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Thesis directed by Prof. Daniel Scheeres

This thesis explores the dynamical evolution of small bodies in the Solar System. It focuses

on the asteroid population but parts of the theory can be applied to other systems such as comets

or Kuiper Belt objects. Small is a relative term that refers to bodies whose dynamics can be

significantly perturbed by non-gravitational forces and tidal torques on timescales less than their

lifetimes (for instance the collisional timescale in the Main Belt asteroid population or the sun

impact timescale for the near-Earth asteroid population). Non-gravitational torques such as the

YORP effect can result in the active endogenous evolution of asteroid systems; something that was

not considered more than twenty years ago.

This thesis is divided into three independent studies. The first explores the dynamics of a bi-

nary systems immediately after formation from rotational fission. The rotational fission hypothesis

states that a rotationally torqued asteroid will fission when the centrifugal accelerations across the

body exceed gravitational attraction. Asteroids must have very little or no tensile strength for this

to occur, and are often referred to as “rubble piles.” A more complete description of the hypothesis

and the ensuing dynamics is provided there. From that study a framework of asteroid evolution

is assembled. It is determined that mass ratio is the most important factor for determining the

outcome of a rotational fission event. Each observed binary morphology is tied to this evolutionary

schema and the relevant timescales are assessed.

In the second study, the role of non-gravitational and tidal torques in binary asteroid systems

is explored. Understanding the competition between tides and the YORP effect provides insight

into the relative abundances of the different binary morphologies and the effect of planetary flybys.

The interplay between tides and the BYORP effect creates dramatic evolutionary pathways that

lead to interesting end states including stranded widely separated asynchronous binaries or tightly
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bound synchronous binaries, which occupy a revealing equilibrium. The first results of observations

are reported that confirm the theoretically predicted equilibrium.

In the final study, the binary asteroid evolutionary model is embedded in a model of the entire

Main Belt asteroid population. The asteroid population evolution model includes the effects of

collisions as well as the YORP-induced rotational fission. The model output is favorably compared

to a number of observables. This allows inferences to be made regarding the free parameters of the

model including the most likely typical binary lifetimes.

These studies can be combined to create an overall picture of asteroid evolution. From only

the power of sunlight, an asteroid can transform into a myriad number of different states according

to a few fundamental forces.
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Chapter 1

Study of Post-rotational Fission Dynamics

1.1 Introduction

The Near-Earth asteroid (NEA) population has a relatively large amount of data compared to

other small body populations, including detailed information on asteroid figures and binary struc-

ture, often made possible through the combination of lightcurve and radar techniques. Observers

have discovered a wide and complex set of asteroid systems that before this study have not been

tied together into a coherent theory. The emergence of radiative forces as a major evolutionary

mechanism for small bodies, in particular for NEA systems due to their small size and proximity

to the Sun, makes the development of such a theory possible.

A simple model of NEA evolution constructed from the Yarkovsky-O’Keefe-Radzievskii-

Paddack (YORP) and binary YORP (BYORP) effects, “rubble pile” asteroid geophysics, and

gravitational interactions can incorporate all of the diverse observed asteroid classes as shown in

Figure 1.1: synchronous binaries, doubly synchronous binaries, contact binaries, asteroid pairs,

re-shaped asteroids, and stable ternaries.

1.1.1 Observed NEA Classes

Binary asteroid systems comprise a significant fraction (15±4%) of the NEA population (Mar-

got et al., 2002; Pravec et al., 2006) and include all compositional classes and size scales (Pravec

and Harris, 2007). Most of these systems are synchronous binaries–the orbital and secondary spin

periods are equal, but the primary has a faster spin rate. Observed synchronous systems have mass
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Figure 1.1: Evolutionary tracks for an NEA. q is the rotational fission component mass ratio.
Arrows indicate the direction of evolution along with the process propelling the evolution and a
typical timescale. Simple schematics show evolutionary states, an underline indicates an observed
asteroid class. Stable ternaries are rare, and so their continued evolution is not described here,
although it should be noted that ternaries may be formed via multiple primary fission events. It
is important to note that the eventual outcomes are single asteroids (re-shaped asteroids, contact
binaries, each member of asteroid pairs), so this evolutionary process represents a binary cycle.

ratios . 0.2, a system semi-major axis of 1.5 to 3 primary diameters, and a possibly elongated

secondary and a nearly spherical primary with a distinctive shape characterized by an equatorial

bulge (Pravec et al., 2006; Pravec and Harris, 2007). The system has a positive free energy, but

the tidally locked secondary inhibits disruption. Migration to the inner solar system from the main
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Morphology Observed Examples Description

Doubly Synchronous
Binaries

Frostia, Hermes, and
Gavrilin (Behrend
et al., 2006; Margot,
2003; Higgins et al.,
2008)

All spin rotation periods are equivalent to the
orbital revolution period. Mass ratios > 0.2.

Contact Binaries Castalia, Bacchus, and
2005 CR37 (Hudson
and Ostro, 1994; Ben-
ner et al., 1999, 2006)

Single asteroids with a bi-modal shape ap-
pear as two similar-sized components resting
on each other. Component mass ratios > 0.2.

Synchronous Binaries 1999 KW4, 2000
DP107, and 2002
CE26 (Ostro et al.,
2006; Margot et al.,
2002; Shepard et al.,
2006)

Secondary spin rotation period is equivalent
to the orbital revolution period. Primary is
fast rotating and has a characteristic oblate
shape with an equatorial bulge. Mass ratios
< 0.2.

High-e Binaries 2004 DC and 2003
YT1 (Taylor et al.,
2008; Nolan et al.,
2004)

Mutual orbit is eccentric and secondaries may
not be synchronous. Otherwise resemble syn-
chronous binaries. Mass ratios < 0.2.

Ternaries 2001 SN263 and 1994
CC (Nolan et al.,
2008; Brozović et al.,
2011)

All three members are in the same plane, and
the primary resembles the primary of the syn-
chronous binary. Mass ratios < 0.2.

Re-shaped Asteroids 1999 RQ36 and 2008
EV5 (Nolan et al.,
2007; Busch et al.,
2010)

Single asteroids that resemble the primary of
the synchronous binary.

Table 1.1: Examples of each observed NEA class according to a morphological classification scheme.

belt as binaries, binary creation via collision amongst NEAs, and binary creation via tidal disrup-

tion from close planetary flybys are not efficient enough mechanisms to create this population nor

match the observed synchronous binary properties (Margot et al., 2002; Walsh and Richardson,

2008). Several theories attempt to explain this binary population by a YORP-induced rotational

fission process, but do not capture all properties of synchronous binaries and do not predict the

other NEA systems that are seen (Scheeres, 2007a, 2009a; Walsh et al., 2008).

The Walsh et al. (2008) theory requires rotational fission induced “landslides” that re-shape

the primary, then enter into orbit. Secondaries are built from collections of “landslide” material
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in orbit after many “landslide” events, and consequently YORP cycles–the length of the process

to rotationally accelerate an asteroid to spin fission from its current state under the YORP effect.

However, we will show that material entering orbit via rotational fission will almost always escape

on timescales much shorter than a YORP cycle. Furthermore, Holsapple (2010) using continuum

approximations of granular theory finds that mass loss would not occur at the equator of small,

critically spinning asteroids, but that their shapes would deform, elongating the body until interior

failure. These deformations in the shape of the body allow YORP to continue to increase the

angular momentum without significant changes to the spin rate, even slightly decreasing the spin

rate in some cases. Scheeres (2007a) reports a similar analytic finding that when cohesive theory

is considered, failure will most likely occur along interior planes. The analytic theory in Scheeres

(2009b) describes the first stage of the model proposed herein, where a chaotic binary system is

immediately formed from the rotational fissioning of a “rubble pile.” A rotational fission model

related to the one proposed in this work has been implicated in the formation of asteroid pairs

(Pravec et al., 2010)–two asteroids with heliocentric orbits that in the recent past (. 106 yrs)

intersect deep within the other’s Hill radius and with small relative speeds (Vokrouhlický and

Nesvorný, 2008). Asteroid pairs are observed in the Main Asteroid Belt with similar sizes to NEAs,

but they have not been observed in the NEA population. The theory outlined in this paper predicts

them; asteroid pairs are difficult to detect in the NEA population because their orbits are rapidly

perturbed and smaller initial asteroids fission into even smaller secondaries for the same mass ratios

as the Main Belt asteroid population.

Other observed distinct dynamical and morphological classes include doubly synchronous bi-

naries, high-e binaries, ternaries, contact binaries, and re-shaped asteroids. We describe each in

turn. Doubly synchronous binaries: all spin rotation periods are equivalent to the orbital revolution

period. They also have high mass ratios & 0.2 and a system semi-major axis of 2 to 8 primary di-

ameters (Pravec and Harris, 2007). These systems are difficult to detect because of an observational

bias in light curve data; doubly synchronous systems and elongated single objects appear similarly.

Contact binaries: bimodally-shaped asteroids observed as two similar-sized components resting on
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each other, which implies a formation mechanism that brings the two components together very

gently. Contact binaries comprise a significant fraction (> 9%) of the NEA population (Benner

et al., 2006). High-e binaries: low mass ratio binary systems distinct from the synchronous binaries,

because they are asynchronous and have high eccentricities (Taylor et al., 2008). Ternary systems:

large primary orbited by two smaller satellites. The primaries are spinning faster than the orbital

rates and the mass ratio is low (< 0.1) (Brozović et al., 2011). Re-shaped asteroids: single bodies

similar to the primaries of the synchronous binary class–an oblate shaped figure with an equatorial

bulge. For reference, examples of each NEA class are given in Table 1.1.

1.1.2 Motivation

A collisionally evolved asteroid can be modeled as a “rubble pile”–a collection of gravita-

tionally bound boulders with a distribution of size scales and very little tensile strength between

them (Michel et al., 2001; Richardson et al., 2005; Tanga et al., 2009). “Rubble pile” morphology

has been closely examined by the Hayabusa mission to Itokawa, as shown in Figure 1.2, which

has no obvious impact craters and appears as collection of shattered fragments of different size

scales (Fujiwara et al., 2006). Mass and volume measurements from the NEAR Shoemaker flyby

of Mathilde (Yeomans et al., 1997) and radar observations of 1999 KW4 (Ostro et al., 2006) de-

termine mean densities that are lower than their constitutive elements, which is evidence of voids

and cracks in the structures of these bodies. Asteroids with diameters larger than ∼ 200 m rarely

spin with periods less than ∼ 2.2 hours, which corresponds with the critical disruption spin rate

of self-gravitating, “rubble pile” bodies (Pravec and Harris, 2007). Both theoretical modeling and

direct observation indicate that asteroids within a size range of ∼ 100 m to ∼ 10 km have “rubble

pile” geophysics.

The details of the rotational fission process determine the initial conditions for the binary

system. The torque from the YORP effect will increase the centrifugal accelerations acting on each

“rubble pile” component. There is a specific spin rate at which each component of the body will go

into orbit about the rest determined by the largest separation distance of the mass centers of the
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fissioned component and the remainder of body (Scheeres, 2009a). The smaller component is now

the secondary, and the remainder is the primary, both in orbit about each other. The motivation

for this study was to determine what happens dynamically after a rotational fission event.

This paper will utilize some important concepts throughout that will be briefly introduced

here and further defined later. The mass ratio is defined as the secondary mass divided by the

primary mass. The primary of a binary system is always larger than the secondary, so the mass

ratio is a number between 0 and 1. Secondary fission is rotational fission of the secondary induced

via spin-orbit coupling and occurring during the chaotic binary stage of low mass ratio evolution

creating chaotic ternaries. Ternary systems have three members. The components in decreasing

mass are labeled primary, secondary, and tertiary, however the two smaller members are referred

collectively as secondaries. Secondaries may escape the system if the system has a positive free

energy. The free energy of an asteroid system is the sum of the kinetic and mutual potential energies

of the system (both rotational and translational) neglecting the self-potentials of each body.

1.2 Methods

1.2.1 Initial Conditions

As the rotation rate of an asteroid increases due to the YORP effect, the asteroid will go

through a series of reconfiguration events. These events may range from small-scale “rock flows” to

significant restructuring of the principal coherent components. A “rubble pile” will have a specific

set of local minimum energy configurations that the coherent components will settle into (Scheeres,

2009b). As the spin rate of the asteroid increases due to the YORP effect, the system will act to

arrange itself into the global minimum energy configuration. The largest distance between two mass

centers, which encompass all of the mass, determines how the system will fission, since systems in

this minimum energy equilibrium will undergo rotational fission at lower spin rates than any other

configuration (Scheeres, 2009b). The model assumes that the system is in this minimum energy

configuration and the two components can be represented by tri-axial ellipsoids resting so that
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contact is along the largest axis of each body.

If a system cannot rearrange itself to this configuration and so is not in the relative equilib-

rium, it will still rotationally fission but at a higher spin rate. The system will then undergo the

same dynamics demonstrated below but start with a higher energy increasing the probabilities of

disrupting the system and a re-impact event between the two components. An impact event will

dissipate energy but conserve angular momentum, so there is no stable single-body configuration for

the system, and thus material must immediately lift off the primary and return to orbit (Scheeres,

2009a). The specific details of the impact and ejecta will determine whether the system evolves as

a high or low mass ratio system. For the sake of simplicity, the model will assume the minimum

energy configuration with the knowledge that the results have a systematic uncertainty due to this

initial condition.

1.2.2 Rotational Fission Model

The dynamical simulation begins with a tri-axial asteroid made of two components inspired

by objects such as Toutatis or Itokawa. We model “rubble pile” asteroids as having an inherent

component mass ratio dividing all of the “rubble” into hierarchical groups determined by the

largest distance between mass centers as shown in the upper left panel of Figure 1.2. The mass

ratio between the components and the shape ratio of each component are the three initial free

parameters. As the asteroid’s rotational rate increases due to the YORP effect, the long axes of

each “rubble pile” component ellipsoid will align for rapid rotation rates. This configuration is

the only stable relative equilibrium figure for the body while still resting on each other (Scheeres,

2007a). As the YORP effect continues to torque the body, the two components will enter into orbit

about each other.

The YORP effect is responsible for spinning the initial body up to the required rotation rate

for fission. This is the only time a non-gravitational process (Yarkovsky, YORP, or BYORP) is

required for constructing synchronous binary systems. The components will fission at a specific

spin rate of the primary body given the internal component mass distribution (Scheeres, 2009a).
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“Rubble Pile” Asteroid

Chaotic Binary Chaotic Ternary Stable Binary

Figure 1.2: The upper right hand corner shows a motivating image of Itokawa taken by the Hayabusa
spacecraft (Image courtesy of ISAS/JAXA). The cartoons document the low mass ratio evolutionary
model. Solid lines indicate surfaces and dashed lines indicate “rubble-pile” internal substructure.
The “rubble pile” asteroid evolves from the upper left to bottom left chaotic binary panel via a
YORP-induced rotational fission event. A secondary fission event occurs between the lower left
and lower middle panels creating a chaotic ternary system. One of the components impacts the
primary as the system evolves from the lower middle to lower right panel forming a less energetic,
more stable binary system.

All bodies in these simulations have a density of 2 g/cc and so will fission at rotational periods

greater than 2.33 hours dependant only on the mass and shape ratios of the two model components.

1.2.3 Dynamical Model

Post-rotationally fissioned systems were studied by directly integrating the Lagrangian dy-

namics with an implicit 12th order Runge-Kutta scheme for two bodies (two tri-axial ellipsoids)

or three bodies (one tri-axial ellipsoid and two spheres) as described in 1.6 and 1.7, respectively.
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Non-spherical gravitational potentials ensure that the model will capture the important effect of

spin-orbit coupling. The model incorporates secondary fission (selecting secondary component mass

ratios from a flat distribution between 0.01 to 0.99) and impacts (inelastic collisions with total an-

gular momentum and mass conserved) as described in 1.9 and 1.10, respectively. The dynamics also

include the torques from mutual body tides, which dissipate energy. The rate of energy dissipation

is dependent on the difference between the spin rate of the body and the orbital rate and inversely

dependent on the distance between the bodies to the sixth power (Murray and Dermott, 2000).

The specifics of the tidal theory is given in 1.8. The effect of solar gravitational perturbations for

an orbit about the Sun at 1 AU is also included on the system. In each integrator, total system

energy is conserved to greater than 1 part in 108 when energy changing effects such as mutual body

tides and solar gravitational perturbations are neglected, and angular momentum is conserved to

greater than 1 part in 108 when angular momentum changing effects such as solar gravitational

perturbations are neglected.

Non-gravitational forces (YORP and BYORP effects) were not included in the post-rotational

fission dynamical model since the gravitational timescales are much shorter than the radiative

timescales. The model assumes planar motion with the intention of implementing 3-D motion and

associated non-principal axis rotation in the future, with the expectation that it will increase en-

ergy dissipation, lengthen the timescale for ejection of the secondary, and thus increase the binary

formation efficiency; more detailed modeling of impact and fission processes may change the effi-

ciencies associated with the evolutionary sequence but should not change the possible outcomes.

The dynamics will scale to any realistic size scale for NEAs, although the effects of cohesive attrac-

tion are not modeled and may be important on the smallest size scales . 100 m (Scheeres et al.,

2010) and the timescale for YORP effect induced rotational fission is too long for the largest size

scales & 10 km.
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1.3 Results

1.3.1 Chaotic Binary

The dynamics demonstrated immediately after the initial rotational fission are chaotic. The

coupling of the spin and orbit states from the tri-axial gravitational potential is responsible for

significant variations of behavior in the system. This coupling can transfer large amounts of energy

and angular momentum across the system leading to rapid changes in the spin rates and orbital

revolution rates. These changes can repeatedly switch the tidal bulge on each member from leading

to lagging and vice versa. Immediate tidal energy dissipation via mutual body tides helps prevent

re-impact.

Studying two cases in detail helps illustrate this chaotic evolution. These systems approx-

imate the well-known systems: (66391) 1999 KW4, an asynchronous binary, and 25143 Itokawa,

a contact binary. Ostro et al. (2006) reports the size of the primary of 1999 KW4 as close to a

tri-axial ellipsoid with semi-axes 708.5× 680.5× 591.5 m, and the secondary as a tri-axial ellipsoid

with semi-axes 297.5 × 225 × 171.5 m. Assuming constant density, the mass ratio of the binary

system is close to 0.04. Demura et al. (2006) reports that size of the “body” (primary) of Itokawa

approximates a tri-axial ellipsoid with semi-axes 245 × 130 × 130 m, and the “head” (secondary)

as a tri-axial ellipsoid with semi-axes 115× 90× 90 m. Assuming constant density, the mass ratio

of these components is close to 0.3.

For these simulations the bodies are placed into their relative equilibrium state, which is

the only stable configuration of the bodies when the rotation rate of the system is just below

rotational fission of the two components (Scheeres, 2009b). In this configuration, the primary and

secondary are in contact and aligned along their longest axes. The dynamical simulation begins

when the rotation rate of the pre-fissioned body reaches the critical disruption spin limit for the

two, internal components. The dynamics modeled include spin-orbit coupling and mutual body

tides as described in Section 1.2.3, but do not include solar gravitational perturbations, so angular

momentum is conserved.
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Figure 1.3: The semi-major axis a (solid line and left-hand, vertical axis) and the eccentricity e
(dotted line and right-hand, vertical axis) are shown as a function of time for both a 1999 KW4-like
system (top plot) and an Itokawa-like system (bottom plot).

Exploring the evolution of the semi-major axis a and eccentricity e for 1999 KW4 and Itokawa

over the first 60 days after rotational fission in Figure 1.3, the nature of the chaotic evolution is

evident. Variations in the semi-major axis track transfers of angular momentum from the orbital

state to the spin state and back. The spin of each body is coupled to the orbital motion through the

non-Keplerian gravitational potential, and these transfers of angular momentum are apparent in

the changing rotational periods of the primary and secondary of each system as shown in Figure 1.4.
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The spin rates of both bodies change dramatically, however as the mass ratio decreases the changes

in the spin rate of the secondary become more dramatic. The secondary of 1999 KW4 has intervals

of almost no rotation, but also intervals when its rotation rate exceeds and resides near the critical

disruption limit for a sphere. The critical disruption limit for a sphere is defined as the rotation rate

necessary to lift a massless test particle off the surface, if the secondary had a “rubble pile” internal

structure, then it would disrupt at a slower rotation rate. Rotational fission of the secondary due to

torques from spin-orbit coupling is called secondary fission and occurs in many simulated systems.

This process is discussed further later. If the secondary of 1999 KW4 is not allowed to fission and

the system continues to dynamically evolve, then the system will disrupt after ∼ 1600 days. The

Itokawa system will never disrupt since the system has a negative free energy and so is always

bound.

This chaotic evolution causes the rate of tidal energy dissipation to change radically between

intervals of strong and weak or even non-existant tidal dissipation, which depends on the separation

distance to the sixth power and the relative spin rates of the bodies to the orbital rate. While the

motions of an individual system are chaotic, the systems as a whole do appear to have a general

set of dynamics and show trends with mass ratio. The secondary vacillates between libration and

circulation more often than the primary which usually displays just circulation. The system evolves

rapidly into an eccentric mutual orbit with a quickly changing longitude of pericenter. Secondaries

of lower mass ratio systems exhibit stronger instances of these behaviors. This is expected because

the lower the mass ratio, the greater the initial spin rate for rotational fission in the parent body.

Lower mass ratio systems will thus have more energy to transfer into their orbits after fission.

1.3.2 Two Regimes

The initial spin rate for rotational fission in the parent body quickly divides the dynamics

into two regimes: negative and positive free energy. The initial rotation rate necessary to fission

the components depends on the mass ratio between the two components (Scheeres, 2009b). For two

spherical components the division between the two regimes occurs at a mass ratio of ≈ 0.2. High
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Figure 1.4: The rotational periods of the primary (solid line) and the secondary (dotted line) are
shown as a function of time for both a 1999 KW4-like system (top plot) and an Itokawa-like system
(bottom plot). The dashed line is the period (∼ 2.33 hours) for the surface disruption of a sphere
of density 2 g/cc.

mass ratio systems (mass ratio > 0.2) have a negative free energy and are bound for all time under

internal gravitational perturbations. Low mass ratio systems (mass ratio < 0.2) have a positive

free energy and may escape if the excess energy is not dissipated. For tri-axial ellipsoids the regime

boundary does not have a specific value since there is a dependence on the shape of each body,
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Figure 1.5: The average separation distance between the binary members measured in primary
radii after 100 years of evolution as a function of mass ratio for 150 systems. This simulation does
not allow secondary fission or include solar gravity perturbations just evolves the system according
to the interactions of two aspherical bodies. The dark line indicates the Hill radius (80.5 primary
radii) of these systems at 1 AU, crossing this radius is equivalent to escape for the needs of this
work.

however the results indicate that the regime boundary is real and can be approximated by a mass

ratio of 0.2. Increasing the shape ratio (elongating the objects) decreases the mass ratio of a zero

free energy system, but not by much (Scheeres, 2009b).

Figure 1.5 shows the time averaged separation distances of 150 systems with mass ratios from

0.05 to 0.99 after 100 years. The Hill radius (80.5 primary radii at 1 AU) determines boundedness

for these systems. The regime change between bound (high mass ratio) and unbound (low mass

ratio) is dramatic and has consequences for the subsequent evolutionary path of the systems. Pravec

et al. (2010) has directly observed this mass ratio spin limit in the asteroid pairs population, which

is discussed further in Section 1.3.8.

Both high and low mass ratio regimes have chaotic early dynamics. These dynamics increase
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Figure 1.6: The timescale for the tidal evolution to the doubly synchronous state as a function of
mass ratio. The nominal ejection timescale from the NEA population is 107 years. The black data
points are the results of numerical modeling and the black curve is a power law fit to those points.

the eccentricity and thus the energy dissipation from mutual body tides. High mass ratio systems

will evolve to an orbital equilibrium state, but low mass ratio systems will disrupt before tidal

dissipation can reduce the free energy to a negative value unless they undergo secondary fission.

The outcomes of these processes on each of the regimes are detailed below.

1.3.3 High Mass Ratio Regime

High mass ratio systems are defined as those systems that have negative free energy and do

not experience secondary fission. The upper branch of Figure 1.1 shows the evolutionary path of

high mass ratio systems. The dynamics of these systems are chaotic, but since the bodies are more

equal in size, the exchanges of angular momentum and energy through spin-orbit coupling are less

severe. This inhibits secondary fission and reduces the eccentricities these systems experience as
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they evolve. The tidal energy dissipation rate is inversely related to the separation distance to the

sixth power, and so higher mass ratio systems experience faster rates of tidal energy dissipation,

since the average separation distance decreases with higher mass ratios, as shown in Figure 1.5.

Tidal dissipation damps systems in the high mass ratio regime so that both the primary

and secondary of such systems are trapped in libration states. The libration angle is eventually

damped to zero, first in the secondary then the primary, and the bodies become doubly synchronous.

Since high mass ratio systems have similarly sized components, the tidal timescale is similar for each

member and systems evolve into doubly synchronous binaries. Tidal timescales are a direct function

of mass ratio with equal mass members taking ∼ 5×103 years, 0.6 mass ratio systems taking ∼ 104

years, and 0.2 mass ratio systems taking ∼ 2 × 106 years to reach the doubly synchronous state

(see 1.11 for a description of the assumptions behind these timescales). Figure 1.6 shows these

timescales as a function of mass ratio, along with a fitted power law showing a clear trend as a

function of the system’s mass ratio. Both members are tidally locked in the doubly synchronous

state, and these asteroids are observed as the Hermes-class.

This numerical tidal dissipation timescale for high mass ratio systems can be compared to

the tidal timescales derived analytically by Goldreich and Sari (2009). The corresponding analytic

tidal dissipation timescales for equal mass members is ∼ 3× 104 years, for 0.6 mass ratio systems

is ∼ 4 × 104 years, and for 0.2 mass ratio systems is ∼ 4 × 106 years to reach the doubly syn-

chronous state. The analytic theory is within an order of magnitude of the numerical results but

consistently overestimates the time necessary to de-spin these systems especially at higher mass

ratios. Fundamentally, the analytic theory assumes a quasi-steady state evolution, but this is not

how these systems initially evolve. All of these systems engage in a period of chaotic evolution that

can increase the spin rates of the bodies relative to the orbit, and since the tidal energy dissipation

rate is linearly related to the difference between the spin rate of the body and orbital rate, the

energy dissipation is faster than that predicted by the analytic theory.

Once in the doubly synchronous state, the system will contract or expand due to the BYORP

effect creating contact binaries or asteroid pairs (Ćuk, 2007; McMahon and Scheeres, 2010b). The
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BYORP effect is the summation of radiative effects on synchronous secondaries. It can shrink or

expand the semi-major axis. If the semi-major axis expands, the asteroid system will eventually

disrupt when the separation distance equals the Hill radius. If the semi-major axis shrinks, the two

components will at first remain in the doubly synchronous state since this is also the stable relative

equilibrium state until the separation distance reaches a lower limit and the relative equilibrium

state becomes unstable (Scheeres, 2009b). Simulations show the impacts occur very soon (< 100

days) after reaching the stability limit, and the perpendicular and tangential impact velocities for

1 km bodies are < 50 mm/s, modest enough to be capable of creating contact binaries. These

impact velocities are gentle enough that they would not disrupt the figure of the bodies creating

the contact binaries. Thus, high mass ratio evolution is responsible for creating doubly synchronous

binaries, which can evolve into contact binaries or asteroid pairs.

The end products of this sequence are single “rubble pile” asteroids, so this is a lifecycle. We

propose a possible contact binary loop that high mass ratio systems could get stuck in, whereby the

components of a contact binary repeatedly fission and re-impact. Each component maintains its

relative orientation to the other, so that the YORP effect, BYORP effect, and mutual body tides

all act similarly each time the system goes through the cycle. The estimated timescales of the tidal

process and the BYORP process are roughly an order of magnitude shorter than the estimated

timescale of the YORP process (Rossi et al., 2009; McMahon and Scheeres, 2010a). This would

explain why contact binaries are so prevalent compared to doubly synchronous systems. Contact

binaries appear to be 9% of the NEA population, and very roughly this theory would predict that

the doubly synchronous population would be ∼ 5 times smaller due to timescales. Also, this theory

would predict that the ratio of timescales would reflect the ratio of contact binaries to doubly

synchronous systems with a caveat regarding asteroid pair production from doubly synchronous

systems.
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1.3.4 Low Mass Ratio Regime

Low mass ratio systems have positive free energy or undergo secondary fission. These systems

typically have mass ratios < 0.2. Coupling between the spin and orbit states drives a large spin

increase in the secondary and an increase in the eccentricity of the system. These systems chaotically

explore their phase space until an escape trajectory is discovered or secondary spin fission occurs,

which will be further defined in Section 1.3.5.

