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CHAPTER 1

Introduction

1.1 Motivation

There is much interest in using multiple spacecraft formations for interferometric

imaging. The advantages such formations offer include replacement of large mono-

lithic telescopes, superior angular resolution and the possibility of reconfiguration for

different imaging goals. These architectures can provide the order-of-magnitude ad-

vances in optical angular resolution via long baseline interferometry that are sought

for various NASA missions, such as the Origins program ([1, 2, 3]), and high resolu-

tion Earth imaging.

Interferometric imaging is performed by measuring the mutual intensity (the two

point correlation as defined in [4]) that results from the collection and subsequent

interference of two electric field measurements of a target made at two different

observation points. While moving relative to each other, the satellites collect and

transmit these measurements, which are later combined at a central node using pre-

cise knowledge of their locations and timing of data collection. A least squares error

estimate of the image can be reconstructed given the mutual intensity measurements,

parameters of the optical system, and the physical configuration of the observatory.

To assess the quality of the reconstructed image, the reconstructed image is
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Fourier transformed into a two dimensional plane of spatial frequencies (the wave

number plane.) At any given point on the wave number plane, the modulation

transfer function (MTF) is defined as the ratio of the estimated intensity to the

true image intensity. For an interferometric imaging constellation, the MTF can be

computed given the measurement history and corresponding relative position data

between the light collecting spacecraft. In the wave number plane, a point with a

zero MTF value implies that the system is “blind” to the corresponding spatial fre-

quency, while a large value of the MTF implies that the image signal can be restored

at that wave number via an inverse Fourier transform (see [5, 6, 4, 7].) The MTF,

as a measure of the imaging system’s performance, is a function of both the optical

system and the configuration of the observatory in physical space.

This dissertation aims at obtaining a model for the MTF that, ultimately, re-

lates the quality of the reconstructed image to the motion of the (multi-spacecraft)

observatory’s motion in space. Once such a characterization is achieved, one now

has a criterion (namely, the MTF) that can be used to design the motion of the

observatory to achieve improved image quality.

Multi-spacecraft formations may be classified into two categories. The first cat-

egory is the set of all free-flying spacecraft formations, where the inter-spacecraft

relative positions is allowed to change with time. The key question is: How do we

design the motion of the formation such that the accumulated MTF is equal to or

as close to unity as possible? In this dissertation, this question is posed in a geomet-

ric optimal control setting by optimizing over image quality (with the MTF as the

criterion) and fuel expenditure. We do this for the general case where we have N

spacecraft evolving on a general manifold in Chapters 2 and 3. In Chapters 4 and 6

we focus on the dual spacecraft problem and manage to explicitly solve for the global
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optimal solution to the problem for a class of spiraling formations.

The second category is that of rigid formations, where inter-spacecraft positions

are fixed in magnitude. This problem is extensively studied in Chapter 7. There

we propose an N spacecraft formation in a circular Earth orbit (or any circular

orbit in general.) The design is cast in a dimensionless setting and may, thus, be

applied to a wide range of applications, from imaging in the radio frequency range

to the visible spectrum range. Further studies explore the effect and utilization of

the perturbation J2. Due to its simplicity, this class of rigid formations has great

prospects for implementation in future NASA missions under the Origins Program

[1].

1.2 Literature Review

For an extensive literature survey of formation flying for imaging applications

we refer the reader to the comprehensive survey paper by Scharf et. al. [8]. The

dynamics and control of spacecraft formations have been given considerable attention

in the past. In these studies, investigators assume certain prescribed motions that

satisfy some imaging objective and then seek to achieve these motions via active

control. For example, in [9] the authors derive nonlinear and linear spacecraft relative

position dynamics and develop a controller design framework for linear control of

spacecraft relative position dynamics with guaranteed closed-loop stability. In [10],

the authors consider the full nonlinear relative position control problem using a

Lyapunov-based, nonlinear, adaptive control law that guarantees global asymptotic

convergence of the position tracking error in the presence of unknown, constant, or

slowly-varying spacecraft masses, disturbances, and gravity forces.

The problem of rotating a satellite constellation using an adaptive controller
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with actuator saturation constraints is discussed in [11]. An experimental study of

synchronized rotation of multiple autonomous spacecraft with rule-based controls is

presented in [12]. The authors in [13] derive control laws to synchronize formation ro-

tation as well as to control its attitude. In [14], the problem of rotating a constellation

using on/off thrusters while maintaining the relative distances within a specified tol-

erance is addressed. Fuel related problems, such as optimal fuel consumption during

a rotation maneuver [15] or constellation reorientation with uniform fuel expenditure

and conservation across the constellation [16], have also been addressed.

Natural orbital dynamics have also been exploited for interferometric observato-

ries [17, 18, 19, 20]. In [21], the authors design a controller for formation keeping

in circular orbit and in [22] for formation keeping during a spiral maneuver while in

orbit. In [23] the dynamics of spacecraft formation is considered under the influence

of J2 orbit perturbations, where J2 invariant orbits are sought for the motion. In

[24] the authors design controllers for formation keeping using mean orbit elements,

as opposed to spacecraft positions and velocities, as the state of the system. Finally,

GPS utilization for spacecraft constellations is discussed in [25, 26] and in [27, 11, 28]

the authors propose decentralized controllers for spacecraft formations.

The use of geometric control methods for spacecraft formation flying has received

little attention, whereas extensive investigations have been conducted in the field of

robotic path planning (for more on this issue, see Section (IV) in [8].) This work is

an attempt to use geometric optimal control theory for spacecraft formation motion

planning for imaging applications.

The question of which formation motions yield satisfactory imaging goals has

not been discussed in any of the above mentioned research with the exception of

[5, 18, 19, 20, 29]. In this paper we present a framework such that spacecraft motion
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planning and controller design meet desired imaging objectives.

While extensive investigations have been conducted in the field of robotic path

planning, the use of geometric control methods for spacecraft formation flying has

received very little attention (see Section (IV) in [8].) We attempt in this dissertation

to use geometric optimal control theory for spacecraft formation motion planning

for imaging applications. Formulating the motion planning problem in an optimal

control setting, we mainly rely on the use of variational approaches to analyze optimal

control problems on generalized Riemannian manifolds. This approach is based on

the work accomplished since the 1989 paper by Noakes et. al. [30], where they

derived necessary conditions for second order dynamic optimal control problems on

Lie groups. In the 1990s, Peter Crouch and his group at Arizona State University

have developed this result to generic abstract manifolds for higher order dynamic

problems in the papers [31], [32], [33], [34] and [35], with application to aircraft

optimal control and control on compact Lie groups. In the present thesis, we build

on their theoretical work and apply the results to the formation flying problem.

For a more exhaustive literature review, the reader may wish to consult the paper

[8]. In addition, more references are usually provided in the main body of the thesis,

where we also contextualize these results and relate them to the formation flying

problem as well as other related problems in robotics, control of rigid bodies and

even computer graphics.

1.3 Dissertation Outline

The dissertation is organized as follows. In Chapter 2, the basic imaging system

is described in detail. The assumptions made in this work are stated and, based on

the given assumptions and system model, a mathematical model for the Modulation
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Transfer Function (MTF) of a multi-spacecraft formation is derived. An optimal

control problem is formulated with image quality, to be maximized, directly used as

an objective in the performance index. Necessary optimality conditions are derived.

These necessary conditions result in a feedback control law that has image quality

as a state of the system and the corresponding error in image quality (defined as the

difference between the value of the MTF and a given constant function) appearing in

the feedback loop. Some examples are given in one- and two-dimensions to illustrate

the formulation.

Based on the inferences achieved in Chapter 2, in Chapter 3 we formulate a new

class of optimal control problems called dynamic coverage optimal control. Here an

optimal control problem is formulated to capture the main goals of an imaging forma-

tion: minimizing fuel expenditure, maximizing signal-to-noise ratio and maximizing

coverage of the resolution disc. As opposed to being posed in terms of variables that

lend themselves to image quality and the optical domain (such as the MTF), the

dynamic coverage problem is posed completely in terms of the state space of the

system. That is to say, maximizing signal-to-noise ratio is achieved by minimizing

inter-spacecraft relative velocities. To maximize coverage of the resolution disc, we

attempt to maximize the number of relative position states assumed by the forma-

tion. In this chapter, we derive the necessary conditions for optimality and show

that a necessary condition for optimality of a planar formation motion is that it is

symmetric about the origin.

In Chapters 4 and 6, we specialize the discussion to dual spacecraft formations.

In Chapter 4 we first look at treating each spacecraft as a rigid body and formulate

the dynamic coverage optimal control problem (restricted to formation maneuvers

that already achieve coverage, which we call the set of “successful maneuvers.”) The



7

cost function is generalized to include optimizing over fuel consumption, deviation

of rotational and translational velocities from a given desired value and, finally,

the deviation of the configuration of the spacecraft from a given desired trajectory.

The analysis is performed entirely in free coordinates on the group of rigid body

motions SE(3). A simple example on SE(2) that is motivated by dual spacecraft

interferometry is given. This example illustrates how difficult that problem is to

solve even for the two dimensional case. Still, the methodology and approach are

novel and offer new results for coordinate-free trajectory tracking on SE(3).

Based on the conclusion in Chapter 4, in Chapter 5 we specialize the analysis

to formations of two spacecraft, each modeled as a point particle. We derive nec-

essary conditions for minimizing the cost function for a trajectory that evolves on

a (virtual) Riemannian manifold (such as a paraboloid) and satisfies a second or-

der differential equation together with some interpolation, smoothness and motion

constraints. The cost function we consider is a weighted sum of the norm squared

of the thrust (to minimize fuel expenditure) and the norm squared of the velocity

(to improve signal-to-ratio.) In the mathematical literature this problem is know

as the τ -elastic dynamic interpolation problem and, as we show in the chapter, is

also motivated by space-based interferometric imaging applications. We define the

dynamic interpolation problem, derive necessary conditions for an optimal solution

and point out the interesting connection between the dynamic interpolation problem

and imaging applications, which is the main contribution of this chapter.

The illustrative example we give in Chapter 5 is a dual spacecraft formation,

where the collector spacecraft is constrained to evolve on a virtual spherical surface.

In an imaging formation, however, the collector is required to move on a virtual

paraboloidal surface [36]. Hence, in Chapter 6 we focus our attention on the dual
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spacecraft formation where the collector spacecraft is constrained to evolve on a vir-

tual paraboloidal surface (for improved optical focusing properties) while satisfying

a spiraling constraint to achieve frequency domain coverage. In this chapter we first

introduce a class of spiral motions that satisfies imaging objectives and seek simple

solutions to the problem of motion design and control of a formation for imaging

applications. Based on the observations drawn from these simple controls, an opti-

mal control problem is formulated for the proposed class of spiral motions to achieve

minimum fuel consumption, while satisfying imaging constraints. We then formu-

late an optimal control problem to minimize fuel consumption and further maximize

image quality by minimizing the relative speed, which is proportional to the signal-

to-noise ratio of the reconstructed image. We use the maximum principle to derive

the necessary optimality conditions and show that they are also sufficient and that

the resulting control law is unique. Finally, we apply a continuation method to solve

for the unique optimal trajectory.

In Chapter 7, we propose a novel class of satellite constellations that can act

as interferometric observatories in Low Earth Orbit (LEO), capable of forming high

resolution images in time scales of a few hours without the need for active con-

trol. An optimization procedure is also defined that supplies m pixels of resolution

with a minimum number of satellites. For the example considered, this procedure

results in an observatory that is within 0-2 satellites from a lower bound of
√
m

satellites. We introduce a linear imaging constellation and formulate a concise 0-1

mathematical program, the solution of which is the solution to optimal aperture

configuration for full coverage of the wave number plane. The effect of eccentric

spacecraft trajectories and gravity field J2 perturbations on wave-number plane cov-

erage are then considered. Conditions for complete wave-number plane coverage are
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found for certain classes of orbit perturbations. This analysis leads to design criteria

for interferometric observatories that ensure wave-number plane coverage as a func-

tion of perturbation strength. We also address short-period J2 perturbations and

derive expressions for in-plane perturbations in position as a function of the orbital

elements and obtain an upper bound for the magnitude of the perturbed in-plane

position vector. Finally, we adjust the nominal observatory design in such a way as

to guarantee full coverage of the u-v plane under general eccentricity perturbations

and short-period J2 effects.

Final remarks, conclusions and open research problems are addressed in Chapter

8.

Finally, in the appendices we provide some background information on geometric

mechanics and geometric optimal control theory. In Appendix A we review basic

definitions and results from geometric mechanics that are used in Chapters 3 and 5.

We also make references to the necessary basic text and literature. In Appendix C, we

extend the work in Chapter 5 on the dynamic interpolation problem to the case when

a gravitational field is acting on the manifold. In Appendix D we investigate optimal

control of under-actuated systems with application to Lie groups. An important

application of the result provided in the appendix is the control of under-actuated

spacecraft.

1.4 Thesis Contributions

Here are the main contributions of this thesis:

MTF and Image Quality-Dependent Feedback Control The first contribution

is the derivation of the MTF and using it to directly derive a controller that is

a function of image quality in the optimal feedback control law. See Chapter
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2.

Dynamic Coverage Optimal Control Problem We use geometric optimal con-

trol theory to study spacecraft formation motion control for imaging applica-

tions. The problem formulated is called dynamic coverage optimal control and

is treated in Chapter 3.

Constrained Optimal Trajectory Tracking on SE(3) Constrained Optimal tra-

jectory tracking of a single rigid body on SE(3) and its subgroups is treated in

Chapters 4 and 5 on R3 and Appendix A for SO(3).

Solving the Spiraling Dual Spacecraft Formation Problem The problem of

optimally controlling a spiraling dual spacecraft formation on a paraboloid is

treated in Chapter 6.

Multi-Spacecraft Earth Orbiting Observatories A novel design and analysis

of a new class of interferometric observatories in Earth orbit is treated in Chap-

ter 7.
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These contributions can also be found in the following publications.
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pp. 297–301, 2004.

Conference Proceedings and Presentations

1. I. I. Hussein and A. M. Bloch. Optimal control of under-actuated systems with

application to Lie groups. 2005 American Control Conference, Portland, OR,

2005. To appear.

2. I. I. Hussein and A. M. Bloch. Dynamic coverage optimal control for inter-

ferometric imaging spacecraft formations (part II): The nonlinear case. 2005

American Control Conference, Portland, OR, 2005. To appear.

3. I. I. Hussein, A. M. Bloch, D. J. Scheeres and N. H. McClamroch. Optimal
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7. I. I. Hussein and A. Bloch. Dynamic interpolation on Riemannian manifolds:

An application to interferometric imaging. 2004 American Control Conference,

pp. 413-418, July 2004.
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February, 2003.
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1.5 Remarks

What is covered in this dissertation? As discussed in Chapter 2, the most

important assumption made in the present work is that the target is “sufficiently”

far away from the observatory. This makes the present work applicable to exo-solar

imaging. Depending on the desired resolution, the formation designs proposed in

this dissertation may be made applicable to, say, Earth imaging from low Earth

orbits. Though the mathematical derivation is different for near-target imaging, the

conceptual approach is identical and, as discussed in the present work, the proposed

designs are scalable to suit various (close and far range) imaging applications. It is

important to note that the proposed designs are guaranteed only for far range targets

and none are provided for near range target imaging, though we do not discard this

possibility.

Notation We have tried to unify notation as much as we can. For instance,

we use the same variable definitions across all chapters and appendices. Bold-faced

variables indicate vectors or covectors. Scalars are denoted by italic Greek and Latin

symbols. Still, to every rule there is an exception and exceptions will arise due to,

for example, a conflict between present notation and conventional notation used in

the literature. This is especially true in Chapter 4 and A, where, in order to conform

with the more than a century-long history of Lie group notation, we have opted to

use, say, the italic (non-bold) symbol g to denote position in configuration space,

whereas a configuration variable in the rest of the dissertation is usually denoted by

the bold-faced variable q.

Much of our analysis depends on the choice of an appropriate metric for the space

under consideration. In this dissertation, we use inner products on function space,
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Rn, a Lie group G or, more generally, a manifold M . In most instances, we explicitly

state or define the inner product used. Often times, we assume that the choice of

inner product is inferred from the context.



CHAPTER 2

Optimal Formation Control for Imaging and Fuel

Usage

The Modulation Transfer Function (MTF) is a function over the two dimensional

spatial frequency domain defined as the ratio of the reconstructed image intensity

to the true image intensity. Given knowledge of the MTF, we are able to obtain the

true image intensity from the current reconstructed image intensity. In this chapter

we precisely define and derive the MTF and show its dependence on the motion

of a sparse system of N telescopes. This formulation includes a noise model to

represent contamination of the optical signal and is used to define a cost function for

an optimal control problem including imaging and fuel performance measures. We

derive the necessary optimality conditions for a generic multi-spacecraft formation

and specialize them to a two-spacecraft formation. We show that the optimal solution

must be symmetric about the origin of the coordinate system and that its center of

mass must be fixed in space. Simulation results are provided to further investigate

this control law. This work is fundamental to current and future work related to

motion path planning of separated spacecraft interferometric missions used for the

imaging of astronomical targets.

In Section (2.1) of this chapter we derive the MTF of a constellation of N space-

15
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craft interacting together in an interferometric imaging mission. In Section (2.2) we

postulate a noise model to augment the derived MTF model for the measurements.

In Section (2.3) we formulate an optimal control problem to maximize the MTF

over the resolution disc and use the Pontryagin’s maximum principle to derive the

necessary optimality conditions. In Section (2.4) we specialize the result to the two

spacecraft formation control problem and in Section (2.5) we give examples to test the

optimal control laws and illustrate the ideas presented in earlier sections. In Section

(2.6) we further specialize the analysis and provide a solution to the two spacecraft,

one-dimensional problem. Finally, in Section (2.7), we conclude the chapter with a

few final remarks and discuss future research directions.

2.1 The Imaging Problem and the Modulation Transfer Func-
tion

Refer to Figure (2.1). Let σ denote an extended incoherent source, whose

effective dimension is given by d. Let q′ = (xQ, yQ, 0) and q = (xP , yP , z̄+ζP ) be the

position vectors of a point Q on the image plane I and a point P on the observation

surface O′, respectively. The image plane I is the plane on which an image of σ

is reconstructed and is set to be coincident with the x-y plane of our coordinate

system, which is centered, say, at the geometric center of σ. On the other hand,

the observation surface O′ is one on which the constellation evolves and is located

at a distance z̄ from I. The observation plane is a plane through O′, on which we

project the motion of the constellation to be used in later analysis. Let D denote the

effective dimension of the constellation, d denote the effective size of the target σ and

AT denote the aperture area. We need the following assumptions in this chapter.

Assumption 2.1.1. The aperture area AT is much smaller than the size of the
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constellation. In other words, AT � D2.

Assumption 2.1.2. The observation plane O is sufficiently far away from the target

σ. In other words, D/z̄ � 1 and d/z̄ � 1.
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Figure 2.1: The basic imaging situation.

The main objective of the imaging constellation is to reconstruct the light in-

tensity distribution deposited by σ on I using light collected in a set of regions

A1,A2, . . . ,AN , which represent the entry pupils of the separated telescopes and N

is the number of apertures in the system.

Consider one polarization state and let U denote some component of the electric

field of a quasi-monochromatic light with mean frequency ν (corresponding to a

wavelength λ) and a bandwidth ∆ν. Provided that the travel time of light rays

connecting any two points within I or within O (but not connecting I and O) is

much smaller than the coherence time1 1/∆ν, an approximate expression of the

Huygens-Fresnel principle is (see page 371 of [4]):

U(q, t) =
1

ıλ

∫
I

d2q′
eıkR

R (q,q′)
Λ(q′,q)U(q′, t) (2-1.1)

1Hence, the mutual path differences between points within O or within I are small compared to
the coherence length; however, otherwise time delays will need to be included for path correction
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apart from a phase factor, where Λ(q′,q) is the known complex-valued inclination

factor (see [4], page 371 for definition), with c being the speed of light in vacuum,

k = 2πν
c

= 2π
λ

and R (q,q′) = |q− q′| is the distance from P to Q.

