

1

3!
T (4)v3 +

1

4!
T (5)v4 + . . . (6.35)

represents the TSE of η with respect to the nominal parameters V ∗. It is assumed that each tensor is

evaluated at the nominal. The multilinear terms, T (m)vm−1 for m > 2, comprise the nonlinear portion of

δη.

It is important to distinguish between the truncation order of a TSE and the order of the tensor associ-

ated with each TSE term. For example, the state transition matrix (STM) is a second-order (n×n) tensor by

convention. However, the STM is associated with the first-order derivative in the TSE. To avoid confusion,

the tensor order is denoted bym and the derivative order is denoted by p throughout this section; p = m−1.

All terms p ≥ 2 and m ≥ 3 are “higher-order” terms that contribute to the model nonlinearity.

The squared L2 norm of δη, i.e., ‖δη‖2 = δη>δη, can also be written as a summation of multilinear
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forms:

δη>δη = T̃ (2)v2 + T̃ (3)v3 + T̃ (4)v4 + T̃ (5)v5 + . . . (6.36)

The tensors T̃ (m) are functions of all T (m′) for m′ ≤ m. Their calculation is detailed in Appendix C for

orders m = {2, 3, 4, 5}. In Eq. (6.36), T̃ (2)v2 will be referred to as the linear contribution because it is

the only term that is non-zero when η is linear. The terms T̃ (m)vm for m > 2 constitute the nonlinear

contribution to δη>δη.

6.2.3.1 LDTs and STTs

Local dynamics tensors (LDTs) and state transition tensors (STTs) constitute the higher-order terms

in a TSE of a system’s dynamics and solution flow, respectively [62]. Consider the following state dynamics

ẋ(t) = f(x(t), t), (6.37)

which correspond to the solution flow

x(t) = φ(t;x(t0), t0), (6.38)

where x is an n-dimensional state vector and x(t0) is the initial state at time t0. A nominal trajectory will

be denoted x∗, and deviations from the nominal trajectory will be labeled δx such that:

δx = x− x∗ (6.39)

and

δẋ = ẋ− ẋ∗. (6.40)

A pth-order TSE of the dynamics evaluated at the nominal state results in:

δẋ =

p∑
k=1

1

k!

∂kẋ

∂xk

∣∣∣∣
x∗
δxk, (6.41)

=

p∑
k=1

1

k!
A(k+1)δxk, (6.42)
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whereA(k+1) is a (k+1)th-order tensor. Specifically,A(k+1) is an LDT. Each term in Eq. (6.42) corresponds

to a mode-1 multilinear form as in Eq. (6.20).

Similarly, a pth-order TSE of the solution flow evaluated at x∗(t0) results in

δx(t) =

p∑
k=1

1

k!

∂kx(t)

∂x(t0)k

∣∣∣∣
x∗(t0)

δx(t0)k, (6.43)

=

p∑
k=1

1

k!
Φ(k+1)δx(t0)k, (6.44)

where Φ(k+1) is the (k + 1)th-order STT. The state and time dependencies of A and Φ are omitted in the

notation for simplicity.

The multilinear forms in Eqs. (6.42) and (6.44) can be expressed in the summation convention of

Eq. (6.20) as follows:

δẋj =

p∑
k=1

1

k!
Aji1...ikδxi1 . . . δxik , (6.45)

Aji1...ik =
∂kfj

∂xi1 . . . ∂xik

∣∣∣∣∣
x=x∗

, (6.46)

δxj(t) =

p∑
k=1

1

k!
Φji1...ikδxi1(t0) . . . δxik(t0), (6.47)

Φji1...ik =
∂kxj(t)

∂xi1(t0) . . . ∂xik(t0)

∣∣∣∣
x(t0)=x∗(t0)

, (6.48)

where xj is the jth element of the state x. The LDTs can be computed via analytic or automatic differentia-

tion. The STTs are typically computed by numerical integration. The STT dynamics are derived by equating

Eq. (6.42) with the time derivative of Eq. (6.44), as in [62]. The STT dynamics are given in Appendix C.

6.2.3.2 Parameter Transformations

TSE of algebraic functions may also be of interest, such nonlinear parameter transformations or non-

linear measurement models used during state estimation. From a mission design perspective, the nonlin-

earity of a parameter transformation is important when different parameters are used for different mission
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operations. For example, the dynamics of the Milankovitch orbital elements are known to be relatively lin-

ear, making the Milankovitch elements a clever parameterization for uncertainty propagation. Conversely,

state estimation and control algorithms are often parameterized in the Cartesian frame. A natural approach

may be to transform a Cartesian state to Milankovitch elements, perform uncertainty propagation using the

Milankovitch elements, and convert back to the Cartesian state at the end of the propagation. A similar

transformation-propagation-transformation (TPT) strategy is summarized as follows:

(1) Consider the parameter sets q ∈ Rnq and w ∈ Rnw , which share the nonlinear relationship q =

η(w) and the inverse relationship w = η−1(q).

(2) At time t0, transform w(t0) to q(t0).

(3) Propagate q from time t0 to time t.

(4) At time t, convert q(t) to w(t).

Although the dynamics of q may be relatively linear, the parameter transformations at steps 2 and

4 are nonlinear and the nonlinearity of ẇ has not entirely been avoided. Consider a nominal trajectory

described by eitherw∗ or q∗. Deviations from the nominal are denoted by either δw or δq. Beginning with

the parameter transformation in step 2, a TSE of q(t0) about the reference point w∗(t0) results in

δq(t0) =
∞∑
k=1

1

k!

∂kq

∂wk

∣∣∣∣
w∗(t0)

δw(t0)k, (6.49)

=
∞∑
k=1

1

k!
Q(k+1)δw(t0)k. (6.50)

The propagation of δq from t0 to t (step 3) is described by the STTs:

δq(t) =

∞∑
k=1

1

k!
Φ(k+1)δq(t0)k. (6.51)

Finally, the reverse parameter transformation in step 4 calls for a TSE of δw(t) about the reference point

q∗(t):

δw(t) =
∞∑
k=1

1

k!

∂kw

∂qk

∣∣∣∣
q∗(t)

δq(t)k, (6.52)

=
∞∑
k=1

1

k!
W(k+1)δq(t)k. (6.53)
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If nq = ns, then every index of Q(m) and S(m) are of equal dimension, as in Eq. (6.14). Otherwise, if

nq 6= ns, then Q(m) is of dimensions nq × ns × · · · × ns and S(m) is of dimensions ns × nq × · · · × nq,

as in Eq. (6.22).

Combining Eqs. (6.50), (6.51), and (6.53) results in

δw(t) =
∞∑
k=1

1

k!
W(k+1)

 ∞∑
j=1

1

j!
Φ(j+1)

( ∞∑
i=1

1

i!
Q(i+1)δw(t0)i

)jk . (6.54)

The above relationship between δw(t0) and δw(t) can be expressed more concisely as follows

δw(t) =
∞∑
k=1

1

k!
Ω (k+1)δw(t0)k. (6.55)

Effectively, the Ω tensors encompass the entire TPT process and are not equal to the STTs of w in general.

Moreover, the nonlinearity of the TPT process is not necessarily equal to the nonlinearity of directing propa-

gating the dynamics in terms of the parametersw. To analyze the nonlinearity of the entire TPT process, the

TEMoN may be applied directly to the set of Ω tensors. Only the Ω (2) and Ω (3) tensors will be considered

in this chapter, and their computation is detailed in Appendix C.

6.3 TEMoN Problem Setup

The TEMoN is proposed in this section. The TEMoN will utilize the higher-order terms of a TSE

to quantify nonlinearity. The influence of each term in the TSE is dependent on the input deviation con-

sidered, i.e., δx in Eq. (6.42), δx(t0) in Eq. (6.44), or δw(t0) in Eq. (6.55). The TEMoN has two primary

goals: determine input deviations that produce the strong nonlinearity and quantify the associated degree of

nonlinearity.