If low mass ratio systems are evolved after a rotational fission event and they are not allowed

to secondary spin fission, then almost all systems will disrupt. 450 low mass ratio systems were

simulated starting from rotational fission and evolved considering tri-axial gravitational potentials,

mutual body tides, and solar gravitational perturbations starting from the relative resting equilib-

rium as described in Section 1.2. The systems were evolved until they disrupted, which is when the

separation distance equals the Hill radius. The Hill radius is taken to be 80.5 primary radii, which

is correct for a system is in a circular heliocentric orbit at 1 AU, but mutual orbits that grow to

this separation distance typically reach much larger separation distances if the system is allowed

to continue to evolve.

The time to system disruption is shown in Figure 1.7, firstly as a function of mass ratio and

secondly as a function of primary shape ratio, defined as the shortest semi-axis divided by the

longest semi-axis of the primary in the plane of motion. Similarly, a secondary shape ratio can be

defined. The initial component mass ratios, which determined the binary mass ratios, were chosen

from a flat distribution ranging from 0.001 to 0.2. Although secondary fission was not allowed

to occur in these simulations, each binary was still defined using the hierarchical “rubble pile”

internal structure as shown in Figure 1.2. Therefore, the internal component mass ratio of each

binary component is chosen from a flat distribution between 0.001 and q/(1 − q), where q is the

mass ratio of the previous fission, this requirement is derived in 1.12. The internal component

mass ratio also determines the shape ratio of the component, since each component is dynamically

modeled as a tri-axial ellipsoid with the same moments of inertia as the hierarchical “rubble pile”
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Figure 1.7: Each point shows the time after initial rotational fission for the simulated system to
disrupt and each cross indicates a system that survived 1, 000 years without disrupting. These
simulations include tri-axial gravitational potentials, mutual body tides and solar gravitational
perturbations. In order from top to bottom, the time to system disruption is shown as a function
of system mass ratio, primary shape ratio, and secondary shape ratio.

internal structure model. Thus the primary shape ratios are distributed between 0.581 and 0.997.

2 ± 1%1 of systems integrated, 7 out of 450, do not disrupt after 1000 years of integration.

1 All uncertainties from the model given as # ± # describe the most likely actual proportion and an estimate
of the sampling error given as a 90% confidence interval. These likelihoods and confidence intervals are calculated
using the Wilson Score Confidence Interval, which best approximates a binomial distribution especially at extreme
probabilities–small number of successes compared to number of trials (Agresti and Coull, 1998).
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The simulation was ended after 1000 years, because the timescale of the BYORP effect becomes

comparable and this effect was not included in the simulation. The 7 binary systems that did not

disrupt evolved very differently than the other 443 systems; the secondary rotation and orbital

periods remained very close to one another, slowly growing as mutual body tides dissipated energy.

The primary rotation period is slightly smaller than the other periods as the system evolves.

These binaries evolved differently than the other systems because their primaries were sig-

nificantly more spherical as shown in Figure 1.7. All surviving binaries had primary shape ratios

greater than 0.98 and all disrupted systems have primary shape ratios below 0.98. The mass ra-

tios and secondary shape ratios do not effect the outcome of the evolution of the system. When

50 more systems were evolved with primary shape ratios restricted to lie between 0.9 and 1 and

the mass and secondary shape ratios varied over the same range as before, these conclusions are

modified slightly. The boundary between disruption and stability is not as sharp, one system with

a primary shape ratio below 0.98 does not disrupt (it had a primary shape ratio of 0.978), and two

systems with primary shape ratios greater than 0.98 do disrupt (they had primary shape ratios

of 0.981). No observed binaries have primaries with primary shape ratios of 0.98 or greater. The

largest known primary shape ratio is 0.96 (Pravec and Harris, 2007), as shown with other observed

binaries in Figure 1.13. Therefore, the 2% likelihood of creating a stable binary that evolves along

the unstable relative equilibrium is strongly dependent on the assumption of a flat distribution in

primary shape ratio, and potentially no primaries after a rotational fission event may ever be that

close to spherical.

These systems are evolving outward along a relative equilibria as theoretically shown in

Scheeres (2007a), where the case of a small ellipsoid rotationally fissioning from a large sphere

is explored. In Scheeres (2009b), it was shown that this relative equilibrium would always been

unstable for two ellipsoids, however if the primary shape ratio is nearly one, then the growth

of this instability may be slow compared to the tidal dissipation. In this case, the system may

evolve outward along the relative equilibrium without chaotically fully exploring its phase space,

instead it may only exchange limited angular momentum and energy between the orbit and rotation
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states causing libration and circulation in the primary, libration with very rare circulation in the

secondary, and small changes in eccentricity and semi-major axis. As the system evolves, tidal

energy dissipation will slowly grow the pericenter, and since the higher order gravitational potential

terms have a 1/r3 functional dependence, the effects of the small non-sphericity of the primary will

diminish even more. The secondary rarely circulates and is often librating with a very small angle,

so the BYORP effect would significantly effect the evolution of the system in potentially only a

few thousand years (Ćuk, 2007; McMahon and Scheeres, 2010a). The properties of these binaries

that survive without disruption are shown in Figure 1.13 and more discussion of their continued

evolution is further discussed in Section 1.3.7.

For those systems that do disrupt, the median time to disruption for all systems is 3272
18 days2

. An exponential decay can be fit to the data N(> t) = 443e−t/τ , where t is the time after rotational

fission, N(> t) is the number of asteroid systems remaining after time t, and τ = 92.0 ± 1.8 days

is the exponential decay timescale. The adjusted R2 value of the fit is 0.996. The half-life to

disruption for low mass ratio systems is then τ1/2 = 63.8± 1.2 days.

As shown in Figure 1.7 and also shown in a simple binning of the data as done in Table 1.2,

there is a trend in the disruption time with the mass ratio. The lower the mass ratio the shorter

the median time to disruption. This is a direct result of the added energy necessary to initially

fission lower mass ratio systems. Higher mass ratio systems experience lower average eccentricity,

explore their orbital phase space more slowly, and thus can find disruption orbits on much longer

timescales. A stronger trend than the dependence on mass ratio is the dependance on primary

shape ratio. The lower the primary shape ratio the shorter the median time to disruption, despite

the energy necessary for rotationally fissioning a system decreasing with a smaller primary shape

ratio Scheeres (2007a). This relatively small effect is strongly counteracted by the increase in the

size of the second order terms in the gravitational potential, which increase the coupling of the spin

and orbit states. The spin-orbit coupling through these non-spherical gravitational terms is how

2 All statistics reported from the model are given as ##
# and describe quantile statistics that enclose 50% of

the data, since the underlying distribution is unknown. In the normal script is the median value, and then in the
subscript is the 25th percentile and in the superscript is the 75th percentile.
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energy is transferred into the orbit from the rotation states eventually disrupting the system. A

useful analogy is the time it takes Theseus to escape the Cretan Labyrinth; the number of exits from

the maze and the speed at which Theseus explores different passages increases with the decreasing

mass ratio and decreasing primary shape ratio of the chaotic asteroid binary. These trends are

nonlinear and appear logarithmic. The disruption time appears to a approach a constant value as

the mass ratio and primary shape ratio approach zero. There appears to be no or a very weak

trend in the disruption time with secondary shape ratio.

The disruption timescales for rotationally fissioned systems are very short compared to the

YORP timescales for fissioning the primary again before the system disrupts. This is true even for

systems with primaries that are more rotationally symmetric than any of the observed primaries of

binary asteroid systems. Stabilization of the secondary via collision with more material fissioned

from the primary would require extremely (and unobserved) large YORP accelerations and hence

very short YORP timescales. Something else must happen to the system before disruption, in order

to form synchronous binaries. We hypothesize from our numerical modeling that this process is

spin fission of the secondary.

1.3.5 Secondary Spin Fission

Rotational fission rests on the premise that asteroids are “rubble piles,” and so this naturally

leads to the assumption that the primary and secondary members of the chaotic binary formed from

rotational fission are also “rubble piles.” During the evolution of the two-body system, spin-orbit

coupling can increase the spin rate of the secondary such that it undergoes rotational fission of its

“rubble pile” structure. Both asteroids undergo surface fission at similar rotation rates, however

because of the large mass difference between the bodies they disrupt at very different rotational

kinetic energies. It takes much less energy transferred via spin-orbit coupling to the secondary to

fission that body.

The most conservative scenario for secondary spin fission is surface fission–the condition for

a massless test particle resting on the surface of the secondary to become unbound. A real massive
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component would become unbound at some lesser condition as described in 1.9. The full two-body

integrator checked the surfaces of each asteroid as it evolved for this condition at every time step,

and then implements Brent’s method (a bracketed root finding method) to determine the time and

state of the system when the condition is first satisfied.

During the evolution of the 443 low mass ratio systems simulated above, 178 undergo sur-

face fission of the secondary before orbital disruption. That is 40 ± 4% of the modeled systems

(uncertainties attained using the Wilson Score Confidence Interval). Secondary surface fission is a

conservative limit that corresponds to the spin rate necessary to place a massless test particle on

the surface of the original body into orbit. If these secondaries have “rubble pile” geophysics then

they would secondary fission at lower spin rates Scheeres (2007a). This hypothesis is pursued later

in the numerical simulations discussed in Section 1.3.6.

In Figure 1.8, those systems are shown as crosses at the time of secondary fission, while those

that did not secondary fission are shown as dots at the time of disruption. For those systems that

underwent secondary fission, the median time to surface fission was 51128
27 hours. Those systems

that take the longest to disrupt are also the most likely to go through secondary fission. Spin-orbit

coupling transfers free energy throughout the system temporarily storing it in different reservoirs

such as the spin states of the bodies at different times. If too much energy is stored in certain kinetic

energy reservoirs, the system can be irreversibly changed. These two reservoirs are: the spin energy

of the secondary and the relative translational energy of the bodies. If too much energy is stored

in the translational energy the system will disrupt, and if too much energy is stored in the spin

of the secondary than the secondary will fission. Fission of the primary is theoretically possible,

however it was never observed in the numerical experiments. While the rotation rate needed to

surface fission the primary is the same as the secondary–the surface fission rate only depends on

density (Scheeres, 2007a), the rotational kinetic energy necessary to achieve that rotation rate is

much higher, and a transfer of this much energy into the rotation state of the primary does not

occur.

Figure 1.8 also shows how the likelihood of secondary fission depends on the three parameters
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Figure 1.8: These are the same systems as in Figure 1.7 that disrupted, however now those systems
that underwent secondary, surface fission are distinguished. In the left hand plots, those system
that go through surface fission before disruption are shown as crosses at the time of secondary
fission, while those that did not secondary fission are shown as dots at the time of disruption. The
right hand plots show the fraction of systems in each bin of width 0.025 for mass ratios and 0.05
for shape ratios that underwent secondary, surface fission. The fraction and errors were calculated
using the Wilson Score Confidence Interval. From top to bottom, The time to fission or disruption
and the fission fraction are shown as functions of mass ratio, primary shape ratio and secondary
shape ratio.

in the simulation. The fraction and errors shown in the plots on the right hand side of Figure 1.8

are given for bins of width 0.025 for mass ratio and 0.05 for each of the shape ratios and were

calculated using the Wilson Score Confidence Interval. The fission fraction decreases with increasing

mass ratio, which follows naturally from the decreasing amount of energy necessary to initially

rotationally fission the original body. If there is less energy to transfer via spin-orbit coupling

through the binary system, then there will be less energy to momentarily store in the rotation

reservoir of the secondary. The fission fraction decreases with larger secondary shape ratio. The

smaller second order gravitational potential terms of the secondary lower the coupling of the spin

state to the orbit state decreasing the ability of energy to be transferred into the rotation rate of the
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secondary. The fission fraction decreases with smaller primary shape ratio for a very related reason.

The increased spin-orbit coupling of the primary to the orbit increases the energy transferred

into the orbit and increases the semi-major axis so that the secondary is prevented from being

rotationally accelerated.

1.3.6 Chaotic Ternaries

Secondary spin fission drastically alters the evolution of the system. After secondary fission,

the asteroid system is now a chaotic ternary. These systems could stabilize via tidal dissipation

into the observed ternary asteroid systems, but more likely one of the secondaries will either exit

the system: further stabilizing the orbit of the secondary through removal of energy and angular

momentum, or impact the primary: increasing its spin rate and potentially creating an equatorial

bulge. This process provides a route to the creation of synchronous binaries.

Secondary fission often occurs when the orbit of the secondary is at pericenter and the location

of the fission is on the interior (primary facing) side of the secondary. The fissioned material will

be at apoapse of a new orbit with periapse close to or inside the primary and so this material

will quickly impact the primary. These impacts have speeds < 1 m/s, and so will not disrupt

the primary, but may re-organize it’s shape. This mechanism may be responsible for forming the

observed equatorial bulges seen in the near-Earth asteroid population, specifically primaries of

synchronous binaries and fast-spinning, single asteroids. Impacts are modeled to conserve angular

momentum and mass, and the collision is treated as inelastic as described in 1.10.

The remainder of the secondary still in orbit is now at periapse of a new larger orbit that is

more stable. The secondary fission may repeat many times during the evolution of a system. The

model also incorporates tidal effects including solar gravitational perturbations and mutual body

tides, which work over time to circularize and synchronize the secondary to create the observed

synchronous binaries. The gravitational effects of the Sun on the mutual orbit provide important

stability to the system during the transition period between chaotic evolution and quasi-steady

state evolution dominated by mutual tidal dissipation.
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This process was modeled using the full two-body integrator, as above and initial rotational

fission component mass ratios were drawn from a flat distribution between 0.01 and 0.2 to capture

the complete low mass ratio regime. After the initial rotational fission the secondary is treated as

“rubble pile” itself with initial component mass ratios chosen from a flat distribution between 0.01

and 0.993 . The asteroid is treated as a hierarchical structure as depicted in Figure 1.2, only the

next . Until the secondary fission condition is met, each component of the binary is treated as a

coherent dynamical body. Once the secondary fission condition is met, then the system becomes a

chaotic ternary. After one of the chaotic ternary members is ejected from the system or impacts

another member, then the smaller of the two remaining members is once again treated as a “rubble

pile” with a component mass ratio chosen from a flat distribution with an appropriate upper limit

and subject to the secondary fission condition.

The exact condition for secondary fission is described for the case of a primary tri-axial

ellipsoid and a secondary composed of two spheres in 1.9. The motion of the chaotic ternary,

which is made of one tri-axial ellipsoid and two spheres is determined by the three-body integrator

described in 1.7. This integrator includes the effect of solar gravitational perturbations for a circular

orbit about the Sun at 1 AU and mutual body tides between the primary and each of the satellites.

The three-body system is highly chaotic and rapidly explores its phase space. There are four possible

outcomes to this state: stable ternary system, collision between the spherical bodies, impact of one

spherical member onto the tri-axial primary, and escape of one of the spherical bodies.

526 systems were evolved for 1000 years unless the system disrupts or the components impact

each other. The model defines stable ternary systems as those that last until the end of the

simulation, 1000 years (∼ 104 disruption timescales). Since two of the three members are perfect

spheres not all of the dynamics are captured by the three-body integrator and these systems are

stable in only a limited sense. The three remaining paths are diagrammed in Figure 1.10. The first

path is ejection of one of the satellites. This results in a binary system with a spherical secondary,

3 A flat distribution across all possible values is the simplest assumption. In Section 1.3.5, we chose the more
conservative assumption that results in higher secondary fission ratios given by 1.12.
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but to capture the spin-orbit coupling the secondary is then given some small prolate-ness and a

new internal “rubble pile” structure (shape and mass ratios are randomly drawn from the same

initial, flat distributions). The dynamics are then returned to the two-body integrator and the

system continues to be evolved. The second path from a chaotic ternary to a chaotic binary is

impact of one component of the secondary onto the primary. These impacts occurs at low speeds

< 1 m/s. When this occurs the mass and angular momentum are conserved and the collision is

treated as inelastic as described in 1.10. The third path is impact of the two satellites with each

other and these impacts are treated in the same way. From simulation, the impact velocities of

both of these impacts suggest that single re-shaped asteroids are a more likely outcome rather than

fragmentation. These velocities are described later in this work.

After a binary system has gone through secondary fission, it will have lost energy which raises

the semi-major axis and thereby increasing the periapsis distance. The higher-order gravitational

effects responsible for spin-orbit coupling are strongest at periapse, and so these systems will not

be as affected by spin-orbit coupling. However, the system will often still be eccentric and solar

gravitational perturbations are important for stabilizing and destabilizing these systems. Solar

tides will change the energy and angular momentum of the system and when they stabilize the

orbit they do so by expanding the pericenter and lowering the apocenter, which keeps the system

from impact and disruption.

After 1000 years of evolution, 8±2% of low mass ratio systems are stable binaries, 67±3% of

simulated systems disrupt and become asteroid pairs, and 25± 3% of the simulations end with the

secondary impacting the primary at modest speeds creating re-shaped asteroids. While ternaries

exist in some simulations for a number of years, none of the systems remain as stable ternaries; this

sets an upper limit on the likelihood of stable ternary formation at 0.3 ± 0.3% for our simplified

model. These intervals capture the statistical or random errors but do not include systematic

effects from broad assumptions such as the internal components size distribution (we assumed a

flat distribution). Other systematics such as the assumption of planarity and a full body model

for the three body system will be developed in the future. There is also another route to stable
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Figure 1.9: The perpendicular and tangential velocities in cm/s for every occurence of all the three
types of impacts occurring in the simulation: The dots represent primary impacts–the collisions
that occur between the primary and one of the secondaries of a ternary system, the crosses represent
secondary impacts–the collisions that occur between secondary and tertiary members of ternary
systems, the triangles represent binary impacts–the collisions that occur between secondary and
primary members of binary systems.

ternaries, where the primary of a stable binary goes through YORP-induced fission and the system

may evolve such that this new ternary system does not disrupt. These systems were not modeled
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Chaotic Binary

Chaotic Ternary

Secondary Fission

Primary Impact
51 ± 3%

Secondary Impact
21 ± 2%

Secondary Ejection
28 ± 2%

Figure 1.10: Chaotic ternary to binary loop via secondary fission and three ternary processes. Each
process has a schematic as well as the percent likelihood a system will follow that path. All of these
processes are dynamic and occur on timescales much shorter than a year.

here.

Secondary fission is a dominant process–64± 3% of low mass ratio systems go through it at

least once. Secondary fission creates a chaotic ternary that evolves back into a binary via one of

the three routes. One of the secondaries impacts the primary 51± 3% of the time. Otherwise, one

of the secondaries is ejected from the system 28±2% of the time, or the secondaries collide in orbit

about the primary 21± 2% of the time. All of the these chaotic ternary processes dissipate energy

and produce more stable binaries.

Collisions between the secondaries of a ternary system occur in 17 ± 3% of low mass ratio

systems at least once. Impacts also occur on 83±3% of low mass ratio primaries via either a ternary

component impact after a secondary fission or collision with the secondary in a binary. Each of the

three collision processes has a unique velocity structure shown in the top plot of Figure 1.11. The

median velocity, as well as first and third quartiles are listed in Table 1.3 for all three processes.
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Each type of impact has a unique tangential velocity, but similar perpendicular velocities.

The bottom two plots of Figure 1.11 compare the impact velocities that occur in the model

to catastrophic disruption limits derived elsewhere. The triangles and dots are piled up in both

plots. The middle plot shows the total velocity of the impactor relative to the target and compares

this value to the catastrophic disruption velocity of Stewart and Leinhardt (2009). The upper line

is the critical velocity for projectiles much smaller than the target, which corresponds with impacts

onto the primary of either the binary (triangle) and ternary (dot) systems. The lower line is the

critical velocity for nearly equal size projectile and target. The collisions between secondaries of

ternary systems do not fall entirely into either domain; they have mass ratios between 0.01 and

0.99. From this analysis a minority of collisions may undergo catastrophic disruption, however

analysis of the specific energy of these collisions leads to the opposite conclusion. The bottom

plot of Figure 1.11 shows the specific energy of each impact and compares this to the catastrophic

disruption limits derived by others. The two curved and dotted lines indicate models that include

both internal strength and self-gravity, the two dashed lines only include self-gravity, and the dot-

dashed line represent the self-potential energy of the target for reference. With the exception

of a single impact, these collisions do not catastrophically disrupt the target body, but will re-

arrange material on the surface. For impacts on the primary, material will preferentially impact

the equator and we hypothesize that it creates the commonly observed equatorial bulge and should

fill in gravitational potential lows circularizing the body and further stabilizing the dynamics.

1.3.7 Stable Binaries

There are 41 systems out of 526 forming stable binaries at the end of the post-rotational

fission dynamical simulation. They have a median mass ratio of 0.0030.008
0.001 and a median semi-

major axis of 3.36.0
2.6 primary radii. The distribution of semi-major axes is shown in the top panel

of Figure 1.13. There is an excess of large semi-major axes compared to the observed systems,

however the BYORP effect has not been taken into account, and it will move the semi-major axis

of nominally half of these systems inward. The output binary systems also have eccentricities with
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Figure 1.11: The type of each impact is represented by the same symbols as in Figure 1.9. The
top plot shows the total velocity in cm/s of each impact comparing them to the critical disruption
velocities for rubble piles shown as the dashed line (Stewart and Leinhardt, 2009). The bottom
plot shows the specific energy in erg/g for each impact comparing them to derived catastrophic
disruption thresholds: the dotted lines represent models that include material strength and self-
gravity: the top line is Benz and Asphaug (1999) and the bottom is Durda et al. (1998), the dashed
lines represent models that only include self-gravity: the top line is Love and Ahrens (1996) and
the bottom is Davis et al. (1995), and the dot-dashed line is the self-potential energy of the target.
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Figure 1.12: This shows the primary and secondary shape ratios of the stable binaries. The symbols
are the same as in Figure 1.13.

a median of 0.320.45
0.15 that will also be tidally damped over time.

The median primary rotation period is 3.94.6
3.5 hours and are shown in the middle plot of

Figure 1.13. Compared to the observed systems, the modeled primaries are spinning slowly, however

the YORP effect will continue to spin up the primary and while this effect operates on a timescale

longer than the simulation, the YORP timescale is short compared to the lifetime of the asteroid

system.

The secondaries have fast spin periods, spun up via spin-orbit coupling; the median secondary

spin period is 2.83.7
2.1 hours. The distribution is shown in the lowest panel of Figure 1.13. 29± 5% of

secondaries are retrograde after the chaotic phase. The critical disruption limit only includes mass

ratios > 0.01, which corresponds to secondaries & 100 m in radius, which are either coherent bodies

with internal strength or “rubble piles” bound by cohesive forces. The stable binaries output by the

simulation spin too fast compared to the observed synchronous binaries, however tidal dissipation

will synchronize these systems.
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Figure 1.13: From top to bottom, the distribution of semi-major axes, primary rotation periods
and secondary rotation periods are shown as a function of mass ratio. The triangles represent the
7 binary systems out of 450 that did not disrupt in the simulation that did not allow secondary
fission. The crosses indicate the 41 stable binaries out of 526 that were outputs of the simulation
that did allow secondary fission to occur. The dots indicate observed systems (Pravec and Harris,
2007). The dashed line in the bottom two plots is the critical spin disruption limit (2.33 hour
period) for a body with a density of 2 g/cc, however it only includes bodies & 100 m in radius (i.e.
secondaries with a mass ratio less than 0.001 for a 1 km primary). Bodies smaller than 200 m in
diameter may have internal strength or cohesive binding and so will require greater spin rates to
disrupt.

The timescale for a low mass ratio secondary of a binary asteroid system to evolve to the

synchronous state, τtidal, is estimated by dividing the spin rate, ω, by the magnitude of the tidal
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Figure 1.14: The timescale for synchronization due to mutual body tides as a function of mass
ratio are shown as dots for each modeled system. The dotted line indicates the nominal lifetime for
an NEA asteroid system. The crosses are the analytical de-spinning timescales for known asteroid
systems (Goldreich and Sari, 2009).

acceleration of the secondary, |ω̇tidal|.

τtidal =
ω

|ω̇tidal|
=
Q

5k

(
ω

Gπρ

)
a6 (1.1)

where k = 10−5 is the tidal Love number, Q = 100 is the quality factor, G is the gravitational

constant, ρ = 2 g cm−3 is the asteroid average density, a is the binary system semi-major axis

in units of primary radii (Goldreich, 1963; Goldreich and Peale, 1966). Assuming rubble pile

geophysics, eccentricity will damp for all mass ratios (Goldreich and Sari, 2009). The secondaries,

due to their much smaller dimensions and slower relative spin rate, tidally damp before the primary

and create synchronous binaries (Goldreich and Sari, 2009). Assuming a primary radius of 1
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km, the median estimate of the tidal spin-down timescale for the created synchronous binaries is

1.6× 105 1.7×106

3.0×104
years, as shown in Figure 1.14. The analytic theory of Goldreich and Sari (2009)

predicts a median timescale for the observed synchronous asteroid population within an order of

magnitude of the simulated systems, 1.7 × 105 2.6×105

1.1×105
years, but a very different dispersion. This

dispersion is the result of a few simulated systems having very large and very small secondary spin

periods. Those systems with very small secondary spin periods may not synchronize within their

lifetime in the NEA population and may be observed as asynchronous, high-e binaries, however

these systems seem to only exist for very low mass ratio.

The YORP effect will also evolve the spin state of the primary and secondary, however the

YORP effect will be stronger on the smaller secondary and potentially match the timescale for

tidal synchronization. The evolution of the secondary may follow three paths depending on the

relative directions and strengths of the YORP effect and tides. Firstly, tides and YORP act in the

same direction lowering the timescale to synchronization. Once the system is synchronized, the

YORP effect will not be able to remove it from that state, because the YORP torques will be much

less than the gravity gradient at the separation distances of the observed and simulated systems.

The YORP effect may provide a small source of angular momentum through the secondary to the

system creating a small leading offset in the orientation of the secondary and very slowly evolving

the orbit. The other two ways in which the secondary may evolve occur when the YORP effect and

tides. If tides dominate in strength, then the system will synchronize and the YORP effect will act

as a small sink of angular momentum causing the system separation to shrink and a small trailing

offset in the orientation of the secondary. If the YORP effect dominates, then synchronization may

never occur and the BYORP effect will never evolve the system. Tides will continue to expand

the system, but the YORP effect will keep the secondaries rapidly rotating. This last path may

be responsible for the as asynchronous, high-e binary systems as well, but without the mass ratio

dependance apparent in the previously mentioned source of high-e binaries.

The chaotic evolution of low mass ratio systems including the effects of secondary fission and

the ensuing consequences of impacts and escapes drastically changes the initial spin rate of the
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secondary for the classical tidal theory, which assumes that the secondary starts at the spin fission

limit. Chaotic evolution of the secondary appears as a random walk in spin rate. If the secondary

walks to higher spin rates it will eventually spin fission, and the random walk will be reset for each

of the secondaries. If it walks to slower spin rates, then when the system evolves into classical tidal

evolution, the system will de-spin on a shorter timescale. This would be true of all stable binaries

output by the dynamical model, however some systems form stable binaries with large semi-major

axes. Classical tidal dissipation is inversely related to the separation distance to the sixth power,

and so these systems may only be a factor of a few larger in semi-major axis, but that translates

into a difference of over two orders of magnitude in tidal dissipation rates. Those systems that

take longer than or similarly to the lifetime of an NEA system (∼ 107 years) to synchronize do not

become synchronous binaries, instead they become the rarer high-e binaries.

Once a system is synchronized, the BYORP effect can contract or expand their orbit. Syn-

chronous binaries disrupt once the orbit has expanded to the Hill radius creating asteroid pairs. The

BYORP effect can also contract the orbit to the stability limit leading to the secondary impacting

the primary, re-shaping the body due to the primary’s rapid rotation rate and creating re-shaped

asteroids (McMahon and Scheeres, 2010a). Thus, low mass ratio evolution after rotational fission is

responsible for creating synchronous binaries, high-e binaries, asteroid pairs, re-shaped primaries,

and potentially ternaries.
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Mass
Ratio Bins

0 - 0.05 0.05 - 0.1 0.1 - 0.15 0.15 - 0.2

Time
[Days]

2656
14 3982

20 59133
37 197448

98

Primary
Shape
Ratio Bins

0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Time
[Days]

3565
18 63144

36 104197
56 5321758

270

Secondary
Shape
Ratio Bins

0.6 - 0.7 0.7 - 0.8 0.8 - 0.9 0.9 - 1.0

Time
[Days]

59132
28 54163

24 45127
23 3991

19

Table 1.2: The median disruption time (in days) for four bins of width 0.05 in mass ratio and 0.1
in shape ratio are tabulated. In the subscript is the 25th percentile and in the superscript is the
75th percentile of the data from each bin.