To obtain the energy preserving estimate of the inverse of the field given in

Equation (2-1.1) and given that light is collected over a limited entry pupil, one

can reverse the time direction in the imaging situation of Figure (2.1). Treat light

collectors as projectors, reverse the roles of surfaces I and O and again apply the

Huygens-Fresnel principle to get:

U e(q′, t) = − 1

ıλ

N∑
m=1

∫
Am

d2q
e−ıkR(q,q′)

R (q,q′)
Λ∗(q′,q)U(q, t). (2-1.2)

U e(q′, t) is the field on the focal plane of an ideal optical instrument (consisting of

physical optical processing instruments such as lenses, mirrors, beam splitters, etc)

having the specified entry pupil and relying on some photo-detection process at the

focal plane to acquire the image. The estimate of the image intensity, as obtained

by accumulating the energy 〈U e(q′, t)U e∗(q′, t)〉 over a time period [0, t], is:

Ie (q′) = g

∫ t

0

dτ〈U e∗(q′, t)U e(q′, t)〉, (2-1.3)

where g is a constant of proportionality. Using Equation (2-1.2), one gets:

Ie (q′) =
g

λ2
Ap (q′)

∫ t

0

dτ
∑
m,n

∫
Am

d2q1

∫
An

d2q2
e−ık(R(q1,q′)−R(q2,q′))

R (q1,q′)R (q2,q′)

×Λ(q′,q)Λ∗(q′,q)J (q1,q2, τ) , (2-1.4)

where qi (i = 1, 2) are integration variables,

J (q1,q2, t) = 〈U∗ (q1, t)U (q2, t)〉 (2-1.5)

is the mutual intensity function, and

Ap(q
′) =

 1 if q′ ∈ I in within the aperture field-of-view

0 otherwise

(2-1.6)
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is the picture frame function used to model the restriction of the image plane to the

aperture field-of-view.

Let qi = (xi, yi, z̄ + ζi) denote the position vector of the centroid of aperture i

(i = 1, . . . , N .) Assumption (2.1.1) implies that the constellation is long baseline

interferometric imaging system. Moreover, Assumption (2.1.2) implies that we have:

R (q,q′) =

√
(xP − xQ)2 + (yP − yQ)2 + z̄2

= z̄

[
1 +

(xP − xQ)2

2z̄2
+

(yP − yQ)2

2z̄2

]
+O

(
1

z̄3

)
, (2-1.7)

where ζi � z̄ has been ignored. Hence, R (qi,q
′) ' z̄ (i = 1, 2) in the denominator

of expression (2-1.4) but not in the exponent term since higher order terms will play

a significant role when making higher order approximations of the exponential term

to be made below. Assumption (2.1.2) also implies that the inclination factor varies

very little with respect to the motion of the entry pupil and the position of the point

Q ∈ I. Hence, ΛΛ∗ = |Λ|2 may be treated as a constant and be pulled outside the

integral. Therefore, by assumptions (2.1.2) and (2.1.1) we have:

Ie (q′) =
g |Λ|2

λ2z̄2
Ap (q′)

∫ t

0

dτ
∑
m,n

∫
Am

d2q1

∫
An

d2q2e
−ık(R(q1,q′)−R(q2,q′))J (q1,q2, τ) ,

(2-1.8)

where now we use the angular position vector θ̄ to locate the point Q on I.

Recall that q1 and q2 are vectors specifying any two points on any of the entry

pupils Ai (i = 1, . . . , N .) With Assumption (2.1.1) one can safely treat each entry

pupil as a measurement point (that is, Ai is now a point) and, hence, find that the

mutual intensity function J (q1,q2, t) is independent of where within the pupil the

interference is made for all q1 ∈ Am and q2 ∈ Am and all m,n ∈ {1, . . . , N}. Instead,

it is now a function of the position vectors, denoted qi (i = 1, . . . , N), of the entry

pupils; J (q1,q2, t) = J (qm,qn, t) for all pairs m,n ∈ {1, . . . , N}. This enables us
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to drop the integrals over Am and An. Hence, Equation (2-1.8) can be rewritten as

Ie (q′) =
g |Λ|2A2

T

λ2z̄2
Ap (q′)

∫ t

0

dτ
∑
m,n

e−ık(R(qm,q′)−R(qn,q′))J (qm,qn, τ) , (2-1.9)

This gives the algorithm by which the image intensity estimate can be derived

from mutual coherence measurements. This, however, does not afford an estimate

of the quality of the image so obtained. To attain this, we need an expression for

Ie (q′) as a function of the “true” image intensity, I (q′). We do this as follows. An

approximate expression for J (qm,qn) in terms of the true image intensity I (q′) is

given by:

J (qm,qn) =
1

λ2z̄2

∫
I

d2q′1e
ık(R(qm,q′1)−R(qn,q′1))I (q′1) , (2-1.10)

where this is the small angle approximation of the Huygens-Fresnel principle, ob-

tainable by direct manipulation of Equation (2-1.1). From Equation (2-1.7), we also

have

R (qm,q)−R (qn,q) =
1

z̄

[
1

2
∆xmn (xm − 2xQ + xn)

+
1

2
∆ymn (ym − 2yQ + yn)

]
, (2-1.11)

where ∆xmn = xm−xn and ∆ymn = ym−yn. Substituting (2-1.10) and (2-1.11) into

(2-1.9), we get

Ie (q′) =
g |Λ|2A2

T

λ4z̄4
Ap (q′)

∑
m,n

∫ t

0

dτ

∫
I

d2q′1e
ık
z̄ (∆xmn(x′−x′1)+∆ymn(y′−y′1))I (q′1) ,

(2-1.12)

where we recall the definition of q′ = (x′, y′, 0) is a (fixed) point at Q ∈ I and the

definition of the variable of integration q′1 = (x′1, y
′
1, 0). Adopting a more compact

notation we have

Ie (q′) =
g |Λ|2A2

T

λ4z̄4
Ap (q′)

∑
m,n

∫ t

0

dτ

∫
I

d2q′1e
ık
z̄ (∆qmn·(q′−q′1))I (q′1) , (2-1.13)
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where ∆qmn = (xm − xn, ym − yn, 0) and “·” is the vector inner product.

Let

Mmn(q′) =

∫
I

d2q′1I (q′1) e
ık
z̄ (∆qmn·(q′−q′1)) (2-1.14)

and recall the following identities of the Fourier transform

F(gh) = ĝ ∗ ĥ

F
[
g(q)e−2πı(a·q)

]
= ĝ(ν − a),

(2-1.15)

where ĝ(ν) = F(g(q)) denotes the Fourier transform of g and ∗ denotes the convo-

lution operator. Substituting (2-1.14) into (2-1.13), one gets:

Ie (q′) =
g |Λ|2A2

T

λ4z̄4

∑
m,n

∫ t

0

dτAp (q′)Mmn (q′) . (2-1.16)

Taking the Fourier transform of this expression and using the first of Equation (2-

1.15) we get

Îe (ν, t) =
g |Λ|2A2

T

λ4z̄4

∑
m,n

∫ t

0

dτÂp (ν) ∗ M̂mn (ν) . (2-1.17)

Applying the second identity in Equations (2-1.15) to Equation (2-1.14), we have

M̂mn(ν) = Î (ν) δ

(
ν − ∆qmn

λz̄

)
. (2-1.18)

Using the definition of a convolution, we have

Âp(ν) ∗ M̂mn(ν) =

∫
Âp(ν − ν ′)M̂mn(ν ′)dν ′

=

∫
Âp(ν − ν ′)Î(ν ′)δ

(
ν − ∆qmn

λz̄

)
dν ′

= Âp(ν −
∆qmn

λz̄
)Î(

∆qmn

λz̄
). (2-1.19)

Note that the intensity can be expanded:

Î(
∆qmn

λz̄
) = Î(ν +

∆qmn

λz̄
− ν)

= Î(ν) +
∂Î

∂ν

∣∣∣∣ (∆qmn

λz̄
− ν

)
+ · · · .
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If we assume that ∂Î
∂ν

(
∆qmn

λz̄
− ν

)
and higher order terms are sufficiently small, then

this, Equation (2-1.19) and Equation (2-1.17) imply

Îe (ν, t) =
g |Λ|2A2

T

λ4z̄4

∑
m,n

∫ t

0

dτÂp

(
ν − ∆qmn

λz̄

)
Î (ν) . (2-1.20)

∂Î
∂ν

(
∆qmn

λz̄
− ν

)
is small if either (1) the slope of Î(ν) is small for all frequencies ν

such that ‖ν‖ < rp (that is, within the region where Âp is 1), or if (2) all frequencies

{ν : ‖ν‖ < rp} is such that
∥∥ν − ∆qmn

λz̄

∥∥ is sufficiently small. The first condition is

satisfied whenever the intensity varies slowly over any disk is the frequency domain

whose radius is rp and the second is satisfied whenever the effective width of the

picture frame function rp is sufficiently small. We assume that either one or both of

these conditions are satisfied.

Now, let

M̂(ν, t) = β
∑
m,n

∫ t

0

dτÂp

(
ν − ∆qmn(τ)

λz̄

)
, (2-1.21)

where β =
g|Λ|2A2

T

λ4z̄4 , then

Îe (ν, t) = M̂(ν, t)Î (ν) . (2-1.22)

The function M̂ is the modulation transfer function (MTF)2. Referring to Equa-

tion (2-1.21), we see that the MTF is simply the superposition of the set of “coverage”

functions Âp, each evaluated at ∆qmn

λz̄
.

Thus the MTF is defined as the ratio of the estimated intensity to the true image

intensity. For an interferometric imaging constellation, the MTF can be computed

given the measurement history and corresponding relative position data between the

light collecting spacecraft. In the wave number plane, a point with a zero MTF value

2The Assumption (2.1.2) has directly led to the elimination of ζi from the derivation. Hence,
Equation (2-1.22) presents a valid model for the system whenever z̄ � 1. This assumption, however,
does not imply that there is a need to constrain the formation to the observation plane O.
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implies that the system is “blind” to the corresponding sinusoidal pattern, while a

large value of the MTF implies that the image signal can be restored at that wave

number via an inverse Fourier transform (see [6, 4, 7].) The MTF, as a measure of

the imaging system’s performance, is a function of both the optical system and the

configuration of the observatory in physical space.

Let the picture frame have a diameter d̄ equal to the size of σ: d̄ = 2d (with σ

entirely contained in Ap.) Pixelating the image plane into an m×m grid, the size of

each pixel is L = d̄/m, and the resulting angular resolution is θr = L/z̄. Additionally,

the angular extent of the desired picture frame is approximately given by θp = d̄/z̄,

leading to θp = mθr. Dimensions of features in the wave number plane are the

reciprocals of the corresponding dimensions in the physical plane. The resolution

disc, Dv, is a disc of diameter ' 1/θr and is the region where we desire the MTF

to have nonzero values (or, equivalently, wave number plane coverage.) Making the

simplifying assumption that

Â2
p(ν) = Âp(ν) =

 1 if |ν| ≤ rp

0 otherwise

, (2-1.23)

where rp is the effective radius of the true function Âp. This incurs a sensible error

only at the edge of the domain of Âp. The picture frame region is a circular disc of

diameter 2rp ' 1/θp that is used to approximate the effective size of Âp (equivalently,

assume that Âp is a hat-shaped function.) Therefore, the diameter of the resolution

disc is m times the diameter of the picture frame disc in the wave number plane (see

Figure (2.2).)

As the relative projected position vector, ∆qmn, varies in the physical plane, the

picture frame disc moves in the wave number plane, where its center follows the

trajectory of the vectors given by ∆qmn

λz̄
. Each satellite, by itself, will contribute
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a disc that is centered at the origin with a diameter of ' 1/θp, and each pair of

satellites will contribute two discs of diameter ' 1/θp located 180 degrees apart with

a radius of
∣∣∆qmn

λz̄

∣∣ from the center. This symmetry in the frequency domain is due

to the fact that ∆qmn

λz̄
= −∆qnm

λz̄
.

Telescope
field-of-view

Required
angular
resolution
=θ

Image Plane

x

y

Picture frame
=θ p

r
ν x

y

Space of Spatial Frequencies

Picture Frame Discs

Resolution Disc ~1 / θ r

 ~1 / θp

 

q     (t  )mn o

q     (t)
mn

q     (t  )mn o

q     (t)
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ν

λ z

λ z

λ z

λ z

Figure 2.2: Physical and wave number plane variables. To indicate time progress,
we show the trajectory on an interval [t0, t].

2.2 A Noise Model

In Section (6.3), we need to evaluate the performance of controllers for a class

of spiraling maneuvers. It is desired to have a performance index that takes into

account a noise model of the imaging process. Hence, we wish to augment the

model in Equation (2-1.22) with a noise model. We only give a brief discussion

of this topic. For a more detailed discussion, we refer the reader to the thesis by

[5]. Assume that the rate of photon arrival satisfies a Poisson distribution. This

incurs Poisson fluctuations in the measurement of J (qm,qn). Via Equation (2-1.4),

where J (qm,qn) appears in the integrand, the noise in Ie (q′) also satisfies Poisson
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statistics. Let Ī be the average value of the signal Î(ν), which is assumed estimable

beforehand. Modulated by the MTF of the constellation, the mean arrival rate is

therefore proportional to M̂ (ν, t) Ī. Moreover, the variance of such fluctuations

is proportional to the square root of the mean arrival rate. For a more detailed

discussion, see [5]. Therefore, we have:

Îe (ν, t) ' M̂ (ν, t) Î (ν) + γ

√
M̂ (ν, t) Ī (ν)N (ν) , (2-2.1)

where N (ν) is a unit variance, white process in ν and γ is a constant reflecting the

quality of the telescope optics, detector physics... etc. Estimating Î by Ī at each

point in the ν-plane, one finds that

SNR ∝ M̂ Ī

γ
√
M̂ Ī

=
1

γ

√
M̂ (ν, t) Ī . (2-2.2)

One can now introduce an imaging performance index J =
∫ tf

0
Idt, where

I(t) =

∫
Dv

dν
(
1− ΓR (ν, t)

)
, (2-2.3)

where R is a “risk factor” and Γ(ν, t) is the ratio of the actual SNR to the desired

SNR and is given by:

Γ(ν, t) =
Actual SNR

Desired SNR
=

 1 if αM̂1/2 ≥ 1

αM̂1/2 otherwise

, (2-2.4)

where α is inversely proportional to the desired signal-to-noise ratio and M̂ is com-

puted from Equation (2-1.21). The larger the risk factor R the more conservative the

imaging performance measure becomes. Regions in the wave number plane where Γ

is less than unity correspond to spatial frequencies of the signal that do not satisfy

the desired signal-to-noise ratio, while Γ = 1 implies both coverage and achievement

of the desired signal-to-noise ratio at the corresponding spatial frequency.
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A final remark is in order. Since the Âp functions are evaluated at points cor-

responding to the trajectories of the relative position vectors, note that the rate at

which the Âp(ν − ∆qmn

λz̄
) function moves in the frequency domain is proportional to

the relative velocity between spacecraft m and n. Hence, if the relative velocity has a

large magnitude, Âp moves too fast in the frequency domain. This, in turn, may not

allow for the MTF to accumulate to a satisfactory level to achieve the desired SNR

(as reflected in the Γ function) and, hence, results in reduced signal strength allowing

for the noise signal to overwhelm the measured signal. This results, by definition,

to Γ < 1. This implies that the value of Γ and, hence,the SNR, function is inversely

proportional to the square root of the relative speed between the spacecraft in the

constellation. Therefore, there is a critical relative velocity v∗ between any pair of

spacecraft m and n such that the picture frame discs achieve Γ = 1 at the frequencies

they visit and such that Γ < 1 if the relative speed vmn < v∗mn.

2.3 Multi-Spacecraft Problem: Necessary Conditions Using
the Maximum Principle

In this section we derive the necessary conditions for a multi-spacecraft formation

by appealing to the maximum principle (MP.) The dynamics are given by:

q̇i(t) = vi(t)

v̇i(t) = ui (2-3.1)

for all spacecraft i = 1, . . . , N . The cost function to be minimized is given by:

J = y(T ) =

∫ T

0

µ

(
N∑

i=1

‖ui(t)‖2

)
dt, (2-3.2)

where the cost y(t) satisfies the differential equation:

ẏ(t) = µ

(
N∑

i=1

‖ui(t)‖2

)
. (2-3.3)
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In Equation (2-3.3), µ is a parameter introduced to study the local behavior of the

resulting control law in Section (2.5). An optimal solution will be independent of

the parameter µ in general. Define the normalized MTF as:

z(ν, t) =
1

β
M̂(ν, t)−

∫ t

0

N∑
n=1

Âp (ν − q̃nn) =

∫ t

0

dτ
N∑
m

N∑
n=1, 6=m

Âp (ν − q̃mn(τ))

(2-3.4)

The second term after the first equality sign in the definition of z ensures that z

does not include contributions due to self-interaction at the origin of the frequency

domain. Hence, for the spacecraft formation z satisfies the differential equation:

ż(ν, t) =
N∑
m

N∑
n=1, 6=m

Âp (ν − q̃mn(t)) (2-3.5)

which we treat as a state of the system. We use q̃mn to denote the relative position

vector between spacecraft m and n:

q̃mn(t) =
qm − qn

λz̄
. (2-3.6)

Previously, we used ∆qmn/(λz̄) to denote q̃mn. For the rest of the thesis, we will use

the latter notation.

If we let h denote the saturation function:

h(x) =

 x 0 ≤ x < 1

1 x ≥ 1

then we require to have the terminal condition on z be given by

h(z(ν, T )) = 1 (2-3.7)

for all ν ∈ Dv. This guarantees that z ≥ 1 everywhere inside Dv at time T . To
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summarize, initial and terminal conditions are:

qi(0) = qi0

vi(0) = vi0

y(0) = 0

z(ν, 0) = 0, ∀ν ∈ Dv

z(ν, T ) = 1, ∀ν ∈ Dv,

where we desire to achieve complete coverage at the terminal time T .

The problem at hand is to minimize (2-3.2) subject to the dynamics given in

Equations (2-3.1), (2-3.3) and (2-3.5). We will use the maximum principle to derive

the necessary conditions. Define the function:

Ĥ(t) =
N∑

i=1

[pqi
· vi + pvi

· ui] + µpy

(
N∑

i=1

‖ui‖2

)

+

〈
pz(ν, t),

N∑
m,n=1,n6=m

Âp (ν − q̃mn)

〉
, (2-3.8)

where pqi
and pvi

are vector Lagrange multipliers, py is a scalar Lagrange multiplier

and pz : Dv × [0, T ] → R is a Lagrange multiplier function taken point-wise in ν.

The inner product 〈·, ·〉 in Equation (2-3.8) refers to the inner product on the vector

space of real functions whose domain is the resolution disc Dv:

〈f(ν), g(ν)〉 =

∫
Dv

f(ν)g(ν)dν, (2-3.9)

for any two functions f, g : Dv → R.

A necessary condition for optimality is that

∂Ĥ

∂ui

= 0, i = 1, . . . , N. (2-3.10)

This equation implies that

ui = − 1

2µpy

pvi
, i = 1, . . . , N.
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Hence, the Hamiltonian is given:

H(t) =
N∑

i=1

[
pqi

· vi −
‖pvi

‖2

4µpy

]
+

〈
pz(ν, t),

N∑
m,n=1,n6=m

Âp (ν − q̃mn)

〉
. (2-3.11)

Transversality conditions imply that (see Equation (2.3.8) in [37]):

pqi
(T ) = pvi

(T ) = 0

pz(ν, T ) = pf
z (ν) (2-3.12)

py(T ) = 1,

for some function pf
zDv → R to be solved for.

By the maximum principle, the necessary optimality conditions are given by:

q̇i(t) =
∂H

∂pqi

= vi(t)

v̇i(t) =
∂H

∂pvi

= − pvi
(t)

2µpy(t)

ẏi(t) =
∂H

∂py

=
N∑

i=1

‖pvi
(t)‖2

4µp2
y(t)

ż(ν, t) =
∂H

∂pz

=
N∑

m,n=1,n6=m

Âp (ν − q̃mn(t)) (2-3.13)

ṗqi
(t) = −∂H

∂qi

=
1

λz̄

〈
pz(ν, t),

N∑
n=1, 6=i

(
−∇Âp(ν − q̃in(t)) +∇Âp(ν + q̃in(t))

)〉

ṗvi
(t) = −∂H

∂vi

= −pqi
(t)

ṗy(t) = −∂H
∂y

= 0

ṗz(ν, t) = −∂H
∂z

= 0.