6.3.1 TEMoN Definition

Recall from Eq. (6.36) that δη>δη includes linear and nonlinear terms. The term T̃ (2)v2 is referred

to as the linear term because it is the only non-zero term when η is linear. Higher-order terms comprise the

nonlinear portion of δη>δη. Consider the following nonlinearity measure in which the influence of these
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nonlinear terms is maximized over a subset of input vectors v:

ℵT ,m := max
v∈V

∣∣∣∣∣ T̃ (3)v3 + T̃ (4)v4 + · · ·+ T̃ (m)vm

T̃ (2)v2

∣∣∣∣∣ for m > 2. (6.56)

The “T ,m” subscript specifies the type of TSE expansion and the truncation order of the nonlinear terms.

The subset V includes all real-valued vectors of magnitude α:

V =

{
v ∈ Rn

∣∣∣∣v>v = α2

}
. (6.57)

Normalizing higher-order terms by the linear term is important when quantifying nonlinearity. A higher-

order term will be insignificant if it is dominated by the linear term and vice versa. If the order m is

sufficiently large, then ℵT ,m approximates a ratio of the total model nonlinearity to the model linearity.

However, ℵT ,m presents a nontrivial nonlinear programming problem.

Alternatively, consider the TEMoN denoted by TT ,m:

TT ,m := max
v∈V

τ3 + max
v∈V

τ4 + · · ·+ max
v∈V

τm for m > 2, (6.58)

= τ∗3 + τ∗4 + · · ·+ τ∗m, (6.59)

where

τk :=

∣∣∣∣∣ T̃ (k)vk

T̃ (2)v2

∣∣∣∣∣. (6.60)

Unlike ℵ, the TEMoN considers each higher-order term individually and will produce a direction of strong

nonlinearity for each τk. By inspection of Eqs. (6.56) and (6.58), it is clear that

TT ,m ≥ ℵT ,m (6.61)

and the TEMoN is an upper bound on ℵ. The TEMoN can be computed semianalytically as seen in the next

section. In Sections 6.5 and 6.6, the TEMoN is compared to an approximation of ℵ by randomly sampling

N different input deviations:

ℵT ,m ≈ max
i=1,...,N

∣∣∣∣∣ T̃ (3)v3
i + T̃ (4)v4

i + · · ·+ T̃ (m)vmi

T̃ (2)v2
i

∣∣∣∣∣ for m > 2. (6.62)
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The TEMoN itself can also be approximated via random sampling in a similar manner. A “sampled TEMoN”

(S-TEMoN) will be used to validate the TEMoN. The S-TEMoN is denoted ST ,m:

ST ,m := max
i=1,...,N

s3 + max
i=1,...,N

s4 + · · ·+ max
i=1,...,N

sm for m > 2, (6.63)

= s∗3 + s∗4 + · · ·+ s∗m, (6.64)

sk =

∣∣∣∣∣ T̃ (m)vmi

T̃ (2)v2
i

∣∣∣∣∣. (6.65)

6.3.2 Relating α to State Uncertainty

For a deterministic input deviation, the deviation magnitude is α2 = v>v from Eq. (6.57). When the

input is nondeterministic, α can be related to parameter uncertainty by making the following assumption

α2 = E
[
v>v

]
. (6.66)

Furthermore, assuming that the input deviation is zero-mean and Gaussian, i.e., v = N (0,Σ),

α2 = tr
(
E
[
vv>

])
, (6.67)

= tr (Σ) , (6.68)

where tr(·) represents the matrix trace. Then α is computed as

α =
√

tr (Σ). (6.69)

When applying the TEMoN to the STTs such that v = δx(t0), this process is equivalent to assuming that

the initial state error is zero-mean and Gaussian. The Gaussian assumption is made at the initial epoch only,

and it is not necessary to assume that the uncertainty distribution remains Gaussian over time.
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6.4 TEMoN Result

6.4.1 TEMoN Derivation

Each τk term in the TEMoN can be optimized individually. The first step in the optimization of τk is

to define a constrained Lagrangian as follows

Lk =
T̃ (k)vk

T̃ (2)v2
− γ

(
v>v − α2

)
. (6.70)

The scalar γ is a Lagrange multiplier, and a constraint is placed on the magnitude of the deviation vector, v.

The absolute value operator is not included in the Lagrangian; instead, the maximum and minimum will both

be considered. The vector v∗ that maximizes or minimizes the Lagrangian will be a Karush-Kuhn-Tucker

point of the Lagrangian such that

∇Lk(v∗) = 0. (6.71)

Next, Eq. (6.70) will be simplified by making the substitution

v =
(
T (2)

)−1
z (6.72)

and optimizing the vector z rather than v. This substitution may also be thought of as performing a linear

transformation of parameters to facilitate ease of computation and promote numerical stability. Note that

a linear parameter transformation does not alter the inherent nonlinearity of the model [73]. Applying the

parameter transformation to T̃ (2)v2 (noting that T̃ (2) = T (2)>T (2) from Appendix C):

T̃ (2)v2 = v>T (2)>T (2)v, (6.73)

= z>
(
T (2)

)−>
T (2)>T (2)

(
T (2)

)−1
z, (6.74)

= z>z. (6.75)

Incorporating the parameter transformation in the Lagrangian results in

Lk =
T̃ (k)

((
T (2)

)−1
z
)k

z>z
− γ

(
z>Y z − α2

)
, (6.76)

where

Y =
(
T (2)

)−> (
T (2)

)−1
. (6.77)
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The numerator in Eq. (6.76) can be reformulated as a multilinear map of z:

Lk =
Ť (k)zk

z>z
− γ

(
z>Y z − α2

)
. (6.78)

The Ť (k) computation is detailed in Appendix C. Furthermore, replacing Ť (k)zk with the equivalent su-

persymmetric expression will simplify future computations; Š(k) is the supersymmetric tensor that satisfies

Š(k)zk = Ť (k)zk. (6.79)

In the next step, Ť (k) is replaced by Š(k), which does not change the value of the Lagrangian:

Lk =
Š(k)zk

z>z
− γ

(
z>Y z − α2

)
. (6.80)

Computing the gradient of Lk with respect to the Lagrange multiplier γ results in

z>Y z = α2. (6.81)

Using Eq. (6.31) to compute the gradient of Lk with respect to z,

∇zLk =

(
z>z

)
kŠ(k)zk−1 − 2Š(k)zkz

(z>z)
2 − 2γY z, (6.82)

= 0. (6.83)

It follows that

Y −1
[(
z>z

)
kŠ(k)zk−1 − 2Š(k)zkz

]
= 2γ

(
z>z

)2
z. (6.84)

Equation (6.84) is a column vector equation, and each term on the left-hand side is a (k + 1)th-order

homogeneous polynomial. Therefore, a mode-1 multilinear form can be constructed from a (k + 2)th-

order tensor that produces the column vector output on the left-hand side of Eq. (6.84). The corresponding

(k + 2)th-order tensor will be denoted by Γ (k+2) such that

Γ (k+2)zk+1 = 2γ
(
z>z

)2
z. (6.85)

The computation of Γ (k+2) is detailed in Appendix C. Finally, the magnitude of z is factored out so that the

following equation describes a Z-eigenpair relationship:

Γ (k+2)ẑk+1 = λẑ. (6.86)
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The eigenvalue, λ, is a function of ‖z‖:

λ = 2γ‖z‖4−k. (6.87)

However, λ is a property of the tensor Γ (k+2) and remains scale invariant; the Lagrange multiplier, γ, will

vary to accommodate changes in ‖z‖. Thus, the eigenvectors of Γ (k+2) produce Karush-Kuhn-Tucker points

of the Lagrangian. To determine the optimal eigenvector, each eigenvector of Γ (k+2) must be substituted

back into τk for comparison. From Eq. (6.81),

z =
αẑ∥∥∥(T (2)
)−1

ẑ
∥∥∥ . (6.88)

The eigenpair that maximizes τk will be denoted by (λ∗k, ẑ
∗
k).