Impact Perpendicular Tangential
Type Velocity [cm/s] Velocity [cm/s]

Primary
Impact

1322
7 5966

51

Secondary
Impact

918
4 713

4

Binary
Impact

36
2 3741

35

Table 1.3: For each type of impact, the median impact velocities as well as the first and third
quartiles are tabulated for the perpendicular and tangential directions relative to the center of
mass of the impacting bodies in cm/s. Collisions between the primary and one of the secondaries
of a ternary are shown in the first row, collisions between the secondaries of a ternary are shown
in the second row, and collisions between the primary and secondary of a binary are shown in the
third row.
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Figure 1.15: The primary spin period of asteroid pairs as a function of mass ratio. The dots are
the output from the simulation and the crosses are observed asteroid pairs (Pravec et al., 2010).

1.3.8 Asteroid Pairs

YORP induced fission is a significant source of asteroid pairs (Pravec et al., 2010). Simulated

disrupted systems also escape with low escape velocities similar to those modeled for asteroid pairs.

The primary spin periods of observed asteroid pairs have a very characteristic dependance on

mass ratio. This dependence is captured naturally by the rotational fission process as shown in

Figure 1.15–the dots are the primaries of simulated disrupted systems and the crosses are observed

asteroids.

1.4 Discussion

This is not the first rotational fission model for asteroid binary systems (Pravec and Harris,

2007; Scheeres, 2007a; Walsh et al., 2008; Holsapple, 2010), but this rotational fission model explains

all observed NEA systems and constructs the entire life history of NEA systems into one coherent
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theory. This theory agrees with previous authors that the progenitors of the NEA population

are disrupted critically spinning asteroids, and that the YORP effect forces asteroids through an

effective random walk up to that disruption limit, or away towards the slow rotator population,

although eventually slow rotators may be spun back up in the other direction or tumbling might

prevent this.

Unlike previously presented rotational fission theories for binary asteroids, this work modeled

the evolution of disrupted systems over long timescales and concluded that these systems always

disrupt. In order to prevent disruption, these systems need to transfer energy out of the orbit of the

system into the spin energy of the bodies, either to stay or be dissipated. In the Walsh et al. (2008)

model the energy is dissipated via accretion of more material onto the secondary. This material

is from subsequent rotational fission of the primary after the initial rotational fission. However,

we discover that rotational fissioned systems disrupt on timescales longer (∼ 102 to 103 orbits)

than the Walsh et al. (2008) model allows the system to evolve (∼ 5 orbits) before implementing

an impulsive YORP torque on the primary, but on timescales much shorter than the equivalent

natural YORP torque would take to develop (& 106 orbits, estimated from the YORP timescale).

The dynamical model is scale independent and so predicts that binary formation occurs at

the same rate across the entire size distribution of NEAs, but other non-incorporated effects begin

to play an important role. Bodies < 100 m in radius may be dominated by cohesive forces so

the “rubble pile” approximation no longer applies (Scheeres et al., 2010). This would reproduce

the observed disappearance of the spin barrier at small size scales (Pravec and Harris, 2007). The

YORP effect depends on the radius of the body to the second power, so at large sizes (> 10 km)

the timescale of the YORP effect approaches the NEA lifetime. These effects create a range of sizes

for which we expect binary asteroids to be formed from rotational fission in: 0.1 to 10 km. This

agrees well with the sizes of the observed binary NEA population–between 0.3 and 3 km Pravec

and Harris (2007), although the upper limit may also be set by small number statistics rather than

the YORP timescale.

This formation mechanism predicts asteroid pairs amongst the NEA population. These will
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be harder to detect than their counterparts amongst the small Main Belt asteroid population, since

the orbit scattering time is much shorter due to interactions with the inner planets, and since the

progenitors are typically smaller, the secondary member of each pair will have a small absolute

size (< 100 m), which makes orbit determination difficult. In the small Main Belt asteroid pair

population, this theory agrees with the already accepted idea that each pair is formed in a rotational

fission event Pravec et al. (2010).

Shortcomings of the above model fall into two camps: unknown parameters and computa-

tional shortcuts. Geophysical parameters including the tidal Love number and the tidal quality

number have significant uncertainties. In the model above, we were forced to assume a flat initial

mass ratio, essentially the internal component mass distribution, since the actual distribution is

unknown. Computationally, we took a number of shortcuts to reduce complexity and computa-

tional time including very simple impact physics, first-order tidal models, and second-order gravity.

These assumptions probably had only a small impact on the efficiencies in the code. The largest

computational time saver was the assumption of a planar system–an assumption supported by the

high angular momentum content of rotationally fissioned asteroids, but this assumption removes

an energy dissipation mechanism. When these systems fission, the components will most likely not

be rotating about their principal axes. Thus, each component may damp energy through internal

torques induced from non-prinicipal axis rotation. This model has the ability to be improved with

more observations and more complete physics, however we feel that none will change the overall

conclusions regarding the evolutionary tracks, but they will have an impact on the efficiencies of

the different pathways.

1.5 Conclusion

The evolution of NEA systems is driven by four important processes: initial rotational fission,

secondary fission, impacts, and solar gravitational perturbations. The lower the mass ratio, the

faster the spin rate required for initial rotational fission, and thus the more energy in the eventual

binary system. The free energy transitions from positive to negative at a mass ratio of 0.2 for the



41

spherical end state, this divides the evolution of rotationally fissioned systems into two paths as

shown in Figure 1.1. Secondary fission can occur before low mass ratio systems are ejected. Enough

energy is transferred to the secondary via spin-orbit coupling so that it undergoes rotational fis-

sion and creates a chaotic ternary as shown in Figure 1.2. Secondary fission grows increasingly

likely as mass ratio decreases, since the initial energy in the system increases and rotational energy

transferred to the secondary is more effective on a less massive secondary. Chaotic ternaries are

formed from secondary fission and evolve quickly back into a chaotic binary state, however impacts

dissipate energy and produce more stable binaries. Escape of ternary members can also stabilize

the system. Solar gravitational perturbations are important in changing the eccentricity and are re-

sponsible for both stabilizing and destabilizing binary systems. NEAs are actively evolving systems

driven by these four processes and the observed asteroid classes are stages in this evolution.

Radiative processes dominate the evolution of the NEA population from the Yarkovsky effect

which drives small Main Belt asteroids into resonances with Jupiter pushing them into the NEA

population, to the YORP effect which dominates their spin evolution and forces them to disrupt

forming asteroid systems, to the BYORP effect which drives these systems back together or apart.

The lives of NEAs are exciting–each asteroid may go through many iterations of the cycle shown

in Figure 1.1 taking different paths each time.

1.6 Derivation of the Two-Body Equations of Motion

The equations of motion of the two-body system will be derived from the Euler-Lagrange

equations of motion modified to account for mutual body tides and then placed in the rotating

coordinate frame of a body encircling the Sun at 1 AU to account for solar tides (using the Hill

approximation).

The two-body integrator models the system as two tri-axial ellipsoids, E1 and E2, expanded

to 2nd order in their moments of inertia. A relative coordinate system with four degrees of freedom

is defined: r is the separation distance between the centers of mass of the two bodies, θ tracks the

rotation of the line connecting the centers of mass relative to an inertial frame, and φn tracks the



42

φ2

φ1

θ
r

E1

E2

Figure 1.16: Two-body Coordinate System

rotation of the body n with respect to the line connecting the centers of mass. Figure 1.16 shows

a schematic of the two-body coordinate system. In order to track the rotation of a body in an

inertial frame, ψn, the two coordinates would need to be added ψn = θ + φn.

The density of each body is ρ = 2 g/cc–a typical density for small bodies in the solar system.

Each tri-axial ellipsoid is a prolate body with axes αn > βn = γn, where γn is oriented along the

rotation axis. All rotation axes are aligned, thus all motion is constrained to a plane.

The kinetic energy of the system T has four independent degrees of freedom when written in

the relative coordinate system:

T =
1

2
m
(
ṙ2 + r2θ̇2

)
+

1

2

2∑
n=1

Inz

(
φ̇n + θ̇

)2
(1.2)

where m is the reduced mass of the system and Ini is the moment of inertia of body n along axis i.

The potential energy V used is a 2nd order expansion in the moments of inertia corresponding

to tri-axial ellipsoids, and has three independent degrees of freedom when written in the relative

coordinate system:
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V = −GM1M2

r

{
1 +

1

2r2

[
Ī1 + Ī2 −

3

2

(
Ī1x + Ī1y + Ī2x + Ī2y

− cos (2φ1)
(
Ī1y − Ī1x

)
− cos (2φ2)

(
Ī2y − Ī2x

))]}
(1.3)

where Mn is the mass of body n, Īn is the sum of the reduced (mass normalized) inertial moments

of body n, and Īni is the reduced (mass normalized) moment of inertia of body n along axis i.

The modified Euler-Lagrange equations of motion for this system:

d

dt

(
∂L

∂q̇

)
=
∂L

∂q
− Γq (1.4)

where the tidal torque term Γq appears only in the relative spin coordinate equations as Γφ1 or

Γφ2 , and is zero for all others, Γr = Γθ = 0. This tidal torque is responsible for dissipating energy

in the form of heat. The exact form of the tidal torque is discussed in 1.8.

The Euler-Lagrange equation of motion for the separation distance r is solved straightfor-

wardly for r̈:

r̈ = rθ̇2 − Vr
m

(1.5)

where Vr is the partial derivative of the potential energy with respect to the separation distance r:

Vr =
GM1M2

r2

(
1 +

3

2r2

(
Ī1 + Ī2 −

3

2

(
Ī1x + Ī1y + Ī2x + Ī2y

− cos (2φ1)
(
Ī1y − Ī1x

)
− cos (2φ2)

(
Ī2y − Ī2x

))))
(1.6)

Since the Lagrangian does not depend directly on θ, the right-hand side of the orbital Euler-

Lagrange equation of motion is zero and so the it becomes a statement of the conservation of

angular momentum:

d

dt

(
I1z φ̇1 + I2z φ̇2 + Iz θ̇

)
= 0 (1.7)
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where Iz = I1z + I2z +mr2 and is an abbreviation for the system or polar moment of inertia.

The modified Euler-Lagrange equations of motion for the relative spin coordinates φn for

each body n:

Inz φ̈n + Inz θ̈ = −Vφn − Γn (1.8)

where Vφn is the partial derivative of the potential energy with respect to the relative spin coordinate

φn:

Vφn =
3

2

(
GM1M2

r3

)(
Īny − Īnx

)
sin (2φn) (1.9)

The modified Euler-Lagrange equations of motion for the angular coordinates can be arranged

in a matrix representation:


I1z 0 I1z

0 I2z I2z

I1z I2z Iz




φ̈1

φ̈2

θ̈

 =


−Γ1 − Vφ1
−Γ2 − Vφ2
−2mrṙθ̇

 (1.10)

Solving all three angular equations of motion simultaneously gives the equations of motion

for the individual angular coordinates:

θ̈ = −2ṙθ̇

r
+

Γ1 + Γ2 + Vφ1 + Vφ2
mr2

(1.11)

φ̈1 =
2ṙθ̇

r
− Γ1 + Γ2 + Vφ1 + Vφ2

mr2
− Γ1 + Vφ1

I1z

(1.12)

φ̈2 =
2ṙθ̇

r
− Γ1 + Γ2 + Vφ1 + Vφ2

mr2
− Γ2 + Vφ2

I2z

(1.13)

These relative equations of motion are in the orbiting reference frame of the asteroid system.

This system can be transformed to the inertial frame of the Sun via Hill’s approximation; planar

motion has already been assumed, but we also now assume a circular heliocentric orbit:

r̈s = r̈ + 3n2r cos θ + 2nrθ̇ (1.14)
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θ̈s = θ̈ − 2nṙ (1.15)

where n is the mean motion of the asteroid system about the Sun.Thus, the equations of motion

for the two-body integrator are:

r̈s = rθ̇2 − Vr
m

+ 2nrθ̇ + 3n2r cos θ (1.16)

θ̈s = −2ṙθ̇

r
+

Γ1 + Γ2 + Vφ1 + Vφ2
mr2

− 2nṙ (1.17)

φ̈1 =
2ṙθ̇

r
− Γ1 + Γ2 + Vφ1 + Vφ2

mr2
− Γ1 + Vφ1

I1z

(1.18)

φ̈2 =
2ṙθ̇

r
− Γ1 + Γ2 + Vφ1 + Vφ2

mr2
− Γ2 + Vφ2

I2z

(1.19)

1.7 Derivation of the Three-Body Equations of Motion

The equations of motion of the three-body system will be derived from the Euler-Lagrange

equations of motion modified to account for mutual body tides and then placed in the rotating co-

ordinate frame of a body encircling the Sun at 1 AU to account for solar tides (Hill approximation).

The mutual body tide between the two smallest members is neglected.

The three body integrator models the system as one tri-axial ellipsoid, E1, and two spheres,

S2 and S3. The system is described in an inertial cartesian coordinate system with nine coordinates.

Each body n has three coordinates: xn and yn track the body’s center of mass and ψn tracks the

rotation angle. Figure 1.17 shows a schematic of the three-body coordinate system.

The rotation ψm, orbital angle θ1m and relative spin angles φ1m of the sphere m are shown

schematically in Figure 1.18 and are related:

φ1m = θ1m − ψ1 = arctan

(
ym − y1

xm − x1

)
− ψ1 (1.20)

The density of each body is ρ = 2 g/cc–a typical density for small bodies in the solar system.

The tri-axial ellipsoid is a prolate body with axes α1 > β1 = γ1, where γ1 is oriented along the
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E1

ψ1

Smm

ψm

φ1m
θ1m

θm

φm

Figure 1.17: Three-body Coordinate System

rotation axis. The spheres are defined by a radius Rm. All rotation axes are aligned, thus all

motion is constrained to a plane.

The kinetic energy of the system T has nine independent degrees of freedom when written

in the cartesian/angular coordinate system:

T =
1

2

3∑
n=1

Mn

(
ẋ2
n + ẏ2

n + Īnψ̇
2
n

)
(1.21)

where Īn is the sum of the reduced (mass normalized) inertial moments of body n.

The potential energy V used for the primary is a 2nd order expansion in the moments of

inertia corresponding to a tri-axial ellipsoid, and each of the secondaries is a Keplerian potential

corresponding to a sphere. The potential energy has 7 independent degrees of freedom when written

in the cartesian/angular coordinate system:



47

E1

(x1, y1)

(x2, y2)
(x3, y3)
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ψ1

ψ2

ψ3

Figure 1.18: Three-body Angular Coordinate System

V = −GM2M3

r23

− GM1M2

r12

{
1 +

1

2r2
12

[
Ī1 −

3

2

(
Ī1x + Ī1y − cos (2φ12)

(
Ī1y − Ī1x

))]}
− GM1M3

r13

{
1 +

1

2r2
13

[
Ī1 −

3

2

(
Ī1x + Ī1y − cos (2φ13)

(
Ī1y − Ī1x

))]}
(1.22)

where Īni is the reduced (mass normalized) moment of inertia of body n along axis i and rnm is:

rnm =

√
(xn − xm)2 + (yn − ym)2 (1.23)

The Euler-Lagrange equations of motion for the cartesian coordinates are simply solved for

ẍ and ÿ:

ẍn =
1

Mn

∂V

∂xn
ÿn =

1

Mn

∂V

∂yn
(1.24)
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The modified Euler-Lagrange equation of motion for the angular coordinate of the primary

can be solved for the ψ̈1:

ψ̈1 =
1

I1

(
dV

dψ1
− Γ21 − Γ31

)
(1.25)

There are two tidal torques, Γm1, from each spherical body m onto the primary. These tidal torques

are responsible for dissipating energy in the form of heat. The tidal torque depends linearly on the

relative spin angle rate, φ̇1m, and inversely on the distance between the bodies, r1m to the fifth

power. The exact form of the tidal torque is discussed in Section 1.8.

The modified Euler-Lagrange equations of motion for the angular coordinates of the spheres

are solved:

ψ̈m =
1

Im
Γ1m (1.26)

where there is only one tidal torque, Γ1m, acting on each spherical body from the primary. The tidal

torque between the spherical bodies is neglected. These tidal torques are responsible for dissipating

energy in the form of heat. The tidal torque depends linearly on the relative spin angle rate, φ̇m,

and inversely on the distance between the bodies, r1m to the fifth power. The exact form of the

tidal torque is discussed in Section 1.8.

These relative equations of motion are in the orbiting reference frame of the asteroid system.

This system can be transformed to the inertial frame of the Sun via Hill’s approximation; planar

motion has already been assumed, but we also now assume a circular heliocentric orbit:

ẍns = ẍn + 2nẏn + 3n2ẋn (1.27)

ÿns = ÿn − 2nẋn (1.28)

ψ̈ns = ψ̈n (1.29)

where n is the mean motion of the asteroid system about the Sun.Thus, the equations of motion

for the two-body integrator are:



49

ẍns =
1

Mn

∂V

∂xn
+ 2nẏn + 3n2ẋn (1.30)

ÿns =
1

Mn

∂V

∂yn
− 2nẋn (1.31)

ψ̈1s =
1

I1

(
dV

dψ1
− Γ21 − Γ31

)
(1.32)

ψ̈ms =
1

Im
Γ1m (1.33)

1.8 Derivation of the Tidal Theory

The model applies the classical tidal torque presented in Murray and Dermott (2000) for a

spherical (point source) satellite j acting on a spherical body i:

Γi = sign
(
φ̇i

) 3

2
k

(
3

4πρi

)2 GM2
iM

2
j

r6
ijRi

sin(2εi) (1.34)

where k is the tidal Love number and ε is the tidal lag angle. Ri is the radius of body i if it were

a sphere of equal mass. The tidal bulge is independent of the shape of the body. The sign of φ̇i

determines whether the tidal bulge is leading or trailing the tide-raising satellite, which determines

the direction of angular momentum transfer between the orbit and the spin state. The tidal lag

angle can be related to the specific tidal dissipation function Q, which describes how effective the

body is at tidally dissipating energy:

Q =
1

tan 2ε
≈ 1

2ε
(1.35)

However this classical torque presents a problem when φ̇i changes through zero, which occurs

for many of these systems due to the chaotic nature of their evolution and the large spin-orbit

coupling. When φ̇i crosses zero, Γi changes sign instantaneously. This is unphysical since the

bulge is a real phenomenon and would have some finite crossing time. Instantaneous switching is

a difficulty for numerical integration as well. We introduce a modified torque that will linearize Γi

when φ̇i ≈ 0.
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Γi =

 Γi |φ̇i| > δi

Γi
φ̇i
δi
|φ̇i| ≤ δi

(1.36)

where δi is some small characteristic angular spin rate for body i. We can derive an appropriate

small characteristic angular spin rate from the torque equation φ̈i = Γi/Iiz :

δi = ∆φ̇i =
Γi
Iiz

∆t (1.37)

where ∆t is some characteristic time, which can be derived from the crossing time of a pressure

(seismic) wave:

∆t =
∆l

∆v
(1.38)

where ∆l = 2Ri is the characteristic length scale of the body, and ∆v is the pressure (seismic) wave

velocity ci. The pressure wave velocity can be found from the central pressure Pi:

ci =

√
Pi
ρi

=

√
2πGρi

3
Ri (1.39)

The small characteristic angular spin rate δi is now determined:

δi =
Γi
Iiz

2Ri
ci

=
Γi
Iiz

√
6

πGρi
(1.40)

This gives the modified tidal torque:

Γi =


sign

(
φ̇i

)
3
2k
(

3
4πρi

)2 GM2
i M

2
j

r6ijRi
sin(2εi) |φ̇i| > δi√

πGρi
6 Iiz φ̇i |φ̇i| ≤ δi

(1.41)

1.9 Secondary Fission Condition

The coordinate system is given in Figure 1.19, and the condition for secondary fission is:

~̈rR2B · r̂2B > 0 (1.42)
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Figure 1.19: New Relative Coordinate System

~̈rR2B · r̂2B = − GMA

|~rAB|2
+ |~r2B||Ω2|2 −

(
1 +

MB

MA

)−1 GM1

|~r1B|2
[
1 +

3

2|~r1B|2
×(

Ī1 −
3

2

(
Ī1x + Ī1y + (Ī1x − Ī1y) cos 2ψ1B

))]
(r̂1B · r̂2B)− GM1

|~r1A|2
×[

1 +
3

2|~r1A|2
(
Ī1 −

3

2

(
Ī1x + Ī1y + (Ī1x − Ī1y) cos 2ψ1A

))]
(r̂1A · r̂2B)

(1.43)

1.10 Impact Mass Redistribution

When the spherical secondary re-impacts the tri-axial primary, the mass of the secondary is

placed onto the primary so as to bring the surface closer to a geopotential along the equator (oblate

spheriod). The smaller β axis is increased by a height:

h =
R3
s

αβ
(1.44)

where Rs is the radius of the secondary and α and β are the original tri-axial axes.
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1.11 Modeling Tidal Timescales

High mass ratio systems (mass ratio > 0.2) were evolved from YORP induced rotational

fission according to the two-body integrator described exactly as above with the exception of solar

gravitational perturbations which were neglected for this case. According to theory developed

in Scheeres (2009b), if the secondary does not undergo secondary fission and without the influence

of external events, then these systems will evolve from their initial orbital state immediately after

rotational fission to the doubly synchronous (relative equilibrium) state with the same angular

momentum. Mutual tidal dissipation naturally weakens and eventually turns off as the system

approaches and reaches the doubly synchronous state.

The doubly synchronous state has lower energy than the initial state, and this energy is

dissipated via mutual body tides. After evolving each system for 104 years, some of the systems

had reached the doubly synchronous state, and the time that the energy dissipation rate went

effectively to zero was recorded as the time the system became a doubly synchronous system. Many

systems had not reached the doubly synchronous state within 104 years, due to limited computation

resources the timescale for transformation to the doubly synchronous state was determined by

extrapolation. The energy dissipation as a function of time for each system could be fit with a

power law (with greater than 99% confidence in the fit) and that power law was than extrapolated

to zero when the system would be in the doubly synchronous state and there would be no more

mutual tidal energy dissipation.

1.12 Limit on the Mass Ratio of Next Secondary Fission

Let there be a body made of two components M1 and M2. The first component is made up

of two components M11 and M12, so that M11 + M12 = M1. Without loss of generality assume

that:

M12 > M11 (1.45)
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In order that the M2 component fission first the following condition must be met:

M2 > M12 > M11 (1.46)

Divide by M1 to put in terms of mass ratio.

M2

M1
= q2 >

M12

M1
(1.47)

1

q2
<
M11

M12
+ 1 =

1

q12
+ 1 (1.48)

q12 <
q2

1− q2
(1.49)

This condition is not a strong condition since it doesn’t require the mass ratio of a future rotational

fission event to decrease after an initial rotational fission event.



Chapter 2

Study of the Role of Non-gravitational and Tidal Torques on Binary Asteroid

Systems

2.1 Introduction

The previous study determined the post-rotational fission dynamics of binary asteroid sys-

tems, and showed how these dynamics may lead to the formation of all classes of observed near-Earth

asteroid (NEA) binaries. In this study, we focus on the non-gravitational and tidal torques that

evolve these systems when they occupy specific evolutionary states. We will consider asynchronous

binary evolution and then synchronous evolution, which is broken into two parts: joint expansive

evolution and joint opposing evolution. The joint opposing evolution leads to a newly discovered

tidal-BYORP equilibrium and my participation in an observing campaign to confirm that the syn-

chronous binary population occupies this equilibrium. That campaign, my contributions and it’s

first results are discussed at the end of the study.

The secular evolution of binary systems is determined by three important torques: mutual

body tides, the YORP effect, and the binary YORP effect. Mutual body tides in the context of

binary asteroids have been considered in the past by Margot et al. (2002) and Taylor and Margot

(2011), but the NEA population is constantly evolving due to the incredible influence of elec-

tromagnetic radiation and the importance of those torques has not been fully appreciated. The

YORP effect, torque from the incident solar irradiation and thermal radiation of an asymmetric

body, can rotationally accelerate individual asteroids until centrifugal accelerations match gravi-

tational accelerations, releasing part of the body into orbit and creating a binary asteroid system
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(i.e. rotational fission). The YORP effect can also delay tidal synchronization and accelerated

newly de-synchronized binary members. The BYORP effect can contract and expand binary sys-

tems creating non-binary asteroid classes such as contact binaries and asteroid pairs. Lastly it’s

important to realize that for the near-Earth asteroid population planetary flybys have a strong,

stochastic influence on binary systems. Figure 2.1 shows the evolutionary pathways from rotational

fission to each of the observed binary classes indicated by an underline and is an update from the

flowchart shown in the previous study to better specify long-term evolutionary states and the role

of planetary flybys.

A remark on the assumptions going forward. For the rest of this thesis, we will assume that

these binaries formed via rotational fission and so share a common parent body (Margot et al.,

2002; Scheeres, 2007a; Walsh et al., 2008; Pravec et al., 2010; Jacobson and Scheeres, 2011a). Each

component of the binary will share the same intensive properties such as density ρ, tidal dissipation

number Q, rigidity µ, and yield strain εY . Extensive properties such as radius R, mass ratio q,

and tidal Love number k depend on the absolute sizes of the binary members. Having made

this assumption, it is important to realize that there are measurements that are consistent with

differences in quantities such as density between the primary and secondary of a binary system Ostro

et al. (2006), but these differences are only of order tens of percent and often do not exceed the

uncertainties. The added clarity from these assumptions to the analytical treatment is valuable

and is likely not to effect the results of any particular calculation by a substantial amount.
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Asteroid

q � 0.2

q � 0.2

Asteroid Pair
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Chaotic Ternary

Doubly Synchronous
Binary

Contact BinaryChaotic Binary
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Re-Shaped Asteroid
Asteroid Pair Synchronous Binary

In Equilibrium

Small Semi-major Axis
Asynchronous Binary

Large Semi-major Axis
Asynchronous Binary

Expanding
Synchronous Binary

Binary
In Any State

Flybys can occur during
any stage of binary evolution

Figure 2.1: This evolutionary flowchart includes both the role of flybys, the tidal-BYORP equilib-
rium, and the large asynchronous binaries.
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This study makes strong use of the July 1, 2011 binary parameter release from http://www.

asu.cas.cz/asteroid/binastd.htm, which is compiled by methods described in Pravec et al.

(2006) and Pravec and Harris (2007) and maintained by Petr Pravec and collaborators. It contains

entries for many asteroid binary systems, however we make special use of the systems shown in

Table 2.1. They are divided into the four categories established in this thesis: tight asynchronous

binaries, wide asynchronous binaries, singly synchronous binaries and doubly synchronous systems.

These morphologies are determined by the spin rates of the secondary and primary relative to the

orbit rate, as well as the separation distance for the case of asynchronous systems.

In Table 2.1, the first two columns are the heliocentric semi-major axis a� and eccentricity

e�, which are important for the radiative torques. The mass ratio q is in column three. The

primary radius Rp is in column four. For many calculations, we use a spherical approximation for

both bodies and the secondary radius Rs = q1/3Rp. Then the mutual semi-major axis a is given in

both primary Rp and kilometers. The next three sets of columns contain the primary period Pp,

the secondary period Ps, and the orbital period Po in two different units Pd, which is the period

disruption limit Pd = 2π/ωd =
√

3π/ρG, and hours. If a period is near Pd then it is spinning near

it’s rotational fission limit.

2.2 Asynchronous Binary Evolution

As shown in the previous study, the outcome of rotational fission rotational fission does not

always lead to binary formation. When it does, the binary orbits are often eccentric and the

spin states are not synchronous with orbit. For all of these systems mutual body tides play a

stabilizing role. These tides damp eccentricity and act to synchronize each member of the system.

The rotational acceleration due to the YORP effect is always occurring though (except for the

special case when the YORP coefficient is precisely zero). The YORP effect acts on each member

and while it does not directly influence the mutual orbit evolution, it can both assist or resist the

synchronization of each member, independently. There is a competition between tides and the

YORP effect as to whether a binary member synchronizes or not.

http://www.asu.cas.cz/asteroid/binastd.htm
http://www.asu.cas.cz/asteroid/binastd.htm
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2.2.1 The YORP effect and mutual body tides

The YORP effect is the cumulative torque due to incoming solar irradiation and outgoing

thermal emission and its effect on the rotational dynamics of the body (Rubincam, 2000). The

YORP effect secularly evolves the spin rate and the obliquity, but the obliquity change is slow

compared to the rotational acceleration of the body. The YORP coefficient Y depends strongly on

the shape of the body, but does not depend on its size (extent or mass). Scheeres (2007b) showed

that YORP coefficients are on order 2.5× 10−2 when calculated solely from the shape of the body

and this was found to be in general agreement with spin model comparisons with observed asteroid

population (Rossi et al., 2009). Golubov and Krugly (2012) has shown that there may be another

component of the YORP torque due to thermal radiation from heat that has been conducted across

the surface of the body. Interestingly, this new YORP torque is preferentially prograde, whereas

the original YORP torque is not biased in either direction. So far, the theory for this torque is in

its infancy but it is clear that regolith properties, asteroid size, and spin rate will play an important

role. For now, Golubov and Krugly (2012) showed that the torque may be of the same order of

magnitude as the more theoretically developed Rubincam (2000) YORP torque (Scheeres, 2007b;

Nesvorný and Vokrouhlický, 2008).