From the initial and terminal conditions (2-3.8), the transversality conditions (2-

3.12) and the seventh and eighth equations in (2-3.13), we find that py(t) = 1 and
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pz(ν, t) = pf
z (ν) for all t ∈ [0, T ]. Hence, we have:

q̇i(t) = vi(t)

v̇i(t) = −pvi
(t)

2µ

ẏi(t) =
N∑

i=1

‖pvi
(t)‖2

4µ

ż(ν, t) =
N∑

m,n=1,n6=m

Âp (ν − q̃mn(t)) (2-3.14)

ṗqi
(t) =

1

λz̄

〈
pf

z (ν),
N∑

n=1, 6=i

(
−∇Âp(ν − q̃in(t)) +∇Âp(ν + q̃in(t))

)〉
ṗvi

(t) = −pqi
(t).

In the next section we specialize the result to the two-spacecraft formation prob-

lem.

2.4 The Two Spacecraft Problem

In this section we derive the necessary conditions for a two-spacecraft formation

using the MP. Since we have two degrees of freedom, instead of using the positions

of the spacecraft as system states, we will use the relative position between the

spacecraft and the position of the center of mass as our states. As before, let q̃

denote the relative position vector between the spacecraft pair divided by λz̄

q̃(t) =
q2(t)− q1(t)

λz̄
, (2-4.1)

where qi, i = 1, 2, is the position vector of the two spacecraft. q̃ corresponds to

the motion of one of the picture frame discs in the frequency domain. Let s be the

position vector of the center of mass of the formation. Then, s is given by

s(t) =
q2(t) + q1(t)

2
, (2-4.2)
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where we assume unity mass for both spacecraft. The dynamics of the system are

given by:

˙̃q(t) = vq(t)

v̇q(t) =
u2(t)− u1(t)

λz̄

ṡ(t) = vs(t) (2-4.3)

v̇s(t) =
u2(t) + u1(t)

2
.

The cost function to be minimized is given by:

J = y(T ), (2-4.4)

where the cost y(t) satisfies the differential equation:

ẏ(t) = µ
(
‖u1(t)‖2 + ‖u2(t)‖2) . (2-4.5)

The normalized MTF is given by:

z(ν, t) =
1

β
M̂(ν, t)−

∫ t

0

dτ2Âp(ν) =

∫ t

0

dτÂp (ν − q̃(τ)) + Âp (ν + q̃(τ)) (2-4.6)

Hence, for the two spacecraft formation z satisfies the differential equation:

ż(ν, t) = Âp (ν − q̃(t)) + Âp (ν + q̃(t)) (2-4.7)

and is treated as a state of the system.
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Initial and terminal conditions are:

q̃(0) = q̃0

vq(0) = vq0

s(0) = s0 (2-4.8)

vs(0) = vs0

y(0) = 0

z(ν, 0) = 0, ∀ν ∈ Dv

h(z(ν, T )) = 1, ∀ν ∈ Dv.

Again, we will use the maximum principle to derive the necessary conditions.

Hence, we have:

Ĥ(t) = pq(t) · vq(t) + pvq(t) ·
(

u2(t)− u1(t)

λz̄

)
+ps(t) · vs(t) + pvs(t) ·

(
u1(t) + u2(t)

2

)
(2-4.9)

+µpy(t)
(
‖u1(t)‖2 + ‖u2(t)‖2)+

〈
pz(ν, t), Âp (ν − q̃(t)) + Âp (ν + q̃)

〉
,

where pq, pvq , ps and pvs are vector Lagrange multipliers, py is a scalar Lagrange

multiplier and pz : Dv×[0, T ] → R is a Lagrange multiplier function taken point-wise

in ν. A necessary condition for optimality is that

∂Ĥ

∂u1

=
∂Ĥ

∂u2

= 0. (2-4.10)

These equations imply that

u1(t) =
1

2µpy(t)

[
pvq(t)

λz̄
− pvs(t)

2

]
u2(t) = − 1

2µpy(t)

[
pvq(t)

λz̄
+

pvs(t)

2

]
.
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These two equations imply

u2(t)− u1(t) = −
pvq(t)

λz̄µpy(t)

u1(t) + u2(t) = − pvs(t)

2µpy(t)

‖u1(t)‖2 + ‖u2(t)‖2 =
1

4µ2p2
y(t)

[
2

(λz̄)2

∥∥pvq(t)
∥∥2

+
1

2
‖pvs(t)‖

2

]
.

Substituting these back into Equation (2-4.9), we have:

H(t) = pq(t) · vq(t)−
1

2µ(λz̄)2py(t)

∥∥pvq(t)
∥∥2

+ ps(t) · vs(t)−
1

8µpy(t)
‖pvs(t)‖

2

+
〈
pz(ν, t), Âp (ν − q̃(t)) + Âp (ν + q̃)

〉
, (2-4.11)

Transversality conditions imply that:

pq(T ) = pvq(T ) = ps(T ) = pvs(T ) = 0

pz(ν, T ) = pf
z (ν) (2-4.12)

py(T ) = 1.
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The necessary conditions are determined as follows.

˙̃q(t) =
∂H

∂pq

= vq(t)

v̇q(t) =
∂H

∂pvq

= −
pvq(t)

µ(λz̄)2py(t)

ṡ(t) =
∂H

∂ps

= vs(t)

v̇s(t) =
∂H

∂pvs

= − pvs(t)

4µpy(t)

ẏ(t) =
∂H

∂py

=

∥∥pvq(t)
∥∥2

2µ(λz̄)2p2
y(t)

+
‖pvs(t)‖

2

8µp2
y(t)

ż(ν, t) =
∂H

∂pz

= Âp (ν − q̃(t)) + Âp (ν + q̃) (2-4.13)

ṗq(t) = −∂H
∂q̃

= −
〈
pz(ν, t),−∇Âp (ν − q̃(t)) +∇Âp (ν + q̃(t))

〉
ṗvq(t) = −∂H

∂vq

= −pq(t)

ṗs(t) = −∂H
∂s

= 0

ṗvs(t) = −∂H
∂vs

= −ps(t)

ṗy(t) = −∂H
∂y

= 0

ṗz(ν, t) = −∂H
∂z

= 0.

From the initial and terminal conditions (2-4.8), the transversality conditions

(2-4.12) and the third, fourth, ninth and tenth equation in (2-4.13), we find that

ps(t) = pvs = 0, s(t) = s0 and vs = vs0 for all t ∈ [0, T ]. This also implies that

u1 = −u2. Hence a necessary optimality condition is that the center of mass remains

fixed in space. That is because, firstly, motion of the center of mass does not affect

image quality. Secondly, any motion of the center of mass will result in additional

unnecessary fuel cost. So, it is intuitive that the center of mass be fixed as an

optimality necessary condition.

Finally, the transversality condition on py and pz, and the eleventh and twelfth
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equation in (2-4.13) imply that py(t) = 1 and pz(ν, t) = pf
z (ν) for all t ∈ [0, T ]. After

omitting equations related to the motion of the center of mass, the above discussion

implies that the necessary conditions are:

˙̃q(t) = vq(t)

v̇q(t) = −
pvq(t)

µ(λz̄)2

ẏ(t) =

∥∥pvq(t)
∥∥2

2µ(λz̄)2
(2-4.14)

ż(ν, t) = Âp (ν − q̃(t)) + Âp (ν + q̃(t))

ṗq(t) = −
〈
pf

z (ν),−∇Âp (ν − q̃(t)) +∇Âp (ν + q̃(t))
〉

ṗvq(t) = −pq(t).

2.5 Control Law Performance

The Equations (2-4.14) are the necessary optimal conditions. These and the

transversality conditions (2-4.12) represent a two point boundary value problem.

These conditions, however, furnish little as far as finding a solution is concerned.

Firstly, these are just necessary conditions and are not sufficient. Hence, finding a

trajectory that satisfies these conditions does not mean we have found a solution

to the problem. Secondly, these equations are hard to solve both analytically and

numerically.

Still, these conditions are helpful in that one can study the general behavior of an

optimal solution. For instance, we showed that a necessary condition for optimality

in a fuel-image sense is to have the two spacecraft formation have the center of mass

drift with constant velocity and the spacecraft move symmetrically about the origin

of the coordinate system, which we may take to be the center of mass itself.

Moreover, we may also numerically investigate whether the control law given
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above behaves as we would expect it to. We will treat the problem as an initial value

problem by selecting arbitrary initial value for the adjoint variables. We perform

the simulation using Matlabr. Instead of performing required integrations over Dv,

we instead integrate over a rectangle containing Dv, while setting z(ū, 0) = 1 for

all ū 6∈ Dv. The rectangle is composed of 32 × 32 pixels. Dv is such that it is

30 pixels in diameter. The picture frame disc is 4 pixels in diameter. We use the

Matlabr function gradient to compute the gradient of the picture frame functions.

We normalize the position vector q̄ such that position is given in terms of number

of pixels and v̄q is such that it is in terms of pixels per second. The duration of

the simulation is carried for 50 seconds and λz̄ = 1 × 104. We use these values for

all simulations. We consider four numerical examples. The parameters where set as

shown in Tables (2.1) and (2.2).

Example in q̄0 v̄0 µ
Figure (2.3) (5,10) (-0.5,0.5) 5×10−4

Figure (2.4) (9,9) (-1,1) 1×10−6

Figure (2.5) (13,2) (-10,0) 1×10−6

Figure (2.6) (13,2) (-9,0) 1×10−4

Table 2.1: Variable choices for numerical examples.

Example in pq(0) pvq(0) pf
z (ν), ∀ν

Figure (2.3) -1000*(1,1) -1000*(1,1) -1000
Figure (2.4) (0,0) (0,0) -1000
Figure (2.5) (0,0) (0,0) -1000
Figure (2.6) (0,0) (0,0) -1000

Table 2.2: Variable choices for numerical examples (continued.)

In Figures (2.3) and (2.4), we investigate the behavior of the picture frame disc

when it gets a “head-on” impact with the boundary of the resolution disc. This be-

havior agrees with our intuition behind the formulation of the optimal control prob-
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Figure 2.3: Motion of the picture frame discs in the u-v plane at t = 0, t = 1.16, 2.33
and 3.50 seconds.

lem in that the picture frame discs move in directions seeking to achieve z(ν, T ) = 1

to satisfy the terminal condition. We note in these two examples that the choice of

pf
z (ν) greatly affects the behavior. We had to readjust its value until the desired

result in the figures is obtained. This indicates that our choice for pf
z (ν) may be

close to the exact (and unknown) value. The reason for the sharper reaction by the

picture frame disc in Figure (2.4) is mainly due to the fact that we have decreased

the weight placed on fuel expenditure. For the former case we have µ = 5 × 10−4

and µ = 1× 10−6 for the latter.

Another interesting behavior is given in Figures (2.5) and (2.6). Again the ob-

servations we make here are dependent on the choice of the value of pf
z (ν). It seems

again that our choice for pf
z (ν) is sufficiently close to the actual optimal value that

gives rise to the desired optimal behavior. In these two examples we investigate the

response of the control law to the speed of the picture frame discs. Since z(ν, t) is,
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Figure 2.4: Motion of the picture frame discs in the u-v plane at t = 0, t = 3.33, 6.66
and 10 seconds.

by definition, equal to the amount of time the frequency point ν spends inside the

picture frame disc up to time t, then as the picture frame discs moves faster the less

time it spends at a given frequency point ν. Thus, if the speed at which the picture

frame disc moves is larger than the threshold value v∗ (see Section (2.2)), then the

value of z(ν, t) < 1 as the picture frame disc leaves ν at time t. To meet the terminal

condition on z (that is, h(z(ν, T )) = 1) we would expect that the control law apply

a negative thrust to reduce the velocity of the picture frame disc (assuming we set

pf
z (ν) at the correct value.)

This is indeed what we see in Figures (2.5) and (2.6). The initial velocity is too

large and we note that, with time, coverage improves as the picture frame discs move

(this is observed by the fact that coverage becomes darker with time.) The initial

speed in Figure (2.5) is larger than that in Figure (2.6). We note that, in the former

figure, coverage converges to a darker shade of red less rapidly than that in the latter
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figure. This is true assuming that we have chosen a value for pf
z (ν) that is close

enough to the desired value.
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Figure 2.5: Motion of the picture frame discs in the u-v plane at t = 0, t = 0.99, 2
and 3 seconds.

2.6 The Two Spacecraft, One-Dimensional Problem

In this section we further specialize Equations (2-4.14) to the two-spacecraft,

one-dimensional case. By one dimensional we mean that the wave number resolution

disk Dv collapses to a wave number interval Lv = [−Lv/2, Lv/2], where Lv/2 is the

bound on the frequency content of the signal to be reconstructed (that is, Lv is the

width of the resolution interval.)

This simple example also has a profound theoretical implication. Note that locally

the motion of any particular picture frame disc in the two-dimensional case, when

linearized about any point in time t, can be approximated by a one-dimensional

motion. Hence, studying the one-dimensional case gives insight into the local-time
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Figure 2.6: Motion of the picture frame discs in the u-v plane at t = 0, t = 1.16, 2.33
and 3.5 seconds.

behavior of the picture frame disc. For example, by studying how a one-dimensional

picture frame disc interacts with partially covered (z < 1) one-dimensional intervals

along the line of motion enables us to understand how a two-dimensional picture

frame disc infinitesimally interacts with neighboring (2-dimensional) coverage areas.

In the one-dimensional case, the necessary conditions become:

q̇(t) = v(t)

v̇(t) = − pv(t)

µ(λz̄)2

ẏ(t) =
‖pv(t)‖2

2µ(λz̄)2

ż(ν, t) = Âp (ν − q(t)) + Âp (ν + q(t)) (2-6.1)

ṗq(t) = −
〈
pf

z (ν),−
d

dν
Âp (ν − q(t)) +

d

dν
Âp (ν + q(t))

〉
ṗv(t) = −pq(t),

where we omit the subscript q in vq and remove the over-bars that indicated vector-
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valued variables. The inner product 〈·, ·〉 refers to the inner product on the vector

space of real functions whose domain is the resolution interval Lv:

〈f(ν), g(ν)〉 =

∫ Lv/2

−Lv/2

f(ν)g(ν)dν, (2-6.2)

for any two functions f, g : Lv → R. The last equation in (2-6.1) is auxiliary to the

necessary conditions, and is not itself a necessary condition. The initial and terminal

conditions are given:

q(0) = q0

v(0) = v0

y(0) = 0

z(ν, 0) = 0,∀ν ∈ Lv

z(ν, T ) = 1,∀ν ∈ Lv

pq(T ) = 0

pv(T ) = 0.

Note also that the gradient operator changes to a simple derivative over the

frequency domain. Under the model given in Equation (2-1.23), we then have

Âp(ν − q(t)) =

 1 q(t)− rp ≤ ν ≤ rp + q(t)

0 otherwise

Âp(ν + q(t)) =

 1 −rp − q(t) ≤ ν ≤ rp − q(t)

0 otherwise

and, hence

d

dν
Âp(ν − q(t)) = δ(ν − (q(t)− rp))− δ(ν − (q(t) + rp))

d

dν
Âp(ν + q(t)) = δ(ν − (−rp − q(t)))− δ(ν − (rp − q(t))),
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where δ(x) is the Dirac delta function (assuming the picture frame function Âp

assumes a Heaviside step function.)

We now postulate a trajectory and attempt to construct a solution to the above

necessary conditions. Specifically, we study a trajectory such that the picture frame

discs (and the spacecraft in physical space) move with a constant critical speed vc:

q(t) = −vct+ q0. (2-6.3)

We choose q0 = Lv

2
+ rp such that the picture frame discs are initially located right

outside the resolution interval. The critical speed vc is the speed that guarantees

that at any frequency component ν ∈
[
−Lv

2
, Lv

2

]
we achieve z(ν, T ) = 1 at the end

of the maneuver with only a single passage over the resolution interval. Note that

z(ν, t) is equal to the amount of time spent by the frequency ν inside one of the

picture frame discs up to time t. These choices imply that we have to set vc = 2rp to

ensure that z = 1 at each frequency inside the resolution interval [−Lv/2, Lv/2]. The

terminal time T is chosen such that q(T ) = 0 (with the picture frame discs centered

at the origin.) Hence, we have T = 1
2

+ (Lv/2)
vc

. We will fix this terminal time value

and assume it is chosen as such beforehand.

The reason behind choosing this trajectory is that at the end of the maneuver

each frequency is covered such that z(ν, T ) = 1 and because it does not require

expending any fuel to speed up or slow down the spacecraft. In fact, if the speed

at any point in time is greater than the critical speed vc, then z(ν, t) at that point

will be less than unity. Hence, we set the speed at the critical value vc to complete

the mission in the required time T . A practical drawback of this motion is that the

two spacecraft do not have a zero approach velocity at the terminal time T (with

q(T ) = 0 being the terminal position of both spacecraft), which leads to collision.
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Equations (2-6.3) and the necessary conditions (2-6.1) imply that:

v(t) = −vc

pq(t) = 0

pv(t) = 0

pz(ν, t) = pf
z (ν).

Thus, we are left with

ẏ = 0

ż(ν, t) = Âp (ν − q(t)) + Âp (ν + q(t)) (2-6.4)

0 = pf
z (ν = q(t)− rp, t)− pf

z (ν = q(t) + rp, t)

+pf
z (ν = −q(t)− rp, t)− pf

z (ν = −q(t) + rp, t), ∀t ∈ [0, T ].

The first of these equations and the initial condition y(0) = 0 implies that y(t) = 0 for

all t ∈ [0, T ]. In particular, we have y(T ) = 0. Hence the proposed solution achieves

zero cost. Since the cost functional J is positive definite, then any solution that

achieves zero cost and satisfies the terminal condition is then an optimal solution.

We now need to show that the terminal condition is satisfied for the proposed motion.

We do this as follows.

Fix a frequency point ν ∈ Lv. We now make use of the fact that the picture

frame disc moves at constant speed. See Figure (2.7). We compute the time spent

by the picture frame disc over ν by firstly computing the time t1 it takes the picture

frame’s leading edge to touch ν and secondly by computing the time t2 the trailing

edge passes over ν. By the uniformity of the motion, the time spent by the picture

frame disc over ν is simply the difference t2 − t1. By construction of our solution,
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one can easily verify that

t1 =
1

2rp

(
Lv

2
− ν

)
t2 =

1

2rp

(
2rp +

Lv

2
− ν

)
.

Hence, the difference t2 − t1 is given by

t2 − t1 = 1. (2-6.5)

Since we do not have double passages over any frequency point ν, then at t = T ,

z(ν, T ) = 1, for all ν ∈ Lv. This shows that the proposed motion is indeed optimal

since it achieves zero cost and satisfies the desired terminal conditions. To complete

the proof, we just need to show that the third condition in Equations (2-6.4) is

satisfied for all t ∈ [0, T ]. Note that the function pf
z (ν) does not influence the

remaining necessary conditions. Hence, any choice for pf
z (ν) that will set the right

hand side equal to zero is a valid choice. For instance, any symmetric function

pf
z (ν) will satisfy this condition since the second term in the inner product is skew

symmetric (that is, if f is symmetric and g is skew symmetric, then 〈f, g〉 = 0).

Indeed, if we set pf
z (ν) ≡ 0 for all ν ∈ Lv is a valid choice. This completes the proof.

-L  /2v L  /2v-q(t)+r

-q(t)

p-q(t)-rp q(t)+r

q(t)

pq(t)-rp

z(u,t)

ν

1

Leading edge Leading edge Trailing edgeTrailing edge

Figure 2.7: Motion under consideration in the one-dimensional case.
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2.7 Conclusion

In this chapter we derived a relationship between the motion of a formation and

its image quality performance via the modulation transfer function. We briefly intro-

duced and discussed a noise model. Based on this, we formulated an optimal control

problem where the objective is to minimize fuel expenditure and to maximize image

quality by maximizing the normalized modulation transfer function. We used the

maximum principle to derive the necessary conditions for a multi-spacecraft forma-

tion. The results are then specialized to the two-spacecraft formation. We show that

necessary optimality conditions imply that the spacecraft pair move symmetrically

about the origin and that the formation center of mass be fixed at the origin. We

give some numerical results showing the general behavior of the resulting control law.

Finally, we derive the necessary conditions and propose an optimal solution for the

two spacecraft, one-dimensional problem.



CHAPTER 3

Dynamic Coverage Optimal Control for

Interferometric Imaging Spacecraft Formations

In this and future chapters, we use differential geometry and geometric mechanics

as the tools to analyze the formation path planning problem. If unfamiliar with these

tools, for a brief background, we suggest that the reader go through Appendix A and

literature referenced therein.