6.4.2 TEMoN Algorithm

A pseudoalgorithm to compute the TEMoN is presented in Algorithm 7. Each τk in the TEMoN

is maximized individually. From the Karush-Kuhn-Tucker conditions, the vector that maximizes τk corre-

sponds to a Z-eigenvector of the tensor Γ (k+2), which is computed from the TSE and is a non-symmetric

tensor in general. The DS method in [80] may be used to compute Z-eigenpairs of Γ (k+2). The eigenvector

that maximizes τk is denoted by ẑ∗k such that

τ∗k =
Š(k)ẑ∗k∥∥∥(T (2)
)−1

ẑ∗
∥∥∥k−2

αk−2. (6.89)

Individual τ∗k are summed to compute the TEMoN:

TT ,m =

m∑
k=3

τ∗k . (6.90)

The input deviation vector that produces strong nonlinearity, v∗k, is computed from ẑ∗k as follows:

v∗k =
α
(
T (2)

)−1
ẑ∗k∥∥∥(T (2)

)−1
ẑ∗k

∥∥∥ . (6.91)

The magnitude of the deviation vector (α) can be scaled independent of the eigenpair computation. This

is an important feature that allows the user to test different deviation magnitudes without recomputing the

eigenpairs.
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Algorithm 7: Computing the TEMoN and identifying directions of strong nonlinearity.

Data: Tensors T (2), T (3), . . . , T (m) for m > 2, scalar α = ‖v‖.
Result: TEMoNm, directions of strong nonlinearity v∗3 through v∗m.
for k = 3 to m do

Compute T̃ (k) from T (2), T (3), . . . , T (k) (see Appendix C).
Compute Ť (k) from T (2) and T̃ (k) (see Appendix C).
Symmetrize Ť (k) to get Š(k) (see Section 6.2.2.2).
Compute Γ (k+2) from Š(k) (see Appendix C).
Compute all Z-eigenpairs of Γ (k+2) using the DS method (see Section 6.2.2.3).

Identify ẑ∗k as the eigenvector that maximizes
Š(k)ẑk∥∥∥(T (2)
)−1

ẑ
∥∥∥k−2

Compute direction of strong nonlinearity v̂∗k =

(
T (2)

)−1
ẑ∗k∥∥∥(T (2)

)−1
ẑ∗k

∥∥∥
Compute τ∗k =

Š(k)ẑ∗k∥∥∥(T (2)
)−1

ẑ∗
∥∥∥k−2

αk−2

end

Compute TT ,m =
m∑
k=3

τ∗k

Optional: Scale α and recompute τ∗k and TT ,m without repeating the eigenpair computation.
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6.5 Application to LDTs

In this section, the TEMoN is applied to LDTs which are evaluated at equilibrium points in the

CR3BP. The CR3BP dynamics are detailed in Appendix B. The CR3BP has five equilibrium points, also

known as Lagrange points, which are denoted by L1 through L5. In this example, the fifth-order TEMoN is

applied to the LDTs at each Lagrange point as follows

TA,5 = max
δx∈X

∣∣∣∣∣Ã(3)δx3

Ã(2)δx2

∣∣∣∣∣+ max
δx∈X

∣∣∣∣∣Ã(4)δx4

Ã(2)δx2

∣∣∣∣∣+ max
δx∈X

∣∣∣∣∣Ã(5)δx5

Ã(2)δx2

∣∣∣∣∣, (6.92)

where A(k) are the LDTs. From Eq. (6.61), the TEMoN is an upper bound on:

ℵA,5 ≈ max
i=1,...,N

∣∣∣∣∣Ã(3)δx3
i + Ã(4)δx4

i + Ã(5)δx5
i

Ã(2)δx2
i

∣∣∣∣∣. (6.93)

6.5.1 LDT TEMoN Validation

To confirm that Algorithm 7 is a valid computation of the TEMoN, each term in the TEMoN (τ∗k ) will

be compared to each term of the empirically-sampled S-TEMoN (s∗k) for equilibrium points in the CR3BP.

A deviation magnitude of α = 10−3 will be used in this example. Figure 6.1 includes a comparison of:

(1) τ∗3 through τ∗5 computed from Algorithm 7,

(2) s∗3 through s∗5 computed with N = 105 random samples of δx, and

(3) s∗3 through s∗5 computed with N = 105 random samples of ẑ, which is then converted to δx via

δx =
α
(
A(2)

)−1
ẑ∥∥∥(A(2)

)−1
ẑ
∥∥∥ . (6.94)

Figure 6.1 indicates that the eigenpair method in Algorithm 7 is a valid optimization of the TEMoN; τ∗k and

the s∗k are in close agreement when ẑ is sampled instead (option 3, Figure 6.1 right). However, when δx̂

is sampled directly (option 2, Figure 6.1 center), the S-TEMoN underestimates strong nonlinearity when

compared to the TEMoN. Thus, the parameter transformation from δx to z reduces the sensitivity of S-

TEMoN to the input deviation and is recommended to improve the accuracy of the S-TEMoN and ℵ.
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Figure 6.1: Comparing τ∗k (TEMoN terms) to s∗k (S-TEMoN terms) at Lagrange points L1 through L5 (‖δx‖ = 10−3).

Figure 6.2 shows a direct comparison of τ∗k and s∗k when s∗k is computed from randomly sampling ẑ.

For each equilibrium point and tensor order, τ∗k is greater than s∗k by up to 55%. Therefore, the TEMoN

identifies stronger nonlinearity and is superior to the empirically-sampled S-TEMoN.

Next, ℵA,5 is approximated with N = 105 random samples of ẑ to demonstrate that the TEMoN is

indeed an upper bound on ℵ. This comparison is shown in Figure 6.3 for α = 10−3. The TEMoN is roughly

2% to 20% greater than ℵ, and is a relatively tight upper bound.
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Figure 6.2: Comparing TEMoN terms (τ∗k ) to empirically-sampled S-TEMoN terms (s∗k); the TEMoN detects stronger
nonlinearity and is more accurate than the S-TEMoN in all cases.
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Figure 6.3: Comparing the TEMoN and ℵ for ‖δx‖ = 10−3 at each Lagrange point. The TEMoN is a relatively tight
upper bound on ℵ.

6.5.2 Comparison to NLI and CMoN

The following MoN are compared in Figure 6.4 for a state deviation of α = 10−3:

(1) the 5th-order TEMoN, TA,5,

(2) the static NLI from Eq. (6.4) computed from 105 random samples as in [50], and

(3) the CMoN from Eq. (6.9) computed from 105 random samples. as in [73].

In Figure 6.4, each MoN is normalized by the maximum value of that MoN across all equilibrium

points; thus, the maximum value of each normalized MoN is equal to one. The TEMoN and CMoN both

indicate that L3 is the most nonlinear equilibrium point, but the NLI indicates that L2 is most nonlinear.



130

1 2 3 4 5
10

-4

10
-2

10
0

Figure 6.4: Comparing MoN that are normalized such that the largest value of each MoN equals one; considering a
deviation of ‖δx‖ = 10−3 at each Lagrange point.

This example illustrates the significance of higher-order terms. The NLI is based solely on deviations in

the linear term of the TSE, whereas the CMoN and TEMoN explicitly include higher-order terms and are

more accurate. Discrepancies between the CMoN and the TEMoN can be attributed to two factors. First,

the TEMoN includes higher-order terms that are not included in the CMoN. Second, the denominator of the

CMoN is squared, whereas the denominator in the TEMoN is not.