The orbit and rotation averaged YORP rotational acceleration ω̇Y to first order in e for the

primary and secondary, respectively, is:

ω̇Y,p =
YpH�
2πρR2

p

ω̇Y,s =
YsH�

2πρR2
pq

2/3
(2.1)

where H� = (2/3)F�/(a
2
�

√
1− e2

�) and F� is the solar radiation constant (F� ∼ 1014 kg km

s−2) (Scheeres, 2007b). These YORP acceleration equations do not include the Golubov and

Krugly (2012) YORP torque and so for rapid (few hour period) and small (0.1 to 1 km) asteroids,

there may be a significant additional acceleration. In the following analysis, we incorporate this

torque by designating a large region of uncertainty (factor of ten) to the YORP coefficient.

Since the YORP torque depends on the surface area of the binary components, the YORP ac-

celeration of the primary is a factor of q2/3 smaller if both members have similar YORP coefficients.
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The YORP coefficient is independent of size and only dependent on shape.

Relative motion between components in a binary system leads to tidal dissipation of energy

and the transfer of angular momentum between spin and orbit states. Assuming spherical, homoge-

nous bodies with identical compositions and a mutual orbit with low eccentricity, an asteroid’s first

order geophysics can be characterized by two parameters: the tidal Love number and the tidal

dissipation number. The tidal Love number k is the ratio of the additional gravitational potential

produced by the redistribution of mass relative to the deforming potential, and theoretically is

thought to depend on the size and internal properties of the body. The tidal dissipation number

Q describes how effective the body is at tidally dissipating energy. It is a quality factor defined as:

Q = 2πE0/
∮
dE
dt dt, where E0 is the maximum energy stored in the tidal distortion during a cycle

and
∮
dE
dt dt is the energy dissipated over one cycle.

For systems with ω > n, the rotational acceleration ω̇T is to first order in e for both the

primary and the secondary, respectively:

ω̇T,p = −15kpω
2
dq

2

4Qa6
ω̇T,s = −15ksω

2
d

4Qa6
(2.2)

where ωd = (4πGρ/3)1/2 is the surface disruption spin limit for a sphere, G is the gravitational

constant, and a is the semi-major axis measured in primary radii Rp (Murray and Dermott, 2000).

If ω < n the sign is opposite, and when ω = n there is no longer any tidal damping to first order in

e. This process is often referred to as tidal locking of the satellite and will occur unless the YORP

acceleration of the secondary is greater than the tidal rotational damping.

The tidal rotational acceleration of the primary is a factor of q2 smaller than the secondary,

if they have the same tidal Love numbers. The tidal-BYORP equilibrium theory presented later

in this study suggests that the tidal Love number k ∝ R−1. In this case the factor is q7/3. This

strong dependence on mass ratio is why systems with high mass ratios can synchronize on similar

timescales while low mass ratio systems cannot. It is important to note that this factor of q7/3 is

different than the q2/3 for YORP rotational acceleration. For instance, if the secondary of a system

has nearly equal YORP and tidal torques, the primary will be dominated by the YORP torque.



63

2.2.2 The tidal YORP coefficient

It is useful to quantify the tidal acceleration in terms of a tidal YORP coefficient Yt. This

coefficient can be calculated from the current binary parameters of a systems and estimates of the

tidal parameters and then compared to the range of possible YORP coefficients. The tidal YORP

coefficient for the primary and secondary, respectively, is:

Yt,p =
15πkpω

2
dρR

2
pq

2

2QH�a6
Yt,s =

15πkpω
2
dρR

2
pq

2/3

2QH�a6
(2.3)

The tidal YORP coefficient of the primary is a factor of q5/3 smaller than the tidal YORP coefficient

for the secondary using the tidal-BYORP equilibrium theory for the tidal Love number.

If the YORP coefficient of a body is less than the tidal YORP coefficient, then that body

will synchronize. If the YORP coefficient is greater than the body will rotational accelerate away

from synchronization towards rotational fission. Using the tidal-BYORP equilibrium theory and

assuming a typical BYORP coefficient of 10−2, which is consistent with the estimate from 1999

KW4 (McMahon and Scheeres, 2010a) and the results in the third study of this thesis, an estimate

for the tidal parameters can be made. Since the tidal Love number and the tidal quality number

are degenerate in this problem, we devise that their ratio is:

k

Q
= 4× 10−6

(
1 km

R

)
(2.4)

where R is the radius of the body.

Using this tidal theory and the known binary parameters shown in Table 2.1, the tidal YORP

coefficients for each primary and secondary can be calculated. The big caveat is that the current

semi-major axis is not necessarily the only semi-major axis, the system has occupied. Particularly

if the system is currently synchronous, then the gravity gradient due to a permanent bulge or

non-spherical figure would prevent the YORP torque from de-synchronizing the system at a new

semi-major axis. Therefore, systems that have undergone significant semi-major axis evolution due

to the BYORP effect which requires synchronization may now have evolved to a semi-major axis

where the tidal YORP coefficient is very small.
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Figure 2.2: The tidal YORP coefficients for each of the 10 doubly synchronous binary systems as a
function of mass ratio (to spread them out and make them identifiable). The primaries are marked
with squares and the secondaries are marked with triangles. Dashed lines at 0.25, 0.025 and 0.0025
demarcate, a plausible range for the YORP coefficient.
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The doubly synchronous population is a good example of a population that we theoretically

predict to have undergone significant BYORP evolution. Even so, 8 of 10 systems (809 Lundia, 854

Frostia, 1089 Tama, 1139 Atami, 1313 Berna, 2478 Tokai, 4492 Debussy and 69230 Hermes) have

tidal YORP coefficients for both binary members that are significantly larger than any plausible

YORP coefficients. These are shown in Figure 2.2. Both members of these systems should be

tidally dominated and they are. The remaining two systems may represent special cases. The

secondary of 7369 Gavrilin has a significantly large tidal YORP coefficient but the primary has a

large but not necessarily implausible coefficient. It could be that the primary of Gavrilin has a low

YORP coefficient or a YORP coefficient in the direction of synchronization. 4951 Iwamoto is a

more peculiar case, both members have low tidal YORP coefficients and this would suggest that

the YORP effect should dominate and the bodies not be synchronous unless the YORP torque is in

the direction of synchronization. It is also possible that the BYORP effect is expanding the mutual

orbit of Iwamoto and Gavrilin, and this expansion has weakened tides relative to the YORP effect,

which is independent of the mutual orbit. The YORP effect is not strong enough to overcome the

gradient until the system has expanded to much larger semi-major axes often larger than the Hill

radius. This is shown at the very end of this study.

The singly synchronous binary population is proposed to be in a tidal-BYORP equilibrium,

which keeps these systems at similar semi-major axes as when the systems stabilized after rota-

tional fission, which is shown in the previous study in this thesis. As shown in Figure 2.3, Every

synchronous binary system (1338 Duponta, 2044 Wirt, 2131 Mayall, 3309 Brorfelde, 5477 Holmes,

6084 Bascom, 9069 Hovland, 17260 (2000 JQ58), 65803 Didymos, 137170 (1999 HF1), 175706 (1996

FG3), 276049 (2002 CE26), 2005 NB7, 31345 (1998 PG), 66063 1998 RO1, 66391 (1999 KW4), 7088

Ishtar, 76818 (2000 RG79, and 85938 (1999 DJ4)) except 185851 (2000 DP107) has a secondary

with a very high tidal YORP coefficient and a secondary with a tidal YORP coefficient comparable

to the plausible ranges of the YORP coefficient or lower, which is consistent with synchronization

of the secondary and YORP acceleration of the primary or very slow rotational acceleration of the

primary. All of these primaries are rapidly rotating and many are observed to be prograde, which



66

á
á á
á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

á

ó
ó

ó
ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó

ó
ó

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.001

0.1

10

Mass Ratio q

T
id

al
Y

O
R

P
co

ef
fi

ci
en

tY
tid

al

Figure 2.3: The tidal YORP coefficients for each of the 20 singly synchronous binary systems as a
function of mass ratio (to spread them out and make them identifiable). The primaries are marked
with squares and the secondaries are marked with triangles. Dashed lines at 0.25, 0.025 and 0.0025
demarcate, a plausible range for the YORP coefficient.
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may be a result of the Golubov and Krugly (2012) YORP torque. The one exception, 185851, is

notable because it also is an outlier when discussing the tidal-BYORP equilibrium below. It’s large

semi-major axis is out-of-character for a singly synchronous binary system in the equilibrium, how-

ever it may be not in the equilibrium and expanding due to the BYORP effect on the synchronous

secondary. If this is so, it is a good candidate for the direct detection of the BYORP effect since

the other singly synchronous systems are likely in the equilibrium.

In the next section of this thesis, it is proposed that wide asynchronous binary population

has undergone synchronization and BYORP evolution but also de-synchronization at a larger semi-

major axis due to an adiabatic invariance. At their current semi-major axes all (1509 Esclangona,

32039 (2000 JO23, and 1998 ST27) but 1717 Arlon have significantly small tidal YORP coefficients

and Arlon has a small tidal YORP coefficient. This is shown in Figure 2.4. Since typical YORP

coefficients exceed these values, the spin states of the primary and secondary of these systems

are controlled by the YORP effect. The rapid rotation of the primary may be controlled by

the Golubov and Krugly (2012) YORP torque similar to the singly synchronous binary population,

and the secondary having just de-synchronized due the adiabatic invariance is now rotationally

accelerating due to the YORP effect.

The tidal YORP coefficients for each primary of the tight asynchronous binary population

is significantly small compared to the plausible range of YORP coefficients. However, the tight

asynchronous binary population may be divided into two categories according to the tidal YORP

coefficients of the secondaries as shown in Figure 2.5. The first population consists of four members

(35107 (1991 VH1), 162000 (1990 OS), 164121 (2003 YT1), and 2004 DC) and share the property of

having secondary tidal YORP coefficients within or near the plausible range of YORP coefficients.

After formation the secondaries of these systems are locked in close race between tides and the

YORP effect. Eventually the YORP effect may drive the secondary to rotational fission creating

a chaotic triple system that may stabilize or de-stabilize into something else. If tides are slightly

stronger the system will eventually drive the system to synchronization but may do so on a timescale

much longer than a typical tidal timescale.
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Figure 2.4: The tidal YORP coefficients for each of the 4 wide asynchronous binary systems as a
function of mass ratio (to spread them out and make them identifiable). The primaries are marked
with squares and the secondaries are marked with triangles. Dashed lines at 0.25, 0.025 and 0.0025
demarcate, a plausible range for the YORP coefficient.
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Figure 2.5: The tidal YORP coefficients for each of the 7 tight asynchronous binary systems as a
function of mass ratio (to spread them out and make them identifiable). The primaries are marked
with squares and the secondaries are marked with triangles. Dashed lines at 0.25, 0.025 and 0.0025
demarcate, a plausible range for the YORP coefficient.
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An example using the parameters for 1991 VH1 is shown in Figure 2.6. The strength of the

YORP coefficient is changed to demonstrate different behaviors including assistance and resistance

to tidal synchronization. If a secondary of a newly created binary system has a YORP torque

that is aligned with the tidal torque then the system will synchronize faster, whereas if the YORP

torque is anti-aligned with the tidal torque then two scenarios can occur. If the YORP coefficient

is smaller than the tidal YORP coefficient, then the system will still synchronize but it will take

longer. If the YORP coefficient is larger than the tidal YORP coefficient, then the system will

not synchronize and may eventually rotationally fission. The first category of tight asynchronous

binaries may represent systems where the YORP torque and the tidal torque are anti-aligned but

nearly of the same magnitude creating long-lasting asynchronous binary systems.

The second category of wide asynchronous binary systems includes 5381 Sekhmet, 16635

(1993 QO) and 2577 Litva. These systems are also shown in Figure 2.5, but they have secondary

tidal YORP coefficients significantly larger than the range of plausible YORP coefficients. This

is consistent with these systems being relatively young or having experienced a planetary flyby in

the recent past. A note, 5381 Sekhmet may already be synchronous, the radar observation that

measured the spin rate of the secondary is consistent with synchronous given the uncertainties

(Howell, personal communication). 2577 Litva is in the Main Belt asteroid population and so is

only consistent with recent binary formation from rotational fission.

Fang and Margot (2012) found that planetary flybys that pass within 10 planetary radii

typically grow the mutual orbit and de-synchronize the secondary. They also found that for many

near-Earth asteroid binary systems this occurs on a timescale of ∼ 1 Myrs. Since synchronization

timescales are ∼ 100kyrs, then for every 10 near-Earth asteroid binaries, 1 system recovering from

a planetary flyby induced synchronization is expected. This is consistent with the two large tidal

YORP coefficient systems that are tight asynchronous binaries from a population of 18 near-Earth

asteroid binary systems.
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Figure 2.6: The spin period evolution of a 1991 VH1-like system given different YORP coefficients.
The red lines indicate negative YORP coefficients that assist the tidal torques towards synchronizing
the system, the black line is no YORP torque, and the blue lines are positive YORP torques resisting
tidal synchronization. The cusp occurs at synchronization, because the BYORP effect is contractive
for this system and drives it towards a tidal-BYORP equilibrium. The time along the x-axis is
logarithmic.
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2.2.3 Application to systems with unknown status

Out of 41 known binary systems, comparing the strengths of the tidal and YORP torques

correctly predicts 92% of them. Since this technique appears so powerful, we can use it to make

predictions for systems who have yet to be classified according to rotation state morphology because

of a lack of knowledge about the secondary rotation period but who have been observed well enough

to determine their tidal YORP coefficients Ytidal, which are plotted in Figure 2.7.

Using the rules as above for the stronger condition for each morphology, we can predict that

(617) Patroclus and (6708) Bobbievaile are most likely doubly synchronous, that (121) Hermione,

(1453) Fennia, (15268) Wendelinefroger, (1830) Pogson, 2005 AB, 2006 GY2, (2006) Polonskaya,

2007 DT103, (2121) Sevastopol, (22) Kalliope, (2577) Litva, (26471) 2000 AS152, (2754) Efimov,

(34706) 2001 OP83, (3673) Levy, (3749) Balam, (3782) Celle, (3868) Mendoza, (4607) Seilandfarm,

(4786) Tatianina, (5407) 1992 AX, (6244) Okamoto, (7225) Huntress, (8116) Jeanperrin, (87)

Sylvia, (88710) 2001 SL9, (9260) Edwardolson, (9617) Grahamchapman, and (99913) 1997 CZ5

are most likely synchronous, and (17246) 2000 GL74, (22899) 1999 TO14, (379) Huenna, and

(4674) Pauling are most likely asynchronous. When we use the weaker condition as given above for

each morphology, systems may fall into two or even three possible categories. (10208) 1997 QN1,

(107) Camilla, (130) Elektra, (162000) 1990 OS, (164121) 2003 YT1, 1994 AW1, (283) Emma,

(3073) Kursk, (32008) 2000 HM53, (3671) Dionysus, (45) Eugenia and (762) Pulcova may be either

synchronous or asynchronous and (11264) Claudiomaccone, (3703) Volkonskaya, (4029) Bridges,

(5481) Kiuchi, (5899) Jedicke, (5905) Johnson, (6265) 1985 TW3 and (8373) Stephengould may be

doubly synchronous or synchronous. Only 2000 UG11 defies prediction with both members having

tidal YORP coefficients that fall within the plausible range. These predictions may be useful in

planning future observation campaigns and when considering evolutionary paths.
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Figure 2.7: The tidal YORP coefficients for each of the 43 unknown asynchronous binary systems
as a function of mass ratio (to spread them out and make them identifiable). The primaries are
marked with squares and the secondaries are marked with triangles. Dashed lines at 0.25, 0.025
and 0.0025 demarcate, a plausible range for the YORP coefficient.

2.3 Synchronous Asteroid Evolution

As has been mentioned in the previous study of this thesis, the members of high mass ratio

systems synchronize on similar timescales due to their similar sizes. These systems then evolve
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according to the BYORP effect. Since the BYORP effect acts independently on both members,

the torques can add to drive the system apart to the Hill radius and become an asteroid pair

or together to become a contact binary. If the two BYORP torques are anti-aligned, then the

system may persist as it moves slowly towards one of those end states. High mass ratio systems are

not numerous in the near-Earth asteroid population and their evolution appears to be simplified

because either tides are operating or the BYORP effect is operating, but not both at once.

Low mass ratio systems are more numerous and only the secondary is likely to synchronize,

which is likely to happen first according to the tidal theory (Goldreich and Sari, 2009) and the

theory developed in the preceding section. After the secondary has been tidally locked, the system

will evolve due to both tides and the BYORP effect, which is not active when the secondary is

asynchronous. In the next few sections, both tidal evolution, BYORP evolution and their joint

evolution are discussed in the context of singly synchronous binary systems. Joint evolution is

dictated by the alignment or anti-alignment of the two torques. Each of these situations is described

in detail: Joint expansive evolution and joint opposing evolution. Joint expansive evolution leads

to more asteroid pairs but perhaps also the wide asynchronous binary population. Joint opposing

evolution leads to the tidal-BYORP equilibrium and the most numerous singly synchronous binary

population.

2.3.1 Tidal Evolution

Tidal evolution continues after synchronization of the secondary. The strongest tides are

those raised by the secondary onto the primary, but there also tides associated with an eccentric

orbit that are raised on both bodies as well as tides from the primary onto the secondary libration

state. These last tides on the free libration state of the secondary do not secularly evolve the orbit

because the tidal bulge switches directions on the body. As tides dissipate energy from the rotation

state of the primary, the semi-major axis and the eccentricity of the mutual orbit change over

time. Only after the rotation period of the primary is synchronous with the mutual orbital period

(doubly synchronous) and the orbit is circularized as well will binary systems not experience any
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tidal evolution.

When the system is singly synchronous, tides raised on the primary by the secondary cause

the semi-major axis to expand. From the first order theory, the semi-major axis time rate of change

due to tides is:

ȧT = 3
kp
Q

( ωd
a11/2

)
q
√

1 + q (2.5)

where a is the semi-major axis measured in primary radii Rp, kp is the tidal Love number of

the primary, ωd = (4πGρ/3)1/2 is the surface disruption spin limit for a sphere, and G is the

gravitational constant (Murray and Dermott, 2000). Due to the fast rotation of the primary

compared to the mean motion, tidal evolution always expands the semi-major axis of the binary

system.

Tides raised on the primary by the secondary cause the eccentricity to grow, while tides

raised on the secondary by the primary cause eccentricity to damp. From the first order theory,

the tidal eccentricity time rate of change due to tides is:

ėT =
57kpq

1/3 − 84ks
8Q

( ωde
a13/2

)
q2/3

√
1 + q (2.6)

where e is the eccentricity and ks is the tidal Love number of the secondary (Murray and Dermott,

2000). Tidal evolution can cause excitation or damping of the eccentricity depending on the system

mass ratio and the tidal Love numbers of each component.

There are two developed theories for the internal structure of asteroids: “monolith” and

“rubble pile.” Evidence that asteroids have a “rubble pile” internal structure rather than a “mono-

lithic” interior includes: the Hayabusa mission to Itokawa showing no obvious impact craters and

the appearance of a structure made entirely from shattered fragments of different size scales (Fu-

jiwara et al., 2006), numerical modeling of collisions of asteroids (Michel et al., 2001), mass and

volume measurements from the NEAR Shoemaker flyby of Mathilde (Yeomans et al., 1997) and

radar observations of 1999 KW4 (Ostro et al., 2006) showing mean densities that are lower than

their constitutive elements, the rotational speed limit period (∼ 2.2 hours) observed amongst as-

teroids with diameters larger than ∼ 200 m, which corresponds to the critical disruption spin rate
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of a self-gravitating, strengthless body (Pravec and Harris, 2007), and that rotational fission of

strengthless bodies is responsible for the asteroid pair population (Pravec et al., 2010). All of

this evidence suggests that a “rubble pile” internal structure is a more realistic assessment than a

“monolith” internal structure, however for completeness we will consider both theories. The two

theories become distinct when assessing the functional form of the tidal Love number.

The dimensionless rigidity of the body µ̃, which can be thought of as the ratio of the fluid

strain to the elastic strain, can be used to defined the tidal Love number: k = 1.5/(1 + µ̃) ≈ 1.5/µ̃,

this approximation is true when the fluid strain dominates the elastic strain (Goldreich and Sari,

2009). According to the canonical “monolith” theory the dimensionless rigidity has the form

µ̃ = 19µ/(2ω2
dρR

2), where µ is the rigidity of the body. To first order, the tidal Love number

for a “monolith” depends on the size of the body as kM ∝ R2.

Goldreich and Sari (2009) developed an alternative “rubble pile” tidal Love number theory by

studying how introducing voids increases the stress across contact areas. The dimensionless rigidity

of a “rubble pile” is smaller than that of a “monolith” of the same size. Using conceptual and

dimensional arguments, Goldreich and Sari (2009) determine that the “rubble pile” dimensionless

rigidity should scale as µ̃R & (µ̃/εY )1/2 where εY is the yield strain. To first order, the tidal Love

number for a “rubble pile” depends on the size of the body as kR ∝ R. The observational results

which will be discussed at the end of this chapter suggest that the “rubble pile” tidal Love number

law is kR ∝ 1/R. All of these theories will be explored in later sections.

2.3.2 BYORP Evolution

The BYORP effect is the summation of radiative effects on a synchronous secondary (Ćuk

and Burns, 2005). McMahon and Scheeres (2010b) using averaging theory showed that this effect

secularly evolves both the semi-major axis and the eccentricity, because radiative forces acting

on asymmetries in the shape of the secondary create torques on the mutual orbit that persist

after averaging over the mutual orbit, the heliocentric orbit, and the precession of the node. To

first order, the evolution of the semi-major axis and the eccentricity only depends upon a single
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constant term B that represents the averaged acceleration in the direction parallel to the motion

of the secondary (McMahon and Scheeres, 2010a). The BYORP coefficient B depends only on the

shape of the secondary, and can be thought of as a ratio relating the asymmetric area, on which

the average force of the BYORP effect acts, to the total area. A symmetric body–a sphere or an

ellipsoid–has a value: B = 0. The BYORP coefficient has a maximum magnitude: B = 2 in either

direction, but commonly has a small value: B ∼ 10−3. The BYORP effect can either expand or

shrink the semi-major axis, with the sign of the eccentricity evolution always opposite that of the

semi-major axis evolution. From the first order theory, the evolution of the semi-major axis and

eccentricity is:

ȧB = ±3H�B

2π

(
a3/2

ωdρR2
p

) √
1 + q

q1/3
(2.7)

ėB = ∓3H�B

8π

(
a1/2e

ωdρR2
p

) √
1 + q

q1/3
(2.8)

where H� = (2/3)F�/(a
2
�

√
1− e2

�), F� is the solar radiation constant, and a� and e� are the

heliocentric semi-major axis and eccentricity (McMahon and Scheeres, 2010a).

2.3.3 Joint Evolution

Synchronous binary asteroids will evolve under the influence of both tides and BYORP. There

are two scenarios: joint expansive evolution and joint opposing evolution depending on the direction

of the BYORP torque, which nominally has an equal chance of pointing in either direction. Both

tides and the BYORP effect can change the energy of the system over time, and the BYORP effect

can also changes the system angular momentum. It is convenient to define a parameter A, which

compares the strengths of these two effects on the semi-major axis of the system, and E which does

the same for the eccentricity:

A =
|ȧT |
|ȧB|

=
2πω2

dρkpR
2
pq

4/3

BH�Qa7
(2.9)

E =
|ėT |
|ėB|

=
|19− 28K|

2
A (2.10)
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where K = ks/(kpq
1/3) is an important tidal Love number relation. For the “monolith” model

k ∝ R2, so K = q1/3, for the Goldreich and Sari (2009) “rubble pile” model k ∝ R, so K = 1, and

for the observation tidal-BYORP equilibrium theory k ∝ R1− and so K = q−2/3. If A < 1 then the

BYORP effect dominates semi-major axis evolution, A > 1 then tides dominate the semi-major

axis evolution, and if A = 1 then the two are balanced and the system semi-major axis will not

evolve via either effect. Which effect dominates eccentricity is shown similarly by E.

2.4 Joint Expansive Evolution

During joint expansive evolution, both effects are growing the semi-major axis. Tides are

removing energy by spinning down the primary and transferring angular momentum from the

primary spin to the orbit, while the BYORP effect is directly adding both energy and angular

momentum to the orbit. The eccentricity of the mutual orbit can be excited or damped depending

on the system mass ratio and the tidal Love numbers of the components. The condition for stability

or damping in eccentricity is:

19− 28K

2
A ≤ 1 (2.11)

For “monoliths,” K = q1/3 and so low mass ratio systems can have growing eccentricity, if q <

(19/28)3 and A > 2/(19 − 28q1/3). For “rubble pile” systems, K = 1 or K = q−2/3 and thus the

condition is always satisfied, and so the eccentricity of binary asteroids with “rubble pile” internal

structures will always damp.

“Rubble pile” asteroids expand due to both tides and the BYORP effect and without some

intervening process would do so until the system Hill radius and disrupt. However, there are a

number of wide asynchronous binary systems whose origins are a mystery. In the following sections,

we propose that these systems are expanding systems that were de-synchronized due to an adiabatic

invariance. If the synchronous secondary were to de-synchronize, then the BYORP effect would

turn off. Once tides have been significantly weakened and the BYORP effect disengaged, the

mutual orbit would become stranded at a large semi-major axis. Furthermore, when the secondary
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overcomes the gravity gradient and breaks synchronicity, the YORP effect can begin to change the

spin rate of the secondary.

2.4.1 Expansive De-synchronization Hypothesis

The observation that most small near-Earth and Main Belt asteroid binary systems have

a rapidly rotating primary is one of the key pieces of evidence that led astronomers to more

closely investigate rotational fission as possibly the dominant binary formation mechanism (Margot

et al., 2002). Walsh et al. (2008) and Jacobson and Scheeres (2011a) showed that the creation of

stable binaries is possible via YORP-induced rotational fission. These newly created binaries are

asynchronous with generally members and always the primary rotating rapidly compared to the

mutual orbit rate, and these systems were tight with small semi-major axes (a < 8 Rp). Goldreich

and Sari (2009) showed that synchronization of the secondary is the fastest tidal process and for

given estimates of the relevant tidal parameters is quick compared to the dynamical or collisional

lifetime of kilometer and sub-kilometer binary systems. Singly synchronous binary systems are the

most prevalent small (Rp < 10 km), binary asteroid systems (Pravec et al., 2006). But as discussed

earlier, not all binary systems fit this pattern. Some are doubly synchronous, both spin periods

are equal to the orbit period, due to similar tidal synchronization timescales because of similarities

in mass (Jacobson and Scheeres, 2011a). Others are asynchronous, neither spin period is equal to

the orbit period. Tight asynchronous binary systems, those which have semi-major axes similar to

synchronous binary systems a < 8 Rp, are consistent with either new formation from rotational

fission or a recent strong planetary perturbations (Jacobson and Scheeres, 2011a; Fang and Margot,

2012).

There also exists a population of wide asynchronous binary systems: 1717 Arlon, 1509 Es-

clangona, 32039 (2000 JO23) and 1998 ST27. Their properties are listed at the beginning of this

study. Each has a rapidly rotating primary consistent with formation from rotational fission but

a large semi-major axis. In the cases of 32039 (2000 JO23) or 1509 Esclangona, their semi-major

axes greatly exceed those created from models of rotational fission events (Jacobson and Scheeres,



80

2011a). The spin-orbit coupling responsible for the location of the stable semi-major axis conserves

angular momentum resulting in a relationship between the semi-major axis and eccentricity. Sys-

tems scattered to semi-major axes of 32 or 54 Rp primary radii would likely have eccentricities very

nearly 1, and so would be quickly lost to either collision between the members or system disruption.

Radar observations of 1998 ST27 report a significant eccentricity of at least 0.3 (Benner et al.,

2003). The a−e relationship for stable binaries formed from rotational fission shown in Jacobson and

Scheeres (2011a) predicts an eccentricity around 0.8 for a separation distance of 16.5 Rp indicating

either tidal damping or possibly a different excitation process. Planetary perturbations may be

very important for 1998 ST27, which crosses the orbits of Venus, Earth and Mars. However, the

three other systems are not planet crossers. The other three objects do not have well constrained

mutual orbit eccentricities. The distinctive feature of the four systems specified is a mutual semi-

major axis a > 10 Rp primary radii, but they otherwise share characteristics with the rest of the

small, low mass ratio of a rapidly rotating primary indicative of formation via rotational fission

likely induced by the YORP effect.