Dynamic coverage optimal control is a new class of optimal control problems

motivated by multi-spacecraft interferometric imaging applications [38, 39]. The

dynamics is composed of N second order differential equations representing N fully

actuated particles. To be minimized is a cost functional that is a weighted sum of

the total fuel expenditure, the relative speeds between the particles and the measure

of a given set whose size is a function of the particles’ trajectories. In this chapter,

we first analyze the problem for formations evolving on non-linear manifolds. We

derive the necessary optimality conditions and give an example of a non-rigid two

spacecraft formation evolving on a paraboloidal surface. We specialize the analysis

to the case when the formation is co-planar. As will be shown, one outcome of this

work is that a necessary condition for a formation motion to be optimal is that it

is symmetric about the origin. This chapter is concluded by giving a simple three

46
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spacecraft planar example.

3.1 Introduction

We consider the general class of problems described by a system of N particles

satisfying dynamics of the form:

Dqi

dt
(t) = vi(t)

Dvi

dt
(t) = ui(t)

(3-1.1)

i = 1, . . . , N , where qi : [0, T ] → M is a curve on M , vi(t) ∈ Tqi(t)M and ui(t) ∈

TTqi(t)M .

Let ui(t) ∈ TTqi(t)M be given by

ui(t) =
m∑

j=1

uj
i (t)Yj(qi(t)), (3-1.2)

where m ≤ n and Yj, j = 1, . . . , n, are basis vector fields that satisfy 〈Yj,Yk〉 = δjk.

In other words, Yj is an orthonormal set of vector fields on Tqi(t)M . Mathematically,

this assumption limits the class of manifolds we consider (to parallelizable or to a

local study of non-parallelizable manifolds) for the general problem formulation, but

is satisfied for the special case where we deal with systems of particles in space.

m = n corresponds to the fully actuated system, whereas m < n corresponds to the

under-actuated situation. Here we only consider fully actuated systems.

Assumption 3.1.1. Each particle is fully actuated in all n directions. That is to

say m = n.

3.2 Imaging and the Coverage Problem

Equations (3-1.1) represent the spacecraft dynamics, treating each spacecraft as

a point particle. Hence, we ignore attitude dynamics and assume all spacecraft are
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perfectly aligned and are pointing towards the target. In interferometric imaging,

we are interested in the relative position dynamics as projected onto a plane perpen-

dicular to the line of sight. This plane is called the observation plane, denoted by

O ⊂ R2. Hence, we are interested in the projected relative curves :

q̃ij(t) =
1

λ
PO (qj(t)− qi(t)) , (3-2.1)

where λ is the optical wavelength and q̃ij : [0, T ] → Õ are curves on Õ, the frequency

(also known as the u-v) plane, and PO is the operator that projects relative trajec-

tories in M onto the observation plane O. Hence, O is the plane on which motion is

projected and Õ is the frequency plane. Let � ·, · � denote the inner product on

O.

Recall that in multi-aperture interferometry there are two main imaging goals.

The first is simply referred to as frequency domain coverage. We refer the reader to

Chapter 2 and the thesis [5] for a detailed discussion of multi-aperture interferometric

imaging. We are interested in having the resolution disc as defined by the set DR ={
(νx, νy) :

√
u2 + v2 ≤ 1/θr

}
be completely covered by some ball of radius rp centered

at q̃ij(t), for some t ∈ [0, T ], i and j, where θr is the angular resolution. An image is

said to be successfully completed if a maneuver M satisfies the following condition.

Definition 3.2.1. (Successful Imaging Maneuver) An imaging maneuver M is

said to be successful if, for each (νx, νy) ∈ DR, there exists a time t ∈ [0, T ] and some

i, j = 1, . . . , N such that (νx, νy) ∈ B̄rp (q̃ij(t)), where B̄x(y) is a closed ball in R2 of

radius x centered at y. rp is proportional to the size of the telescope’s airy disc.

The second objective is that all frequencies in DR must be sampled while max-

imizing the signal-to-noise ratio (SNR.) SNR can be controlled by controlling the

relative speeds between the spacecraft in the formation [5]. As the projected relative
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speed between a spacecraft pair is minimized, so is the achievable SNR. Intuitively,

as a spacecraft moves slower, it has more time spent in the neighborhood of a rela-

tive position state in space. This leads to more photon (that is, image information)

collection from that neighborhood, resulting in a stronger signal. This is analogous

to the notion of exposure time in photography, where the longer the shutter time,

the more photons get deposited on the photographic film and the better the image

gets.

3.3 Dynamic Coverage Optimal Control

Based on the above discussion, we wish to minimize three quantities: (1) the fuel

expended by each spacecraft in the constellation, (2) the projected relative speeds

between the spacecraft of the system and (3) the amount of uncovered points in DR.

The constraints we have are the dynamics (3-1.1) and boundary conditions on the

position and velocity vectors of each spacecraft. Motion constraints (as defined in

Chapters 4 and 5, and the paper [40]) are not treated in this chapter, though they

can be easily incorporated in the analysis. We now state the coverage optimal control

problem considered in this chapter.

Problem 3.3.1. Coverage Optimal Control Problem: Minimize

J (qi,ui, t; i = 1, . . . , N) =

∫ T

0

1

2

{ N∑
j=1

[
〈uj,uj〉+ τ 2

N∑
k=1

� dq̃jk

dt
,
dq̃jk

dt
�
]}

+κ2 meas (Ψ) dt, (3-3.1)

where Ψ is the mapping that returns the set of uncovered frequency points in DR

up to time t; Ψ : (t, q̃ij; i, j = 1, . . . , N) → {(νx, νy) ∈ DR : ∀ε ∈ [0, t] and ∀i, j ∈

1, . . . , N, (νx, νy) 6∈ B̄rp (q̃ij(ε))} and the function meas (Λ) is a measure function of
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some set Λ. The constraints are the dynamics (3-1.1), the boundary conditions

qi(0) = q0
i , qi(T ) = qT

i , vi(0) = v0
i , vi(T ) = vT

i , (3-3.2)

i = 1, . . . , N , and the relationship in Equation (3-2.1).

In Equation (3-3.1), we have used the simple derivative d
dt

to differentiate the

quantity q̃jk since q̃jk belongs to the flat space R2. Hence, a covariant time derivative

D
dt

reduces to the simple derivative d
dt

.

Note that if κ = 0, then the problem reduces to that discussed in Chapter 5 and

in [40] for a two-spacecraft formation. In this case, the terminal boundary conditions

alone drive the system. On the other hand if κ 6= 0, then the system is driven to also

minimize the set of uncovered points in DR. Whenever meas (Ψ) becomes zero, the

only drive is to meet the terminal conditions in (3-3.2).

The measure function meas(·) is simply the area covered by the set Ψ(t, q̃ij).

Firstly, note that as the curves q̃ij : [0, T ] → Õ change, the measure of Ψ at time T

changes. However, if the curves q̃ij correspond to trajectories of successful maneuvers

as defined in Definition (6.5.1), then meas(Ψ(T, q̃∗ij)) is zero at time T .

Secondly, note that meas(Ψ) is a monotonically decreasing function in time t.

The reason for this is illustrated in Figure (3.1), which is the situation in the fre-

quency domain for a two spacecraft system (hence, two coverage discs), and is ex-

plained as follows. Maximum decrease rate for meas(Ψ) is when all balls B̄rp(q̃ij(t)),

i, j = 1, . . . , N , are moving into uncovered territory inside DR. In Figure (3.1), this

happens at time t0 and t3 since both coverage balls move in previously uncovered

territory. The other extreme is when all balls B̄rp(q̃ij(t)), i, j = 1, . . . , N , are moving

in previously covered regions or have wandered outside DR, which corresponds to a

constant value of meas(Ψ). In Figure (3.1), this happens instantaneously at time
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t2 since both balls cover previously covered territory. Intermediate decrease rates

vary between these two extremes (for example, at time t1 as shown in the figure.)

Note that the two coverage balls traverse symmetric curves. Symmetry holds for an

arbitrary number of spacecraft by virtue of the condition (3-2.1).

Assumption 3.3.1. The function meas is differentiable with respect to both argu-

ments t and q̃.

Resolution Disc
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Figure 3.1: A two spacecraft illustration of motion in the frequency domain (t0 <
t1 < t2 < t3).

Finally, note that according to the definition of the coverage optimal control

problem stated above, solutions to this problem do not necessary result in successful

maneuvers. As the weight κ approaches infinity, the resulting solutions will tend to
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be successful maneuvers. Removing the term κ2 meas (Ψ(t)) from the integrand and

posing it as the terminal constraint meas (Ψ (T )) = 0 is another strategy that results

in successful maneuvers, something we do not pursue here.

3.4 Necessary Conditions for Optimality

To obtain necessary optimality conditions we first append the dynamic constraints

in Equations (3-1.1) to the Lagrangian of the cost functional (3-3.1) by introducing

λj
1

(
Dqj

dt
− vj

)
+ λj

2

(
Dvj

dt
− uj

)
(3-4.1)

into the cost functional J , where λj
1 and λj

2, j = 1, . . . , N , are Lagrange multipliers.

Collecting terms with the same indexes, Equation (3-3.1) becomes:

J (qi,ui) =

∫ T

0

N∑
j=1

[
1

2
〈uj,uj〉+ λj

1

(
Dqj

dt
− vj

)
+ λj

2

(
Dvj

dt
− uj

)
(3-4.2)

+
τ 2

2

N∑
k=1

� dq̃jk

dt
,
dq̃jk

dt
�
]

+ κ2 meas [Ψ (q̃jk(t); j, k = 1, . . . , N)] dt.

We then introduce the following one-parameter variations for the curves qi:

qi(t, 0) = qi(t),

Dqi

∂ε
(t, 0) = Wi(t)

Dqi

∂ε
(0, 0) =

Dqi

∂ε
(T, 0) = 0, (3-4.3)

D

dt

Dqi

∂ε
(t, 0) =

D

dt
Wi(t) is continuous on [0, T ]

D

dt

Dqi

∂ε
(0, 0) =

D

dt

Dqi

∂ε
(T, 0) = 0,
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i = 1, . . . , N . Likewise, we may define variations in vi(t), ui(t) and λi
k(t), k = 1, 2,

i = 1, . . . , N , by vi(t, ε), ui(t, ε) and λi
k(t, ε), k = 1, 2, i = 1, . . . , N , as follows:

ui(t, ε) =
m∑

j=1

uj
i (t, ε)Yj(qi(t, ε)) ∈ TTqi(t,ε)M

vi(t, ε) =
n∑

j=1

vj
i (t, ε)Yj(qi(t, ε)) ∈ Tqi(t,ε)M

λi
k(t, ε) =

n∑
j=1

λij
k (t, ε)ωj(qi(t, ε)) ∈ T ∗qi(t,ε)

M

where ωj, j = 1, . . . , n, are co-vector fields such that ωl(Yj) = δlj. Taking variations

in ui and vi, we have:

Dui

∂ε
(t, ε)

∣∣∣∣
ε=0

= δui(t) + (B (Wi,ui)) (qi(t)) ∈ TTM

Dvi

∂ε
(t, ε)

∣∣∣∣
ε=0

= δvi(t) + (B (Wi,ui)) (qi(t)) ∈ TTM

where, for instance,

δui(t) =
m∑

j=1

∂uj
i

∂ε
(t, 0)Yj(qi(t))

and

(B (Wi,ui)) (qi(t)) =
m∑

j=1

uj
i (t) (∇Wi

Yj) (qi(t)).

Similar expressions can be obtained for Dvi

∂ε
and

Dλj
i

∂ε
, j = 1, 2, i = 1, . . . , N . B(·, ·)

is a bilinear form that we introduce in order to be able to separate variations in the

components of ui, vi and λj
i , i = 1, . . . , N , j = 1, 2, from variations in the basis

vector fields. It is important to separate these terms since the variations δui, δvi

and δλi
j, i = 1, . . . , N , j = 1, 2, are independent from each other as well as from Wi

–a fact which has significant importance in deriving necessary conditions.

For variations in q̃ij(t), let

q̃ij(t, ε) =
2∑

k=1

q̃k
ij(t, ε)Zk(q̃ij(t, ε)) ∈ Tq̃ij(t,ε)Õ,
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where Zk, k = 1, 2, is an orthonormal set of vector fields on Tq̃ij(t,ε)Õ. The set Zk,

k = 1, 2, may be taken to be the standard set of vector fields spanning R2.

The spacecraft are free to move on some given non-flat surface M . Such surfaces

are usually dictated by some further imaging specifications. For example, having

the formation evolve on a virtual paraboloid surface provides improved focusing

properties. One good example is the ST-3 formation discussed in [36].

Thus, for i, j = 1, . . . , N we have

q̃ij(t, 0) = q̃ij(t) =
1

λ
PO (qj(t)− qi(t)) ,

Dq̃ij

∂ε
(t, 0) =

1

λ

∂PO

∂q
· (Wj(t)−Wi(t))

Dq̃ij

∂ε
(0, 0) =

Dq̃ij

∂ε
(T, 0) = 0, (3-4.4)

D

dt

Dq̃ij

∂ε
(t, 0) =

1

λ

D

dt

[
∂PO

∂q
· (Wj(t)−Wi(t))

]
D

dt

Dq̃ij

∂ε
(0, 0) =

D

dt

Dq̃ij

∂ε
(T, 0) = 0

where ∂PO

∂q
: M → R2 is viewed as a matrix transformation (tensor) on M . Hence, the

right hand sides of the second and fourth equations represent the projected variational

vector fields (that is, the components of the variational vector fields along O.)

Remark 3.4.1. q̃ij belongs to a flat space O. Then

D

∂ε

Dq̃

∂t
=

D

∂t

Dq̃

∂ε
+ R̃

(
Dq̃

∂ε
,
Dq̃

∂t

)
Dq̃

∂t
=

D

∂t

Dq̃

∂ε
(3-4.5)

because the curvature of O R̃ ≡ 0.

We now have the first result of our chapter.

Theorem 3.4.1. Under Assumptions (3.1.1) and (3.3.1), taking first order varia-
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tions of the expression in Equation (3-4.2) leads to the following relationship:

∂J
∂ε

(qi(t, ε),ui(t, ε), t; i = 1, . . . , N)

∣∣∣∣
ε=0

=

∫ T

0

N∑
j=1

〈uj,B (Wj,uj)〉 −
Dλj

1

dt
(Wj)

−λj
1 (B (Wj,vj))− λj

2 (B (Wj,uj)) + λj
2 (R (Wj,vj)vj)−

Dλj
2

dt
(B (Wj,vj))

+
N∑

k=1

τ 2

λ
� d2q̃jk

dt2
,
∂PO

∂q
Wj � −κ

2

λ

∂meas

∂q̃jk

(
∂PO

∂q
Wj

)
dt (3-4.6)

+

∫ T

0

N∑
j,k=1

−τ
2

λ
� d2q̃jk

dt2
,
∂PO

∂q
Wk � +

κ2

λ

∂meas

∂q̃jk

(
∂PO

∂q
Wk

)
dt

+

∫ T

0

N∑
j=1

−λj
2(δuj) + 〈uj, δuj〉 dt+

∫ T

0

N∑
j=1

−λj
1 (δvj)−

Dλj
2

dt
(δvj) dt.

Proof In Equation (3-4.2), we replace q̃jk(t), uj(t) and vj(t) with the perturbed vari-

ables q̃jk(t, ε), uj(t, ε) and vj(t, ε), respectively. To prove the theorem, we compute

∂J /∂ε on a term by term basis as follows. First, we have:

∂

∂ε

∫ T

0

1

2
〈uj(t, ε),uj(t, ε)〉 dt

∣∣∣∣
ε=0

=

∫ T

0

〈uj, δuj + B (Wj,uj)〉 dt, (3-4.7)

where a summation over j is understood. For the fourth term in Equation (3-4.2),

we use the fourth identity in Equations (3-6.1) and integrate by parts to obtain

∂

∂ε

∫ T

0

τ 2

2
� dq̃jk

dt
,
dq̃jk

dt
� dt

∣∣∣∣
ε=0

=

∫ T

0

τ 2

λ
� dq̃jk

dt
,

d

dt

[
∂PO

∂q
(Wk −Wj)

]
� dt

= −
∫ T

0

τ 2

λ
� d2q̃jk

dt2
,
∂PO

∂q
(Wk −Wj) � dt

+
τ 2

λ
� dq̃jk

dt
,
∂PO

∂q
(Wk −Wj) �

∣∣∣∣T
0

,

for all j, k = 1, . . . , N , where use has been made of Equation (3-4.5). The second

term vanishes due to the fixed boundary conditions as expressed in Equations (3-4.3).

Thus, for the fourth term in Equation (3-4.2) we have

∂

∂ε

∫ T

0

τ 2

2

N∑
j,k=1

� dq̃jk

dt
,
dq̃jk

dt
� dt

∣∣∣∣
ε=0

=

−
∫ T

0

τ 2

λ

N∑
j,k=1

� d2q̃jk

dt2
,
∂PO

∂q
(Wk −Wj) � dt. (3-4.8)
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For the second term, we have

∂

∂ε

∫ T

0

λj
1

(
Dqj

dt
− vj

)
dt =

∫ T

0

λj
1

(
D

dt
Wj − δvj −B (Wj,vj)

)
dt.

For the first term in the parenthesis, we integrate by parts to obtain∫ T

0

λj
1

(
D

dt
Wj

)
dt = λj

1 (Wj)

∣∣∣∣T
0

−
∫ T

0

Dλj
1

dt
(Wj) dt.

The first term on the right hand side vanishes by virtue of the boundary conditions

(3-4.3) imposed on Wj. We then obtain

∂

∂ε

∫ T

0

λj
1

(
Dqj

dt
− vj

)
dt =

∫ T

0

−Dλj
1

dt
(Wj)− λj

1 (δvj + B (Wj,vj)) dt. (3-4.9)

For the third term in Equation (3-4.2), first recall the identity (page 52 in [41]):

D

∂ε

D

∂t
Y − D

∂t

D

∂ε
Y = R

(
Dq

∂ε
,
Dq

∂t

)
Y,

where Y is a vector field along a trajectory q(t). Then

∂

∂ε

∫ T

0

λj
2

(
Dvj

dt
− uj

)
dt =

∫ T

0

λj
2

(
R(Wj,vj)vj +

D2vj

∂t∂ε
− δuj −B (Wj,vj)

)
dt

=

∫ T

0

λj
2

(
R(Wj,vj)vj − δuj −B (Wj,vj)

)
− Dλj

2

dt
(δvj + B (Wj,vj)) dt (3-4.10)

where integration by parts has been used to arrive at the last equation. Finally,

under Assumption 3.3.1, for the last term we have

∂

∂ε

∫ T

0

κ2meas [Ψ] dt =

∫ T

0

N∑
j,k=1

κ2∂meas

∂q̃jk

∂q̃jk

∂ε
dt

=

∫ T

0

N∑
j,k=1

κ2

λ

∂meas

∂q̃jk

[
DPO

dq
(Wk −Wj)

]
dt,(3-4.11)

where it is understood that the meas function is applied to the set Ψ (q̃jk) for all

j, k = 1, . . . , N . Finally, from equations (3-6.3-3-6.7), by separating terms involving

the coefficients Wj, Wk, δvj and δuj, we obtain the expression (3-6.2) and, hance,

proving the theorem.
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�

Remark 3.4.2. Note that ∂meas
∂q̃jk

constitute the components of the differential form

d (meas) ∈ T ∗O, the cotangent space on O. Hence, the notation ∂meas
∂q̃jk

(X) denotes

this form operating on X ∈ TO.

From Theorem (3.6.1) one can extract the necessary optimality conditions as the

following theorem states.

Theorem 3.4.2. Under Assumptions (3.1.1) and (3.3.1), a set of optimal trajec-

tories q̃i, i = 1, . . . , N , that minimize J while satisfying the dynamic constraints

(3-1.1) and the boundary conditions (3-3.2) satisfy the following necessary condi-

tions for an arbitrary vector field X:

Dqi

dt
= vi

Dvi

dt
=

(
λj

2

)#
,

Dλj
1

dt
(X) = (R (uj,vj)vj)

[ (X)

Dλj
2

dt
(X) = −λj

1 (X)

uj =
(
λj

2

)#
0 =

N∑
k=1

τ 2

(
D2q̃jk

dt2

)[

(X)− κ2∂meas

∂q̃jk

(X)

for j = 1, . . . , N and where Y[ (X) = 〈Y,X〉, with [ denoting the flat operator (see

[42] for definition of [ and ]).