6.5.3 Linear Region about Equilibrium Points

Finally, the deviation magnitude, α = ‖δx‖, will be varied to demonstrate how the TEMoN may be

used to predict the size of a linear region. The term “linear region” is used to describe the region about

each equilibrium point wherein a linear approximation of the dynamics is sufficient. Figure 6.5 (left) shows

τ∗3 through τ∗5 with a relatively large deviation magnitude of α = 10−1. Values of τ∗k that are greater than

one indicate that a higher-order term is dominating the linear term. In Figure 6.5 (left), it is clear that the

deviation α = 10−1 is beyond the linear region for all equilibrium points. Figure 6.5 (right) shows τ∗k with

a much smaller deviation magnitude of α = 10−5. In this case, all τ∗k are much less than one, indicating that

the linear term is dominant and the deviation is within the linear region.

By extension, this method can also be used to justify the truncation order of a TSE when higher-order

terms are included. All results indicate that L3 is the most nonlinear equilibrium point, whereas L1 is the

most linear. However, as the order of the TEMoN is increased, τk for L3, L4 and L5 decay faster than τk
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Figure 6.5: Computing the TEMoN for different deviation magnitudes; τ∗k > 1 indicates that a higher-order term is
dominating the linear term and the deviation is outside the linear region.

for L1 and L2. In the α = 10−3 example, the fifth-order terms for L1 through L5 have a similar order of

magnitude and it may be sufficient to truncate all expansions at fourth order (m = 4, p = 3) despite large

differences in nonlinearity. This example illustrates the utility of analyzing τ∗k individually.

6.5.4 LDT Eigenvector Computation Time

Table 6.1 includes statistics for the eigenpairs computed in this section, including the percent of initial

guesses that converged on an eigenvector, median number of RK4 iterations for convergence, and the median

computation time in seconds. For each tensor, the DS method was applied in Julia with a maximum of 100

iterations, 6 maps, and 10 random initial guesses (60 total initializations). The code used in this example

has not been optimized for speed, and these comparisons are only meant to demonstrate relative differences

in computation time as the tensor order is increased.

Table 6.1: Equilibrium Point Eigenpair Statistics

Order of Γ Tensor: 5th-order 6th-order 7th-order
Percent converged 25 32 21
Median # RK4 iterations 40 42 86
Median computation time
per eigenvector (seconds)

0.0342 0.220 2.68
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6.6 Application to STTs

In this section, the TEMoN is computed using the STTs of southern L2 NRHOs in the Earth-Moon

system. The NRHO dynamics are described by the CR3BP. NRHOs are known to experience rapid un-

certainty growth and filter divergence at perilune, which other authors have attributed to strong nonlineari-

ties [45, 46].

6.6.1 NRHO Sampling Scheme

The TEMoN is computed at multiple sample points along each orbit, utilizing the STTs computed

from the initial epoch (apolune) to each sample point. Sample points should be placed for good coverage

along each orbit. In this example, sample points are evenly-spaced with respect to the parameter s:

s(t) =
sradius(t)

sradius(tf )
+

sspeed(t)

sspeed(tf )
, (6.95)

where sradius and sspeed are the arc lengths of the orbit radius and speed over time. This metric is ad hoc,

and other metrics may also be appropriate (e.g., FTLE, tensor Frobenius norms, or acceleration magnitude,

to name a few). The sampling scheme is illustrated in Figure 6.6 for the 9:2 lunar synodic resonant NRHO.
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Figure 6.6: Sampling scheme along 9:2 NRHO based on the arc lengths of orbit radius and speed.
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6.6.2 NRHO Nonlinearity

At each sample point, the TEMoN is formulated as follows:

TΦ,5 = max
δx0∈X

∣∣∣∣∣ Φ̃(3)δx3
0

Φ̃(2)δx2
0

∣∣∣∣∣+ max
δx0∈X

∣∣∣∣∣ Φ̃(4)δx4
0

Φ̃(2)δx2
0

∣∣∣∣∣+ max
δx0∈X

∣∣∣∣∣ Φ̃(5)δx5
0

Φ̃(2)δx2
0

∣∣∣∣∣. (6.96)

TΦ,5 is an upper bound on

ℵΦ,5 ≈ max
i=1,...,N

∣∣∣∣∣ Φ̃(3)δx3
0,i + Φ̃(4)δx4

0,i + Φ̃(5)δx5
0,i

Φ̃(2)δx2
0,i

∣∣∣∣∣. (6.97)

Figure 6.7 shows TΦ,5, τ∗3 , τ∗4 , and τ∗5 for a family of NRHOs. The color gradient is interpolated

linearly between sample points. In this example, the initial condition is at apolune, and the initial velocity is

in the negative êy direction. The TEMoN detects a spike in nonlinearity at perilune, as expected. The color

gradient is discontinuous at apolune (the initial/final state) because nonlinearity tends to increase over time

with the growth of the STTs. This trend can be attributed to the compounding effect of nonlinearity in the

dynamics of higher-order STTs, which causes the higher-order STTs to grow at a faster rate than the STM.

The user can reinitialize the STTs and the TEMoN if necessary to maintain the sensitivity of the TEMoN to

small changes in nonlinearity. The evolution of nonlinearity over the course of one orbit period can inform

navigation and maneuver scheduling — if these events are sensitive to nonlinearity, they should be avoided

at perilune whenever possible. Conversely, this sensitivity during periods of strong nonlinearity may be

harnessed to enable large, inexpensive maneuvers.

6.6.3 STT TEMoN Validation

In Figure 6.8, the TEMoN (TΦ,5) is compared to the S-TEMoN (SΦ,5) and ℵΦ,5 for one orbit of the

9:2 NRHO with an initial condition at apolune. The S-TEMoN and ℵ are computed with N = 105 random

samples of ẑ which is then converted to δx0 via

δx0 =
α
(
Φ(2)

)−1
ẑ∥∥∥(Φ(2)

)−1
ẑ
∥∥∥ (6.98)

From Figure 6.8, the TEMoN is an upper bound on ℵΦ,5 , as expected. Large differences between TΦ,5 and

SΦ,5 suggest that the random sampling method used to compute the S-TEMoN and ℵ is unreliable, and the

TEMoN is a more robust measure of nonlinearity than these empirical measures.
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Figure 6.7: TEMoN and τ∗k computed using the STTs along a family of NRHOs (‖δx0‖ = 10−3).
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Figure 6.8: Comparing the TEMoN, S-TEMoN, and ℵ for the 9:2 NRHO. The TEMoN is an upper bound on ℵ. Large
discrepancies between TEMoN and S-TEMoN indicate that empirical sampling is insufficient.

6.6.4 Linear Region about the 9:2 NRHO

The TEMoN may also be used to predict the size of the linear region about a nominal trajectory.

If STTs are used during uncertainty propagation, guidance, or navigation, then the TEMoN can indicate

the appropriate STT truncation order. Figure 6.9 shows the TEMoN computed along the 9:2 NRHO with

different deviation magnitudes. A TEMoN greater than one indicates that higher-order terms are dominating

the linear term. In the strongly nonlinear region at perilune, deviation magnitudes greater that 10−6 appear

to be outside of the linear region. Conversely, the linear region is much larger in parts of the orbit that are

less nonlinear.
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Figure 6.9: Computing the TEMoN for different deviation magnitudes about the 9:2 NRHO. The legend indicates the
magnitude of δx(t0).

6.6.5 NRHO Eigenvector Computation Time

Table 6.2 includes statistics for the eigenpairs computed in this section. The DS method was applied

in Julia with 6 maps for each tensor, up to 15 initial guesses per map, and a maximum of 100 iterations per

initial guess. As in the previous section, the algorithm has not been optimized for speed, and the comparisons

in Table 6.2 are only meant to demonstrate relative differences in computation time.