In the case of joint expansion, both the BYORP torque and the tidal torque are acting to

grow the mutual orbit:

ȧ =
3kpωdq

√
1 + q

Qa11/2
+

3H�Ba
3/2
√

1 + q

2πωdρR2
pq

1/3
(2.12)

where the first term is due to tidal evolution and the second term is due to BYORP evolution (Gol-

dreich and Sari, 2009; McMahon and Scheeres, 2010b). However it can be seen from above that

while these torques may be of equal order at a few primary radii, they will be substantially different

as the system expands. If the ratio of the BYORP torque to tidal torque is 1 at some semi-major

axis and then the system doubles in semi-major axis that ratio becomes ∼ 181. For this reason, we

will consider only the BYORP torque in the following analytical treatment. The final results were

tested with and without the tidal torque and were unchanged.

As stated above, the synchronicity of the secondary in an expanding mutual orbit may be

broken by an adiabatic invariant relationship between the semi-major axis (or mean motion) and the
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maximum libration angle of the secondary. In the next section, the adiabatic invariant relationship

is derived using a simple model and discussed. Then, since librations of the secondary are subject

to tides, a tidal model is developed based on Wisdom (2004) and comparisons are made regarding

the libration energy excitation due to orbit expansion and dissipation due to tides. Finally, the

results of the theory are applied to the four known wide asynchronous binaries and discussed.

2.4.2 Adiabatic Invariance

We want to study the dynamics of synchronous binary asteroid systems as they expand due

to the BYORP effect and tides. Both of these non-conservative effects damp the eccentricity of the

mutual orbit and the expansion is very slow compared to the orbital period (i.e. largest mutual

orbit period at Hill radius ∼ 1 year � fastest BYORP predicted expansion timescale ∼ 10000

years) (McMahon and Scheeres, 2010b). Tides damp the inclination of the system and the spin and

orbit poles of observed synchronous systems are observed to be aligned (Pravec et al., 2012). The

primaries of observed synchronous systems are rotating much faster than the orbital period and

are observed to be nearly oblate and so well-approximated by spherical potentials as the mutual

separation increases (Pravec and Harris, 2007).

2.4.3 Derivation of the Adiabatic Invariance

We will use a simple model of a sphere and a triaxial ellipsoid in a mutual planar orbit (i.e.

all spin and orbit poles are aligned). The triaxial ellipsoid is spinning in its relaxed state about

the direction of the shortest body semi-axis ẑs, where x̂s is the longest body semi-axis direction

and ŷs is the intermediate axis direction. Thus, the secondary moments of inertia are related

Isz = CIs ≥ Isy = BIs ≥ Isx = AIs where Is = MsR
2
s. The mass ratio is the secondary mass

divided by the primary mass q = Ms/Mp.

The coordinate tracking the instantaneous separation distance between the centers of mass

of the two bodies is r, where r and ṙ are measured in primary radii Rp and primary radii per unit

time, respectively. The instantaneous rotation of the line between the two mass centers relative to
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inertial space is θ and the spin angle of the nth body relative to the line connecting the centers is

φn. Since the potential of the sphere is independent of its orientation, the relative spin angle of the

primary sphere φp does not need to be tracked.

Given these conditions, the system free kinetic and potential energies can be determined from

similar equations in Scheeres (2009b):

T =
Is

2q2/3 (1 + q)
×[

ṙ2 + r2θ̇2 + Cq2/3 (1 + q)
(
θ̇ + φ̇s

)2
]

(2.13)

V =− Isω
2
d

4q2/3r3
×[

4r2 − q2/3 (A+B − 2C + 3 (B −A) cos 2φs)
]

(2.14)

where ωd =
√

4πρG/3 is the surface disruption spin limit for a sphere of density ρ and G is the

gravitational constant. The Lagrangian of the system is L = T − V , and the three generalized

coordinates of the system are the separation distance qr = r, instantaneous rotation of the line

connecting the mass centers qθ = θ, and the relative spin angle of the secondary to the line

connecting the mass centers qφs = φs. The related generalized momenta and generalized velocities

for each coordinate are determined using the Lagrangian:

pr =
Isṙ

q2/3 (1 + q)
(2.15)

pθ =
Isr

2θ̇

q2/3 (1 + q)
+ CIs

(
θ̇ + φ̇s

)
(2.16)

pφs = CIs

(
θ̇ + φ̇s

)
(2.17)

From these generalized momenta and the Lagrangian, the Hamiltonian can be determined:

H =
p2
φs

2CIs
+
q2/3 (1 + q)

2Is

[
p2
r +

(pθ − pφs)2

q2
r

]
+ V (2.18)

The instantaneous equations of motion for the system can be determined from this Hamiltonian,

but we can reduce the number of canonical pairs by introducing an integral of motion. From the

equations above, it is clear that the coordinate θ is ignorable: ∂L/∂θ = 0. This is conservation of



83

angular momentum.

K =
∂L

∂θ̇
=

Isr
2θ̇

q2/3 (1 + q)
+ CIs

(
φ̇s + θ̇

)
= pθ (2.19)

The generalized momentum for the relative spin angle of the secondary pφs can then be expressed

solely in terms of its coordinate. The relationship above changes to:

pφs =
r2CIS

r2 + Cq2/3 (1 + q)
φ̇s (2.20)

Considering the system that we wish to study, we can make the following approximation. The

changes in the instantaneous separation distance δr are very small compared to the instantaneous

separation distance δr � r. This means that ṙ ≈ 0. This assumption implies that the orbit is

circular so r ≈ a, where a is the semi-major axis measured in primary radii. The semi-major axis

will change over time, but as stated above that change is very slow. In the Hamiltonian system,

the generalized momenta pr = 0 and qr = a. Furthermore, the instantaneous rotation of the line

between the two mass centers relative to inertial space is the mean motion θ̇ = n when δr � r.

This approximation means that Kepler’s third law is valid and a3n2 = ω2
d (1 + q).

We can now re-express the Hamiltonian introducing a collection of constant terms:

H = H0 +H1p
2
φs −H2 cos 2qφs (2.21)

where

H0 =
Isω

2
d

a

(
A+B − 2C

4a2
− 1

q2/3

)
− K2q2/3 (1 + q)

2Is
(
a2 + Cq2/3 (1 + q)

) (2.22)

H1 =
a2 + Cq2/3 (1 + q)

2CIsa2
(2.23)

H2 =
3Isω

2
d

4a3
(B −A) (2.24)

The Hamiltonian equations of motion are:

ṗφs =− 2H2 sin 2qφs (2.25)

q̇φs = 2H1pφs (2.26)
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For maximum libration angles Φs where sin 2Φs ≈ 2Φs, the natural libration frequency ωl is:

ωl =
√

8H1H2

=n

√
3S

1 + q

(
1 + Ca−2q2/3 (1 + q)

)1/2
(2.27)

where S is a shape parameter of the secondary determined by the principal moments of inertia

S = (B −A) /C.

We can identify some features of this system. First, there is a separatrix that divides the

motion of the secondary between libration and circulation. The separatrix goes through the equilib-

rium point at φs = π/2 and φ̇s = 0, which corresponds to qφs = π/2 and pφs = 0. The Hamiltonian

for the separatrix Hs is:

Hs = H0 +H2 (2.28)

If H < Hs the secondary is librating, if H > Hs circulating, and if H = Hs on the separatrix.

Second, the Hamiltonian can be expressed in terms of the libration angle amplitude of the

secondary Φs as it librates about φs = 0. When the secondary is at the maximum libration angle,

the relative spin velocity is φ̇s = 0 so that the conjugate momentum is pφs = 0. Therefore, the

Hamiltonian can also be expressed as:

H = H0 −H2 cos 2Φs (2.29)

Using the equations above, the conjugate momentum of the relative spin angle of the secondary

can be re-expressed in terms of the Hamiltonian constant terms, the relative spin angle, and the

maximum libration angle:

pφs =

√
H2

H1

√
cos 2φs − cos 2Φs (2.30)

The action of the system is the integrated phase space for a full cycle of the coordinate: Jφs =∮
pφs dqφs . The action is an adiabatic invariant, since we are considering very slow orbit expansion

due to the BYORP effect relative to both the libration and orbital periods.

Jφs = 2

√
2H2

H1
sin Φs

∫ Φs

−Φs

√
1− sin2 φs

sin2 Φs
dφs (2.31)
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This can be integrated directly but the result is an incomplete elliptical integral of the second kind.

An analytic solution can be found if we substitute the variables: sin2 χ = sin2 φs/ sin2 Φs. Then

the action is transformed to:

Jφs = 4

√
2H2

H1

∫ π/2

0

sin2 Φs cos2 χ√
1− sin2 Φ sin2 χ

dχ (2.32)

The generalized solutionG(k) to this integral can be expressed in terms of complete elliptic functions

of the first K(k) and second E(k) kind:

G(k2) =

∫ π/2

0

k2 cos2 x√
1− k2 sin2 x

dx

=E(k2)−
(
1− k2

)
K(k2) (2.33)

The function G(sin2 Φs) can be well by cutting off the expansion of the elliptic function definitions

at low order:

G(sin2 Φs) ≈
π

4

(
sin2 Φs +

sin4 Φs

8
+

3 sin6 Φs

64

)
(2.34)

The adiabatic invariance can be expressed exactly as:

Jφs =

√
3S

1 + Ca−2q2/3 (1 + q)

(
4CIsωd
a3/2

)
G(sin2 Φs) (2.35)

This relationship can be used to study the system at two different times (indicated by subscripts):√
a1

(
a2

1 + Cq2/3 (1 + q)
)

a2

(
a2

2 + Cq2/3 (1 + q)
) =

G(sin2 Φ1)

G(sin2 Φ2)
(2.36)

These are all low mass ratio systems and while secondaries may be possibly elongated, the second

term in both the numerator and the denominator is likely much less than 1. If that term is

neglected and we keep only the first order term of the function G(sin2 Φs) ≈ (π/4) sin2 Φs, then the

relationship can be re-expressed as:

a
3/2
1

a
3/2
2

=
n2

n1
=

sin2 Φ1

sin2 Φ2
(2.37)

Using Kepler’s Third Law to convert to mean motion. As the system expands the maximum

libration angle increases as well. While the small angle approximation is valid, as the semi-major

axis doubles the libration angle amplitude increases by a factor of 23/4 ≈ 1.7.
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2.4.4 Onset of Circulation

These relationships between the maximum angle of libration and the mean motion determine

when the system may cross the separatrix and the secondary will begin to circulate. This occurs

when the maximum angle of libration is π/2. We set this to occur at time 2. The simpler relationship

can be re-arranged to solve for the semi-major axis aonset at which onset of circulation occurs given

an initial semi-major axis a1 and maximum libration angle Φ1:

aonset = a1 sin−4/3 Φ1 (2.38)

The exact relationship can be expressed analytically but is long and won’t be repeated here.

2.4.5 Libration Energy

What are reasonable values for the initial semi-major axis and maximum libration angle?

The semi-major axis of the system at synchronization seems a natural choice but the maximum

libration angle immediately after synchronization is π/2. It is only after continued tidal dissipation

of the libration of the secondary that the maximum libration angle damps to zero. Tides on the

the free libration due not secularly evolve the orbit because the tidal bulge oscillates from leading

to trailing and so the angular momentum transfer to the orbit averages to zero.

In the next section we determine the energy dissipation rate of the libration state due to

tides from the primary. From the previous section we can then determine the rate of change of the

maximum libration angle as a function of the adiabatic invariance and the tidal energy dissipation.

We can use that information and the characteristics of the known wides asynchronous systems to

test this hypothesis.

2.4.6 Derivation of the libration tides

We are searching for the energy dissipated within the rotation state of binary asteroid member

in a mutual orbit. To simplify this problem, we will de-couple the system and, for the determination
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of the tidal energy dissipation only, treat each body as a sphere.1 This derivation follows those

given in Wisdom (2004, 2008). We repeat material to inform the reader. Both Wisdom papers

treat various forced librations and obliquity, we derive the tides for a free libration in a circular

orbit below. Deriving these tides for an eccentric orbit requires more than one set of tidal responses

due to the multiiple forcing frequencies (libration frequency, mean motion, and their harmonics)

and is left for future work (MacDonald, 1964).

The energy dissipated within the interior of a homogenous (constant density) body moving

through the gravity field of a point mass is the work done on each individual element within the

body. The work can be expressed as the dot product of the tidal force on that element of the body

~FT with the displacement of the element δ~x or the instantaneous velocity ~v of the element over an

instant of time δt.

δWT = ~FT · δ~x = ~FT · ~v δt (2.39)

which can be arranged to express a rate of work done on each element.

The tidal force FT is a negative gradient of the perturbing potential energy VT , which is the

perturbing tidal potential UT multiplied by the mass of the element dm = ρdV . The expression for

the rate of work on each element can be integrated of all volume elements of the body to determine

the total rate of change in energy.

ĖT =

∫∫∫
Body

ẆT dV = −ρ
∫∫∫
Body

~v · ∇UTdV (2.40)

Assuming that the body is incompressible ∇ · ~v = 0, then the product rule allows a simple

substitution:

∇ (UT~v) = ~v · ∇UT + UT∇ · ~v = ~v · ∇UT (2.41)

Furthermore, Gauss’s theorem can be used to express this volume integral as a surface inte-

gral:

Ė = −ρ
∫∫∫
Body

∇ (UT~v) dV = −ρ
∫∫

Body

UT~v · ~n dS (2.42)

1 Arbitrary shapes could be treated for either the potential of the tide raising body if it is expanded in spherical
harmonics or the surface of the secondary if it is expanded in surface spherical harmonics. This may be future work.
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where dS is the area of the particular surface element and ~n is the normal to that surface.

Love (1948) determined that the radial displacement height ∆r of a surface element is related

to the delayed tidal potential U ′T because the dissipative response lags the forcing, the acceleration

of gravity at the surface g and the displace Love number h = 5/3k, which is the potential Love

number:

∆r = −hU
′
T

g
(2.43)

The rate of change of this displacement is conveniently ~v · ~n. The energy dissipation can now be

expressed directly as the response of the surface of the body to the tidal potential and its time

derivative:

Ė =
ρh

g

∫∫
Body

UT
d

dt

(
U ′T
)
dS (2.44)

The tidal potential UT is:

UT = −GM1R
2
2

r3
P2 (cosα) (2.45)

where M1 is the mass of the perturbing body, R2 is the radius of the second perturbed body, r is

the distance between the two bodies, P2 is the second Legendre polynomial, α is the angle at the

center of the second perturbed body between the vector from the center of the second body to the

first ~o and the vector from the center of the second body and the surface element ~s. The length of

each vector is known: |~o| = R2 and |~s| = r. Using the dot product this angle is easily determined:

~o · ~s = rR2 cosα (2.46)

The vector from the center of the secondary to the center of the primary ~o in cartesian

coordinates is:

~o = (r cos f, r sin f, 0) (2.47)

with true anomaly f .

The vector from the center of the secondary to a surface element can be decomposed into

the motion of the surface of the body relative to the center of the secondary R (i.e. some rotation
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matrix or matrices) and a vector from the center of the secondary to a surface element described

by a planetocentric longitude λ and colatitude θ at some initial time:

~s0 =(R2 sin θ cosλ,R2 sin θ sinλ,R2 cos θ) (2.48)

~s =R~s0 (2.49)

From these equations, we can determine the tidal potential UT .

In order to determine the delayed potential, Wisdom (2004) says, “The delayed potential U ′T

is found by replacing nt by nt + ∆ in the expression for UT .” Accordingly, Wisdom (2004, 2008)

utilizes the relation sin ∆ = 1/Q where ∆ is the tidal lag angle and the tidal quality number Q is

inversely proportional to the tidal frequency.

Some Further Qualification

In other words, this model assumes that there is a constant tidal lag time rather than a

constant tidal lag angle and that lag time is δt = ∆/ω ∼ 1/Qω where ω is the tidal forcing

frequency. In Wisdom (2004, 2008), the tidal forcing frequency is always n or a rational factor of

n (e.g. 1/3), but this does not necessarily have to be the case.

This theory shares the same difficulty as the Mignard (1979, 1980) model where the tidal

bulge could potentially wrap around the body. We can determine a condition for this to occur, and

make sure that we are safely outside of those bounds. If we set the maximum tidal bulge angle

to ∆ < π/2 ∼ 1 before wrapping occurs, then this constrains the tidal quality number to Q > 1,

which implies that the system must be underdamped in order for the bulge not to wrap. This also

limits the tidal lag time δt < 1/ω ∼ P where P is the tidal forcing period. Conceptually, this is

essentially a superposition condition. If the tidal forcing is considered impulsively, then the tidal

response must significantly relax the system before the next forcing.

Advantageously, this relationship between the tidal forcing and response avoids the awkward

tidal switching that occurs with a constant tidal lag angle model. This discontinuity, which occurs

when the tidal frequency goes through zero, causes the tidal bulge to jump across the body.
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2.4.7 Energy Dissipation in a number of systems

We can consider a number of surface motions that the second body could be making, but for

now we will only consider free libration. For a circular orbit, the following are appropriate:

r−1 = a−1 cos f = cosnt sin f = sinnt (2.50)

The body is rotating at the rate of the mean anomaly M but the body is librating with a libration

frequency ω and an amplitude f . The surface rotation matrix R is:

R =


cos (M + Φs sinωlt) − sin (M + Φs sinωlt) 0

sin (M + Φs sinωlt) cos (M + Φs sinωlt) 0

0 0 1

 (2.51)

where ω is the libration frequency as before. The rotation matrix is expanded to first order in the

libration angle max amplitude. Then the procedure described above is followed. Very little insight

is gained by showing the gory algebra. The energy dissipation rate for a librating secondary is:

Ė = −
2πΦ2

sksρωlω
2
dq

5/3R5
p

Qa6
(2.52)

Using the time derivative of the expression for the Hamiltonian of spin-coupled system, this ex-

pression can be re-arranged to determine the time rate of change of the maximum libration angle

divided by the maximum libration angle:

Φ̇s

Φs
= −πksq

5/3R
5/3
p ρωlω

2
d

2H2Qa6

(
Φs

sin Φs cos Φs

)
(2.53)

where the term in parentheses can be dropped if we assume the small angle approximation.

2.4.8 Libration growth due to BYORP effect

There is a competition between libration energy loss due to tides on the secondary and

libration energy gain due to the orbit expansion through the adiabatic invariance. We can determine

the libration growth due to the BYORP effect through the adiabatic invariance by taking the time
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derivative of the invariance, which is equal to zero, and solving for the same time rate of change of

the maximum libration angle divided by the maximum libration angle:

Φ̇s

Φs
=

Cq2/3 (1 + q) + 3a2

4a
(
Cq2/3 (1 + q) + a2

) ȧ(tan Φs

Φs

)
(2.54)

where the term in parentheses can be dropped if we assume the small angle approximation. For a

simpler analytic treatment, we can also drop the Cq2/3 (1 + q) terms since they are typically less

than 1 and much less than a2. Numerically, we can calculate the final answer with them in, but

they do not change the results substantially.

The BYORP effect is principally responsible for the change in semi-major axis ȧ , the libration

angle growth can be re-stated simply:

Φ̇s

Φs
=

9H�Ba
1/2
√

1 + q

8πωdρR2
pq

1/3
(2.55)

2.4.9 Comparison to Observation

Using these equations, the semi-major axis at which damping due to tides on the libration

state and excitation due to BYORP is:

a† =

(
16π2ksq

2R7
pρ

2ω2
d

9QBH�Is
√

3S(1 + q)

)5

(2.56)

This semi-major axis is then transition point from decreasing maximum libration angle to increasing

as the secondary expands. For our four wide asynchronous binary systems, these semi-major axes

are 26 Rp for (1509) Esclangona, 25 Rp for (1717) Arlon, 20 Rp for (32039) 2000 JO23 and 12 Rp

for 1998 ST27. These calculations used the known parameters for these systems and the tidal and

BYORP values determined by the following sections of this thesis. What’s notable about these

semi-major axes is that they are not very large or very small, but just about right. Given the large

uncertainty in the tidal and BYORP parameters and the fifth root, that uncertainty translates into

less than an order of magnitude possible adjustments. It’s also notable that the separation distance

for Arlon is exterior to its current orbit. It is not clear that the tidal dissipation due to libration

would be the same as due to rotation, if less than a† it could move inside the current orbit of Arlon.
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We imagine a scenario where the secondary is synchronized at a†. The librations start at π/2

but begin to damp. As they damp, the mutual orbit expands due to the BYORP effect. When the

system reaches this transition semi-major axis a†, the maximum libration angle transitions from

shrinking to growing. If the current semi-major axis of the binary system is the semi-major axis at

which the onset of circulation occurred than we can determine the necessary maximum libration

angle at a†:

Φ† = arcsin

(
a†

aonset

)3/4

(2.57)

For the three wide asynchronous binaries with interior a†’s, the initial maximum libration angles

are 35◦ for (1509) Esclangona, 44◦ for (32039) 2000 JO23 and 51◦ for 1998 ST27. These seem

like large libration angles, but these systems may expand to a† very quickly due to the BYORP

effect without having their libration angles damped to below these levels. Since the synchronization

semi-major axis is unknown, it is difficult to determine how likely this scenario is.

It’s also worth mentioning that the outer satellites of the triple systems 1994 CC and 2001

SN263 are also asynchronous. The expansion of the outer member may have allowed primary to

undergo a second round of rotational fission creating the triple system that is observed.

Although this process may be more likely than creation from initial conditions, the rarity of

this class of binary asteroid speaks to the strength of the BYORP effect and the difficulty of this

process. Most expanding synchronous binary asteroid systems likely do make it all the way to the

Hill radius and become asteroid pairs. The systems that tighten rather than widen are discussed

next.

2.5 Joint Opposing Evolution

Returning to the general case of joint evolution after synchronization, we now study the case

where tides are acting to grow the semi-major axis, but the BYORP effect is acting to shrink

it. Thus the system evolves towards an equilibrium point, where these two effects balance. An



93

equilibrium exists for the evolution of the semi-major axis at

a∗ =

(
2πkpω

2
dρR

2
pq

4/3

BH�Q

)1/7

(2.58)

This is a stable equilibrium, and regardless of the initial semi-major axis, the system will evolve to

this equilibrium point. Tides are still transferring angular momentum to the orbit and removing

energy from the system, but now the BYORP effect is removing angular momentum and energy

from the system. Interior to the equilibrium semi-major axis, tides dominate and the orbit grows

due to the increase of angular momentum to the orbit. Exterior to the equilibrium, the BYORP

effect controls the evolution and the orbit shrinks due to the decrease of orbital angular momentum.

At the equilibrium the amount of angular momentum removed from the orbit equals the amount

tidally transferred into the orbit from the primary, de-spinning it. The torque on the primary is

equal in strength to the BYORP torque ΓB and so the rate of the de-spinning of the primary is:

ω̇p = −ΓB
Ip

= −15BH�ap
8πR2

pρ
(2.59)

The eccentricity of the mutual orbit can be excited or damped depending on the system mass

ratio and the tidal Love numbers of the components. The condition for stable evolution without

growth in eccentricity is:

19− 28K

2
A ≤ −1 (2.60)

For “monolith” asteroids, K = q1/3 and so it is possible for any mass ratio system to be unstable

in eccentricity if A < 2/(28q1/3−19) and in fact, any system with a mass ratio q < (19/28)3 ≈ 0.31

will be unstable regardless of A. At the equilibrium, A = 1 and so binaries with “monolith” internal

structures will grow in eccentricity if the system mass ratio q < 27/64 ≈ 0.42. This would exclude

the observed synchronous binaries from existing in this equilibrium condition, since they all have

mass ratios q < 0.2 as shown in Table 2.2. Therefore these systems might enter equilibrium but

could not remain there for a long period of time since their eccentricities would continue to grow.

For binary asteroids with “rubble pile” internal structures, K = 1 or K = q−2/3 depending

on the theory, the stability condition is always satisfied, and thus the eccentricity will always be
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damped. Thus the observed synchronous binary population can exist in the equilibrium without

growth in eccentricity.

2.5.1 Implications for the Synchronous Binary Asteroid Population:

If the observed synchronous population is assumed to be in this joint opposing evolutionary

equilibrium state, then A = 1 and Eqn. 2.9 is solved for the three unknown quantities (B, Q,

and kp):

BQ

kp
=

2πω2
dρR

2
pq

4/3

H�a7
(2.61)

Table 2.2 lists and Fig. 2.8 plots BQ/kp for each of the known synchronous binary systems

using observational data (Pravec et al., 2006; Pravec and Harris, 2007). The tidal dissipation

number Q is an intensive property that we expect to be similar for all of these bodies, and for

small bodies has been estimated to be Q = 102 (Goldreich and Sari, 2009). The scatter and size

dependence in Fig. 2.8 should be from B and kp, respectively. The BYORP coefficient B does not

depend on size; B does depend on the shape of the secondary. Asteroid shapes can vary greatly

introducing scatter in the BYORP coefficient. McMahon and Scheeres (2010a) estimate |B| = 10−2

from the shape model of the secondary of 1999 KW4, which does not appear symmetric, and this is

consistent with the model developed in the third study in this thesis. The BYORP coefficient may

vary over a few orders of magnitude, especially towards smaller values corresponding to secondaries

that are more symmetric. The tidal Love number may have a dependance on size, and Goldreich and

Sari (2009) predict that the tidal Love number kp = 10−5Rp for a “rubble pile” internal structure.

In the top plot of Fig. 2.8, the solid line plots a simple theoretical model of BQ/kp using the

estimates of each value from above, so that BQ/kp = 104R−1
p . Fitting the proportionality constant

of the Goldreich and Sari (2009) tidal Love number model does not significantly change the results.

Dashed lines indicate scatter from the BYORP coefficient (one order of magnitude larger and two

orders of magnitude smaller). This model works acceptably well for systems with primary radii

Rp = 2 km but predicts values too large for systems with much smaller primaries. Deviations away

from the model appear to be correlated with primary size, and so this may indicate that the tidal
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htb
Asteroid System a� (AU) e� ρ (g/cc) q Rp (km) a (Rp) BQ/kp
(1338) Duponta 2.264 0.113 2.01.0

0.7 0.0140.031
0.010 3.700.59

0.51 4.000.60
0.52 33287296172

29924

(2044) Wirt 2.382 0.341 2.01.0
0.7 0.0160.035

0.011 3.501.05
0.81 4.200.63

0.55 26098233865
23478

(2131) Mayall 1.887 0.111 2.01.0
0.7 0.0270.065

0.019 3.700.30
0.27 4.800.72

0.63 15759141055
14175

(3309) Brorfelde 1.818 0.053 2.01.0
0.7 0.0180.039

0.012 2.500.75
0.58 4.000.60

0.52 13564121476
12201

(5477) 1989 UH2 1.917 0.076 2.01.0
0.7 0.0640.147

0.045 1.500.28
0.24 5.000.75

0.65 636956949
5729

(6084) Bascom 2.313 0.236 2.01.0
0.7 0.0510.110

0.035 2.900.64
0.52 7.401.11

0.97 159014111
1429

(7088) Ishtar 1.981 0.390 2.01.0
0.7 0.0740.159

0.051 0.600.18
0.14 4.400.66

0.57 298926623
2688

(9069) Hovland 1.913 0.118 2.01.0
0.7 0.0640.176

0.047 1.500.45
0.35 5.800.87

0.76 223520728
2017

(17260) 2000 JQ58 2.204 0.183 2.01.0
0.7 0.0180.041

0.012 1.600.30
0.26 3.600.54

0.47 16807150731
15121

(31345) 1998 PG 2.016 0.391 2.01.0
0.7 0.0640.176

0.047 0.450.14
0.10 3.400.51

0.44 870380712
7856

(65803) Didymos 1.644 0.384 2.01.0
0.7 0.0110.024

0.007 0.380.05
0.04 3.000.45

0.39 8867886
797

(66063) 1998 RO1 0.991 0.720 2.01.0
0.7 0.1110.242

0.076 0.400.08
0.06 3.600.54

0.47 174015444
1564

(66391) 1999 KW4 0.642 0.688 2.00.2
0.2 0.0360.077

0.025 0.640.02
0.02 3.980.12

0.12 2171709
193

(76818) 2000 RG79 1.930 0.096 2.01.0
0.7 0.0430.093

0.029 1.400.20
0.17 3.400.51

0.44 48949432852
43976

(85938) 1999 DJ4 1.852 0.483 2.01.0
0.7 0.1250.325

0.090 0.180.05
0.04 4.200.63

0.55 5885390
530

(137170) 1999 HF1 0.819 0.463 2.01.0
0.7 0.0120.029

0.009 1.750.88
0.58 3.400.51

0.44 228720955
2062

(175706) 1996 FG3 1.054 0.350 2.01.0
0.7 0.0300.065

0.020 0.750.17
0.14 3.800.57

0.50 11149907
1001

(185851) 2000 DP107 1.366 0.377 2.01.0
0.7 0.0690.148

0.047 0.400.08
0.07 7.201.08

0.94 18163
17

2002 CE26 2.234 0.559 0.80.3
0.2 0.0010.002

0.001 1.720.20
0.18 2.720.35

0.31 2772582
250

2005 NB7 2.044 0.518 2.01.0
0.7 0.0640.262

0.051 0.250.05
0.04 3.600.54

0.47 172117579
1567

Table 2.2: Properties and calculated BQ/kp of synchronous binary asteroid systems. Data with
1-sigma uncertainties taken from the July 1, 2011 binary asteroid parameter release from http://

www.asu.cas.cz/~asteroid/binastdata.htm as compiled by methods and assumptions described
in Pravec et al. (2006) and Pravec and Harris (2007).

http://www.asu.cas.cz/~asteroid/binastdata.htm
http://www.asu.cas.cz/~asteroid/binastdata.htm
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Figure 2.8: BQ/kp were calculated directly from observed quantities according to equation 2.61
for each known synchronous binary, and plotted as a function of primary radius Rp along with
1-sigma uncertainties (for clarity, the same data are shown in both plots). This data is also listed
in Table 1. The solid line in the top plot shows the tidal Love number model from Goldreich and
Sari (2009) for asteroids with “rubble pile” internal structures: kp = 10−5Rp. The bottom plot
is a fitted model to the data: kp = 4 × 10−4R−1

p . For both models, the tidal dissipation number
Q = 102 and the BYORP coefficient B = 10−2 is assumed. The dashed lines indicate the range
of predicted scatter in the model due to the BYORP coefficient (possibly 10 times stronger or 100
times weaker).