Proof The first equation follows immediately from Equation (3-1.1). For an optimal

solution, the first order necessary condition is that

∂J
∂ε

(qi(t, ε),ui(t, ε), t; i = 1, . . . , N)

∣∣∣∣
ε=0

= 0. (3-4.12)
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The rest of the proof relies on this condition and the fact that Wj, Wk, δuj and

δvj are independent for all j, k = 1, . . . , N . The fourth equation follows immediately

from the last integral in Equation (3-6.2) and the independence of δvj, j = 1, . . . , N .

The fifth equation follows immediately from condition (3-6.9), the third integral in

Equation (3-6.2) and the independence of δuj, j = 1, . . . , N . The last (algebraic)

equation is obtained by studying the second integral in Equation (3-6.2). Since Wk,

k = 1, . . . , N , are independent, we then have

N∑
j=1

τ 2

(
d2q̃jk

dt2

)[

(X)− κ2∂meas

∂q̃jk

(X) = 0,

∀k = 1, . . . , N . Since uj =
(
λj

2

)#
and by interchanging indices (j → k and k → j),

we obtain the last (algebraic) condition. Hence, the last term under the first integral

in Equation (3-6.2) is zero. the third equation in the theorem is obtained from this,

the fourth Equation in the theorem, the first integral in Equation (3-6.2) and the

independence of Wj, j = 1, . . . , N . The second equation follows from Equation

(3-1.1) and the fifth condition in the theorem.

�

Remark 3.4.3. In the proof for Theorem (3.6.1) we have not taken variations in the

multipliers λj
i , i = 1, 2, j = 1, . . . , N . This is standard practice and the justification

can found in Remark (C.2.1) in Appendix C and Section 2 of [43].

3.5 Example: Dual-Spacecraft Interferometry

In this section we demonstrate the above ideas for a two spacecraft formation.

We first derive a single degree of freedom version of the necessary conditions of

Theorem (3.4.2), which only apply to fully actuated multi-spacecraft systems. Since

in the present example one spacecraft is fixed (and not free) in space, the symmetries



59

exhibited in Theorem (3.4.2) are broken (specifically, the fifth algebraic condition in

the theorem.) Hence, the result presented in this section is not a simple special case

of Theorem (3.4.2).

The curve q(t) ∈ M corresponds to the trajectory of the collector spacecraft on

the manifold and v(t) ∈ TM corresponds to the relative velocity vector field between

the parent and collector spacecraft. The projected relative position is given by q̃ =

(1/λ)PO (q) while the projected relative velocity is given by ṽ = (1/λ) d
dt

PO (q) =

Pv
O(q,v), where Pv

O : M × TM → E2 is a continuously differentiable function on the

tangent bundle to M and where E2 is the tangent space to R2. Hence, ṽ ∈ E2.

The cost functional to be minimized is given by:

J =

∫ T

0

1

2
〈u,u〉+

τ 2

2
� ṽ, ṽ � +κ2meas (Ψ(q̃)) dt.

One now follows a procedure similar to that found in Section (3.4) by appending the

Lagrangian with λ1 (q̇− v) + λ2

(
Dv
dt
− u

)
. We only derive the expression:

∂

∂ε

∫ T

0

τ 2

2
� ṽ, ṽ � dt =

∫ T

0

τ 2 � ṽ,
∂

∂ε
Pv

O(q,v) � dt

=

∫ T

0

τ 2 � ṽ,
∂Pv

O

∂q
(W) +

∂Pv
O

∂v

(
∂v

∂ε

)
� dt

=

∫ T

0

τ 2

[〈(
∂Pv

O

∂q

)T

ṽ,W

〉

+

〈(
∂Pv

O

∂v

)T

ṽ, δv + B (W,v)

〉]
dt, (3-5.1)

where W ∈ TM is the variation vector field corresponding to the curve q and
∂Pv

O

∂q

and
∂Pv

O

∂q
are viewed as the components of the differential form: dPv

O ∈ T ∗TM . The

T in the superscript corresponds to the adjoint (transpose) operation. In obtaining

the above expression we have used integration by parts and the fact that W(0) =

W(T ) = 0. The inner product on the last line corresponds to the metric on M . The
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remainder of the derivation is similar to that obtained in Section (3.4). We obtain

the following:

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈u, δu〉 − λ2 (δu) dt

+

∫ T

0

−λ1(δv)− Dλ2

dt
(δv) + τ 2

〈(
∂Pv

O

∂v

)T

ṽ, δv

〉
dt

+

∫ T

0

〈u,B (W,u)〉+ τ 2

〈(
∂Pv

O

∂q

)T

ṽ,W

〉
+κ2∂meas

∂q
(W)− Dλ1

dt
(W)− λ1 (B (W,v))

−λ2 (B (W,u))− Dλ2

dt
(B (W,v))

+λ2 (R(W,v)v) + τ 2

〈(
∂Pv

O

∂v

)T

ṽ,B (W,v)

〉
dt. (3-5.2)

We are now in a position to extract the necessary conditions. These are as follows:

q̇ = v

Dv

dt
= λ]

2(
Dλ1

dt

)]

= R(u,v)v − τ 2

(
∂Pv

O

∂q

)T

ṽ + κ2∂meas

∂q

Dλ2

dt
= −λ1 + τ 2

(
∂Pv

O

∂v

)T

ṽ[

u = λ]
2.

These necessary conditions for the problem when κ = 0 are obtained in local coor-

dinates (the arc length q1) in Chapter 6 and in [44].

We now look at a class of two-spacecraft formations, where one spacecraft, the

“parent”, is fixed at the origin and the second, the “collector”, is restricted to move

along a spiral embedded in a two-dimensional paraboloidal surface. Hence, this

system is a one degree of freedom system.

We model each spacecraft as a point mass, each with unity mass. The choice

of a paraboloid surface is made because of its improved focusing properties. This
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type of formation belongs to a class of formations known by Space Technology 3

(ST-3) as one of NASA’s Origin’s missions. For more on this class of formations, we

refer the reader to [36]. Moreover, the collector spacecraft follows a spiral trajectory

along the paraboloid. The spiral is designed to ensure that the resulting maneuver

is successful in the sense of Definition (6.5.1). Hence, the spiral embedded on the

paraboloid surface will be considered as our one-dimensional manifold M with n = 1.

Line of 
SightLinear Spiral

Paraboloid

x 

y 

 z 

q

Figure 3.2: The basic interferometer.

Refer to figure (3.2). Let q = q be the single coordinate we choose to work. We

choose q to be the arc length traversed along the spiral. Therefore, ∂q = ∂
∂q

is the

basis vector for TqM . The velocity vector field is then given by v = v1∂q. The control

vector u = u1∂q is restricted to the tangent space to TM . That is, u ∈ TTM . In

rectangular coordinates, the paraboloid is given by

z =
1

2

(
ρ2

β2
− β2

)
, (3-5.3)

where ρ =
√
x2 + y2 and β is a parameter that controls the depth of the paraboloid.

Note that vertex of the paraboloid is located at the point (0, 0,−β2/2) in R3.

In this section we give a brief account for the spiral maneuver. We refer the
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reader to Chapter 6 and to [45] for further details and background information. In

the x-y plane, the projected position may be given in terms of polar coordinates

(ρ, θ). One way to ensure full coverage of the resolution disc DR is to initialize the

second spacecraft such that at t = 0 we have (ρ = λ(m+1)
2θp

, θ = 0), make it follow a

linear spiral as a function of θ, and to impose the terminal condition that at t = T

we have ρ = 0, θ = (m+1)π
2

), where T is the terminal maneuver time. m is an integer

that is equal to the number of pixels in the reconstructed image and θp is a parameter

such that θp = mθr. This motion implies that the two coverage balls B̄rp(p̃12) and

B̄rp(p̃21) are initialized such that they lie outside the resolution disc DR and move

spirally inwards till they overlap the central (fixed) ball B̄rp (p̃00) = B̄rp (0, 0). Thus

ρ and θ are constrained to satisfy

ρ(θ) = k1 (k2π − θ) , θ ∈
[
0,

(m+ 1)π

2

]
, (3-5.4)

where k1 = λ
πθp

and k2 = (m+1)
2

.

If we let r be the position vector of the collector spacecraft, then the constraints

(3-5.3) and (3-5.4) imply that

r = (x, y, z) (3-5.5)

=

(
(k1(k2π − θ) cos θ, k1(k2π − θ) sin θ,

1

2

(
k2

1

β2
(k2π − θ)2 − β2

))
.

The arc length q is obtained as a function of θ using the definition of the arc length

of curve in space:

q(θ) = h(θ) =

∫ θ

0

∥∥∥∥∂r(θ′)∂θ′

∥∥∥∥ dθ′. (3-5.6)

The functional form of h can be obtained explicitly, which we omit for the sake of

brevity. By the geometry of the problem described in previous paragraphs, it is easy

to see that the function h is both one-to-one and onto (for each θ there is one and
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only one corresponding q value.) Hence, given a value for θ, one can uniquely solve

for q using

θ = h−1(q). (3-5.7)

The metric on the tangent space is determined by computing the line element ds2

in terms of the coordinate q. Since q is the distance traveled on M , then ds2 = dq2

and the single element of the metric g is simply given by

g(q) = 1. (3-5.8)

With this, one is now in a position to compute the connection coefficients. The single

connection coefficient (or the Christoffel symbol) is given by

Γ =
1

2g

∂g

∂q
= 0. (3-5.9)

This and the fact that M is a one-dimensional manifold, then the curvature tensor

R is identically zero everywhere on M .

To compute ṽ in terms of q and v = q̇1, we first need to obtain an expression for

θ̇ in terms of q and q̇1. Differentiating Equation (3-5.6), we obtain

v = q̇1 =
∂h

∂θ
θ̇ = r(q)θ̇, (3-5.10)

where r(q) = ∂h
∂θ

∣∣
θ=h−1(q)

using the relation (3-5.7). Using this and Equations (3-5.5)

and (3-5.7), we have:

ṽ = Pv
O = ẋ∂x + ẏ∂y = Px(q, v)∂x + Py(q, v)∂y, (3-5.11)

where

Px(q, v) =
v

r(q)

[
− k1 cos

(
h−1(q)

)
− k1

(
k2π − h−1(q)

)
sin
(
h−1(q)

) ]
Py(q, v) =

v

r(q)

[
− k1 sin

(
h−1(q)

)
+ k1

(
k2π − h−1(q)

)
cos
(
h−1(q)

) ]
.
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Finally, after quite an involved computation, one can show that for such “scripted”

(that is, pre-determined) maneuvers, the meas function that ensues from the spiral

motion is given in terms of θ = h−1(q) by:

meas(θ) =
π

4θ2
p

+
1

2

[
mθ2

2πθ2
p

− θ3

3π2θ2
p

]
, θ ∈ [0, π]

meas(θ) =
π(3m+ 1)

12θ2
p

+
1

θ2
p

[
(m+ 1)(θ − π)

2
− θ2 − π2

2π

]
, θ ∈

[
π,
π(m− 1)

2

]
meas(θ) =

π (3m2 − 7)

24θ2
p

+
1

2θ2
p

[
(m+ 3)(m+ 1)

4

(
θ − (m− 1)π

2

)
−(m+ 2)

2π

(
θ2 − (m− 1)2π2

4

)
+

1

3π2

(
θ3 − (m− 1)3π3

8

)]
,

θ ∈ [
π(m− 1)

2
,
π(m+ 1)

2
].

The meas may now be obtained in terms of q by the relation θ = h−1(θ).

3.6 The Planar Case

In this section, we make the assumption that the manifold M is identical to O;

the formation is constrained to evolve on the observation plane O. This assumption

simplifies the analysis and offers further insight into the necessary properties of an

optimal formation motion.

Assumption 3.6.1. Let M = O ⊂ R2. In other words, the surfaces M and O

coincide.

Under Assumption (3.6.1), the projection PO is the identity operator. This im-

plies that all the derivatives D/dt could be replaced by regular derivatives in R2.

However, we will retain the former notation because it is very convenient, especially

in the case when one works with non-rectangular coordinates (such as polar coordi-
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nates.) Thus, for i, j = 1, . . . , N we have

q̃ij(t, 0) = q̃ij(t) =
qj(t)− qi(t)

λ
,

Dq̃ij

∂ε
(t, 0) =

1

λ
[Wj(t)−Wi(t)]

Dq̃ij

∂ε
(0, 0) =

Dq̃ij

∂ε
(T, 0) = 0, (3-6.1)

D

dt

Dq̃ij

∂ε
(t, 0) =

1

λ

D

dt
[Wj(t)−Wi(t)] cont. on [0, T ]

D

dt

Dq̃ij

∂ε
(0, 0) =

D

dt

Dq̃ij

∂ε
(T, 0) = 0.

Theorem 3.6.1. Under Assumptions (3.1.1), (3.3.1) and (3.6.1), taking first order

variations of the expression in Equation (3-4.2) leads to the following relationship:

∂J
∂ε

(qi(t, ε),ui(t, ε), t; i = 1, . . . , N)

∣∣∣∣
ε=0

=

∫ T

0

N∑
j=1

〈uj,B (Wj,uj)〉 −
Dλj

1

dt
(Wj)

−λj
1 (B (Wj,vj))− λj

2 (B (Wj,uj)) + λj
2 (R (Wj,vj)vj)−

Dλj
2

dt
(B (Wj,vj))

+
N∑

k=1

τ 2

λ2
〈uk − uj,Wj〉 −

κ2

λ

∂meas

∂q̃jk

(Wj) dt

+

∫ T

0

N∑
j,k=1

−τ
2

λ2
〈uk − uj,Wk〉+

κ2

λ

∂meas

∂q̃jk

(Wk) dt

+

∫ T

0

N∑
j=1

−λj
2(δuj) + 〈uj, δuj〉 dt+

∫ T

0

N∑
j=1

−λj
1 (δvj)−

Dλj
2

dt
(δvj) dt. (3-6.2)

Proof In Equation (3-4.2), we replace q̃jk(t), uj(t) and vj(t) with the perturbed vari-

ables q̃jk(t, ε), uj(t, ε) and vj(t, ε), respectively. To prove the theorem, we compute

∂J /∂ε on a term by term basis as follows. First, we have:

∂

∂ε

∫ T

0

1

2
〈uj(t, ε),uj(t, ε)〉 dt

∣∣∣∣
ε=0

=

∫ T

0

〈uj, δuj + B (Wj,uj)〉 dt, (3-6.3)

where a summation over j is understood. For the fourth term in Equation (3-4.2),
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we use the fourth identity in Equations (3-6.1) and integrate by parts to obtain

∂

∂ε

∫ T

0

τ 2

2

N∑
j=1

N∑
k=1

〈
Dq̃jk

dt
,
Dq̃jk

dt

〉
dt

∣∣∣∣
ε=0

=

∫ T

0

τ 2

λ

N∑
j=1

N∑
k=1

〈
Dq̃jk

dt
,
D

dt
[Wk −Wj]

〉
dt

= −
∫ T

0

τ 2

λ

N∑
j=1

N∑
k=1

〈
D2q̃jk

dt2
,Wk −Wj

〉
dt+

N∑
j=1

N∑
m=1

τ 2

λ

〈
Dq̃jk

dt
,Wk −Wj

〉 ∣∣∣∣T
0

.

The second term vanishes due to the fixed boundary conditions (3-4.3). Under

Assumption (3.6.1), we have

D2q̃jk

dt2
=

1

λ
(uk − uj) .

Thus, for the fourth term in Equation (3-4.2) we have

∂

∂ε

∫ T

0

τ 2

2

N∑
j,k=1

〈
Dq̃jk

dt
,
Dq̃jk

dt

〉
dt

∣∣∣∣
ε=0

= −
∫ T

0

τ 2

λ2

N∑
j,k=1

〈uk − uj,Wk −Wj〉 dt.

(3-6.4)

For the second term, we have

∂

∂ε

∫ T

0

λj
1

(
Dqj

dt
− vj

)
dt =

∫ T

0

λj
1

(
D

dt
Wj − δvj −B (Wj,vj)

)
dt.

For the first term in the parenthesis, we integrate by parts to obtain∫ T

0

λj
1

(
D

dt
Wj

)
dt = λj

1 (Wj)

∣∣∣∣T
0

−
∫ T

0

Dλj
1

dt
(Wj) dt.

The first term on the right hand side vanishes by virtue of the boundary conditions

(3-4.3). We then obtain

∂

∂ε

∫ T

0

N∑
j=1

λj
1

(
Dqj

dt
− vj

)
dt =

∫ T

0

N∑
j=1

−Dλj
1

dt
(Wj)− λj

1 (δvj + B (Wj,vj)) dt.

(3-6.5)

For the third term in Equation (3-4.2), first recall the identity (page 52 in [41]):

D

∂ε

D

∂t
Y − D

∂t

D

∂ε
Y = R

(
Dq

∂ε
,
Dq

∂t

)
Y.
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Then, we have

∂

∂ε

∫ T

0

λj
2

(
Dvj

dt
− uj

)
dt =

∫ T

0

λj
2

(
R(Wj,vj)vj +

D2vj

∂t∂ε
− δuj −B (Wj,vj)

)
dt

=

∫ T

0

λj
2

(
R(Wj,vj)vj − δuj −B (Wj,vj)

)
−Dλj

2

dt
(δvj + B (Wj,vj)) dt (3-6.6)

where integration by parts has been used to arrive at the last equation. Finally,

under Assumption 3.3.1, for the last term we have

∂

∂ε

∫ T

0

κ2meas [Ψ] dt =

∫ T

0

N∑
j,k=1

κ2∂meas

∂q̃jk

∂q̃jk

∂ε
dt

=

∫ T

0

N∑
j,k=1

κ2

λ

∂meas

∂q̃jk

(Wk −Wj) dt, (3-6.7)

where it is understood that the meas function is applied to the set Ψ (q̃jk) for all

j, k = 1, . . . , N . Finally, from equations (3-6.3-3-6.7), by separating terms involving

the coefficients Wj, Wk, δvj and δuj, we obtain the expression (3-6.2) and, hance,

proving the theorem.

�

Theorem 3.6.2. Under Assumptions (3.1.1), (3.3.1) and (3.6.1), a set of optimal

trajectories q̃i, i = 1, . . . , N , that minimize J while satisfying the dynamic con-

straints (3-1.1) and the boundary conditions (3-3.2) satisfies the following necessary
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conditions for an arbitrary vector field X:

Dqi

dt
= vi

Dvi

dt
=
(
λj

2

)#
,

Dλj
1

dt
(X) = (R (uj,vj)vj)

[ (X) (3-6.8)

Dλj
2

dt
(X) = −λj

1 (X)

uj =
(
λj

2

)#
0 =

N∑
k=1

τ 2

λ2

(
λk

2 (X)− λj
2 (X)

)
− κ2

λ

∂meas

∂q̃jk

(X)

for j = 1, . . . , N and where Y[ (X) = 〈Y,X〉, with [ denoting the flat operator [42].

Proof The first equation follows immediately from Equation (3-1.1). For an optimal

solution, the first order necessary condition is that

∂J
∂ε

(qi(t, ε),ui(t, ε), t; i = 1, . . . , N)

∣∣∣∣
ε=0

= 0. (3-6.9)

The rest of the proof relies on this condition and the fact that Wj, Wk, δuj and

δvj are independent for all j, k = 1, . . . , N . The fourth equation follows immediately

from the last integral in Equation (3-6.2) and the independence of δvj, j = 1, . . . , N .

The fifth equation follows immediately from condition (3-6.9), the third integral in

Equation (3-6.2) and the independence of δuj, j = 1, . . . , N . The last (algebraic)

equation in (4.11) is obtained by studying the second integral in Equation (3-6.2).

Since Wk, k = 1, . . . , N , are independent, we then have

N∑
j=1

−τ
2

λ2
(uk − uj) +

κ2

λ

∂meas(Ψ)

∂q̃jk

= 0, ∀k = 1, . . . , N.

Since uj =
(
λj

2

)#
and by interchanging indices (j → k and k → j), we obtain the

last (algebraic) condition in (4.11). Hence, the last term under the first integral in
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Equation (3-6.2) is zero. This, the fact that
Dλj

2

dt
= −λj

1 and the independence of Wj,

j = 1, . . . , N , in the first integral in Equation (3-6.2) give the third equation in the

theorem. The second equation follows from Equation (3-1.1) and the fifth condition

in equation (4.11).