Table 6.2: NRHO Eigenpair Statistics

Order of Γ Tensor: 5th-order 6th-order 7th-order
Percent converged 48 49 50
Median # RK4 iterations 46 46 46
Median computation time
per eigenvector (seconds)

0.0945 0.6125 3.70

6.6.6 NRHO LDTs

It was discussed in Section 6.6.2 that the STTs tend to grow at a faster rate than the STM, naturally

causing nonlinearity to grow over time. Therefore, the user may want to reinitialize the STTs and the
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TEMoN over long trajectories to preserve the sensitivity of the TEMoN to small changes in nonlinearity.

Alternatively, the TEMoN can also be applied to the LDTs throughout a trajectory. When applied to the

LDTs, the TEMoN serves as an instantaneous measure of nonlinearity in the dynamics with respect to the

current state only, i.e., the time dependence of the STTs is lost. Figure 6.10 shows the 3rd-order TEMoN

applied to the LDTs computed along the 9:2 NRHO. Unlike the STT TEMoN, the LDT TEMoN is only

dependent on the current state and time.
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Figure 6.10: TEMoN applied to the LDTs for the 9:2 NRHO; when applied to the LDTs, the TEMoN only detects
instantaneous nonlinearity in the dynamics.

6.7 Application to Parameter Transformations

In this section, the TEMoN is applied to the TPT process described in Section 6.2.3.2 for an example

in the two-body problem: a spacecraft orbiting a small asteroid. An initial Cartesian position and velocity

state will be converted to orbital elements for dynamics propagation and then converted back to a Cartesian

state at the end of a single orbit. In Section 6.2.3.2 the TPT process was captured by the tensors Ω (k). The

TEMoN will be applied to Ω (3) in this example and compared to (1) the TEMoN applied directly to the

STTs associated with a dynamics propagation in Cartesian coordinates and (2) the TEMoN applied directly
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to the STTs associated with a dynamics propagation in orbital elements. The Cartesian and orbital element

STTs will be denoted by Φ(k) and Ψ (k), respectively. The TEMoN for the TPT process, the Cartesian

propagation, and the orbital elements propagation are given by the following equations.

TΩ ,3 = max
δx0∈X

∣∣∣∣∣ Ω̃ (3)δx3
0

Ω̃ (2)δx2
0

∣∣∣∣∣, (6.99)

TΦ,3 = max
δx0∈X

∣∣∣∣∣ Φ̃(3)δx3
0

Φ̃(2)δx2
0

∣∣∣∣∣, (6.100)

TΨ ,3 = max
δx0∈X

∣∣∣∣∣Ψ̃ (3)δx3
0

Ψ̃ (2)δx2
0

∣∣∣∣∣. (6.101)

The set of orbital elements is denoted by ζ and includes the semimajor axis, eccentricity, inclination,

argument of periapsis, right ascension of the ascending node, and true anomaly: ζ> = [a, e, i, ω,Ω, θ]>.

Two orbit geometries are considered in this example with a nondimensional gravitational parameter of

µ = 1. Orbits A and B are shown in Figure 6.11 and their initial orbital elements are as follows: ζ>A =

[1, 10−2, 10−2, 10−2, 10−2, 10−2]> and ζ>B = [1, 0.5, π/2, π/4, π/3, π/6]>.

TEMoN results are given in Table 6.3, as well as the optimal eigenpairs for the examples that utilize

Cartesian coordinates. As expected, TΨ ,3 is much smaller than TΦ,3 because the dynamics of the orbital

elements are known to be significantly more linear than Cartesian coordinate dynamics. The results also

confirm that nonlinearity is not avoided by the TPT process. Rather, TΩ ,3 and TΦ,3 are very close in mag-

nitude and Ω (3) and Φ(3) have very similar eigenvectors despite being different tensors. Thus, the TPT

strategy and the Cartesian propagation have similar directions of strong nonlinearity.
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Table 6.3: Different TEMoN types applied to orbits A and B.

Orbit A Orbit B
TEMoN Type TEMoN λ∗, δx̂∗ TEMoN λ∗, δx̂∗

TΦ,3

Cartesian STTs
0.05369 39.76,


−0.03879
0.7024

7.028× 10−3

−0.7096
−0.03905

−3.195× 10−4

 2.222 −8.192× 105,


−0.2911
−0.2911
0.06884

9.549× 10−4

9.548× 10−4

−0.9087



TΩ,3

transformation,
With parameter

0.05406 34.05,


−0.03857
0.7025

7.028× 10−3

−0.7096
−0.03927

−3.216× 10−4

 2.201 −1.151× 106,


0.2911
0.2911

−0.06887
−9.657× 10−4

−9.657× 10−4

0.9087


TΨ,3

Orbital element STTs,
4.645× 10−4 [-] 1.016× 10−3 [-]

Figure 6.11: Orbits A and B and their initial conditions (IC).

6.8 Discussion

The examples in this chapter demonstrate that, not only is the TEMoN a semianalytical measure

of nonlinearity, the TEMoN computation can significantly outperform Monte Carlo sampling in terms of
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accuracy. Furthermore, the TEMoN may be computed in reasonable computation times, with the DS method

converging on eigenvectors of 5th-order tensors in a matter of milliseconds. Tensor eigenpair algorithms are

an ongoing area of research with many developments in recent years. Future work involves investigating

ways in which the DS method (or other methods) may be better leveraged to compute the TEMoN. This

includes determining an optimal numerical integration scheme and a suitable set of mapping functions to

limit the number of initial guesses and the computation time needed to compute the TEMoN.

Tensor eigenpairs may also be used to study other characteristics of dynamical systems. Specifically,

the T̃ (2) tensor in Eq. (6.36) can be related to the Cauchy-Green tensor (CGT) and the finite-time Lyapunov

exponent (FTLE). The CGT, also referred to as the Cauchy strain tensor or the Cauchy-Green deformation

tensor, originated in the field of continuum mechanics [85, 86]. During the deformation and displacement

of a continuum body, a deformation gradient tensor may be defined to describe local changes in the neigh-

borhood of a particular point. This deformation gradient tensor is functionally equivalent to the STM of a

dynamical system and will therefore be denoted by Φ(t, t0). The CGT is then defined as

Φ̃(2) = Φ(t, t0)>Φ(t, t0). (6.102)

It is well-known that the state deviation δx(t0) that maximizes ‖δx(t)‖ is an eigenvector of Φ̃(2) and the

maximum stretching of δx(t0) is determined from the maximum eigenvalue of Φ̃(2) [87]:

δx∗0 = arg max
δx0∈X

‖Φ(2)δx0‖ (6.103)

= arg max
δx0∈X

Φ̃(2)δx2
0 (6.104)

Φ̃(2)δx∗0 = λmaxδx
∗
0 (6.105)

Furthermore, the maximum eigenvalue (λmax) can be related to the finite-time Lyapunov exponent (FTLE) [86]

to quantify stretching over some time interval:

FTLE =
1

|t− t0|
log
√
λmax. (6.106)

Because the STM is a linear approximation, the FTLE is also an approximation. Consider that the higher-

order tensors Φ̃(m) for m > 2 (see Eqs. (6.35) and (6.36)) are higher-order analogs of the CGT and the



141

eigenpairs of these higher-order tensors may be used to more accurately quantify stretching in the phase

space. A similar procedure to Section 6.4 may be used to compute the maximum nonlinear stretching over

some time interval (in this case, normalization by Φ̃(2)v2 should be omitted).

6.9 Conclusions

Previously developed measures of nonlinearity are heuristic or their computation relies on empirical

sampling or numerical optimization. Such methods are often time consuming and difficult to validate. This

chapter proposes a novel, semianalytical measure of nonlinearity based on tensor eigenpairs — the TEMoN.