Love number has the wrong primary radius dependance.

If a power law is fit to the logarithmic data, then the best fit is BQ/kp = 2500Rp (shown

as the solid line in the bottom plot of Fig. 2.8). Using the same models for B and Q as above,

then the tidal Love number dependence is kp = 4× 10−4R−1
p . Systems with this tidal Love number
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dependence are stable in eccentricity at the long-term equilibrium in semi-major axis. Deviations

from this model do not appear to have a dependance on primary radius, and furthermore the

scatter follows our expectations for scatter due to the BYORP coefficient, namely that the largest

deviations are about two orders below, while most systems fall within an order below and above.

2.5.2 Proposed Equilibrium Hypothesis

Both Ćuk (2007) and McMahon and Scheeres (2010a) determined that if the BYORP effect

dominates the evolution, then synchronous binaries can disrupt in much less than a million years,

this required the hypothesis of frequent binary creation to maintain the observed population. If

binaries are trapped in a long-term stable equilibrium, then binary creation could be infrequent.

This conclusion is corroborated by evidence that the binary formation process from rotational fission

is inefficient, requiring many rotational fission events per asteroid (taking many YORP timescales),

in order to create a stable binary system that does not immediately disrupt (Jacobson and Scheeres,

2011a). The observed synchronous binary population may be residing in this equilibrium.

Small, singly synchronous binary asteroids may be residing in a long-term stable equilibrium

and they may now provide a method of directly probing an asteroid’s internal structure. They

may be inhabiting a long-term stable equilibrium created by the opposing torques from mutual

body tides and the binary YORP (BYORP) effect. From the tidal theory, this equilibrium would

allow direct study of an asteroid’s geophysics for the first time. To inhabit the equilibria, asteroids

cannot have a “monolith” internal structure but must have “rubble pile” interior. The tidal Love

number is expected to vary with size, however the data suggest k ∝ R−1, which is different than

the kR ∝ R predicted by the Goldreich and Sari (2009) “rubble pile” theory. This may highlight

the difficulty of using a modified continuum theory to model “rubble piles.” This suggests that the

tidal Love number theory is incomplete, and future work should examine this closely. In the future,

if B is determined through secondary shape modeling for each system, the geophysical parameters

k/Q could be assessed directly.
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2.5.3 Test of the Hypothesis

Directly measuring the change in mean motion or the period using lightcurves would take

more than a century. Instead, the mutual orbit plane of each of these systems crosses the Earth’s

orbit plane about the Sun. During these epochs it is possible to observe mutual events–either

occultations (one member between the observer and the other member) or eclipses (an observable

shadow cast on one member by the other). From these mutual events, the relative orientation of

the system (i.e. mean anomaly) can be determined accurately (typically to within 3 degrees).

For Keplerian motion, the mean anomaly M grows linearly with time: M = n(t− t0) where

n is the mean motion, t is the time, and t0 is some reference time. The time derivative of the mean

anomaly is Ṁ = ṅ(t− t0) + n and this can be integrated to show that M = n(t− t0) + 1
2 ṅ(t− t0)2

for a system with changing mean motion. Therefore, as the mutual orbit contracts or expands,

the mean anomaly will change quadratically in time and the rate of change is related to the orbit

expansion or contraction. For convenience define ∆Md = 1
2 ṅ.

In order to test the hypothesis that these binary systems occupy an orbital equilibrium, an

estimate needed to be made for the possible strengths of BYORP or tidal evolution in the absence

of an equilibrium. The tidal parameters are so poorly known that no such estimate could be made.

However, McMahon and Scheeres (2010a) made an estimate of the strength of the BYORP effect

and Pravec and Scheirich (2010) used that estimate to create similar estimates for a subpopulation

of seven candidate systems: 7088 Ishtar ∆Md = −0.24, 65803 Didymos ∆Md = −2.51, 66063 (1998

RO1) ∆Md = −3.14, 88710 (2001 SL9) ∆Md = −3.27, 137170 (1999 HF1) ∆Md = −0.42, 175706

(1996 FG3) ∆Md = −0.89 and 185851 2000 DP107 ∆Md = −0.72. We participated in this campaign

to directly detect the BYORP effect or to measure a non-detection below the predicted level.

Petr Pravec is the lead collaborator and he maintains a large database of lightcurve observations

including observations that go back many years and even decades for each of these systems.
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2.5.4 Observation Design and Methods

Using Petr Pravec’s database of binary asteroid lightcurves, most of the proposed systems

only needed a couple more apparitions before the predicted growth in the mean anomaly should be

detectable. We proposed to both the Apache Point Observatory 3.5-m and the Kitt Peak National

Observatory 2.1-m to make many of these measurements. I was awarded 31.5 nights to observe all

seven of these objects. We lost half our time to weather (including an entire 4 night run) and never

took any data on Didymos.

We need to observe each candidate through at least one mutual event. The absolute time

of mutual events cannot be extrapolated from previous apparitions due to uncertainties in the

measured orbital periods. Observation of a single, entire mutual event is only guaranteed when we

observe ≥ 60% of the orbital period over consecutive nights. We always try to observe both the

primary and secondary eclipses, which is only guaranteed when the entire orbital period has been

observed; this is not often possible. We propose within each apparition window to maximize our

coverage of the orbital period. At least two nights per target are always required to accurately

measure the shorter period lightcurve due to the rotational period of the primary asteroid, so that

it can be removed as was done in Figure 2.10. For this experiment, exposures times are a balance

between properly sampling the orbit of the satellite and reaching the necessary signal to noise.

The uncertainty in the mean anomaly must be ≤ 3◦ if its drift is to be detected in as few as three

epochs (Pravec and Scheirich, 2010). The sampling rate is constrained directly by the orbital period

of the target binary. We track all imaging at half the target’s rate of motion using non-sidereal

tracking. The target and the field stars will then be trailed the same and systematic uncertainties

in the photometric reduction process is then reduced. The integration time is designed to be long

enough in order to properly measure the mutual events and shape variations of the bodies as they

rotate. It has been shown empirically that if the photometric errors ≤ 0.02 mag (S/N ∼ 54), then

the mutual events in the binary model can be fit to the data with the mean error of the mean

anomaly ≤ 3◦ (Pravec et al., 2006). We used standard time-series differential aperture photometry
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in the R-band for all nights following procedures from Warner (2006) using biases, dome flats,

twilight flats and dark sky flats. On photometric nights, we observed Landolt standard stars and

transferred our relative magnitudes to an absolute scale. This photometric data forms a lightcurve

that we can then analyze according to techniques in Pravec et al. (2006).
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Figure 2.9: Photometric data on a relative magnitude scale for each night taken at the KPNO 2.1-m
telescope using the T2KB chip on the CFIM imaging camera. This is the complete lightcurve so
there is a 2.8 hour primary rotational period and a 42.2 hour orbital and secondary rotational period
mixed with each other. There is also a number of mutual events which are shown in Figure 2.10.

An example of a dataset is shown in Figure 2.9. Petr Scheirich provided a lightcurve analysis

tool to deconvolve the primary period, the orbit period and any mutual events. Using this tool on

this dataset, we were able to nicely capture the primary period and also capture two occulation

mutual events. These are shown in Figure 2.10. This dataset was also used to make predictions for

Spitzer observations which are being analyzed by a colleague.
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Figure 2.10: From the photometric data in Figure 2.9, the following two lightcurves could be built.
The top lightcurve is the primary with a period of 2.775 hours and an amplitude of 0.133 mags.
The bottom lightcurve is the remainder. From this remainder lightcurve only it is difficult to see
the secondary lightcurve partially because of the noise but also because of the two occultations
each of depth 0.2 mags. The colors indicate the date of the observations.
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2.5.5 First Results

Six of the seven targets will require at least one more apparition before uncertainty on

the growth in the mean anomaly is less than the projected growth due to the BYORP effect.

However, for 1996 FG3, which had the longest baseline of 16 years, we can report no change in

the mean anomaly. This is consistent with the tidal-BYORP equilibrium and may be considered a

confirmation of the theory.

Photometric data for 1996 FG3 was taken in 5 apparitions (1996, 1998/1999, 2009, 2010 and

2011) over 16 years. I contributed observations from the APO 3.5-m in 2010 and KPNO 2.1-m in

2011. A selection of the entire dataset is shown in Figure 2.11 with the best fit to the drift in the

mean anomaly ∆Md = 0.00 (−0.1 +0.18) with three sigma stated uncertainties. The drift in the

mean anomaly was treated as a free parameter to the fit routine similar to the semi-major axis,

rotation periods, orbit and spin pole of the primary and the ellipsoidal shapes of the two binary

members. The spin pole of the secondary is assumed to be aligned with the orbit pole.

The prediction based on the strength of the BYORP effect alone was ∆Md = −0.89. To

further demonstrate that this signal would have been detected if it existed, Figure 2.12 shows the

same data as in Figure 2.11 but the red line indicates the best fit.

Currently this dataset relies on the 1996 observations for much of the reduction in uncer-

tainty due to their long lever arm. Observations to be taken in January 2013 will alleviate this

problem. Also radar data from 2011 will be input into the model as well. The combination of

these improvements should dramatically reduce the uncertainty. If the result holds with order of

magnitude smaller uncertainty and similar results are obtained for the other members of the sample

then the tidal-BYORP prediction will be confirmed.
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Figure 2.11: Examples of photometric data from each epoch compared to the best fit line.
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Figure 2.12: Examples of photometric data from each epoch compared to the best fit line in black
and a model with a imposed ∆Md = 0.1 in red (all other model parameters were free).



Chapter 3

Study of the Effects of Rotational Fission on the Main Belt Asteroid Population

3.1 Introduction

The YORP-induced rotational fission hypothesis predicts that the Yarkovsky-O’Keefe-Radzievksii-

Paddack (YORP) effect can rotationally accelerate “rubble pile” asteroids until internal stresses

within the body due to centrifugal accelerations surpass the gravitational strength holding the

“rubble pile” elements in their current configurations. Subsequently these asteroids rotationally

fission into mutually orbiting components that can dynamically evolve into the observed binary

populations (Rubincam, 2000; Scheeres, 2007a; Walsh et al., 2008; Jacobson and Scheeres, 2011a).

Pravec et al. (2010) observationally confirmed that asteroid pairs are the result of YORP-induced

rotational fission confirming that rotational fission due to the YORP effect occurs and creates a

predicted relationship between the spin states and asteroid pair member sizes (Scheeres, 2007a).

Jacobson and Scheeres (2011a,b) numerically modeled the post-rotational fission process determin-

ing the outcomes (e.g. asteroid pairs, binaries, triples, etc.) and their likelihoods. After including

mutual body tides and the binary YORP (BYORP) effect, Jacobson and Scheeres (2011a,b, 2012)

showed how the observed binary systems are natural end-members of these evolutionary processes,

however many of these processes occur too quickly (on Solar System timescales) and too infre-

quently (on human timescales) to be likely observed in situ. The observed relative abundances of

each end-member, especially binary systems, reflects this process though, and a detailed asteroid

population evolution model that can reproduce the observed abundances is a strong test of the

YORP-induced rotational fission hypothesis.
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The asteroid population evolution model presented herein is designed to provide this test.

The model will inform whether the proposed evolutionary mechanisms are sufficient to create the

observed populations. Successes and deficiencies in the model will lead to insight regarding the

proposed theory, either confirmation or necessitated changes. The asteroid evolution population

model is a continuation of Marzari et al. (2011), which studied the spin rate evolution of the Main

Belt asteroid (MBA) population including both the YORP effect and collisions and was already an

improvement and continuation of earlier studies by Scheeres et al. (2004) and Rossi et al. (2009).

Similar to Marzari et al. (2011), we use a Monte Carlo approach to simulate the evolution of 2×106

asteroid systems for 4.5 × 109 years. To ease computation, each asteroid system is propagated

forward in time individually. The spin state of the asteroid evolves constantly due to the YORP

effect and collisions exactly as in Marzari et al. (2011) and summarized in Section 3.2. However,

when the rotation rate of an asteroid exceeds a specified spin limit, the asteroid can rotationally

fission and form a binary system. These binary systems can persist for short or long intervals

of time depending on their initial conditions and characteristics; their survival and lifetimes are

determined from a separate set of calculations based on the results of Jacobson and Scheeres (2011a,

b). This evolution is described in Section 3.3. Binary asteroid systems may also be destroyed via

catastrophic collisions.

Both the single and binary evolution schemes are built from well-developed theory in the

literature, and there are very few free parameters within the uncertainties built into the assump-

tions of the model. For instance, the intrinsic probability of collision for the Main Belt 〈Pi〉, the

fundamental parameter determining the influence of collisions in the model, has been established

by the efforts of a series of authors to at least the order of uncertainty inherent in other parts of

the asteroid population evolution model (Farinella and Davis, 1992; Bottke Jr et al., 1994; Ved-

der, 1996, 1998). Likewise, the binary evolution model utilizes the the evolutionary flowchart and

derived probabilities given in Jacobson and Scheeres (2011a, b).

The binary evolution model does contain two free input parameters that are not well con-

strained by either observation or current theory. The first is the initial mass ratio fraction Fi,
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which is the ratio of high mass ratio to low mass ratio binary systems created from rotational

fission events. This parameter is determined from the interior structure of the rotationally fission-

ing asteroid and the mechanics of the fission event itself; neither of which are currently known

to the significant accuracy needed to generate this number. The second parameter is the mean

of the logarithmic normal distribution of BYORP coefficients µB. The basic shape and width of

the distribution is determined from the equilibrium occupied by the synchronous binary asteroid

population. The BYORP coefficient distribution determines the overall binary lifetimes for most

systems. As discussed below, there has only been a single estimation of a BYORP coefficient and

the shape model used may not have had the necessary accuracy. These parameters are the knobs

that will control the output from the asteroid population evolution model.

After evolving the population for the age of the Solar System, we can compare the model

population to the observed asteroid population. There are four particular observables that we can

compare with our model population: The binary fraction FB, which is the number of binaries over

the total number of asteroid systems, the fast-rotating binary fraction, FF , which is a more specific

comparison of the number of binaries with rapidly rotating primaries to the number of rapidly

rotating asteroids, the steady-state mass ratio fraction, which is defined similarly to the initial

mass ratio fraction Fi above, and the contact binary fraction FC , which is the number of contact

binaries divided by the entire asteroid population. These comparisons are discussed in Section 3.4,

and then a simple log-likelihood model is used to assess which model parameters, Fi and µB, are

the most likely to match the model population to the observations.

Then in Section 3.5, the asteroid population evolution model, which utilized those most

likely model parameters can be used to make predictions regarding the binary and asteroid pair

populations. From the success of the binary evolution scheme, we can predict typical binary

lifetimes and from assuming a typical asteroid pair observability lifetime, we can predict the fraction

of asteroids that we expect to be able to pair in the current Main Belt asteroid population.
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3.2 Single Asteroid Evolution

Each asteroid system within the asteroid population evolution model is individually evolved.

Similar to Marzari et al. (2011), the asteroid population evolution model utilizes the intrinsic

probability for impact 〈Pi〉 and a projectile size distribution to determine the collision history

of each model asteroid. Between collisions, single asteroids undergo YORP evolution potentially

rotationally fissioning. The specific conditions for triggering rotational fission and the process itself

are discussed in Sections 3.2.3 and 3.2.4. Similarly, binary asteroid systems evolve and age.

Each single asteroid system is characterized by a number of fixed and evolving parameters.

The mean radius of the asteroid is drawn from the size distribution given in Bottke Jr et al. (2005b)

but limited to be between 50 m and 20 km. From the mean radius and the density ρ = 2 g cm−3,

the mass of the asteroid is determined and each body is assigned a shape from an ellipsoidal semi-

axis ratio distribution given by Giblin et al. (1998). Every asteroid is also assigned a semi-major

axis a� and eccentricity e� from the Main Belt asteroid orbital element distribution. The source

of each asteroid is also recorded, whether it was created as an initial asteroid, an outcome of a

collision, a member of an asteroid pair (i.e. member of a disrupted binary) or a contact binary (i.e.

member of a collapsing high mass ratio binary).

Along with these permanent parameters, the spin rate ω and obliquity ε of the asteroid are

evolved. The initial spin rate is drawn from a Maxwellian distribution consistent with Fulchignoni

et al. (1995) and Donnison and Wiper (1999) and the obliquity is drawn from a flat distribution.

The spin rate is evolved according to both the YORP effect and collisions, while the obliquity

is only updated due to the impulsive changes in angular momentum delivered by collisions. The

spin rate is the important variable for triggering rotational fission, however large changes in the

obliquity can change the YORP coefficient significantly, which feedbacks to evolve the spin rate.

Cratering (sub-catastrophic) collisions lead to changes in the obliquity and spin rate, which can

lead to collision-induced rotational fission and changes to the YORP coefficient due to the new

crater (Statler, 2009). Catastrophic collisions lead to destruction of the asteroid.
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Asteroid destruction whether through a catastrophic collision, rotational bursting, or de-

struction of a binary, is a mass transfer from one size asteroid (the progenitor in the case of a

binary) into two or more smaller size bodies. Each asteroid in the asteroid population evolution

model resides in a logarithmic diameter bin and then the model tracks the mass flow into two or

more smaller diameter bins after each destructive event. This mass flow from large asteroids into

smaller asteroids is a well-studied phenomena in the context of collisional evolution of an asteroid

population (Davis et al., 1979; Bottke Jr et al., 2005a). After a destructive event the asteroid is

then replaced with an asteroid from the original diameter bin. This replacement is motivated by the

constant flux of material into the original bin from even larger bins, and similar model’s have been

used in the past (Farinella et al., 1992; Marzari et al., 2011). The asteroid population evolution

model does not include a full feedback collisional evolution, but bootstraps itself forward using an

already established projectile size distribution and collision frequency as a first estimate from the

Sloan Digital Sky Survey (Ivezić et al., 2001). The never before included effects of YORP-induced

rotational fission modify the asteroid size distribution (therefore the projectile size distribution)

and the collision frequency, but feeding these effects back into the model is a future work. For now,

the tracked mass flow from the asteroid population evolution model can be used to determine the

first order corrected size distribution due to rotational fission. This method can be viewed as the

first step in a long iterative process, but this first iteration already provides valuable insight.

3.2.1 YORP Evolution

In order to calculate the evolution due to the YORP effect, each object is also assigned

a non-dimensional YORP coefficient1 Y from a gaussian distribution with a mean of 0 and a

standard deviation of 0.0125 motivated by the measured values of 1862 Apollo (1932 HA) Y = 0.022

(Kaasalainen et al., 2007) and 54509 YORP (2005 PH5) Y = 0.005 (Taylor et al., 2007). In Rossi

et al. (2009), the results were found to be invariant on the order of the uncertainty of the model to

the particular distribution used. The YORP coefficient is re-drawn whenever the obliquity changes

1 In Rossi et al. (2009); Marzari et al. (2011) the non-dimensional coefficient Y is notated CY .
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by more than 0.2 rad and evolves according to: Y ′ = Y
(
3 cos2 ε− 1

)
/2 for smaller changes in the

obliquity due to collisions as in Nesvorný and Vokrouhlický (2008). A similar scheme was utilized

in the past (Scheeres, 2007b; Rossi et al., 2009; Marzari et al., 2011).

The YORP effect changes the spin rate ω̇ as:

ω̇ =
Y

2πρR2

 F�

a2
�

√
1− e2

�

 (3.1)

where F� = 1014 kg km s−2 is the solar radiation constant. This is the same as Equation 1

in Marzari et al. (2011) with slightly different notation. If the YORP coefficient Y > 0, then

the spin rate is accelerating. If uninterrupted by collisions, the spin rate will eventually reach the

spin limit, which is described in Section 3.2.3. If the YORP coefficient Y < 0, then the spin rate

is decelerating and the asteroid may enter a tumbling state. Since this model cannot assess the

evolution of this state, an artificial lower spin barrier is enforced. Asteroids have a set maximum

spin period limit of 105 hours. At this very slow rotation rate the YORP torque switches directions.

This is modeled by switching the sign of the YORP coefficient. Collisions often control the spin

state of bodies with such low rotation rates since even the smallest projectiles can deliver impulsive

torques that are the same order of magnitude as the angular momentum of the target body.

3.2.2 Collisional Evolution

The collisional evolution of each asteroid follows a similar protocol as Marzari et al. (2011).

The population of potential impactors is derived from the Sloan Digital Sky Survey size distribution

of asteroids (Ivezić et al., 2001) distributed over logarithmic size bins. Using Poisson statistics, the

number of collisions and their timing is computed for each asteroid with projectiles from each size

bin using the intrinsic probability of collision for the Main Belt 〈Pi〉 (Farinella and Davis, 1992;

Bottke Jr et al., 1994). Each collision is assigned an impact velocity of 5.5 km s−1 from Bottke Jr

et al. (1994). In order to determine from these parameters the change in spin rate due to each

collision, a random geometry is assigned to the collision within the limits of the Main Belt orbital

distribution.
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Cratering collisions do not appreciably change the mass or size of the target asteroid, but

they do change the angular momentum of the asteroid. The angular momentum of the projectile

and the target and the geometry of the collision determine the new angular momentum of the

cratered asteroid. This new angular momentum vector is used to update both the spin rate and

the obliquity. Sub-catastrophic impacts create a random walk in spin rate if there is no significant

YORP effect rotational acceleration. After each cratering collision the YORP coefficient Y is newly

drawn from the distribution. Statler (2009) showed that newly emplaced craters of a similar scale

as the diameter of the asteroid can dramatically change the YORP coefficient. We are only really

considering cratering collisions of those scales.

If the collision is too large for a cratering event, then the original asteroid is shattered

and a new object is created with the same size but a new initial spin state and YORP coefficient.

Shattering collisions are defined as those that deliver specific kinetic energy greater than the critical

specific energy of the target, which defined as the energy per unit target mass delivered by the

collision required for catastrophic disruption (i.e. such that one-half the mass of the target body

escapes).

As mentioned above, the asteroid population evolution model only handles the collision evo-

lution to first order. The intrinsic probability for collision determined by Bottke Jr et al. (1994) is

not updated to include the heliocentric dependent changes in the size distribution due to the YORP

effect. In order to avoid very large computations, the current model is the first step in a potentially

iterative process whereby the collision-only size distribution is used as a good first-hypothesis for

generating the collision probabilities. After the new size distribution is established in the asteroid

population evolution model, it can be used to generate a new collision probability which can be then

inserted back into the asteroid population model, and so on. This iterative process may improve

the accuracy of the steady-state size distribution of the asteroid population evolution model, but we

leave this to future work with a more sophisticated model. The current first order approximation

is consistent with other approximations in the asteroid population evolution model.
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3.2.3 Spin Limits

Collisions fracture and catastrophically disrupt asteroids into many coherent elements, which

individually retain a “monolithic” internal structure (i.e. lithic material strength properties, mete-

oritic densities, etc.). Post-impact the relative velocities of these elements do not often exceed the

local escape velocity and these elements re-accumulate into new bodies with “rubble pile” internal

structures. A “rubble pile” is defined as a collection of gravitationally bound boulders with a dis-

tribution of size scales and with very little tensile strength between them (i.e. granular material

strength properties, densities below meteoritic due to high porosity, etc.) (Asphaug et al., 2002,

for a review). It has been shown numerically that very few collision events are necessary before a

“monolithic” progenitor resembles a “rubble pile” (Michel et al., 2001). There is a large body of

evidence supporting the determination that small asteroids have “rubble pile” geophysics including

measured low bulk densities implying high porosities (Yeomans et al., 1997; Ostro et al., 2006), the

resolved surface of Itokawa (Fujiwara et al., 2006), the observed spin limit amongst the asteroid

population as shown in Figure 3.1 (Pravec et al., 2007), and evidence that asteroid pairs form from

rotational fission events (Pravec et al., 2010).

As an asteroid is rotationally accelerated due to either a continuous YORP torque or sudden

collisional torque the centrifugal accelerations increase on each component of the “rubble pile.”

These accelerations counter the gravitational accelerations holding each of the components against

the others. Scheeres (2009a) showed that for every partitioning of the body in two along “rubble

pile” component boundaries, there is a specific rotation rate at which the centrifugal accelerations

will exceed the mutual gravity and the two sections will no longer rest against each other but enter

into orbit. As the body rotationally accelerates it will reach the slowest of these rotation rates first

and it will be along this partitioning that the body rotationally fissions. The smaller of the two

sections is now the secondary, and the remainder is the primary, both in orbit about each other.

This simple story of rotational fission is complicated by but reaffirmed when the asteroid’s shape

is also allowed to evolve (Sánchez and Scheeres, 2012).
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Collision-induced rotational fission requires that the combined angular momentum from both

precursor bodies and the cratering impact geometry exceeds the critical angular momentum nec-

essary for the body to gravitationally hold itself together against centrifugal accelerations. This is

similar to the YORP-induced rotational fission hypothesis described below with three exceptions.

Firstly, the collision may significantly change the internal component distribution itself. Secondly,

the torque is delivered impulsively. These first two differences are not significant since we are not

modeling the internal component distribution nor are we resolving the rotational fission event itself.

Thirdly, the new system angular momentum may exceed the critical angular momentum by a mea-

surable amount. Even though an asteroid that undergoes collision-induced rotational fission may

be rotationally accelerated past the critical disruption rotation rate, for the purposes of the asteroid

population evolution model these events will be treated the same as the YORP-induced rotational

fission, which occurs at the critical disruption rotation rate. Consequences of ignoring the excess

include overestimating the binary creation rate at the expense of the asteroid pair creation rate.

Since the exact rotational breakup spin rate is a complex function of the internal component

distribution, the Monte Carlo asteroid population model utilizes the simple approximation that

all “rubble piles” rotationally disrupt at the critical disruption spin limit: ωd =
√

4πρG/3 where

ρ is the density and G is the gravitational constant. This approximation requires the system to

rotationally accelerate for a longer period of time before undergoing rotational fission. With respect

to the YORP timescale for rotational fission, this may accurately reflect delays in rotational fission

due to shape evolution.

The theory described in the preceding paragraphs is consistent with the rotational spin limit

observed amongst asteroids with diameters larger than 250 m (Pravec et al., 2007). This spin

barrier is clearly shown in Figure 3.1, however it is also clear that a fundamental change occurs

at an approximate diameter of 250 m. Asteroids with diameters smaller than 250 m cross the

barrier and can exceed that spin rate by one or two orders of magnitude. Theoretically, hypotheses

for this behavior include given these size scales that cohesive forces can trump the centrifugal

forces (Scheeres, 2012; Holsapple, 2007) or that these are the “monolithic” remnants of “rubble
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Figure 3.1: Spin period distribution as a function of diameter for near-Earth (NEA), Mars crossing
(MCA) and Main Belt (MBA) asteroids as reported in the Asteroid Lightcurve Database (Warner
et al., 2009). The dashed lines indicate the critical rotation break-up periods: 2.33 hrs for diameters
D > 250 m and 0.05 hrs for D < 250 m.

pile” progenitors that have undergone multiple YORP induced rotational fissioning (Pravec et al.,

2007).