�

Studying the last (algebraic) necessary condition gives further insight into the

optimal trajectory. Note that one can write these N conditions in a matrix form:

AU =
κ2λ

τ 2
M, (3-6.10)

where

A =



N − 1 −1 · · · −1

−1 N − 1 −1

...
. . .

...

−1 · · · −1 N − 1


is an N × N matrix, U is the N × 1 column matrix whose jth entry is uj and M

is the N × 1 column matrix whose jth entry is
∑N

k=1
∂meas(Ψ)

∂q̃jk
. Let aij be the ijth

element of A. Note that aNj = −
∑N−1

i=1 aij. Hence, the last row is dependent on

the first N − 1 rows. In fact, one can show that A has rank exactly equal to N − 1.

The homogenous solution to the above equation is found to be uh
1 = uh

2 = · · · = uh
N .

The homogeneous solution corresponds to the motion of the center of mass of the

formation in the plane. Since it is desired to minimize fuel, then we may set the

homogeneous solution to zero: uh
1 = uh

2 = · · · = uh
N = 0.

What really matters in this situation is the particular solution, if one exists.

Indeed, we now show that the matrix M lies in the range space of the matrix A and,

hence, a particular solution exists. First, append M to A to form the new matrix
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Ã = [A M]. Recall that A has rank equal to N − 1. If we can show that Ã also

has rank N − 1, then M lies in the range space of A. Let M̃ be the matrix whose

elements are given by M̃ij = ∂meas
∂q̃ij

. With q̃ij = −q̃ji and q̃ii = 0 is fixed at the

origin, then ∂meas
∂q̃ii

= 0 and M̃ is skew symmetric. Next, note that the N th element

of M is given by

N−1∑
j=1

∂meas

∂q̃Nj

=
N−1∑
j=1

∂meas

∂q̃Nj

+
N−1∑
j,k=1

∂meas

∂q̃kj

=
N−1∑
j=1

N∑
k=1

∂meas

∂q̃kj

= −
N−1∑
j=1

N∑
k=1

∂meas

∂q̃jk

,

where the second term after the first equality sign is zero since M̃ is skew symmetric.

The term after the last equality sign is nothing but the sum of all the first N − 1

elements of the matrix M. This and the fact that aNj = −
∑N−1

i=1 aij show that the

last row of Ã is equal to the sum of the first N − 1 rows of Ã. Since A has rank

N − 1, then so must Ã. Hence, M must in fact be in the range space of A and a

particular solution must exist ([46], pp. 116-121.)

For N = 2, the condition (3-6.10) is equivalent to u1 − u2 = κ2λ
τ2

∂meas
∂q̃12

. Hence,

for a two spacecraft formation, a necessary optimality condition is that the relative

thrusting between the two spacecraft is in the direction of descent of the measure of

the uncovered set of frequency points. For N = 3, the condition (3-6.10) is equivalent

to:

u1 − u2 =
1

3

κ2λ

τ 2

[
∂meas

∂q̃13

+ 2
∂meas

∂q̃12

+
∂meas

∂q̃32

]
u1 − u3 =

1

3

κ2λ

τ 2

[
∂meas

∂q̃12

+ 2
∂meas

∂q̃13

+
∂meas

∂q̃23

]
,

where now a necessary optimality condition is that the relative thrusting between

the three spacecraft is a weighted sum of the direction of descent of the measure of

the uncovered set of frequency points.
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Hence, each spacecraft’s motion and control effort is affected by the amount of

area of DR that has not been covered by the formation as it involves summations

over motions of all the other spacecraft. Therefore, the resulting control law is in

some sense decentralized: Given knowledge of the motions of the other spacecraft,

the above necessary conditions command each spacecraft to move in directions that

attempt to minimize the cost function J .

Remarks:

1. Note that ∂meas
∂q̃jk

constitute the components of the differential form d (meas).

Hence, the notation ∂meas
∂q̃jk

(X) denotes this form operating on X.

3.7 Example: A Three-Spacecraft Formation

In this section we state the necessary conditions for a three-spacecraft, rigidly-

connected, co-planar formation. The necessary conditions for a general one degree

of freedom system are slightly different from those of Theorem (3.6.2). Since we

only have a single degree of freedom, a single control vector field suffices to drive the

system. Hence, the condition (3-6.10) will vanish. Instead, the effect of the measure

function meas (Ψ) on the closed loop system appears in the dynamics governing the

Lagrange multipliers. This result governs other single degree of freedom systems

with different numbers of spacecraft and configurations.

The formation we study is shown in Figure (3.3). The formation assumes the

shape of an equilateral triangle. Formations such as this one appear in previous

literature. See for example the formation used in [47]. Let the side of the triangle be

given by a and each spacecraft is at a distance r from the center of mass CM , where

r = a/
√

3. To guarantee that the resulting motion results in a successful maneuver,

we impose the condition that a = 2rpλ. Moreover, assume the resolution disc DR has
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a radius of 1/θr = 3rp. These conditions and the rigidity of the formation guarantee

that the resulting six picture frame discs (as defined in Section 3.2) are centered such

that each scans an annulus about the central disc. After the formation rotates by

an angle of 60◦, the maneuver is completed, resulting in a successful maneuver. The

motion in the frequency plane is shown in Figure (3.3) (right.)

Since this is a single degree of freedom system evolving on the unit circle S1, let

the angular position, θ(t), describe the state of the system as shown in Figure (3.3).

Hence, θ(0) = 0 and θ(T ) = π/3. For this example, an approximation of the measure

function is given by

meas (Ψ(θ(t))) = −24r2
pθ(t) + 8πr2

p. (3-7.1)

One can also check that meas (Ψ(θ = 0)) = 8πr2
p (that is, the area of the initial

uncovered annulus) and that meas(Ψ (θ = π/3)) = 0 as one expects at the end of a

successful maneuver.

If we let the mass of each spacecraft be given by ms and the torque applied to

each spacecraft be given by F , then the equations of motion are given by the equation

Dθ

dt
= ω,

Dω

dt
= u, (3-7.2)

where u = F
ms

. The cost function to be minimized is

J =

∫ T

0

1

2
〈u, u〉+

τ ′2a2

2λ2
〈ω, ω〉+ κ2meas(θ)dt, (3-7.3)

where the absolute linear velocity of the discs is given by a
λ

Dθ
dt

= 2rp
Dθ
dt

. Appending

J by the terms λ1

(
Dθ
dt
− ω

)
and λ2

(
Dω
dt
− u
)
, and following a procedure similar to
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that used to derive Theorems (3.6.1) and (3.6.2), we obtain Equations (3-7.2) and

Dλ1

dt
(X) = κ2∂meas

∂θ
(X) + 〈R(u, ω)ω,X〉

Dλ2

dt
(X) = −λ1 (X) + τ 2 〈ω,X〉

u = λ#
2 ,

as necessary conditions, where ∂meas/∂θ = −24r2
p and X ∈ TM is any arbitrary

vector field. We note here that the algebraic condition on λ2 vanishes since the

system has only one degree of freedom. Instead, an additional term is added to the

Dλ1

dt
equation.

CM

rr

r
a

a

θ(t)

θ(t)

θ(t)

s/c 1

s/c 2s/c 3

a

x

3rp

θ(t)

ν

yν

Figure 3.3: A three-spacecraft, rigidly-connected, co-planar formation (left) and the
motion in the frequency plane (right.)

3.8 Conclusion

In this chapter we studied the dynamic coverage optimal control problem. The

problem is motivated by interferometric imaging spacecraft formations. An optimal

control problem is defined to achieve maneuvers optimal in both imaging and fuel

senses. Optimality conditions were derived and a two spacecraft example was given

to illustrate our results for a one degree of freedom case. The result was further

simplified to co-planar formations. Optimality conditions show that a necessary
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optimality feature of a spacecraft formation is that its motion must exhibit a form of

symmetry about the formation’s center of mass. A simple three co-planar spacecraft

formation was given to illustrate our results.



CHAPTER 4

Constrained Optimal Trajectory Tracking on the

Group of Rigid Body Motions

In the previous section, we studied a formation composed of a group ofN particles.

In this chapter and Chapters 5 and 6, we specialize the discussion to a class of two-

spacecraft formations. We will also omit the coverage component of the cost function

since the formation motion will already be restricted to successful maneuvers as

defined in Chapter 3. In this chapter, we treat each spacecraft in the formation as a

rigid body evolving on SE(3), while in Chapters 5 and 6 we assume they are point

masses to simplify the analysis.

The ultimate goal of this chapter is to study constrained optimal trajectory track-

ing on SE(3). To do so, we begin first by studying simple optimal control problems

on SE(3), including deriving the equations of motion of a rigid body (i.e., Euler’s

equations) by formulating it as a constrained variational optimal control problem.

We recommend the reader go through the material in Appendices A and B first

before proceeding with this chapter.

75
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4.1 Optimal Control of a Single Rigid Body on SE(3)

4.1.1 Metric on se(3)

For SE(3) there does not exist a bilinear form on se(3) that is both positive

definite and Ad-invariant. However, one can consider two bilinear forms defined on

se(3). However, more generally, lets consider a class of left invariant metrics.

A matrix form for a family of left-invariant metrics on se(3), parameterized by 3

scalars α, β and γ, is expressed as [48]:

G =

 αI3 βI3

βI3 γI3

 .
Setting β = γ = 0 results in the Killing form. The corresponding inner product

is given by: α 〈ω1,ω2〉. Setting α = γ = 0 results in the Klein form with inner

product that is given by: β (〈ω2,v1〉+ 〈ω1,v2〉). Hence, the metric given above is

a linear combination of the Killing and Klein forms where γ is set to zero. Finally,

there is the decoupled Park [48] form where β = 0, which is a weighted quadratic

combination of the linear and angular velocities: α 〈ω1,ω2〉 + γ 〈v1,v2〉 and which

reduces to the standard metric on R6 when α = γ = 1 [48].

The two bilinear forms one may consider are [49]:

1. A linear combination of Klein and Killing form: the most generic Ad-invariant

form on se(3) is given by

〈V1,V2〉se(3) = α 〈ω1,ω2〉R3 + β (〈ω1,v2〉R3 + 〈ω2,v1〉R3) ,

where 〈ω1,ω2〉R3 is the standard inner product on R3 and α, β ∈ R.

2. The standard inner product on se(3) = R6: discard the Lie algebra structure

of se(3) and set

〈V1,V2〉R6 = 〈ω1,ω2〉R3 + 〈v1,v2〉R3 = 〈Ω1,Ω2〉+ 〈v1,v2〉R3 .
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In [49], the authors select the standard inner product on R6, 〈·, ·〉R6 , to work with.

Since positive definiteness is crucial in an optimal control context (we must have a

positive definite cost function), we elect to work with the standard inner product on

R6.

4.1.2 Free Rigid Body Equations of Motion as a Constrained Optimal
Control Problem

EOMs in body-fixed frame

In this section we derive the rigid body equations of motion (both translational

and rotational equations of motion) in the body-fixed frame starting with the kine-

matic equations of motion:

ġ = gVb ∈ TgSE(3), (4-1.1)

where g = (R, p) ∈ SE(3) and Vb = (Ωb,vb) ∼ (ωb,vb) ∈ se(3) are as described in

Appendix B, with Ωb = ω̂b.

We begin by making a few observations. Equation (4-1.1) can be re-written as

an expression over se(3) as: g−1ġ−Vb = 0 with g and Vb given by equation (B-1.2).

The inverse g−1 is given by:

g−1 =

 RT −RTp

0 1

 ∈ SE(3). (4-1.2)

Hence, we have:

g−1ġ =

 RT Ṙ RT ṗ

0 0

 ∈ se(3), (4-1.3)

such that the following kinematic equations hold:

Ṙ = RΩb

ṗ = Rvb. (4-1.4)
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Finally, for a perturbed element gε(t, ε) = (Rε(t, ε), pε(t, ε)) that satisfies gε(t, 0) =

g(t), we have an analogous expression to (4-1.1) as follows (see [50], page 41):

∂gε

∂ε

∣∣∣∣
ε=0

= gW =

 RWb
1 Rwb

2

0 0

 ∈ TgSE(3) (4-1.5)

where

W =

 Wb
1 wb

2

0 0

 ∈ se(3)

and Wb
1 ∈ so(3) and wb

1 ∈ R3 such that

∂Rε

∂ε

∣∣∣∣
ε=0

= RWb
1

∂pε

∂ε

∣∣∣∣
ε=0

= Rwb
2. (4-1.6)

Here we view the pair (Wb
1,w

b
2) ∈ se(3) the perturbation vector fields expressed in

the body fixed frame just as we view the pair (Ωb,vb) ∈ se(3) as the angular and

translational velocities in the body fixed frame. In addition we have the following

result.

Lemma 4.1.1. Let gε ∈ SE(3) and W ∈ se(3) be defined as above, then we have

∂g−1
ε

∂ε

∣∣∣∣
ε=0

= −Wg−1.

Proof Since g−1
ε gε = Id, then ∂

∂ε
(g−1

ε gε)
∣∣
ε=0

= ∂g−1
ε

∂ε

∣∣
ε=0
g + g−1gW = 0 and, hence,

∂g−1
ε

∂ε

∣∣
ε=0

= −Wg−1.

�

For SE(3), it is important to note that, unlike the SO(3) case, 〈[A,B],C〉 6=

〈A, [B,C]〉, A,B,C ∈ se(3). Instead we have the following lemma, which is easily

proven.
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Lemma 4.1.2. Let A = (Ωa,va),B = (Ωb,vb),C = (Ωc,vc) ∈ se(3). Then we have

〈[A,B],C]〉R6 = 〈A, [B,C] + [[B,C]]〉R6 ,

where [A,B] = AB−BA is the Lie bracket on SE(3) and [[B,C]] is given by

[[B,C]] =

 v̂b × vc Ωcvb

0 0

 ∈ se(3).

Proof

〈[A,B],C]〉R6 = 〈[Ωa,Ωb],Ωc〉+ 〈Ωavb −Ωbva,vc〉R3

= 〈Ωa, [Ωb,Ωc]〉+
〈
Ωa, v̂b × vc

〉
+ 〈va,Ωbvc〉R3

= 〈A, [B,C] + [[B,C]]〉R6 ,

where we have used the facts that: 〈Ωavb,vc〉R3 = vc · (ωa × vb) = ωa · (vb × vc) =

〈ωa,vb × vc〉R3 =
〈
Ωa, v̂b × vc

〉
and −〈Ωbva,vc〉R3 = −vc · (ωb × va) = −va · (vc ×

ωb) = va · (ωb × vc) = 〈va,Ωbvc〉R3 .

�

If we view SO(3) as a subgroup of SE(3), then Lemma (4.1.2) reduces to the

standard result on SO(3): 〈[A,B],C〉 = 〈A, [B,C]〉.

To derive a rigid body’s equations of motion, we minimize the kinetic energy:

J =

∫ T

0

1

2

〈
Vb, J̃(Vb)

〉
R6

dt (4-1.7)

subject to the constraint given by equation (4-1.1) and the boundary conditions:

g(0) = g0 = (R0, p0),

Vb(0) = Vb
0 = (ωb

0,v
b
0),

g(T ) = gT = (RT , pT ),

Vb(T ) = Vb
T = (ωb

T ,v
b
T ), (4-1.8)
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where J̃ : se(3) → se(3) is the symmetric, positive definite, and, hence, invertible

operator defined by:

J̃(V) =

 J(Ω) mv

0 0

 , ∀V = (ω,v) ∈ se(3) (4-1.9)

where J is as defined in Section (B.4.2) and m is the mass of the body. By our defi-

nition of inner product on R6 in Section (4.1.1), the integrand in the cost functional

(4-1.7) corresponds to the total kinetic energy: 1
2

〈
Ωb,J(Ωb)

〉
+ 1

2

〈
vb,mvb

〉
R3 .

First, we form the modified cost functional:

J =

∫ T

0

1

2

〈
Vb, J̃(Vb)

〉
R6

+
〈
Λb, g−1ġ −Vb

〉
R6 dt, (4-1.10)

where

Λb =

 Λb
1 λb

2

0 0

 ∈ se(3)

is the Lagrange multiplier with Λb
1 = λ̂

b

1 ∈ so(3) and λb
2 ∈ R3. Then we have:

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
DVb

ε

∂ε

∣∣∣∣
ε=0

, J̃
(
Vb
)
−Λb

〉
+

〈
Λb,
[
Vb,Wb

]
+

DWb

dt

〉
dt.

Integrating
〈
Λb,
[
Vb,Wb

]
+ DWb

dt

〉
by parts and using Lemma (4.1.2), we find that

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
DVb

ε

∂ε

∣∣∣∣
ε=0

, J̃
(
Vb
)
−Λb

〉
−
〈

Wb,
[
Vb,Λb

]
+
[
[Vb,Λb]

]
+

DΛb

dt

〉
dt.

Hence, the necessary optimality conditions are given by

Λb = J̃
(
Vb
)

DΛb

dt
= [Λb,Vb]−

[
[Vb,Λb]

]
.

Expanding this expression, we get:

DMb

dt
=

[
Mb,Ωb

]
, Mb = Λb

1 = J(Ωb)

Dlb

dt
= lb2 × ωb, lb = λb

2 = mv, (4-1.11)
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which are the equations of motion for a rigid body in space.

To verify the above result, let us view SE(3) as SO(3)×R3 and use the definition

for the metric on SE(3) given above. When differentiating the perturbed cost function

Jε =

∫ T

0

1

2

〈
Ωb,J(Ωb)

〉
+

1

2

〈
vb,mvb

〉
R3

+
〈
Λb

1, R
T Ṙ−Ωb

〉
+
〈
λb

2, R
T ṗ− vb

〉
R3 dt, (4-1.12)

with respect to ε, the first and third terms give identical expressions to those given

by equation (B-4.8). We now focus our attention on the second and fourth terms:

∂

∂ε

∫ T

0

1

2

〈
vb,mvb

〉
R3 +

〈
λb

2, R
T ṗ− vb

〉
R3 dt

=

∫ T

0

〈
δvb,mvb − λb

2

〉
R3 +

〈
λb

2,
∂

∂ε

∣∣∣∣
ε=0

(
RT ṗ

)〉
R3

dt

=

∫ T

0

〈
δvb,mvb − λb

2

〉
R3

+

〈
λb

2,
(
Wb

1

)T
vb + Ωbwb

2 +
∂wb

2

∂t

〉
R3

dt

=

∫ T

0

〈
δvb,mvb − λb

2

〉
R3 +

〈
Wb

1λ
b
2,v

b
〉

R3 +
〈
λb

2,Ω
bwb

2

〉
R3

−
〈

dλb
2

dt
,wb

2

〉
R3

dt

=

∫ T

0

〈
δvb,mvb − λb

2

〉
R3 +

〈
λb

2 × vb,wb
1

〉
R3 −

〈
Ωbλb

2,w
b
2

〉
R3

−
〈

dλb
2

dt
,wb

2

〉
R3

dt

since Wb
1,Ω

b ∈ so(3) is skew symmetric with ŵb
1 = Wb

1 and ω̂b = Ωb. To obtain the

above expressions we have used the identities: 〈x,Ay〉R3 = x · (Ay) = (ATx) · y =〈
ATx, y

〉
R3 for all A ∈ R3×3 and x, y ∈ R3. In particular, if A is skew symmetric

we have 〈x,Ay〉R3 = −〈Ax, y〉R3 . We also needed the identity:
〈
Wb

1λ
b
2,v

b
〉

R3 =〈
wb

1 × λb
2,v

b
〉

R3 = (wb
1 × λb

2) · vb = (λb
2 × vb) · wb

1 =
〈
wb

1,Λ
b
2v

b
〉

R3 . From this and
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equation (B-4.8) we obtain

∂

∂ε
Jε =

∫ T

0

〈
DΩb

dε

∣∣
ε=0
,J(Ωb)−Λb

1

〉
dt

〈
−DΛb

1

dt
+ [Λb

1,Ω
b],Wb

1

〉
dt

+

∫ T

0

〈
δvb,mvb − λb

2

〉
R3 +

〈
λb

2 × vb,wb
1

〉
R3

−
〈
Ωbλb

2,w
b
2

〉
R3 −

〈
dλb

2

dt
,wb

2

〉
dt. (4-1.13)

Note that Wb
1 = ŵb

1 appears in both the second and third integrals, which seemingly

couples both terms together. First observe that by the independence of δvb from

δΩb, Wb
1 and wb

2, the first term in the third integral implies that λb
2 = mvb, which

is easily identified as the linear momentum of the rigid body’s center of mass. Since

λb
2 = mvb, then λb

2 × vb = mvb × vb = 0 and the second term under the third time

integral is zero. Therefore, the second and third time integrals are now decoupled (the

apparent coupling was due to the variable Wb
1 = ŵb

1 appearing in both integrals.)