The tensor in question is derived from the TSE. Tensor eigenpairs are used to quantify model nonlinearity, as

well as to determine directions of strong nonlinearity. Moreover, the TEMoN can be used to predict the size

of the linear region about a reference trajectory or to justify the truncation order of a TSE. The measure may

be applied to static or dynamic models, and has been demonstrated for the LDTs at equilibrium points in

the CR3BP and the STTs along NRHOs. Moreover, the TEMoN has been used to analyze the nonlinearity

of a transformation-propagation-transformation strategy in which Cartesian coordinates are transformed

into orbital elements for the purpose of dynamics propagation, and then transformed back into Cartesian

coordinates at the final time. The results confirm that the degree of nonlinearity and the directions of strong

nonlinearity are comparable for both processes. In summary, the TEMoN may serve as a mission design

tool with numerous applications in control, estimation, and uncertainty propagation.



Chapter 7

Conclusions

7.1 Summary

This dissertation focused primarily on the stochastic optimization of spacecraft trajectories and cor-

rection maneuvers with the goal of minimizing spacecraft state errors. Control-linear noise was considered

throughout, which is a specific case of control-dependent noise were control errors are linearly proportional

to the level of nominal control. This configuration is often ignored during maneuver optimization due to

its increased complexity. However, experimental studies of spacecraft electric propulsion engines indicate

that control-linear noise can be significant, and control-linear noise is also used in the standard models for

chemical propulsion. Previous work in uncertainty minimization for spacecraft trajectories is also limited.

This dissertation began with a nonlinear, open-loop, continuous-thrust spacecraft trajectory optimiza-

tion to minimize terminal state error covariance and control energy in the presence of control-linear noise.

A linear covariance propagation was assumed, and a multi-objective optimization based on the ε-constraint

method was performed using indirect methods. Although the problem setup was general, results were

presented for orbit transfers, phasing maneuvers, and proactive station-keeping maneuvers along asteroid

Sun-terminator orbits. The results indicate that significant covariance reduction is possible with slight in-

creases in propellant cost. The proactive station-keeping scenario was presented as an alternative to reactive

station keeping: rather than utilizing trajectory correction maneuvers to correct errors as they appear along a

ballistic trajectory, the proactive station-keeping scenario applies open-loop control in a way that minimizes

state uncertainty without the need for feedback control.

Robust closed-loop control was also investigated in this dissertation, beginning with the analytical
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optimization of a control law for linear systems with control-linear noise, sampled perfect measurements,

and continuous control using dynamic programming. The sampled measurement formulation corresponds

to a special case of intermittent control, wherein the controller receives state measurements at limited times

and the control can be considered open-loop between the measurement times. This setup is consistent

with spacecraft control, where navigation cannot be prioritized at all times and state knowledge is limited.

The method was then extended to a more general, hybrid dynamics model with impulsive control, additive

noise, and multiple sources of control-linear noise. The robust control law was applied as a neighboring

guidance law in various mission scenarios by linearizing spacecraft dynamics about nominal trajectories.

The guidance law was then compared extensively to a deterministic control law to demonstrate the benefits

of robust control. The derivation of the guidance law relied on a perfect measurement assumption. However,

a bounded cost function approach was developed to analytically characterize control performance when the

perfect measurement assumption is relaxed.

Finally, a novel nonlinearity measure was proposed: the tensor eigenpair measure of nonlinearity

(TEMoN). The TEMoN is based on the eigenpairs of higher-order tensors in a Taylor series expansion,

and may be applied to static or dynamic models. Some examples include application to the local dynamics

tensors, state transition tensors, and parameter transformations. Unlike other MoN, the TEMoN is semian-

alytical and does not require empirical sampling, approximation, or numerical optimization. Nonlinearity

measures like the TEMoN can be used to identify regions of strong nonlinearity and quantify the size of a

linear region, with many applications in guidance, navigation, and control.

7.2 Future Work

This dissertation opens numerous avenues for future work. Many extensions can be made to the multi-

objective nonlinear trajectory optimization performed in Chapter 2. First, additive noise may be included

in the covariance propagation without changing the methodology presented here. Second, uncertain static

parameters may be considered by augmenting the state vector with these parameters so that their initial un-

certainty may influence the covariance propagation. Other potential modifications include constraining the

magnitude of the optimal control or using the method here as an initial guess for a propellant-and-covariance
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minimization (as opposed to energy-and-covariance). The accuracy of the covariance propagation may also

be improved by including higher-order terms. Finally, implementing this optimization in a more advanced

multi-objective optimization framework based on evolutionary algorithms is a natural next step, and the

results here may serve as validation for more sophisticated numerical optimization algorithms.

Many interesting problems arise in the area of closed-loop control, such as the problem of optimal

measurement and control scheduling. In this dissertation, measurement and control times were assumed to

be fixed; however, additional uncertainty reduction is certainly possibly by optimizing the timing of these

events. Likewise, the problem could be modified to include uncertainty in the measurement and control

times. Additionally, analysis may be performed to evaluate the robustness in the event that measurements

or controls are delayed or missed entirely. Finally, the problem of imperfect navigation creates many op-

portunities for future work. For example, iterative backward-forward sweep methods could be generated

to account for noisy measurements and Kalman filter updates, and the optimality of such methods may be

evaluated using the bounded cost function approached proposed in this dissertation.

In the area of nonlinearity measures, the TEMoN algorithm can likely be improved by optimizing

the eigenpair computation and investigating alternative eigenpair algorithms. The method may also be

adapted to quantify nonlinear stretching in a similar manner to the Cauchy-Greene tensor, i.e., by generating

“higher-order Cauchy-Greene tensors.” The eigenpairs of these higher-order tensors may be used to generate

a higher-order finite-time Lyapunov exponent.
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Appendix A

Stochastic Dynamics and Itô Calculus

The Itô form of a stochastic differential equation (SDE) is given by

dXt = f(Xt,u(t), t)dt+ h(Xt,u(t), t)dWt, (A.1)

in which Xt ∈ Rn is the state of the stochastic system, u(t) ∈ Rm is the nominal control input, and

Wt ∈ Rq is a standard Wiener process [26]. The Wiener process, also known as a Brownian motion

process, is continuous in time with an initial condition of zero and independent, Gaussian increments, i.e.,

(Wt+s −Ws) ∼ N (0, tI). The Wiener process is often characterized informally as the integral of white,

Gaussian noise such that dWt/dt represents a white noise process.

Consider the following Itô SDE, which appears in Chapters 2 and 3.

dXt = f(Xt, t)dt+Bu(t)(dt+ σdWt) (A.2)

In the above expression, the noise process is scaled linearly by the control. Thus, the model represents

control-linear noise. Next, consider the deviation of the stochastic state from a deterministic state,X ′(t):

xt = Xt −X ′(t) (A.3)

First, linearized dynamics of Eq. (A.2) are derived from a first-order Taylor series expansion of the

true state dynamics, dXt, about the nominal state,X ′(t).

dxt ≈ A(X ′(t))xtdt+Bu(t)dWt, A(X ′(t)) =
∂f(X(t))

∂X

∣∣∣∣
X=X′(t)

(A.4)

Let

Σ(t) = E[(xt − x̄(t))(xt − x̄(t))>]. (A.5)
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be the state error covariance, where x̄ is the mean state deviation. From the Expectation rule,

˙̄x(t) = A(t)x̄(t). (A.6)

Under the assumption that x̄(0) = 0n×1, integration of Eq. (A.6) yields x̄(t) = 0n×1 for all time. Therefore,

the error covariance is simplified to

Σ(t) = E[xtx
>
t ]. (A.7)

The Σ(t) dynamics will be derived using Itô’s formula for stochastic calculus with Brownian motion

[26]. For a single element of the covariance matrix, Σij = E[xixj ], the dynamics can be computed from the

standard chain rule with the addition of an Itô correction term as follows.

d(xixj) = xjdxi + xidxj +
1

2

(
σBu(t)

)>∂2(xixj)

∂e2

(
σBu(t)

)
dt (A.8)

Evaluating the expectation for each dE[xixj ] and arranging in matrix form yields the following linear matrix

differential equation for the state error covariance.