In the asteroid population evolution model, the asteroid population is divided in two diameter

bins: D > 250 m and D < 250 m. Large asteroids (D > 250 m) are treated as traditional “rubble

piles.” These bodies are given a lower spin period limit that is set by the critical rotational

disruption period: Pd =
√

3π/ρG ≈ 2.33 hrs where ρ = 2 g / cm3 is the density and G is the

gravitational constant. Small asteroids (D < 250 m) are treated as “monolithic.” Those treated

as “monoliths,” whether they are actually monoliths or cohesively bound bodies, only rotationally

disrupt at spin periods in excess of 0.05 hours. This period is representative of the maximum
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Figure 3.2: Evolutionary tracks for a small asteroid after it has undergone rotational fission ac-
cording to the theory in Jacobson and Scheeres (2011a) and Jacobson and Scheeres (2011b). Each
evolutionary step is indicated by an arrow. Most of this diagram is cycle, since the end states are
singles asteroids: re-shaped asteroids, contact binaries or each member of asteroid pairs. Collisions
can destroy synchronous binaries in equilibrium. Figure similar to that in Jacobson and Scheeres
(2012) but simplified by removing intermediate states and less likely states (e.g. triples).

rotation speeds that small asteroids are observed and was chosen arbitrarily.

3.2.4 Outcomes of Rotational Fission

If the critical spin rate is reached at least once for an asteroid during a timestep, then the

asteroid population evolution model simulates a rotational fission event for that asteroid. This

can happen when a collision brings the asteroid above the rotational breakup limit or when the

rotational breakup period is reached due to YORP acceleration. If the asteroid is in the small

diameter regime D < 250 m, then the asteroid is rotating super-critically due to internal strength.

When this strength fails, the energy released is enough to immediately disrupt the system sending

the components on escape trajectories and destroying the asteroid.

If the asteroid is in the large diameter regime D > 250 m, then the system rotational fissions
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at the critical disruption spin rate. Pravec et al. (2010) observationally showed that these types

of events are the progenitors of the observed asteroid pair population. Jacobson and Scheeres

(2011a) numerically showed that rotationally fissioned asteroid systems can evolve into a number

of different outcomes, as shown in Figure 3.2, but the chaotic nature of the system allows for

only a probabilistic determination of the outcome. A binary system formed via rotational fission

can temporarily occupy a number of evolutionary morphologies before settling into three enduring

states: single, binary and pair. None of these categories are truly permanent since single asteroids

can undergo rotational fission forming binaries and pairs, binaries can be disrupted forming pairs

or internally collied to make re-shaped asteroids (i.e. singles), and asteroid pairs, which are really

sets of single asteroids, can be rotationally fissioned.

Scheeres (2007a) shows that the rotational breakup spin rate is dependent on the mass ratio

of the components that will enter into mutual orbit. If a spherical approximation of each component

is made, then the rotational breakup spin rate ωq necessary to fission as a function of mass ratio2

q is:

ωq = ωd

√
1 + q(

1 + q1/3
)3 (3.2)

where ωd =
√

4πρG/3 is the critical disruption speed, ρ is the density, and G is the gravitational

constant. This is the exact solution for two spheres resting on each other with a mass ratio

of q rotating about the system maximum moment of inertia. It is important to note, that the

asteroid population evolution model utilizes the conservative3 , zeroth order approximation that

each “rubble pile” asteroid disrupts at the critical disruption speed ωd. While the mass ratio q does

not determine the rotation rate at fission in the asteroid population evolution model, it plays an

important role in the determination of the final outcome of rotational fission.

The spherical component model described above demonstrates the important reality that the

larger the mass ratio q of the two future binary members the slower the required rotation rate

necessary to create the binary system. This slower required rotation rate translates into a small

2 Mass of the secondary (smaller) member divided by the mass of the primary (larger) body.
3 It is conservative by requiring longer times to disruption.
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initial free energy for the ensuing binary system. The free energy Ef is the energy that is accessible

to the different energy reservoirs in the system including the rotation states of each member and

the orbit. It does not include the internal binding energy of each object. The free energy is an

important quantity because it determines the boundedness of the system. Bound systems have

negative free energy, while unbound systems have positive free energy. An unbound binary system

implies that the system is capable of disruption but does not imply that the system will disrupt.

For the idealized case of two spheres, the free energy can be expressed as:

Ef =
2πρω2

dR
5
p

15

(
2− 4q

1
3 + 6q

2
3 − 11q + 6q

4
3 − 4q

5
3 + 2q2

1 + q
1
3

)
(3.3)

where Rp is the radius of the primary. For the equation above corresponding to two spheres, the

function crosses zero when q ≈ 0.204316. Similar equations can be written for any two component

shapes, but q ∼ 0.2 remains near the binding energy transition point, and so the model uses this

point as a simple approximation. This crossing point divides bound systems with negative energy

and mass ratios q > 0.2 and unbound systems with positive energy and mass ratios q < 0.2.

Because of this fundamental difference, high mass ratio q > 0.2 and low mass ratio q < 0.2 binary

systems evolve differently (Scheeres, 2009b; Jacobson and Scheeres, 2011a). Primarily, positive

energy low mass ratio systems will chaotically explore orbital phase space until the majority find a

disruption trajectory creating an asteroid pair; this evolutionary route is unavailable to high mass

ratio systems.

Jacobson and Scheeres (2011a) numerically modeled the evolution of binary asteroids after

rotational fission and determined that high and low mass ratio systems evolve along separate

tracks that give rise to a different set of outcomes. From these numerical experiments, it was

determined that the mass ratio is not necessarily a fixed quantity and may change via a process

termed secondary fission. This process is well described in Jacobson and Scheeres (2011a) and has

the ability to change the initial mass ratio to a lower value as a binary system evolves. During

secondary fission, mass is shed from the secondary either onto the primary or out of the system.

This process was only observed numerically to occur with low mass ratio systems. Since it reduces
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the mass ratio of low mass ratio systems, no binary systems can evolve across the q ∼ 0.2 threshold

between high and low mass ratio systems. Since these two populations are independent, their

long-term evolution will be dealt with separately.

3.2.5 Mass Ratio Fraction

Before describing the possible outcomes and their likelihoods for both high and low mass ratio

systems, the relative number of high to low mass ratio systems must be determined. The initial

mass ratio of a binary system after rotational fission is determined by the internal component

(i.e. “rubble pile” element) distribution of the parent asteroid before rotational fission (Scheeres,

2007a), so it is the distribution of internal structures amongst an ensemble of asteroids that will

determine the initial distribution of binary mass ratios. The direct determination of the distribution

of mass ratios after rotational fission would perhaps require the gentle and complete disassembly of

a number of asteroids into their component pieces understanding their masses, shapes and relative

locations, however an approximate understanding of this distribution may soon be available via

detailed numerical modeling using discrete element methods (Walsh et al., 2008, 2012; Sánchez and

Scheeres, 2011, 2012).

Until then, we can constrain the initial mass ratio fraction Fi that is input in the asteroid

population evolution model by comparing the observed steady-state mass ratio fraction to the

steady-state fraction output by the model Fq. The steady-state distribution reflects a balance

between creation and destruction of binary systems as a function of mass ratio. The mass ratio

fraction F is defined as the number of high mass ratio systems divided by the number of low mass

ratio systems. The mass ratio fraction is a function of time as high and low mass ratio systems

are created and destroyed. The initial mass ratio fraction Fi reflects the distribution of possible

internal component distributions of parent asteroids. This initial distribution then evolves into the

observed steady-state mass ratio fraction Fq due to the differences between binary creation and

destruction timescales in high and low mass ratio systems. The initial mass ratio fraction Fi is an

input into the asteroid population evolution model, and the steady-state mass ratio fraction Fq is
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Figure 3.3: Two histograms of the same observed binary distribution as a function of mass ratio.
The solid histogram shows the number of binaries in bins of width 0.1 in mass ratio. The dashed
histogram simply outlines the number of binaries in the low mass ratio (0 < q < 0.2) and the high
mass ratio (0.2 < q < 1) populations, of which there are 81 and 16 observed binary systems, respec-
tively. The observed binaries are the 97 characterized binaries with small primary diameters . 11
km according to the July 1, 2011 binary asteroid parameter release from http://www.asu.cas.cz/ as-
teroid/binastdata.htm as compiled by methods and assumptions described in Pravec et al. (2006)
and Pravec et al. (2007).

one of the observable outputs.

This evolution in mass ratio fraction is due only to the creation and destruction of specific

binary systems and not due to the possible evolution in mass ratio of those systems, since high

mass ratio systems were not observed in numerical models to transform into low mass ratio binaries

and vice versa (Jacobson and Scheeres, 2011a). As discussed above, binary systems cannot cross

the mass ratio q ∼ 0.2 boundary between the two regimes via secondary fission. The simplest

approximation within each mass ratio regime is to assume that the members are selected from a

flat distribution. As is shown in Figure 3.3, this description is imperfect but is an appropriate
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assumption, since the asteroid population evolution model is only being used to determine the

steady-state mass ratio fraction Fq and not the detailed steady-state mass ratio distribution. In

the future, a treatment that includes a more advanced binary evolution model with a more detailed

dependance on mass ratio will also need to explore more complex initial mass ratio distributions.

The range of initial mass ratio fractions Fi to be tested in the asteroid population evolution

model is motivated by the observed population as shown in Figure 3.3. The observed steady-state

mass ratio fraction is Fq ∼ 1/5, but low mass ratio systems face much steeper odds of surviving as

binary systems (8%), as discussed in Section 3.3.1. To examine a broad range of initial conditions

and their outcomes: Fi is varied between 32, 16, 8, 4, 2, 1, 1/2, 1/4, 1/8, 1/16, and 1/32. Every

time a binary system is created via rotational fission in the asteroid population evolution model,

the binary is assigned to either the low or high mass ratio regime, such that (1 + Fi)
−1 of the time

the system is low mass ratio and 1− (1 + Fi)
−1 of the time it is high mass ratio. This is the first

knob in the model; the other knob is the BYORP coefficient distribution.

3.3 Binary Asteroid Evolution

After a rotational fission event, a binary system is formed. Binary systems undergo complex

dynamics immediately afterwards (Jacobson and Scheeres, 2011a). If they stabilize, then non-

gravitational and tidal torques control the fate of the system. Since this evolution is complex,

binary systems are not individually evolved from fission to end state, since this would be compu-

tationally expensive. Instead, a lifetime for each system is drawn from a distribution, which has

been determined from a separate Monte Carlo model of binary asteroid evolution as described in

Section 3.3. Each binary system is placed in a mass ratio bin, low (q < 0.2) or high (q > 0.2),

after formation. These mass ratio bins determine the “instantaneous” survival of the binary system

according to Section 3.3.1. If the binary survives, then the binary’s “long-term” evolutionary path

is drawn. This is dependent on the assigned mass ratio bin. Each evolutionary path is associated

with a binary lifetime distribution, and after a lifetime is drawn from the appropriate distribution,

this lifetime is then scaled by the heliocentric orbit of the system and the absolute size of the system
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(radius of the primary). The heliocentric semi-major axis and eccentricity remain the same as its

rotationally fissioned progenitor. Therefore, each binary system has four permanent parameters:

the heliocentric semi-major axis and eccentricity, the mass ratio4 and the binary lifetime. The

evolved parameter is not the spin rate as in the single asteroid case, but rather the age of the binary.

The final outcome of the evolutionary path is also recorded, so that when the binary lifetime is

over, the system is replaced with a new asteroid the same size as the progenitor but labeled as

either an asteroid pair or a re-shaped asteroid. This evolution may be interrupted by a collision,

and this is discussed in Section 3.3.3.

The evolution of a binary asteroid system from rotational fission to a long term stable out-

comes is deterministic but the evolution is chaotic and only weakly a function of the shape of

each body and the mass ratio within each of two distinct dynamical regimes: low and high mass

ratio (Jacobson and Scheeres, 2011a). The initial evolution of the spin and orbit states of the

system are controlled by dynamical coupling between the spin and orbit by non-Keplerian gravity

terms, solar gravitational perturbations, and mutual body tides. This dynamical evolution is quick

often finishing in tens of years (Jacobson and Scheeres, 2011a) and much shorter than the 106

year timestep in the asteroid population evolution model. Due to the chaotic and swift nature of

this evolution it occurs “instantaneously” and probabilistically within the model. After this “in-

stantaneous” evolution, surviving binary systems evolve according to “long-term” binary evolution

which is detected by both the BYORP effect and mutual body tides. If the rotational fission event

results in the creation of a re-shaped asteroid or an asteroid pair, then these objects are returned

to the asteroid population evolution model as single asteroids sharing the same heliocentric orbit

properties as their progenitors. If the systems settles into a stable (i.e. long-lasting) binary state,

then the binary may exist for many timesteps. According to the theory established in Jacobson

and Scheeres (2011b), the longevity of a binary system is determined by mutual body tides, the

YORP effect, and the BYORP effect. The BYORP effect is the most important, and can destroy

systems in as little as 105 years or permanently stabilize them until some exogenic process (e.g.

4 The primary radius is determined from the mass ratio and the progenitor radius assuming the same density
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planetary flyby) destroys the system (McMahon and Scheeres, 2010a). Upon creation each stable

binary is assigned a lifetime that is drawn from a distribution determined by Monte Carlo modeling

of binary asteroids. This modeling is explained in Section 3.3.2.2. This allows the preservation of

large timesteps within the asteroid population evolution model. At the end of a binary system’s

lifetime, the binary disrupts forming a re-shaped asteroid or an asteroid pair similar to the “instan-

taneous” evolution case. Some binaries do not have endogenic lifetimes, these exist until a collision

occurs that is capable of disrupting the mutual orbit or catastrophically destroys one of the binary

members. Even binary systems with natural lifetimes can be destroyed via these mechanisms, if

they occur. Binary destruction via collision is discussed further in Section 3.3.3.

3.3.1 “Instantaneous” Binary Evolution

After every timestep, each system that rotationally fissioned undergoes binary evolution.

Within the Monte Carlo asteroid evolution program, there are two stages for binary evolution:

“instantaneous” and “long-term.” This distinction is made between processes that occur imme-

diately after rotational fission and last less than 106 years (i.e. the asteroid population evolution

model timestep), and those that are gradual or require the completion of some other process such

as tidal synchronization of the secondary and take more than 106 years. “Instantaneous” evolu-

tion is described below and “long-term” evolution in Section 3.3.2. Since the timescales of these

processes are often dependent on a large number of parameters, a small minority of systems may

violate these assumptions. Where this is possible, it will be noted and discussed. In general, the

effect of underestimating the length of “instantaneous” processes results in the reduction of binary

lifetimes by only a 106 year timestep or two. Since this effects only a small number of systems, the

steady-state solution should still predict the relative number of binary systems and the steady-state

mass ratio fraction to first order.

If the mass ratio of a system is determined to be high, then that system evolves along

the high mass ratio evolutionary track as shown along the top branch of Figure 3.2 reproduced

from Jacobson and Scheeres (2011a). Rotationally fissioned binary systems have very compact
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mutual orbits. Variations in the orientations and distances between the two members produce

changing gravitational fields. Each body is inelastically distorted by the gravitational field of the

other. Since these fields are varying time, so are the distortions, which lead to energy dissipation in

the form of heat. These mutual body tides lead to circularization of the orbit and synchronization of

the spin to the orbit period. Tidal dissipation and subsequent synchronization of each component of

a high mass ratio binary occurs at similar rates, since they are of nearly equal size. For “rubble pile”

tidal parameters, these systems typically synchronize in much less than 106 years (Goldreich and

Sari, 2009), and so this process is considered an “instantaneous” process in the asteroid population

evolution model. For high mass ratio systems, systems larger than 5 km and with mass ratios

0.2 < q . 0.3 may take more than a million years to synchronize. Since high mass ratio systems

have negative free energy, none of these systems can disrupt endogenously and all systems emerge

as doubly synchronous binaries. Once synchronous, the BYORP effect will expand or contract the

mutual orbit. Since this process can last many millions of years, further evolution of high mass

ratio binary systems is discussed in Section 3.3.2.

If the mass ratio of a system is determined to be low, then that system evolves along the

low mass ratio evolutionary track as shown along the bottom branch of Figure 3.2. In Jacobson

and Scheeres (2011a), this track is shown to immediately branch into four possible states, however

most chaotic ternary systems formed via secondary fission return to the chaotic binary state via

escape of a member or impact between two of the members. None in the original study were found

to stabilize for the duration of the simulation although that remains a possibility. This track is not

shown in Figure 3.2. Escape from low mass ratio systems is possible because they have positive

free energy, and Jacobson and Scheeres (2011a) found numerically that ∼ 67% of low mass ratio

binaries do disrupt. Collisions between the two members occur in another ∼ 25% of these systems.

Only ∼ 8% of low mass ratio binaries survive for more than 103 years. Typically, the secondary of

these binaries synchronizes due to mutual body tidal dissipation in less than 106 years (Goldreich

and Sari, 2009). The primary synchronizes on a timescale proportional to the mass ratio squared

q2, and so these binaries become singly synchronous systems within the “instantaneous” period
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of the asteroid population evolution model. The model stochastically assigns an outcome to each

rotationally fissioned low mass ratio system according to the probabilities indicated above creating

members of asteroid pairs, re-shaped asteroids, and singly synchronous binary systems. Further

evolution of singly synchronous binary systems due to the BYORP effect and tides is discussed in

Section 3.3.2 since the relevant timescales typically exceed a million years.

All resultant asteroid systems from both mass ratio regimes are propagated forward using the

asteroid population evolution model with all of the asteroids that did not undergo rotational fission.

Members of asteroid pairs and re-shaped asteroids are subject to the YORP effect and collisions

exactly as single asteroid systems that did not undergo rotational fission. In fact, these systems

are now single asteroid systems having complete one rotational fission lifetime cycle. They can

eventually rotationally fission again if they are accelerated to the appropriate rotational break-up

speed of their size regime.

3.3.2 “Long-term” Binary Evolution

Binary systems that have survived “instantaneous” evolution are treated differently than

single systems in the asteroid population evolution model. These systems are still subject to

collisions and this is discussed in Section 3.3.3, but they are not subject to the YORP effect in

the same way as single asteroids since the internal (i.e. spin and orbit states) evolution of binary

systems is complicated by mutual body tides and the BYORP effect. Typically, mutual body

tides initially control the internal evolution tidally locking first the secondary and then possibly

the primary (Goldreich and Sari, 2009). The BYORP effect then evolves the orbit according

to the properties of the synchronous members of the system (Ćuk and Burns, 2005). Jacobson

and Scheeres (2011b, 2012) determined that the YORP torque can delay tidal synchronization,

but in most cases synchronization will still occur in less than a million years. In rare cases, the

YORP torque may be stronger than the tidal torque and evolve the system outside of the proposed

evolutionary paths, but it is acceptable to neglect these cases in this model due to the rarity of the

required parameters necessary. In most cases, the direction of the BYORP torque has the largest
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impact on the lifetime of the system and determines the final end state. At the end of the binary

lifetime, the binary system is automatically destroyed and replaced by either a re-shaped asteroid

if the mutual orbit contracted until contact or an asteroid pair if the mutual orbit expanded until

the Hill radius. Only low mass ratio singly synchronous contracting systems are predicted to not

be destroyed by endogenic processes, so in the Main Belt they must be destroyed by collisions, but

all binary systems are susceptible to destruction via collision.

The BYORP effect acts as cumulative torque on the orbit of synchronous satellites due

to asymmetrical incident solar radiation and emitted thermal radiation (Ćuk and Burns, 2005;

Ćuk, 2007; McMahon and Scheeres, 2010a,b). Synchronicity is required in order for the torques

from thermal photons to add cumulatively to a non-zero orbital acceleration over all the phases

of the mutual orbit, heliocentric orbit, and the precession of the ascending node. The strength

of the BYORP effect is strongly dependent on the properties of the mutual orbit as well as the

shape and size of the synchronous body. The effect acts independently on each body. If both

bodies are synchronous as in doubly synchronous binaries, then there is a BYORP torque on

each. For singly synchronous systems, the BYORP effect only acts on the synchronous secondary.

Detailed numerical modeling in Jacobson and Scheeres (2011a,b) showed that the direction of

the BYORP torques is the fundamental parameter for determining the final evolutionary state of

the system. The strength of the BYORP torques determine the timescale of the evolution. The

BYORP effect eventually destroys all doubly synchronous and half of all singly synchronous binary

systems, shown in Figure 3.2 reproduced from Jacobson and Scheeres (2011a). The exception

to BYORP destruction are the singly synchronous systems which occupy an equilibrium between

tides and the BYORP effect and are predicted to survive indefinitely unless there is exogenous

interference (Jacobson and Scheeres, 2011b).
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The asteroid population evolution model does not calculate the specific mutual orbit evolu-

tion of each binary system due to computational constraints. Instead, each binary is assigned an

evolutionary path determined by the system mass ratio and direction of the BYORP torque(s) in

the system. There are six distinct evolutionary paths as shown in Table 3.1: low mass ratio stable

equilibrium with tides (contractive BYORP), low mass ratio expansive, high mass ratio expansive

anti-aligned, high mass ratio expansive aligned, high mass ratio contractive anti-aligned, and high

mass ratio contractive aligned. Within each mass ratio regime, there is an equal likelihood to

follow a specific track since there is nominally the same chance for a positive as negative BYORP

coefficient and the BYORP coefficient of each body is independent of the other (Ćuk and Burns,

2005; McMahon and Scheeres, 2010a). For instance, 25% of high mass ratio systems evolve along

the expansive track with aligned BYORP coefficients, since there is a 50% chance that the primary

will have a positive BYORP coefficient and a 50% chance that the secondary will also have a pos-

itive BYORP coefficient. Once the evolutionary track has been established for a binary system, it

continues down that track for the rest of its lifetime.

The lifetime of a binary system is determined principally by the BYORP effect. After syn-

chronization of both members, tides may damp eccentricity from the system but do not strongly

evolve the semi-major axis. If only the secondary is synchronized, then tides are still important for

contractive systems (i.e. the tidal-BYORP equilibrium) and while tides assist BYORP in expand-

ing systems, tides are a strong function of semi-major axis and soon become much weaker than

the BYORP effect. There are also possible interruptions by exogenous processes (e.g. collisions,

see Section 3.3.3). The rate of expansion or contraction is determined primarily by the heliocentric

orbit, absolute size of the system, and the BYORP coefficient.

The BYORP effect torques synchronous members about the system barycenter expanding

or contracting the mutual orbit. The strength of the BYORP torque depends principally on the

mutual orbit, the heliocentric orbit, and the size and shape of the synchronous member (McMahon

and Scheeres, 2010b). McMahon and Scheeres (2010a) showed that to first order in eccentricity, the
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semi-major axis a measured in primary radii Rp evolves as:

ȧ =
3Bc

2πωdρ

(
a3/2
√

1 + q

R2
pq

) (2/3)F�

a2
�

√
1− e2

�

 (3.4)

where Bc = Bp +Bsq
2/3 is the combined BYORP coefficient. The mass ratio q2/3 factor is a direct

result of the BYORP effect evolutionary equations (McMahon and Scheeres, 2010a). For doubly

synchronous systems, there is a BYORP coefficient for the primary Bp and the secondary Bs, but

for singly synchronous systems, there is only a BYORP torque on the secondary so the BYORP

coefficient for the primary Bp = 0. This evolutionary equation was designed so that the BYORP

coefficient is scaleless and depends solely on the shape of the synchronous member. The BYORP

coefficients of each synchronous member of the system determine the direction and rate of orbit

evolution.

3.3.2.1 BYORP coefficient distributions

Determining the appropriate distribution of plausible BYORP coefficients is very difficult.

The effect is similar to the detected Yarkovsky and YORP effects (Chesley et al., 2003; Taylor

et al., 2007; Lowry et al., 2007) and so the BYORP effect rests on strong theoretical support

despite a lack of direct observation of BYORP-driven evolution. The BYORP effect has never been

directly measured, so a BYORP coefficient distribution cannot be derived from direct observation.

A detection may be precluded by the BYORP-tidal equilibrium hypothesis and the possibly fast

destruction of doubly synchronous binary systems.

BYORP coefficients are determined solely by the shape of the asteroid. Since there are

very few well resolved asteroid shapes particularly of binary asteroid members, the distribution of

BYORP coefficients is uncertain. The only current BYORP prediction, McMahon and Scheeres

(2010a) estimated that Bs = 2× 10−2 for the secondary of the 66391 (1999 KW4) system using a

vertice-and-facet shape model from Ostro et al. (2006). This shape model is an order 8 spherical

harmonic representation with an average 26 m facet edge length (corresponding to 7◦ angular

resolution). Using this BYORP coefficient and the observed parameters of 66391, McMahon and
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Scheeres (2010a) determined a Hill radius expansion timescale of∼ 5.4×104 years. This expansion is

very rapid compared to the typical YORP timescales of possible progenitors of ∼ 106 years assuming

formation from YORP-induced rotational fission (Rubincam, 2000; Vokrouhlický and Čapek, 2002;

Čapek and Vokrouhlický, 2004). Nominally, half of all synchronous binary asteroids are expected to

expand due to the BYORP effect and 66391 may be a member of this population but observing this

system as a binary rather than an asteroid pair is very unlikely given the difference between those

two timescales. This estimated BYORP coefficient also contradicts the BYORP-tidal equilibrium

hypothesis in Jacobson and Scheeres (2011b), which states that the observable singly synchronous

binary asteroids occupy an equilibrium between a contractive BYORP torque and the expansive

mutual body tidal torque. This hypothesis requires a negative BYORP coefficient.

Further study by McMahon and Scheeres (2012, pers. comm.) concluded that the shape

of 66391 should be known to a mean facet edge length of 8 m (an angular resolution of 2.2◦),

using results scaled from an analysis of 25143 Itokawa (1998 SF36), in order to model the BYORP

coefficient with sufficient accuracy to prevent significant changes including sign changes. For the

related YORP effect, Statler (2009) concluded that spherical harmonic fits of order ≤ 10 produce

expected errors of order 100% and for errors under 10%, the harmonic order of the fit must be at

least 20. Furthermore, Statler (2009) showed that a crater half the object’s radius can produce

errors of several tens of percent; the observations of the secondary of 66391 did not uniformly

cover the surface, a significant portion of the southern hemisphere is systematically not as accurate

as the 7◦ angular resolution of the rest of the model, and features such as craters may have not

been observed (Ostro et al., 2006). Alarmingly, Rozitis and Green (2012) conclude that the related

YORP effect is very sensitive to surface roughness due to thermal-infrared beaming and that

accurate YORP (and perhaps BYORP) coefficient estimation from shape models may require 1 cm

resolution.

Pravec and Scheirich (2010) determined that the direct detection of the BYORP effect and

measurement of the BYORP coefficient would require multi-decade observations of small (semi-

major axes of < 10 primary radii and secondary radii < 1 km) binaries. Furthermore, this analysis
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Figure 3.4: The BYORP and tidal coefficients BQ/kp as determined from the observed singly
synchronous population. This plot has been reproduced from Jacobson and Scheeres (2011b) but
updated using data from the most recent July 7, 2011 binary asteroid parameter release from
http://www.asu.cas.ca/ asteroid/binastdata.htm as compiled by the methods and assumptions de-
scribed in Pravec and Harris (2007). Errors are 1-σ uncertainties in the observed parameters
propagated simply forward. The solid line is the fitted coefficient law BQ/kp = 2557Rp km−1, and
the dashed lines are the 2-σ bounds of the scatter in BQ/kp as described in the text.

did not include mutual body tides, which Jacobson and Scheeres (2011b) predicted would create

a stable equilibrium and halt mutual orbit evolution. Only the less numerous doubly synchronous

systems do not have mutual body tides capable of creating the stable equilibrium5 . The non-

existence of a stable equilibrium is the hypothesized reason for the rarity of these systems. Jacobson

and Scheeres (2011b) predicts that the mutual orbits of the more numerous singly synchronous

systems are not evolving since they occupy the equilibrium. Preliminary results from Scheirich

et al. (2012) conclude that for 175706 (1996 FG3) this is true for at least this system.