The third and fourth terms under the third integral imply that λ̇
b

2 = −Ωbλb
2 =

−ωb × λb
2 = λb

2 × ωb. These facts and the result obtained in Section (B.4.2) imply

that

DMb

dt
=

[
Mb,Ωb

]
, Mb = Λb

1 = J(Ωb)

Dlb

dt
= lb2 × ωb, lb = λb

2 = mv, (4-1.14)

which are identical to equations (4-1.11). Recall the relation between the time deriva-

tive of an arbitrary variable s(t) in a body fixed frame, d′s
dt

, with the space fixed

frame time derivative ds
dt

: ds
dt

= d′s
dt

+ ω × s. Equation (4-1.14) then implies that

the rate of change of the linear momentum λb
2 in the space fixed frame is zero:

dλs
2

dt
= d′λb

2

dt
+ ωb × λb

2 = λb
2 × ωb + ωb × λb

2 = 0 as one expects since no exter-

nal forces are applied at the center of mass of the rigid body. Similarly we have

dms

dt
= d′mb

dt
+ ωb ×mb = 0, where again Mb = m̂b.
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EOMs in space-fixed frame

In this section we derive the corresponding equations of motion in a space fixed

frame. The kinematic equation is given by ġ = Vsg. In the space-fixed case, we

have:

ġg−1 =

 ṘRT −ṘRTp+ ṗ

0 0

 =

 Ωs vs

0 0

 ∈ se(3). (4-1.15)

Hence, the following kinematic equations are:

Ṙ = ΩsR

ṗ = vs + Ωsp. (4-1.16)

Since ṗ = Rvb = vs + Ωsp, then vb = RTvs +RTΩsp. The cost functional becomes:

J =

∫ T

0

1

2

〈
Ωs, RJRTΩs + ΩsRJRT

〉
+
m

2
〈vs + Ωsp,vs + Ωsp〉R3 dt.

Appending the cost by the terms
〈
Λs

1, ṘR
T −Ωs

〉
+〈λs

2, ṗ− vs −Ωsp〉 we find that:

∂Jε

∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
DΩs

dε

∣∣
ε=0
,
(
RJRTΩs + ΩsRJRT

)
−Λs

1

〉
dt−

∫ T

0

〈
DΛs

1

dt
,Ws

1

〉
dt

+m 〈δvs,−λ2 +m(vs + Ωsp)〉R3 + 〈m(vs + Ωsp)− λs
2, δΩ

sp〉R3

+

〈
−Dλs

2

dt
,ws

2

〉
+ 〈−λs

2 +m(vs + Ωsp),Ωsws
2〉R3 dt.

The above equation implies that the first order necessary conditions are:

DMs

dt
= 0,

Dλs
2

dt
= 0 (4-1.17)

where, as before, Ms := Λs
2 = RJRTΩs + ΩsRJRT and λs

2 = m(vs + Ωsp). This

result expresses conservation of angular and linear momenta (in a space-fixed frame)

for the free rigid body.
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4.1.3 Second Order Optimal Control Problem on SE(3)

In body-fixed frame

We now study the minimum control problem in body-fixed variables, minimizing

J =

∫ T

0

1

2

〈
Ub,Ub

〉
R6 dt (4-1.18)

subject to the second order dynamics:

ġ = gVb

DJ̃
(
Vb
)

dt
=

[
J̃
(
Vb
)
,Vb

]
−
[
[Vb, J̃

(
Vb
)
]
]

+ Ub (4-1.19)

and the boundary conditions:

g(0) = g0, Vb(0) = Vb
0, g(T ) = gT , Vb(T ) = Vb

T , (4-1.20)

where Ub =
(
τ̂ b,ub

)
∈ se(3) is the control vector field in body fixed coordinates.

We first form the modified cost functional:

J =

∫ T

0

1

2

〈
Ub,Ub

〉
+
〈
Λb

1, g
−1ġ −Vb

〉
+

〈
Λb

2,
DJ̃
(
Vb
)

dt
−
[
J̃
(
Vb
)
,Vb

]
+
[
[Vb, J̃

(
Vb
)
]
]
−Ub

〉
dt,

where Λb
1 =

(
Λb

11,λ
b
12

)
∈ se(3) and Λb

2 =
(
Λb

21,λ
b
22

)
∈ se(3), with Λb

11,Λ
b
21 ∈ so(3)

and λb
12,λ

b
22 ∈ R3, are Lagrange multipliers. After a lengthy computation, we find

that

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
DUb

∂ε

∣∣∣∣
ε=0

,Ub −Λb
2

〉
+

〈
Wb, R̃

(
J̃
(
Λb

2

)
,Vb

)
Vb −

[
Vb,Λb

1

]
−
[
[Vb,Λb

1]
]
− DΛb

1

dt

〉
+

〈
DVb

∂ε

∣∣∣∣
ε=0

, J̃
([

Λb
2,V

b
])
−
[
Λb

2, J̃
(
Vb
)]
−
[
[Λb

2, J̃
(
Vb
)
]
]

−
DJ̃
(
Λb

2

)
dt

−Λb
1

〉
dt,

where R̃ is the curvature tensor associated with SE(3). This gives our next theorem.
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Theorem 4.1.1. The necessary optimality conditions for the problem of minimizing

(4-1.18) subject to the dynamics (4-1.19) and the boundary conditions (4-1.20) are

given by

Λb
2 = Ub

DΛb
1

dt
= R̃

(
J̃
(
Λb

2

)
,Vb

)
Vb −

[
Vb,Λb

1

]
−
[
[Vb,Λb

1]
]

(4-1.21)

DJ̃
(
Λb

2

)
dt

= J̃
([

Λb
2,V

b
])
−
[
Λb

2, J̃
(
Vb
)]
−
[
[Λb

2, J̃
(
Vb
)
]
]
−Λb

1.

In obtaining the above result we used the fact that the vector fields Vb and

Wb are left-invariant vector fields. In the process of obtaining Theorem (4.1.1), the

curvature tensor is evaluated at a point gε(t) 6= Id, that is we get R̃gε

(
∂gε

∂ε
, ∂gε

∂t

)
Vb.

Evaluating this at ε = 0 we get: R̃g

(
gWb, gVb

)
Vb. Since gWb and gVb are left-

invariant vector fields at the group element g(t), then by virtue of the identification

TgSE(3)' se(3) (see Theorem (5.27) on page 266 in [51] and pages 84-85 in [52]), we

have R̃g

(
gWb, gVb

)
Vb = R̃

(
Wb,Vb

)
Vb, which is the curvature tensor evaluated at

the identity element. The result directly follows using the properties of the curvature

tensor and Lemma (4.1.2).

Though the curvature tensor for a compact semi-simple Lie group (such as SO(3)),

with respect to a bi-invariant metric) is well known [41], it is not clear what the

curvature tensor for a non-compact Lie group, such as SE(3), is. One may conjecture

that R̃ is the curvature tensor over the product space SO(3) × R3. We show this

by reformulating the optimal control problem on the product space SO(3)×R3 and

re-derive the necessary conditions on the product space. By comparing this result

with Theorem (4.1.1), we are then able to read out an expression for the curvature
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tensor on SE(3). The dynamics are now written as components of SO(3)×R3 as:

Ṙ = RΩb

ṗ = Rvb

DMb

dt
=

[
Mb,Ωb

]
+ τ̂ b (4-1.22)

Dlb

dt
= lb × ωb + ub,

where τ̂ b ∈ so(3) is the skew symmetric form of the torque vector τ b ∈ R3, u ∈ R3

is the control force, and Mb = J(Ωb) and lb = mvb denote the angular and linear

momenta as expressed in a body-fixed frame. We follow the same procedure as before

by first formulating the appended cost functional:

J =

∫ T

0

1

2

〈
τ̂ b, τ̂ b

〉
+

1

2

〈
ub,ub

〉
R3 +

〈
Λb

11, R
T Ṙ−Ωb

〉
+
〈
λb

12, R
T ṗ− vb

〉
R3

+

〈
Λb

21,
DMb

dt
−
[
Mb,Ωb

]
− τ̂ b

〉
+

〈
λb

22,
Dlb

dt
− lb × ωb − ub

〉
R3

dt.

Computing ∂Jε/∂ε
∣∣
ε=0

, we get:

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
Dτ̂ b

dε
, τ̂ b −Λb

21

〉
dt+

∫ T

0

〈
Dub

dε
,ub − λb

22

〉
R3

dt

+

∫ T

0

〈
Wb

1,−[Ωb,Λb
11]−

DΛb
11

dt
+ R

(
J
(
Λb

21

)
,Ωb

)
Ωb − ̂vb × λb

12

〉
dt

+

∫ T

0

〈
w2,−

Dλb
12

dt
+ λb

12 × ωb

〉
R3

dt

+

∫ T

0

〈
DΩb

dε
,−Λb

11 −
D

dt
J
(
Λb

21

)
−J
([

Ωb,Λb
21

])
+
[
Mb,Λb

21

]
− λ̂b

22 × lb
〉

dt

+

∫ T

0

〈
δvb,−λb

12 −m
Dλb

22

dt
−mωb × λb

22

〉
R3

dt, (4-1.23)

where R is the curvature tensor associated with SO(3). Hence, the necessary opti-
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mality conditions are:

τ̂ b = Λb
21

ub = λb
22

DΛb
11

dt
= −[Ωb,Λb

11] + R(J
(
Λb

21

)
,Ωb)Ωb − ̂vb × λb

12

Dλb
12

dt
= λb

12 × ωb

DJ(Λb
21)

dt
= [Mb,Λb

21]−Λb
11 − J(

[
Ωb,Λb

21

]
)− λ̂b

22 × lb

m
Dλb

22

dt
= −λb

12 − ωb ×
(
mλb

22

)
.

Setting

Λb
1 =

 Λb
11 λb

12

0


Λb

2 =

 Λb
21 λb

22

0


Ub =

 τ b ub

0


and comparing Equation (4-1.24) with Theorem (4.1.1), one deduces that

R̃ (A,B)B =

 R (Ωa,Ωb)Ωb 0

0 0

 ,
for all A = (Ωa,va),B = (Ωb,vb) ∈ se(3) and Ωa,Ωb ∈ so(3). This is not a rigorous

proof, but this result agrees with our conjecture that the curvature tensor on SE(3)

agrees with the curvature tensor on the product space SO(3)× R3.
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4.2 Constrained Optimal Trajectory Tracking on SE(3) for
Imaging Applications

In this section we build on the work done in the previous sections by studying

a generic constrained optimal control problem on SE(3). In this section we work in

body variables and, hence, we will omit the superscript ·b notation throughout. We

first make a few definitions.

Let g(t) = (R(t), p(t)) ∈ SE(3) denote the trajectory and gd(t) = (Rd(t), pd(t)) ∈

SE(3) be desired trajectory to be tracked on SE(3). Define the natural error [49] as

e = g−1
d g =

 RT
dR RT

d (p− pd)

0 1

 ∈ SE(3).

Then the error e = Id whenever g(t) = gd(t), where Id is the identity element on

SE(3).

While ġ = gV satisfies a left control system differential equation, we will let the

desired trajectory satisfy a right control system differential equation: ġd = V̄dgd.

The reason we do this is that the inverse of gd appears in our definition for the error

function. To make the error differential equation be a left control system, it is then

essential, as will become more obvious below, to have ġ−1
d be a left invariant vector

field. This is done by having gd satisfy a right control system equation. Note that if

ġd = V̄dgd and since gdg
−1
d = Id, then ġdg

−1
d + gdġ

−1
d = 0 implies that ġ−1

d = −g−1
d V̄d.

Hence, ġ−1
d is a left-invariant vector field.

A simple calculation gives:

ė = ġ−1
d g + g−1

d ġ = −g−1
d V̄dg + g−1

d gV

= g−1
d g

(
V − g−1V̄dg

)
= e

(
V − Adg−1V̄d

)
.

The authors in [49] use V−Adg−1V̄d to define the velocity error. In their work, it is
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crucial to use this definition for velocity error in proving stability of their proposed PD

control laws for stabilization and trajectory tracking. This, however, is not necessary

here. As in linear feedback control, we set up our optimal control cost functional to

minimize the deviation of the actual velocity from a nominal desired value. If only

part of the velocity vector field is required to track a given value while others are

not, then we can make use of weighting matrices to penalize some components of

the velocity. These choices, as in linear feedback control theory, are independent of

the error dynamics. That is to say, if we set Ve = Vd − V ∈ se(3), where Vd is

the desired velocity vector field, then Ve does not have to satisfy ė = eVe; We are

simply optimizing over tracking in phase space TSE(3). Hence we define the velocity

error as Ve = Vd −V.

Finally, note that

∂eε

∂ε

∣∣∣∣
ε=0

=
∂

∂ε
g−1

d gε

∣∣∣∣
ε=0

= g−1
d gW = eW. (4-2.1)

In this section we will use weighting matrices, as opposed to weighting scalars, to

penalize deviations of both position and velocity from some desired values. The use

of weighting matrices as opposed to scalars allows us penalize certain components of

position and velocity errors as opposed to the total position error or velocity error.

We do this as follows.

Let the measure of velocity error be given by
〈
Ve, K̃v(Ve)

〉
, where K̃v : se(3) →

se(3) be a symmetric, positive semi-definite operator defined by

K̃v(V) =

 Kr
v(Ω) Kt

v(v)

0 0


for an arbitrary V = (Ω,v) ∈ se(3), where

Kr
v(Ω) = Kr

vΩ + ΩKr
v,
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is the rotational gain operator for the error in angular velocity, Kr
v is a diagonal 3×3

positive semi-definite matrix,

Kt
v(v) = Kt

vv,

is the translational gain operator for the error in translational velocity, and Kt
v is a

diagonal 3× 3 positive definite matrix. Similar definitions apply to the control cost:〈
U, K̃u(U)

〉
, where K̃u : se(3) → se(3) is a symmetric, positive definite operator

(positive definiteness is required for the control weighting operator).

For position error we use the logarithmic map to define the error〈
log (e) , K̃p (log (e))

〉
,

where K̃p : se(3) → se(3) is a symmetric, positive semi-definite operator defined by

K̃p(χ) =

 Kr
p(ψ) Kt

p(ξ)

0 0


for an arbitrary χ = (ψ, ξ) ∈ se(3), where

Kr
p(ψ) = Kr

pψ +ψKr
p ,

is the rotational gain operator for the error in attitude, Kr
p is a diagonal 3×3 positive

semi-definite matrix,

Kt
p(ξ) = Kt

pξ,

is the translational gain operator for the error in translational position, and Kt
p is

a diagonal 3 × 3 positive semi-definite matrix. In this case, χ ∈ se(3) is viewed

as the exponential coordinates of an element of the Lie group SE(3) (in fact, χ =

log
(
g−1

d g
)
).

The above definitions allow us to penalize components of translational position,

attitude, translational velocity and angular velocity errors independently. For exam-

ple, in an imaging scenario, we may wish to minimize the magnitude of the relative
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velocity in the observation plane (x-y plane) without minimizing the out of plane

(z-axis) component. In this case, Kt
v = diag(a, b, 0) for some a, b > 0. In a spin rate

optimal tracking, we may desire to set Kt
v = 0 and not penalize translational velocity

error. If we are to minimize “jitter” as well, then both Kr
v and Kt

v will both assume

nonzero values. Hence, the above formulation and the following problem statement

is general enough to address many problems in spacecraft and rigid body control.

Here is the problem statement.

Problem 4.2.1. Minimize

J =
1

2

∫ T

0

〈
U, K̃u(U)

〉
+
〈
Ve, K̃v (Ve)

〉
+
〈
log (e) , K̃p (log (e))

〉
dt (4-2.2)

subject to

Dynamics

ġ = gV

DJ̃ (V)

dt
=

[
J̃ (V) ,V

]
−
[
[V, J̃ (V)]

]
+ U (4-2.3)

Holonomic Constraints

〈V,Xi〉 = 0, i = 1, . . . , n, n < 6, (4-2.4)

Boundary Conditions

g(0) = g0, V(0) = V0, g(T ) = gT , V(T ) = VT , (4-2.5)

where Xi ∈ se(3), i = 1, . . . , n, are vector fields associated with the imposed con-

straints.
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Note that the constraints (4-2.6) can only be as many as five constraints on SE(3).

Since SE(3) is a six dimensional manifold, having 6 constraints (n = 6) completely

specifies the motion. Let us show how the constraint vector fields Xi are derived.

Holonomic constraints are expressed by functions fi : SE(3) → R3 as

fi(g) = 0, i = 1, . . . , n.

We derive each Xi as follows. Differentiate each fi to get dfi

dt
= 0. Let Xi = (dfi)

] ∈

se(3), where d is the exterior derivative and ·] is the sharp operator [42]. It is easy

to check that dfi

dt
= 〈V,Xi〉 = 0.

By the independence of the vector fields Xi (assuming the constraints fi = 0

are independent) we can combine the n constraints by introducing the lagrange

multipliers ζi and the vector field (expressed as an element in the Lie algebra, as

opposed to elements in its dual space se∗(3))

Z =
n∑

i=1

ζiXi.

Hence, the set of n conditions (4-2.6) can alternatively be expressed as

〈V,Z〉 = 0. (4-2.6)

We begin by formulating the appended (and perturbed) cost functional

Jε =
1

2

∫ T

0

〈Uε,Uε〉+
〈
Ve

ε , K̃v (Ve
ε)
〉

+
〈
log (eε) , K̃p (log (eε))

〉
+
〈
Λ1, g

−1
ε ġε −Vε

〉
+

〈
Λ2,

DJ̃ (Vε)

dt
−
[
J̃ (Vε) ,Vε

]
+
[
[Vε, J̃ (Vε)]

]
−Uε

〉
+ 〈Vε,Zε〉 dt (4-2.7)

and compute ∂Jε/∂ε
∣∣
ε=0

on a term by term basis. For the first term we have

∂

∂ε

1

2
〈Uε,Uε〉 =

〈
DUε

∂ε

∣∣∣∣
ε=0

, K̃u(U)

〉
, (4-2.8)
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where the property 〈
V1, Ñ (V2)

〉
=
〈
Ñ (V1) ,V2

〉
(4-2.9)

holds true for all symmetric, positive definite or semi-definite operators Ñ : se(3) →

se(3) such as J̃, K̃p or K̃p. For the second (velocity error) term we have

∂

∂ε

1

2

〈
Ve

ε , K̃v (Ve
ε)
〉

=

〈
DVe

ε

∂ε

∣∣∣∣
ε=0

, K̃v (Ve)

〉
= −

〈
DVε

∂ε

∣∣∣∣
ε=0

, K̃v (Ve)

〉
(4-2.10)

since Ve
ε = Vd − Vε. For the third (configuration error) term, the computation is

more involved. After a lengthy computation, which we omit here, we get

∂

∂ε

1

2

〈
log (eε) , K̃p (log (eε))

〉
=
〈
W1,K

r
p (log (Re)) +

(
pe ×

(
RT

e D
T (e)Kt

p

(
A−1 (ψe) pe

)))∧〉
SO(3)

+
〈
w2, A

−T (ψe)K
t
p

(
A−1 (ψe) pe

)〉
R3 =: 〈W, B(e)〉 (4-2.11)

where (x)∧ = x̂, e = (Re, pe), the function A, its inverse and its properties are given

by equations (B-3.1), (B-3.2) and (B-3.3), respectively, the matrix D is given by

D(e) =
dA−1

dψ
(ψe)

d

dR
logSO(3)R

∣∣∣∣
R=Re

B(e) =

 B11(e) b12(e)

0 0

 ∈ se(3)

B11(e) = Kr
p (log (Re)) +

(
pe ×

(
RT

e D
TKt

p

(
A−1 (ψe) pe

)))∧ ∈ so(3)

b12(e) = A−T (ψe)K
t
p

(
A−1 (ψe) pe

)
∈ R3

and where ψe = logSO(3)Re ∈ so(3). Equation (4-2.11) is obtained as follows. Since

log g =

 ψ A−1(ψ)p

0 0


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then we have

∂

∂ε

1

2

〈
log(eε), K̃p (log(eε))

〉
=

∂

∂ε

1

2

[ 〈
logSO(3) (Rε) ,K

r
p

(
logSO(3) (Rε)

)〉
SO(3)

+
〈
A−1 (ψε) pε,K

t
p

(
A−1 (ψε) pε

)〉
R3

]
=

〈
Kr

p

(
logSO(3)R

)
,W1

〉
SO(3)

+
〈
Kt

p

(
A−1 (ψp)

)
, A−1 (ψ)w2

〉
R3

+

〈
∂A−1

∂ψ
(ψ)

∂ψε

∂ε

∣∣∣∣
ε=0

p,Kt
p

(
A−1 (ψ) p

)〉
R3

=
〈
Kr

p

(
logSO(3)R

)
,W1

〉
SO(3)

+
〈
Kt

p

(
A−1 (ψp)

)
, A−1 (ψ)w2

〉
R3

+

〈
∂A−1

∂ψ
(ψ)

∂

∂R
(logR)RW1p,K

t
p

(
A−1 (ψ) p

)〉
R3

,

where we used

∂ψε

∂ε

∣∣∣∣
ε=0

=
∂

∂ε
logSO(3)Rε

∣∣∣∣
ε=0

=
∂

∂R

(
logSO(3)R

) ∂Rε

∂ε

∣∣∣∣
ε=0

=
∂

∂R

(
logSO(3)R

)
RW1.