Σ̇(t) = A(t)Σ(t) + Σ(t)A(t)> + σ2Bu(t)u(t)>B> (A.9)

Integrating Eq. (A.9), the linearized state error covariance at the final time is

Σ(tf ) = Φ(tf , t0)Σ(t0)Φ(tf , t0)> + σ2

∫ tf

t0

Φ(tf , τ)Bu(τ)u(τ)>B>Φ(tf , τ)>dτ (A.10)

The STM from ti to tj is denoted by Φ(tj , ti). This method may also be used to compute the covariance

with additive noise.



Appendix B

Dynamical Systems and Orbits

B.1 Asteroid Sun-Terminator Orbits

Sun-terminator orbits are quasi-stable, nearly circular asteroid orbits with an orbit plane that is per-

pendicular to the Sun-asteroid line. SRP is a dominant force in the asteroid environment, which causes

the Sun-terminator orbit plane to be offset from the asteroid center of mass. In this dissertation, asteroid

Sun-terminator orbits are modeled the Hill three-body problem (H3BP). Consider an asteroid orbiting the

Sun and let X = [r>,v>]> be the nominal, six-dimensional position and velocity state of a spacecraft op-

erating in the asteroid’s proximity. In the H3BP, it is assumed that the Sun has a much greater mass than the

asteroid and the mass of the spacecraft is negligible. The H3BP coordinate frame, {êx, êy, êz}, is centered

on the asteroid and rotates with the asteroid’s orbit about the Sun: êx points in the sunlight direction, êz

points in the direction of the asteroid’s orbital angular momentum vector, and êy completes the right-handed

coordinate frame. It will be assumed that the asteroid is in a circular orbit about the Sun and the rate of the

frame rotation is constant. H3BP dynamics augmented with SRP are given by

d2r

dt2
= −2ωẽz ·

dr

dt
+ ω2(3êxê

>
x − êzê>z )r +

∂Vg
∂r

+ aSRP êx + u, (B.1)

in which Vg is the asteroid gravitational potential, aSRP is the SRP acceleration, and ω represents the

constant rate of coordinate frame rotation dictated by the asteroid’s angular rate about the Sun [21]. The

tilde operator in ẽz represents a skew-symmetric matrix equivalent to the vector cross product operation.

The SRP acceleration, aSRP , is approximated by the cannonball model below, where p0 is the SRP at 1 AU,

ρ is the spacecraft reflectance, Z is the spacecraft mass-to-area ratio, and d is the asteroid distance from the
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Sun [21, 44].

aSRP =
p0(1 + ρ)(AU)2

Zd2
(B.2)

AU and d must have the same units in Eq. (B.2). Throughout the dissertation, the initial conditions of

Sun-terminator orbits are offset from the ŷ− ẑ plane by r3aSRP /µ in the sunlight direction to balance SRP

acceleration on the spacecraft [21]. Additionally, the asteroid gravitational potential is modeled to include

J2 and J3 zonal harmonics:

Vg =
µ

r
− µ

r

3∑
`=2

Jl

(
rb
r

)`
P`[sinφ],

=
µ

r
−
µJ2r

2
b

2r3

(
3(ê>z r̂)2 − 1

)
+
µJ3r

3
b

2r4
(ê>z r̂)

(
5(ê>z r̂)2 − 3

)
,

(B.3)

where P` represent Legendre polynomials. In any examples that only consider asteroid point mass gravity,

J2 and J3 are set to zero. Nondimensionalizing by the constant rb in the length scale (the mean radius

of the asteroid) and 1/nb in the time scale (with nb being the mean motion at the asteroid surface), the

nondimensional spacecraft acceleration is

d2rnd
dτ2

= −2Ωẽz ·
drnd
dτ

+ Ω2(3êxê
>
x − êzê>z )rnd + αSRP êx + U

+

[
− 1

r2
nd

+
γ

r4
nd

(
15(ê>z r̂)2 − 3

)
− ζ

r5
nd

(
35(ê>z r̂)3 − 15(ê>z r̂)

)]
r̂

+

[
− 6γ

r4
nd

(ê>z r̂) +
ζ

r5
nd

(
15(ê>z r̂)2 − 3

)]
êz

(B.4)

with the following nondimensional parameters:

Ω =
ω

nb
, αSRP =

aSRP
rbn

2
b

, U =
u

rbn
2
b

, γ =
µJ2r

2
b

2r5
bn

2
b

, ζ =
µJ3r

3
b

2r6
bn

2
b

. (B.5)

Finally, the linearized dynamics matrix, A(X(t)), is

A(X(t)) =

 [0]3×3 I3×3

Ω2(3êxê
>
x − êzê>z ) +

∂2Vg
∂r2

nd

−2Ω ˜̂
ze

 , (B.6)

where the matrix ∂2Vg/∂r
2
nd is given as follows.

∂2Vg
∂r2

nd

= c1r̂r̂
> + c2êzê

>
z + c3êzr̂

> + c4r̂ê
>
z + c5I3×3 (B.7)
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c1 = 31/r3
nd + γ/r5

nd(15− 105(ê>z r̂)2) + λ/r6
nd(315(ê>z r̂)3 − 105(ê>z r̂)) (B.8)

c2 = −6γ/r5
nd + 30λ(ê>z r̂)/r6

nd (B.9)

c3 = 30γ/r5
nd(ê

>
z r̂)− λ/r6

nd(105(ê>z r̂)2 − 15) (B.10)

c4 = 30γ(ê>z r̂)/r5
nd − L/r6

nd(105(ê>z r̂)2 − 15) (B.11)

c5 = −1/r3
nd + γ/r5

nd(15(ê>z r̂)2 − 3)− λ/r6
nd(35(ê>z r̂)3 − 15(ê>z r̂)) (B.12)

B.2 Near-Rectilinear Halo Orbit

In this dissertation, near-rectilinear halo orbits (NRHOs) are modeled in the circular restricted three-

body problem (CR3BP). By convention, the CR3BP is described in a rotating coordinate frame {êx, êy, êz}

with an origin at the barycenter of the two primary bodies. In the Earth-Moon system, the êx-axis points

toward the Moon, the êz-axis is aligned with the angular momentum vector of the primaries, and the êy-axis

completes the right-handed coordinate frame. The CR3BP equations of motion dictate the six-dimensional

position and velocity state of a spacecraft in this coordinate frame, X> = [x y z ẋ ẏ ż]. Quantities in

the CR3BP are nondimensionalized such that the distance between the Earth and the Moon and the mean

motion of the primaries are both unity. The nondimensional, deterministic CR3BP equations are

d2x

dt2
= 2

dy

dt
+
∂U

∂x
(B.13)

d2y

dt2
= −2

dx

dt
+
∂U

∂y
(B.14)

d2z

dt2
=
∂U

∂z
(B.15)

with the pseudo-potential U given by

U =
1

2
(x2 + y2) +

1− µ√
(x+ µ)2 + y2 + z2

+
µ√

(x− 1 + µ)2 + y2 + z2
. (B.16)

The CR3BP has five equilibrium points, also known as Lagrange or libration points, which are denoted by

L1 through L5.
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Halo orbits bifurcate from in-plane Lyapunov orbits at the collinear equilibrium points (L1 through

L3) [88]. In the Earth-Moon system, halo orbits from L1 and L2 will evolve out of plane until they resemble

polar lunar orbits. The 9:2 synodic resonant southern L2 NRHO is considered throughout this dissertation

— this orbit is representative of the Lunar Gateway orbit [46]. The 9:2 metric indicates that the spacecraft

experiences nine orbit periods along the NRHO for every two orbits of the Moon about the Earth.