While the hypothesized BYORP-tidal equilibrium prevents the direct measurement of the

BYORP coefficients of singly synchronous binaries, it may be used to determine the relative distri-

bution of BYORP coefficients. In Jacobson and Scheeres (2011b), it is shown how for each system

the balance between the BYORP and tidal torques determines the value of the combination of the

BYORP coefficient B and the tidal parameters: tidal quality number divided by the tidal Love

5 69230 Hermes (1937 UB) is the smallest doubly synchronous system in both absolute size and heliocentric orbit,
and is therefore the likeliest system for a direct detection of BYORP-driven orbit evolution.
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Figure 3.5: The scatter of the BYORP coefficient B due to the variety of secondary shapes. This
scatter is determined from the scatter of the calculated BQ/kp about the fitted coefficient law
BQ/kp = 2557Rp km−1 as discussed in the text.

number Q/kp of the primary, degenerately:
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The values of this unitless BQ/kp coefficient combination for each singly synchronous system is

shown in Figure 3.4. This is very similar to Figure 1 in Jacobson and Scheeres (2011b). The solid

line is a fit to the logarithm of the data and is BQ/kp = 2557Rp km−1. Each asteroid system should

follow a similar tidal law and the tidal parameters may have a dependence on absolute size unlike

the BYORP coefficient, which is designed to have no dependence on absolute size and only be a

function of shape. Jacobson and Scheeres (2011b) argued from this data that Q/kp ∝ Rp. Since the

BYORP coefficient is not a function of size (Rp), then when the data is divided by a Q/kp ∝ 2557Rp

km−1 model, the resulting scatterplot reflects the distribution of BYORP coefficients B. These

normalized BYORP coefficients β are shown in Figure 3.5.

While this trick does not determine the absolute magnitude of the BYORP coefficient, it

does provide information about the width of the BYORP coefficient distribution. Figure 3.6 shows

the same data as in Figure 3.5 but as a logarithmic histogram. Each system’s normalized BYORP

coefficient β = 10υ are shown in the histogram. The distribution of υ is fit with a simple normal
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Figure 3.6: A probability density histogram of υ of the observed singly synchronous population
(bins are of width 0.5). The dashed line is the probability density function of a central normal
distribution fit to the data where συ = 0.68. Data is the same as in Figure 3.4.

distribution with mean µυ = 0 and standard deviation συ = 0.68. The observed distribution has

a slight negative skew and a positive kurtosis compared to the normal distribution. While the

normalization of the singly synchronous data removed information about the absolute value of

the BYORP coefficients, the standard deviation of those absolute coefficients is the same as the

normalized coefficients so σB = συ = 0.68, where σB is the standard deviation of y and the absolute

BYORP coefficients B = 10y.

The mean µB of the distribution of y is difficult to determine. Estimating the absolute

magnitude of the BYORP coefficient from McMahon and Scheeres (2010a) suggests a value for

the mean of the distribution near µB = −2. Even though this value is correct for the radar shape

model of the secondary of 66391 rotated 180◦ about either the radial or body axis orthogonal to
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the along track direction, however as discussed above, this estimation may not be accurate due to

deficiencies of the shape model.

Another possible estimation scheme for the absolute values of the BYORP coefficient is to

determine possible ranges for the tidal parameters and use the equilibrium relationship to determine

the likely mean BYORP coefficient. Margot et al. (2002) and Taylor and Margot (2011) show

how tidal parameters can be constrained from estimating the age of the binary system. This

age constraint is usually an upper limit on tidal parameters since the utilized age is either an

estimate of the near-Earth asteroid (NEA) lifetime or the Main Belt asteroid (MBA) collisional

timescale. These constraints could be useful in limiting the necessary parameter space in the

asteroid population evolution model, however the conducted studies did not consider the role of

the YORP or BYORP effect or the similarity between the initial and final semi-major axes of low

mass ratio singly synchronous binary systems. The YORP effect can expedite or delay the onset of

synchronization. The BYORP effect has the unhelpful characteristic of preventing straightforward

tidal evolution of the mutual orbit after synchronization.

After careful consideration of these effects, only the doubly synchronous population can be

used to find a useful constraint. The asynchronous binary population must be dismissed since it

is not clear if the YORP effect or tides is the dominant evolutionary mechanism. For the singly

synchronous population, the combination of the BYORP effect and tides also prevents the useful

application of the age constraint on tidal parameters. According to the tidal-BYORP equilibrium,

low mass ratio singly synchronous systems are observed at final semi-major axes very similar to the

semi-major axes that they settled into after forming via rotational fission Jacobson and Scheeres

(2011a), and these systems are stable in this configuration in excess of the near-Earth asteroid

lifetime.

The BYORP effect is currently torquing the observed doubly synchronous population, but

each member of each binary synchronized on a similar timescale since these are high mass ratio

systems (Jacobson and Scheeres, 2011a). Also high mass ratio systems do not undergo secondary

fission and so evolve directly from contact to the doubly synchronous relative equilibrium. Since
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Figure 3.7: The upper limits of R−1
p Q/kp for each doubly synchronous system from the Ondrejov

Binary Parameter Release.

both members are synchronous, the YORP effect must be weaker than the tidal torque on the

spin state. The estimated timescale of the system, either the NEA lifetime or the MBA collision

timescale τl depending on the heliocentric orbit of the system, is equal to the τt+τb, where τb is the

time since synchronization that the system has been evolving due to the BYORP effect. The tidal

timescale τt is determined from the initial semi-major axis ac and the final doubly synchronous

semi-major axis ad, as defined in Section 3.3.2.2, as well as the binary system parameters:

τt =
2Q

39kpωdq
√

1 + q

(
a

13/2
d − a13/2

c

)
(3.6)

This is an integration of the standard tidal evolution equations (e.g. as given in Murray and

Dermott (2000)). Using the relationship τt ≤ τl, the tidal parameters can be constrained:

Q

kp
≤ 39

2
ωdq
√

1 + q
(
a

13/2
d − a13/2

c

)−1
τNEA (3.7)

The tidal-BYORP equilibrium hypothesis establishes the relationship: BQ/kp = 2557Rp. The

BYORP coefficient B is not dependent on the size (Rp) of the body, only the shape. Thus the

tidal parameter arrangement R−1
p Q/kp should be a constant independent of size. Figure 3.7 shows

these constraints R−1
p Q/kp for each doubly synchronous system in the July 1, 2011 binary asteroid

parameter release from http://www.asu.cas.cz/ asteroid/binastdata.htm as compiled by methods
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Figure 3.8: The cumulative density distribution for the maximum value of the mean BYORP
coefficient given the possible tidal parameter estimations.

and assumptions described in Pravec et al. (2006), Pravec and Harris (2007), and Pravec et al.

(2012), for which this constraint on Q/kp can be determined (i.e. that double synchronicity can be

established, and the necessary parameters are known).

If the very plausible assumption is made that the tidal parameters are similar between the

doubly and singly synchronous populations, then the equilibrium relationship establishes a con-

straint on the BYORP coefficients B = 2557Rp (Q/kp)
−1 = 10y for the singly synchronous systems

in the equilibrium. In Figure 3.8, the lower limit for the BYORP coefficient is shown as a cumulative

density function. The minimum, median, maximum values for y are −7.0,−8.2,−8.4. However,

none of these constraints are useful since a value of y = −6 produces binary lifetimes longer than

the age of the Solar System.

Since we cannot constrain the BYORP coefficient distribution, five different distributions are

tested in the asteroid population evolution model: µB = 0, −1, −2, −3, −4, −5, −6 and −7.

This is the second knob in the model; the other knob is the initial mass ratio fraction as described

in Section 3.2.5. These BYORP coefficient distributions are used to generate the binary lifetime

distributions that are then assigned to each binary system in the asteroid population evolution

model. Each BYORP distribution is tested independently and the entire asteroid population is then
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(b) Anti-aligned expanding high mass ratio life-
time distribution
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(c) Aligned expanding high mass ratio lifetime
distribution
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(d) Anti-aligned contracting high mass ratio life-
time distribution
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(e) Aligned contracting high mass ratio lifetime
distribution

Figure 3.9: Binary lifetime distributions for each evolutionary track are shown as probability density
functions (pdfs) of x as defined in the text. Each track (a, b, c, d and e) shows five Monte Carlo
generated lifetime distributions and five fitted Normal distributions corresponding to the BYORP
coefficient distributions, which from left to right are: µB = −2, −3, −4, −5, and −6. The solid
lines are the result of Monte Carlo generation of a million binary systems for each distribution.
The dashed lines are fitted normal distributions to this generated data, and the fit parameters are
given in Table 3.1.

evolved from within the chosen distribution for the entirety of the run. Each of these distributions

is defined such that B = 10y and y is drawn from a normal distribution with standard deviation

σB = 0.68 and mean µB as listed above and in Table 3.1.
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3.3.2.2 Binary lifetime distributions

The BYORP lifetime τ is determined by the evolution of the mutual orbit from a tidally

synchronized semi-major axis to single member end states either re-shaped asteroids (e.g. contact

binaries) or asteroid pairs. This evolution can be described as the evolution from an interior semi-

major axis ainterior to an exterior semi-major axis aexterior or vice versa:

τ =10xR2
pa

2
�

√
1− e2

� (3.8)

x = log10

[
4πωdρq

3F�Bc
√

1 + q

(
1

a
1/2
interior

− 1

a
1/2
exterior

)]
(3.9)

where F� = 4.5× 10−5 g cm−1 s−2 is the solar constant at a 1 AU circular orbit. The BYORP life-

time τ is determined by the primary radius Rp, the heliocentric semi-major axis a� and eccentricity

e�, and x. x is the logarithm of all the other system parameter dependencies. Rather than gener-

ating the necessary parameters to determine x for each system, a million systems were generated

outside of the asteroid population evolution model for each evolutionary path and the distribution

of x was determined. Logarithmic normal distributions were fit to these generated distributions

of x with means of µτ and standard deviations of στ . Each distribution depends on the BYORP

coefficients of the synchronous members, and the particular evolutionary track. For each of the

million systems, the BYORP coefficients are drawn from the distribution with the prescribed µB

for that run. Distributions of x are shown in Figure 7, such that if Rp is in km, a� is in AU, then

τ is in years.

Each evolutionary pathway is defined by the sign of the BYORP coefficient for each syn-

chronous member and the mass ratio of the system. As mentioned earlier, the only evolutionary

track that does not self-destruct is the BYORP contracting singly synchronous track. These sys-

tems may contract or expand to some degree in semi-major axis, but the BYORP-tidal equilibrium

hypothesis predicts that these systems reach a stable semi-major axis. This is a fundamental as-

sumption by this model. The interior ainterior and exterior aexterior semi-major axes are given below

for each of the evolutionary tracks in Table 3.1.

Asteroids undergo rotational fission at some critical disruption rotation rate; this has been
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shown with analytic theory, observations of asteroid pairs, and computational numerics (Scheeres,

2007a; Pravec et al., 2010; Sánchez and Scheeres, 2012). This disruption rate and the shape of

the asteroid at fission determine the angular momentum of the system during the “instantaneous”

binary evolution stage identified in Section 3.3.1. For high mass ratio doubly synchronous systems,

the initial semi-major axis is always the tidally synchronized semi-major axis with the equivalent

angular momentum as the rotational fissioned system at the time of fission. Tidal dissipation

will remove energy from the system, but angular momentum is conserved until the system is

synchronized and the BYORP effect evolves the system. This semi-major axis can be either the

interior or exterior semi-major axis depending on the sign of the BYORP coefficient. By making

some idealizing approximations, the conservation of angular momentum is used to derive a tidal

synchronization semi-major axis for the doubly synchronous systems ad.

The angular momentum of an idealized binary system approximating each body as a constant

density sphere is

H = Ipωp + Isωs +ma2Ω (3.10)

where In = 2MnR
2
n/5 are the moments of inertia, Rn are their radii, Mn = 4πρR3

n/3 are their

masses, m = Mpq/(1 + q) is the reduced mass, a is the distance between each body’s center

of mass, and Ω is the rotation rate about the system barycenter. Additionally, the mass ratio

is defined as q = Ms/Mp = R3
s/R

3
p and the critical disruption rate for a specific mass ratio as

ωq =
√

(1 + q)/(1 + q1/3)3.

In the idealized system described above, the initial angular momentum at the moment of

rotational fission is a function of the mass ratio, the density and the primary radius. Before entering

into orbit, the two idealized components are initially separated only by their radii a = Rp + Rs =

Rp(1 + q1/3). All three rotation rates in the system are equivalent to the critical disruption rate for
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a specific mass ratio ωp = ωs = Ω = ωq. Therefore, the initial angular momentum of the system is

Hi =
4πρωdR

5
p

15

√
1 + q(

1 + q1/3
)3× (3.11)(

2− 2q1/3 + 2q2/3 + 5q + 5q4/3 + 2q5/3 − 2q2 + 2q7/3

1− q1/3 + q2/3

)

Doubly synchronous systems dissipate energy until all three rotation rates of the system are equiv-

alent to the keplerian orbit rate ωp = ωs = Ω = ωd

√
(1 + q)/a3

d where ad = a/Rp is the doubly

synchronous synchronization semi-major axis normalized by the primary radius. The synchroniza-

tion angular momentum for a doubly synchronous is:

Hd =
4πρωdR

5
p

15

(
(1 + q)

(
2 + 2

(
q + q5/3 + q8/3

)
+ 5qa2

d

)(
ad
(
1 + q1/3

) (
1− q1/3 + q2/3

))3/2
)

(3.12)

Since angular momentum is conserved, Hi = Hd and we obtain the synchronization semi-major

axis ad. If we assume ad > 0 and 0 ≤ q ≤ 1, then

a
−3/2
d

(
5qa2

d + 2
(

1 + q + q5/3 + q8/3
))

= (3.13)

2− 4q1/3 + 6q2/3 + q + 2q4/3 + 2q5/3 + q2 + 6q7/3 − 4q8/3 + 2q3(
1− q1/3 + q2/3

)√
1 + q1/3

A power series approximation to the solution of this equation

ad = 0.344 +
0.00406

q3
+

0.01322

q2
+

0.815

q
+ 1.23q (3.14)

is the initial tidally doubly synchronous semi-major axis measured in primary radii Rp.

For contracting high mass ratio systems, the interior semi-major axis ainterior is contact be-

tween the two bodies:

ac = 1 + q (3.15)

For both singly and doubly synchronous expanding systems, the exterior semi-major axis aexterior

is the Hill radius aHill. The Hill radius can be approximated in primary radii Rp:

aHill = q�

(
4πρ

9M�

)1/3

(3.16)
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where ρ = 2 g cm−3 is the density of the primary, M� = 1.99 × 1033 g is the mass of the Sun,

and q� is the heliocentric perihelion of the barycenter of the system. Asteroids at the outer edge

of the Main Belt in circular orbits q� = 3.28 AU have the largest Hill radii aHill = 549 primary

radii and those at the inner edge in highly eccentric orbits with periapses just exterior to the Earth

q� = 1 AU have the smallest Hill radii aHill = 168 primary radii, but these radii are very large

compared to the interior semi-major axes ainterior. Since the BYORP lifetime is proportional to

the difference between the inverse square roots of the interior and exterior semi-major axes, this

factor of three difference in exterior semi-major axis translates to an at most 10% difference in

BYORP lifetime, if one extreme was chosen relative to the other. To simplify the calculations, we

use a single perihelion q� = 2.25 AU, very close to the mean and median of the Main Belt Asteroid

distribution. This corresponds to a Hill radius aHill = 377 primary radii.

3.3.3 Binaries and Collisions

If a binary participates in a catastrophic shattering collision then the binary is always de-

stroyed. This is determined by the same condition as a single asteroid from a comparison of the

imparted specific kinetic energy and the critical impact specific energy. Unlike single asteroids,

cratering collisions can destroy a binary systems. While these collisions by definition deliver less

energy than the critical impact energy, these impacts can deliver enough energy to the system to

disrupt the binary. A simple condition for this disruption is a comparison of the delivered change

in momentum to the system (delta V) and the escape velocity from the primary. If the former

exceeds the latter, then the system disrupts.

3.3.4 Contact Binaries

Contact binaries are formed from the merging of BYORP contracting high mass ratio binary

systems. These systems exist until either they undergo a rotational fission event or are subject to

a catastrophic collision. This probably too optimistic a scenario since the binary system crosses a

instability before contact (Scheeres, 2009b). This instability causes the two components to begin
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to circulate and the orbit to evolve, but from simulations, these systems still collide and do so

gently (Jacobson and Scheeres, 2011a). These gentle collisions may be enough to reshape the new

combined mass into a non-bifurcated shape that would not be easily identifiable as a contact binary.

The subjectivity of the contact binary label adds some uncertainty to the population statistics.

3.3.5 Asteroid Pair Observability

Asteroid pairs are formed from the disruption of asteroid systems either low mass ratio

systems during “instantaneous” evolution or high mass ratio systems due to long-term BYORP

evolution. Similar to contact binaries, asteroid pair members are tracked until catastrophic col-

lision or rotational fission. Furthermore, due to planetary and asteroidal perturbations this pair

information is eventually lost to observers. Most asteroid pairs will lose this information in about

2× 106 years Pravec and Vokrouhlický (2009). Therefore, the asteroid population evolution model

tracks asteroid pairs for only this period of time.

3.4 Results of the asteroid population evolution model

The asteroid population evolution model produces a spin period distribution as a function

of diameter similar to the observed population. This is not of great surprise since the spin limit

constraints were designed to reproduce the observed population and the model has been used

successfully in the past for this purpose (Marzari et al., 2011). The model had two input parameters

initial mass ratio fraction Fi and mean of the log-normal distribution of BYORP coefficients µB,

and these inputs were permutated so that each combination produced a full set of model outputs.

We discuss each observable quantity output from the model and how that observable depends on the

model free parameters: Fi and µB. Combining all of the observables, we assemble a log-likelihood

metric that can determine the best fit parameters. Since the computational cost of running the

asteroid population evolution model is high and we utilized a population of 2× 106 asteroids, there

is small variance when a particular set of input parameters is run a second time. We use a Monte

Carlo method to propagate the observed uncertainties to the comparison tests.
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There are two equally good model fits and they are discussed in detail in Section 3.5. Popu-

lation wide statistics for those models are provided and we discuss in particular the role of YORP-

induced rotational fission on the Main Belt asteroid size distribution.

3.4.1 Steady-State Binary Fraction

The asteroid population evolution model traces the evolution of a population with diameters

from 50 m to 20 km. However, observations typically do not go to such small sizes. To replicate

them, we will only consider asteroids with diameters > 300 m, which corresponds to an absolute

magnitude H ∼ 21 for asteroid albedos. For most observables, changing this diameter does change

the results of the model so for each the trend in diameter cut-off is stated.

In Figure 3.10, the steady-state binary fraction is shown as a function of both the initial

mass ratio fraction and the log-normal BYORP coefficient distribution mean. Long binary lifetimes

(small BYORP coefficients) naturally correspond to a high binary fraction. The relationship with

initial mass ratio fraction is more complicated, when binary lifetimes are short then low initial mass

ratio fraction cases have higher binary fractions due to the more likely creation of synchronous

long-lasting binary systems. Whereas if binary lifetimes are long, then the binary fractions are

very similar.

Radar and photometric lightcurve observations supply independent and robust binary statis-

tics regarding the near-Earth asteroid (NEA) population binary fraction. Using radar observations,

Margot et al. (2002) reported that about 16% of radar observed binary systems larger than 200 m

are binary systems. Updated statistics from radar observations agree well with the better deter-

mined value of about 17%: 31 binary systems out of 180 asteroid systems with absolute magnitudes

H < 21 approximate diameters D & 250 m for an p = 0.18 albedo asteroid (Taylor et al., 2012).

Photometric lightcurve analyses report a binary detection rate of 15±4% for NEAs with diameters

D & 300 m and inferred mass ratios q > 0.006 (Pravec et al., 2006). This agrees with an initial

assessment by (Pravec et al., 1999) that 17% of near-Earth asteroid systems are binary. For small

diameter MBA systems D . 10 km, Pravec and Harris (2006) determine that there is a similar
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Figure 3.10: The binary fraction FB of the model population is shown as a function of the two free
parameters: the mean of the BYORP coefficient logarithmic normal distribution µB along the x-axis
and the initial mass fraction Fi along the y-axis. Each grid point is determined from an independent
run of the asteroid population evolution model with those values for the free parameters (otherwise
the runs are identical).

binary fraction in the inner Main Belt and this is supported by the results of the Binary Asteroid
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Figure 3.11: Each grid point shows the absolute difference between the model population and
observation of the binary fraction Fb (i.e. a heat map identifying those free parameters that
produce a model population closest to the observed population).

Photometric survey (Pravec et al., 2006, 2012). The near-Earth asteroid population is significantly

easier to observe than similar sized Main Belt asteroids, but for the sizes observed D . 10 km,
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rotational fission is expected to be the dominant formation mechanism. Tidal disruption of bi-

nary asteroids in the near-Earth asteroid population may slightly lower the binary fraction in that

population relative to the Main Belt.

In Figure 3.11, the difference between the asteroid population evolution model and the obser-

vations are shown with uncertainties calculated from the observation. For this metric, we use the

16±7% radar survey results from Taylor et al. (2012) assuming Poisson statistics for calculating the

uncertainty. The best parameter fits occur when the log-normal BYORP coefficient distribution

mean is low, either 10−1 or 10−2 and the initial mass ratio fraction is high.

Pravec et al. (2006) made a specific subpopulation observation that amongst fast-rotating

binaries (spin periods between 2.2 and 2.8 hours) with diameters larger than 0.3 km the binary

fraction becomes 66± 12%. The asteroid population evolution model tracks the spin rate of single

asteroids but since it does not evolve the system parameters of binaries, we rely on the binary

evolution model to assume that all low mass ratio and no high mass ratio binaries will have rapidly

rotating primaries. The fast rotating binary fraction as a function of the free parameters is shown

in Figure 3.12. Similar to the overall binary fraction, a large initial mass ratio fraction produces

a small fast rotating binary fraction. Unlike the overall binary fraction, the fast rotating binary

fraction is not dependent on binary lifetimes since only low mass ratio systems have rapidly rotating

primaries.

The difference between the model and the observational constraint is shown in Figure 3.13.

There is a band around a initial mass fraction of 8 that produces the smallest difference between

the model and observation, however this constraint is softer than the overall binary fraction since

the nearby bins have similar values.

3.4.2 Steady-State Mass Ratio Fraction

The steady-state mass ratio fraction is the evolved initial mass ratio fraction, which as a

reminder is the number of high mass ratio binaries divided by the number of low mass ratio

binaries. It is shown as a function of the free parameters in Figure 3.14. Increasing the initial mass
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Figure 3.12: The fast rotating fraction FF of the model population is shown as a function of
the two free parameters: the mean of the BYORP coefficient logarithmic normal distribution µB
along the x-axis and the initial mass fraction Fi along the y-axis. Each grid point is determined
from an independent run of the asteroid population evolution model with those values for the free
parameters (otherwise the runs are identical).

ratio fraction does increase the steady-state mass fraction, however that increase is mitigated when
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Figure 3.13: Each grid point shows the absolute difference between the model population and
observation of the fast rotating binary fraction Fb (i.e. a heat map identifying those free parameters
that produce a model population closest to the observed population).

high mass ratio systems do not survive for as long as low mass ratio systems. Also as the log-normal

BYORP coefficient distribution mean decreases and binary lifetimes increase, the steady-state mass
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Figure 3.14: The mass ratio fraction Fq of the model population is shown as a function of the
two free parameters: the mean of the BYORP coefficient logarithmic normal distribution µB along
the x-axis and the initial mass fraction Fi along the y-axis. Each grid point is determined from an
independent run of the asteroid population evolution model with those values for the free parameters
(otherwise the runs are identical).

ratio fraction increases since the high mass ratio binaries are living longer relative to the low mass
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Figure 3.15: These plots are similar to Figure 3.3 but now show the steady-state mass ratio fraction
Fq. The best fit parameters for this constraint is a diagonal line across the center of the plot.

ratio synchronous systems, which are in a long-term equilibrium.

The binary asteroid catalogue provided by Pravec et al. provides the best statistics regarding

the steady-state mass ratio fraction. This ratio is shown in Figure 3.3 and is 0.2±0.1 using Poisson
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statistics. In Figure 3.15, the absolute difference between the model and the observation is shown.

The best fits are a diagonal band from long binary lifetime and small initial mass ratio fractions to

short binary lifetimes and high initial mass ratio fractions. This is sensible trade-off in parameters

to arrive at similar values for the steady-state mass ratio fraction.

3.4.3 Contact Binary Fraction

In Figure 3.17, we show the model contact binary fraction as a function of the free parameters.

Contact binaries are formed from the destruction of inward evolving high mass ratio binaries, so

when high mass ratio binaries are created often (large initial mass ratio fraction) and when they are

destroyed frequently (large log-normal BYORP coefficient distribution mean), the contact binary

fraction is high.

Only radar imaging can conclusively determine whether a system is a contact binary, but

even then it is often a subjective result. Taylor et al. (2012) provides the most recent estimate of

15±7% using Poisson statistics. This number is perhaps more likely to be an underestimate relative

to the asteroid population evolution model definition of a contact binary because contact binary

formation involves the low velocity collision of two asteroids and collision geometry and internal

structure may dictate whether a collapsing high mass ratio system is observable as a contact binary.

In Figure 3.17, the absolute difference between the model and observations are shown. If the model

is over-counting contact binaries because the model always creates them at the end of the collapsing

high mass ratio track evolution track, then the band of best fits would contract some about the

upper right-hand corner and come more into agreement with the initial mass ratio fractions that

the other observable constraints impose.

3.4.4 Best Fit Parameters

We can combine each of these observables into a single log-likelihood estimator for deter-

mining the best fit for the free parameters. The log-likelihood metric we will use is a summation

of the difference between the model output fraction Fj for each observable j and an observable



151

0.1050.105

0.1650.165

0.2360.236

0.3090.309

0.3540.354

0.3860.386

0.1040.104

0.1650.165

0.2340.234

0.3030.303

0.3470.347

0.3850.385

0.0960.096

0.1490.149

0.2150.215

0.2670.267

0.3050.305

0.3340.334

0.070.07

0.1010.101

0.130.13

0.1530.153

0.1650.165

0.1720.172

0.0310.031

0.0350.035

0.0410.041

0.0460.046

0.0490.049

0.050.05

0.0070.007

0.0090.009

0.0090.009

0.010.01

0.010.01

0.010.01

10-110-210-310-410-510-6

1

2

4

8

16

32

Log-Normal BYORP Coefficient Distribution Mean ΜB

In
iti

al
M

as
s

R
at

io
Fr

ac
tio

n
F

i
Contact Binary Fraction FC

Figure 3.16: The contact binary fraction FC of the model population is shown as a function of
the two free parameters: the mean of the BYORP coefficient logarithmic normal distribution µB
along the x-axis and the initial mass fraction Fi along the y-axis. Each grid point is determined
from an independent run of the asteroid population evolution model with those values for the free
parameters (otherwise the runs are identical).

fraction Fobs, which is drawn from a normal distribution with mean µj and standard deviation σj
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Figure 3.17: These plots are similar to Figure 3.3 but now show the contact binary fraction FC .
The best fit parameters for this constraint are in an L in the upper-left hand corner of the plot.

in accordance with the values in the previous sections.

L = A
∑
j

1

2σ2
j

(Fj − Fobs) (3.17)
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Figure 3.18: The normalized log-likelihood is shown as a function of the free parameters of the
asteroid population evolution model. A low number means a higher probability.

A normalization is applied to make the best fit model have a value of 1. The larger the normal-

ized log-likelihood the less likely those set of parameters are. Using Monte Carlo techniques, the

uncertainty of the log-likelihood estimator can be determined. It is important to note that due to
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computational constraints, the simulations are single runs and there is unaccounted for uncertainty.

Although, a few cases were run more than once and they were consistent with small changes to the

reported values. The log-likelihood metric is shown in Figure 3.18.

3.5 Discussion

The asteroid population evolution model identified a region in the phase space of the two free

parameters in which the correct values are most likely to lie. The log-normal BYORP coefficient

distribution mean is likely to be greater than −3, which implies binary lifetimes less than 106 years

for systems that do not end up in the tidal-BYORP equilibrium. These short binary lifetimes

are consistent with the understanding that the tight asynchronous population (e.g. 2004 DC) are

newly formed binary systems that have yet to tidally relax. The best fit initial mass ratio fraction

of 8 is larger than a flat distribution of 4, and so weighted towards production of high mass ratio

systems. The high mortality rate of low mass ratio systems in the “instantaneous” phase of binary

formation is corrected by the synchronous low mass ratio binary population. This is consistent with

the hypothesis that asteroids are more likely to rotationally fission along interior planes and “necks”

than from small events at the surface that accumulate in orbit into a larger satellite (Sánchez and

Scheeres, 2012; Holsapple, 2009; Walsh et al., 2008).

For these best fit parameters, the asteroid population evolution model provides some predic-

tions regarding the Main Belt asteroid population. The asteroid pair population is predicted to

be about 2% of the total population. That is within the last 2 Myrs, 2% of the population was a

member of a binary pair that disrupted. These are mostly small asteroids, and it goes to less than

1% for asteroids larger than a kilometer in diameter.
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