Appendix C

Tensor Calculations

C.1 STT Dynamics

The STT dynamics are given by the following differential equations. The STM is initialized as an

identity matrix, and the higher-order STTs begin with the initial condition of Φi1...im = 0.

d

dt
Φji1 = Ajk1Φk1i1 (C.1)

d

dt
Φji1i2 = Ajk1Φk1i1i2 +Ajk1k2Φk1i1Φk2i2 (C.2)

d

dt
Φji1i2i3 = Ajk1Φk1i1i2i3 +Ajk1k2 (Φk1i1Φk2i2i3 + Φk1i1i2Φk2i3 + Φk1i1i3Φk2i2)

+Ajk1k2k3Φk1i1Φk2i2Φk3i3

(C.3)

d

dt
Φji1i2i3i4 = Ajk1Φk1i1i2i3i4 +Ajk1k2(Φk1i1i2i3Φk2i4 + Φk1i1i2i4Φk2i3 + Φk1i1i3i4Φk2i2

+ Φk1i1i2Φk2i3i4 + Φk1i1i3Φk2i2i4 + Φk1i1i4Φk2i2i3 + Φk1i1Φk2i2i3i4)

+Ajk1k2k3(Φk1i1i2Φk2i3Φk3i4 + Φk1i1i3Φk2i2Φk3i4 + Φk1i1i4Φk2i2Φk3i3

+ Φk1i1Φk2i2i3Φk3i4 + Φk1i1Φk2i2i4Φk3i3 + Φk1i1Φk2i2Φk3i3i4)

+Ajk1k2k3k4Φk1i1Φk2i2Φk3i3Φk4i4

(C.4)
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C.2 Computing Ω Tensors

To simplify the notation, let w0 = δw(t0), q0 = δq(t0), wt = δw(t), and qt = δq(t). From

Eqs. (6.50) through (6.53) truncated at the third order tensor:

q0
k ≈ Qk`1w0

`1 +
1

2
Qk`1`2w0

`1w
0
`2 , (C.5)

qti ≈ Φik1q
0
k1 +

1

2
Φik1k2q

0
k1q

0
k2 , (C.6)

wtj ≈ Wji1q
t
i1 +

1

2
Wji1i2q

t
i1q

t
i2 . (C.7)

Note that j and ` indices are of dimension nw, whereas k and i indices are of dimension nq. Substituting

Eq. (C.6) in Eq. (C.7) and retaining up to third-order tensors results in

wtj ≈ Wji1Φi1k1q
0
k1 +

1

2
(Wji1Φi1k1k2 +Wji1i2Φi1k1Φi2k2) q0

k1q
0
k2 . (C.8)

Furthermore, substituting Eq. (C.5) in Eq. (C.8) results in

wtj ≈Wji1Φi1k1Qk1`1w0
`1

+
1

2
[Wji1Φi1k1Qk1`1`2 + (Wji1Φi1k1k2 +Wji1i2Φi1k1Φi2 k2 )Qk1`1Qk2`2 ]w0

`1w
0
`2 .

(C.9)

From Eq. (6.55),

wtj ≈ Ωj`1w
0
`1 +

1

2
Ωj`1`2w

0
`1w

0
`2 . (C.10)

Matching terms in Eqs. (C.9) and (C.10) by tensor order,

Ωj`1 =Wji1Φi1k1Qk1`1 , (C.11)

Ωj`1`2 =Wji1Φi1k1Qk1`1`2 + (Wji1Φi1k1k2 +Wji1i2Φi1k1Φi2 k2 )Qk1`1Qk2`2 . (C.12)
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C.3 Computing T̃ Tensors

Begin by expanding δη>δη in terms of the TSE in Eq. (6.35) and retaining terms up to fifth order

(i.e., the vector appears up to five times in a single term). Note that higher-order terms can be included to

compute T̃ tensors beyond fifth order.

δη>δη =
(
T (2)v

)>
T (2)v

+
(
T (2)v

)>
T (3)v2

+
1

3

(
T (2)v

)>
T (4)v3 +

1

4

(
T (3)v2

)>
T (3)v2

+
1

12

(
T (2)v

)>
T (5)v4 +

1

6

(
T (3)v2

)>
T (4)v3

(C.13)

The goal is to determine tensors T̃ (2) through T̃ (5) such that Eq. (6.36) and Eq. (C.13) are equivalent. The

second-order term in Eq. (C.13) (wherein the vector v appears twice) corresponds to the matrix

T̃ (2) = T (2)>T (2). (C.14)

For the third-order term, the goal is to determine a tensor T̃ (3) for which

T̃ (3)v3 =
(
T (2)v

)>
T (3)v2. (C.15)

The right-hand side of Eq. (C.15) can be expanded as follows:

(
T (2)v

)>
T (3)v2 =

[
T1i1vi1 . . . Tni1vi1

]>

T1i2i3vi2vi3

...

Tni2i3vi2vi3

 (C.16)

= Tk1i1Tk1i2i3vi1vi2vi3 . (C.17)

From Eqs. (C.15) and (C.17),

T̃i1i2i3vi1vi2vi3 = Tk1i1Tk1i2i3vi1vi2vi3 . (C.18)

Thus, each individual entry, T̃i1i2i3 , of the tensor T̃ (3) may be computed as follows.

T̃i1i2i3 = Tk1i1Tk1i2i3 (C.19)
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A similar procedure can be used to compute all higher-order T̃ tensors. Equations for the elements of T̃ (4)

and T̃ (5) are given below.

T̃i1...i4 =
1

3
Tk1i1Tk1i2i3i4 +

1

4
Tk1i1i2Tk1i3i4 (C.20)

T̃i1...i5 =
1

12
Tk1i1Tk1i2...i5 +

1

6
Tk1i1i2Tk1i3i4i5 (C.21)

C.4 Computing Ť Tensors

To simplify the notation, let

R =
(
T (2)

)−1
. (C.22)

The goal of this section is to determine a tensor Ť (m) such that

Ť (m)zm = T̃ (m) (Rz)m . (C.23)

Expanding both both sides of Eq. (C.23),

Ťi1...imzi1 . . . zim = T̃k1...km (Rz)k1 . . . (Rz)km (C.24)

= T̃k1...km (Rk1i1zi1) . . . (Rkmimzim) (C.25)

= T̃k1...kmRk1i1 . . . Rkmimzi1 . . . zim . (C.26)

From Eq. (C.26), each individual entry, Ťi1...im , of Ť (m) may be computed by the following equation.

Ťi1...im = T̃k1...kmRk1i1 . . . Rkmim (C.27)

C.5 Computing Γ Tensors

Begin by defining two intermediate tensors, B(k+2) and C(k+2) such that

B(k+2)zk+1 =
(
z>z

)
kŠ(k)zk−1, (C.28)

C(k+2)zk+1 = −2Š(k)zkz. (C.29)
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From Eqns. (6.84) and (6.85), Γ (k+2) may be computed from B(k+2) and C(k+2):

Γ (k+2)zk+1 = Y −1
(
B(k+2) + C(k+2)

)
zk+1. (C.30)

B(k+2), C(k+2), and Γ (k+2) are computed as follows.

Bi1···k+2
=


Ši1...ik , if ik+1 = ik+2

0, otherwise

(C.31)

Ci1...ik+2
=


Ši3...ik+2

, if i1 = i2

0, otherwise

(C.32)

Γi1...ik+2
= Q−1

i1j

(
Bji2...ik+2

+ Cji2...ik+2

)
(C.33)
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