With D(e) defined as above, then

〈
Kt

p

(
A−1 (ψ) p

)
, DRW1p

〉
= (DRW1p)

T Kt
p

(
A−1 (ψp)

)
= pTW T

1 R
TDTKt

p

(
A−1 (ψ) p

)
= (W1p)

T (RTDTKt
p

(
A−1 (ψ) p

))
= RTDTKt

p

(
A−1 (ψ) p

)
· (W1p)

= w1 ·
(
p×RTDTKt

p

(
A−1 (ψ) p

))
=

〈
W1,

(
p×RTDTKt

p

(
A−1 (ψ) p

))∧〉
SO(3)

gives us the desired result in Equation (4-2.11). In the last equation, we used the

fact that W1p = w1 × p.
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For the fourth (kinematic constraint) term we have

∂

∂ε

∫ T

0

〈
Λ1, g

−1
ε ġε −Vε

〉
dt

∣∣∣∣
ε=0

=

∫ T

0

〈
Λ1, [V,W] +

DW

dt
− ∂Vε

∂ε

∣∣∣∣
ε=0

〉
dt

=

∫ T

0

−
〈

W, [V,Λ1] + [[V,Λ1]] +
DΛ1

dt

〉
−
〈
∂Vε

∂ε

∣∣∣∣
ε=0

,Λ1

〉
dt, (4-2.12)

where integration by parts has been employed. For the fifth (dynamic constraint)

term, we get

∂

∂ε

∫ T

0

〈
Λ2,

DJ̃ (Vε)

dt
−
[
J̃ (Vε) ,Vε

]
+
[
[Vε, J̃ (Vε)]

]
−Uε

〉
dt

∣∣∣∣
ε=0

=

∫ T

0

〈
∂Uε

∂ε

∣∣∣∣
ε=0

,−Λ2

〉
+
〈
W, R̃

(
J̃ (Λ2) ,V

)
V
〉

(4-2.13)

+

〈
∂Vε

∂ε

∣∣∣∣
ε=0

,−DJ̃ (Λ2)

dt
+ J̃ ([Λ2,V])−

[
Λ2, J̃ (V)

]
−
[
[Λ2, J̃ (V)]

]〉
dt.

Finally, for the sixth (and last, motion constraint) term we have

∂

∂ε
〈Vε,Zε〉 =

〈
∂Vε

∂ε

∣∣∣∣
ε=0

,Z

〉
+ 〈V,∇WZ〉

=

〈
∂Vε

∂ε

∣∣∣∣
ε=0

,Z

〉
− 〈W,∇ZV + [Z,V] + [[Z,V]]〉 (4-2.14)

where we adopt the standard (geometric) notation ∇WZ = ∂Zε

∂ε

∣∣∣∣
ε=0

and the standard

identities (which are true for any, compact or non-compact, Lie group as long as the

connection is metric, affine and Levi-Civita, which, in turn, is true for the present

case) ∇WZ = ∇ZW + [W,Z] and 〈V,∇ZW〉 = Z (〈V,W〉) − 〈∇ZV,W〉, and the

fact that Z (〈V,W〉) = 0 (see Lemma 3.1 in [53].)

The necessary optimality condition is determined by setting ∂Jε/∂ε
∣∣
ε=0

= 0

and separating terms involving the independent vector fields W, ∂Uε/∂ε
∣∣
ε=0

and

∂Vε/∂ε
∣∣
ε=0

. Doing this we get the following theorem.
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Theorem 4.2.1 (Necessary Conditions for Constrained Optimal Trajectory

Tracking on SE(3)). The necessary conditions satisfied by an optimal trajectory

(g(t),V(t),U(t)) are given by

ġ = gV

DJ̃ (V)

dt
= −

[
V, J̃ (V)

]
−
[
[V, J̃ (V)]

]
+ Λ2

U = K̃−1
u (Λ2)

DΛ1

dt
= R̃

(
J̃ (Λ2) ,V

)
V − [V,Λ1]− [[V,Λ1]]−∇ZV

− [Z,V]− [[Z,V]] +B(e)

DJ̃ (Λ2)

dt
= J̃ ([Λ2,V])−

[
Λ2, J̃ (V)

]
−
[
[Λ2, J̃ (V)]

]
−Λ1 + Z− K̃v (Ve)

〈V,Z〉 = 0.

It becomes obvious from the third equation in Theorem (4.2.1) why we require

K̃u be positive definite. Also note that if we set K̃u to be the identity operator, set

K̃p and K̃v to be zero and Z = 0 (i.e., no constraints), then we get back Theorem

(4.1.1).

4.2.1 Example: Dual Spacecraft Interferometry on SE(2)

In this section we consider a simple example on SE(2). Let us consider the dual

spacecraft interferometer studied later in Chapter 6 and the papers [36, 54, 45, 40,

38, 44, 39], but now including rigid body dynamics to the planar (two-dimensional)

spacecraft model. The state g =∈SE(2) is the configuration of the controlled follower

spacecraft, while the parent spacecraft is assumed to be fixed at the origin with

gp(t) = (I2×2, 02×1) for all t ∈ [0, T ]. Hence, g represents the relative state between
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the follower and parent spacecraft. See figure (4.1). The configuration g is given by

g(θ, x, y) =


cos θ − sin θ x

sin θ cos θ y

0 0 0

 .

The velocity V and control U are given by

V =


0 −ω vx

ω 0 vy

0 0 0

 , U =


0 −τ ux

τ 0 uy

0 0 0

 .

we will evenly weigh the penalty on applying the forces ux and uy and torque τ with

the same weight R 3 ku > 0. The desired trajectory is given by gd = (θd, xd, yd),

where θd = 0 is the desired “look” angle (i.e., the desired line of sight.) It is desired

to follow θd = 0 as closely as possible. Hence, the error in angular position is

θe = θd−θ = −θ. WithKr
p =

 Kr
p1 0

0 Kr
p2

, letKr
p1+K

r
p2 = kr

p, then Kr
p(log(Re)) =

 0 −kr
pθe

kr
pθe 0

 =

 0 kr
pθ

−kr
pθ 0

. Instead of minimizing the deviation of the

motion of the center of mass from a given desired value, we constrain the center

of mass motion of the controlled spacecraft to follow a paraboloid yd = ax2
d, where

R 3 a > 0. For a motivation for the paraboloidal constraint, see [44]. Hence, we

have f(θ, x, y) = y − ax2 and

Xs = −2ax∂x + ∂y =


0 0 −2ax

0 0 1

0 0 0

 ,



98

Nominal 
Line of sight

θ
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Line of sight

Actual 
Line of sight

y

x

Parent (fixed) Spacecraft Controlled Spacecraft

Figure 4.1: Dual spacecraft interferometry on SE(2).

which is expressed in the space fixed frame. In the body fixed frame, the correspond-

ing constraint vector field is given by

Z = ζX = ζAdg−1Xs = ζ [x(−2ax cos θ + sin θ)∂x + y(2ax sin θ + cos θ)∂y]

= ζ


0 0 x(−2ax cos θ + sin θ)

0 0 y(2ax sin θ + cos θ)

0 0 0

 ,
Since we are constraining the motion of the center of mass, we may set Kt

p = 02×2.

Hence, we find that B(e) =

 B11(e) b12(e)

0 0

 is such that B11(e) = Kr
p (log(Re)) =

 0 kr
pθ

−kr
pθ 0

 and b12(e) = 02×1.

In the space-fixed frame the desired velocity is given (in space-fixed frame) by

Vs
d =


0 0 vx

d

0 0 0

0 0 0

 .
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In the body-fixed frame we get:

Vd = Adg−1Vs
d =


0 0 vx

d cos θ

0 0 −vx
d sin θ

0 0 0

 ,

We will not penalize deviations in angular velocity from a nominal value by set-

ting the corresponding matrix to Kr
v = 02×2. We wish, however, to minimize the

deviation of the space-fixed translational velocity x-component from a value of vx

while motion along the y-axis in the space-fixed frame is irrelevant. Hence, we set

Kt
v = diag(kt

v, k
t
v), where R 3 kt

v > 0. Hence, with our choice of weighting velocity

operator K̃v we get

K̃v(V
e) = K̃v (V −Vd) =


0 0 kt

v (vx
d cos θ − ẋ)

0 0 kt
v (−vx

d cos θ − ẏ)

0 0 0

 .

The Lagrange multipliers are given by

Λi =


0 −λi1 λx

i2

λi1 0 λx
i2

0 0 0

 , i = 1, 2.

Note that the bracket on SO(2) is identically zero: [·, ·]SO(2) = 0. Hence, we have:

[A,B] + [[A,B]] =

 v̂a × vb Ωavb

0 0


and R̃(A,B)C ≡ 0 for all A,B,C ∈ se(2). Moreover, since we are using the natural

(flat) metric on R3 for SE(2), then the connection ∇ ≡ 0. Hence, ∇ZV = 0.

We can now write the necessary optimality conditions of Theorem (4.2.1) in
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component form as follows:

θ̇ = ω

ẋ = vx cos θ − vy sin θ

ẏ = vx sin θ + vy cos θ

Iω̇ = λ21

mv̇x = mωvy + λx
22

mv̇y = −mωvx + λy
22

τ = λ21/ku

ux = λx
22/ku

uy = λy
22/ku

λ̇11 = (vxλ
y
12 − vyλ

x
12) + (−2axvy − vx) + kr

pθ

λ̇x
12 = ωλy

12

λ̇y
12 = −ωλx

12

Iλ̇21 = m(λx
22vy − λy

22vx) + λ11

mλ̇x
22 = m(−λ21vy + ωλy

22) +mλ21vy − λx
12 − kt

v(v
x
d cos θ − vx)

mλ̇y
22 = m(−λ21vx − ωλx

22)−mλ21vx − λy
12 + kt

v(v
x
d sin θ + vy)

−2axvx + vy = 0.

where I is the moment of inertia about the out-of-plane axis and m is the mass of

the spacecraft.



CHAPTER 5

Dynamic Interpolation on Riemannian Manifolds:

An Application to Interferometric Imaging

In this chapter we derive necessary conditions for minimizing the cost function

for a trajectory that evolves on a Riemannian manifold and satisfies a second order

differential equation together with some interpolation, smoothness and motion con-

straints. The cost function we consider in this chapter is a weighted sum of the norm

squared of the acceleration and the norm squared of the velocity and is motivated

by space-based interferometric imaging applications. In this chapter, we define the

dynamic interpolation problem, derive necessary conditions for an optimal solution

and point out an interesting connection between the dynamic interpolation problem

and imaging applications, which is the main contribution of this chapter.

5.1 Introduction

The “dynamic interpolation” problem for nonlinear control systems modeled by

second-order differential equations whose configuration space is a Riemannian man-

ifold M , was considered in the past [33, 55]. This problem is defined as follows:

Given an ordered set of points in M and some smoothness constraints, generate a

trajectory of the system through the application of suitable control functions such

101
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that the resulting trajectory in configuration space (1) interpolates the given set of

points, and, (2) minimizes a suitable cost function. In [33], the trajectory of interest

was twice continuously differentiable and the Lagrangian in the optimization problem

was given by the norm squared of the acceleration along the trajectory.

In this chapter, this still remains our interest. However, we are interested in a

Lagrangian that is a weighted sum of the norm squared of the acceleration and the

norm squared of the velocity. Again, not only are we interested in minimizing fuel

expenditure (i.e. acceleration), but, also, in executing the maneuver with the small-

est possible speed. While minimizing acceleration directly corresponds to minimal

fuel expenditure, minimum speed trajectories are desired in interferometric imaging

because the light collectors’ speed and image quality (namely, achievable signal-to-

noise ratio) are reciprocal; The larger the collectors’ speeds are (“shorter exposure

time”), the worse the image becomes, and vice versa [5, 6, 56, 57, 7, 45]. This is anal-

ogous to exposure time in conventional photography, where longer exposure times

(without spoiling the photographic film) results in more photon arrivals and a better

image.

The necessary conditions we obtain here correspond to a slight generalization

of the problem as handled in [33] and is similar to that derived in [55]. The main

contribution of this chapter is the interesting connection that we make between

optimal path planning for imaging applications and the τ -elastic variational problem.

We note that the use of geometric control methods for spacecraft formation flying

has received little attention, whereas extensive investigations have been conducted in

the field of robotic path planning (see Section (IV) in [8].) This work is an attempt

to use geometric optimal control theory for spacecraft formation motion planning.

We now define the dynamic interpolation τ -elastic variational problem.
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The τ-Elastic Variational Problem P τ : minimize

J (q) =
1

2

∫ TN

T0

〈
D2q

dt2
,
D2q

dt2

〉
+ τ 2

〈
Dq

dt
,
Dq

dt

〉
dt, (5-1.1)

over the set Ω of C1-paths q on M , satisfying

1. the dynamic constraint

Dq

dt
(t) = v(t),

Dv

dt
(t) = u(t), (5-1.2)

where u(t) is the control,

2. q
∣∣
[Ti−1,Ti]

is smooth,

3. the interpolation constraints

q(Ti) = qi, 1 ≤ i ≤ N − 1 (5-1.3)

for distinct set of points qi ∈M and fixed times Ti, where 0 = T0 ≤ T1 ≤ · · · ≤

TN = T ,

4. the boundary conditions

q(T0) = q0, q(TN) = qN ,

Dq

dt
(T0) = v0,

Dq

dt
(TN) = vN , (5-1.4)

5. and the motion constraints〈
Dq

dt
,Xi(q)

〉
= ki, i = 1, . . . , l (l < n) (5-1.5)

for Xi, i = 1, . . . , n, linearly independent vector fields and given constants

ki, i = 1, . . . , l.
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The chapter is organized as follows. In Section (5.2), we derive the necessary

conditions an optimal solution of the τ -elastic variational problem must satisfy with-

out the imposition of “motion” constraints. In Section (5.3), motion constraints are

included in the analysis and the corresponding necessary conditions are derived. In

Section (5.4), we give an idealized example motivated by interferometric imaging.

Finally, in Section (5.5), we conclude with some final remarks and future work.

5.2 Dynamic Interpolation without Motion Constraints

In this section we consider the τ -elastic variational problem without the motion

constraints (5-1.5). In [33], the authors derive necessary conditions for the dynamic

interpolation, τ -elastic variational problem with τ = 0. Here we slightly generalize

their result to the τ 6= 0 case. A similar result can be found in [55].

Theorem 5.2.1. Let q ∈ Ω. If α is an admissible variation of q with variational

vector field Wt ∈ TqΩ, then

d

dε
J (αε)

∣∣∣∣
ε=0

=

∫ TN

T0

〈
Wt,

D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
− τ 2 D2q

dt2

〉
dt

+
N−1∑
i=1

〈
DWt(Ti)

dt
,
D2q(T−i )

dt2
− D2q(T+

i )

dt2

〉
. (5-2.1)

Proof Let α be an admissible variation of q ∈ Ω. Then

J (αε) =
1

2

∫ TN

T0

〈
D2αε

∂t2
,
D2αε

∂t2

〉
+ τ 2

〈
Dαε

∂t
,
Dαε

∂t

〉
dt.

Taking variations with respect to ε, one obtains

DJ
dε

=

∫ TN

T0

〈
D

∂ε

D2αε

∂t2
,
D2αε

∂t2

〉
+ τ 2

〈
D2αε

∂ε∂t
,
Dαε

∂t

〉
dt.

From Facts (A.4.1) and (A.4.2), we have

D

∂ε

D2α

∂t2
=

D2

∂t2
Dα

∂ε
+R

(
Dα

∂ε
,
Dα

∂t

)
Dα

∂t
.
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Thus,

d

dε
J (αε) =

∫ TN

T0

[〈
D2

∂t2
Dαε

∂ε
,
D2αε

∂t2

〉
+

〈
R

(
Dα

∂ε
,
Dα

∂t

)
Dα

∂t
,
D2αε

∂t2

〉
+ τ 2

〈
D2αε

∂t∂ε
,
Dαε

∂t

〉]
dt.

For the first term, integrate by parts twice to obtain∫ TN

T0

〈
D2

∂t2
Dα

∂ε
,
D2α

∂t2

〉
dt =

[〈
D

∂t

Dα

∂ε
,
D2α

∂t2

〉
−
〈

Dα

∂ε
,
D3α

∂t3

〉]TN

T0

+

∫ TN

T0

〈
Dα

∂ε
,
D4α

∂t4

〉
dt.

For the second term, apply Fact (A.2.3) to obtain∫ TN

T0

〈
R

(
Dα

∂ε
,
Dα

∂t

)
Dα

∂t
,
D2α

∂t2

〉
dt =

∫ TN

T0

〈
R

(
D2α

∂t2
,
Dα

∂t

)
Dα

∂t
,
Dα

∂ε

〉
dt.

Finally, integrate the third term once by parts to get∫ TN

T0

τ 2

〈
D2α

∂t∂ε
,
Dα

∂t

〉
dt =

[
τ 2

〈
Dα

∂ε
,
Dα

∂t

〉]TN

T0

−
∫ TN

T0

τ 2

〈
Dα

∂ε
,
D2α

∂t2

〉
dt.

Thus, we have

d

dε
J (α) =

∫ TN

T0

〈
Dα

∂ε
,
D4α

∂t4
+R

(
D2α

∂t2
,
Dα

∂t

)
Dα

∂t
− τ 2 D2α

∂t2

〉
dt

+

[〈
D

∂t

Dα

∂ε
,
D2α

∂t2

〉
−
〈

Dα

∂ε
,
D3α

∂t3

〉
+ τ 2

〈
Dα

∂ε
,
Dα

∂t

〉]TN

T0

.

Setting ε = 0 results in Equation (5-2.1) by virtue of the third and fourth properties

in equations (A-4.1).

�

Then, as in [55], one can define the first variation of J at q, which is a linear

transformation on TqΩ: E(Wt) = d
dε
J (αε)

∣∣
ε=0

. For a local minimizer q ∈ Ω,

all admissible variations αε of q with associated vector field Wt, we have J (q) =

J (α0) ≤ J (αε), α ∈ (−ε, ε) and, consequently, E(Wt) = d
dε
J (αε)

∣∣
ε=0

= 0. Any

curve q ∈ Ω for which E(Wt) = 0, for all Wt ∈ TqΩ, is called a critical curve of J .
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Theorem 5.2.2. If q ∈ Ω is a local minimizer of J , then q(t) is C2 and satisfies

D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
− τ 2 D2q

dt2
≡ 0, (5-2.2)

t ∈ [Ti−1, Ti] , i = 1, . . . , N .

Proof Suppose q ∈ Ω is a local minimizer of J over Ω. Define a smooth real-valued

function f(t) on [T0, TN ] such that f(Ti) = f ′(Ti) = 0 for i = 0, . . . , N and f(t) > 0 on

(Ti−1, Ti) for i = 1, . . . , N . Let Wt = f(t)
[

D4q(t)
dt4

+R
(

D2q(t)
dt2

, Dq(t)
dt

)
Dq(t)

dt
− τ 2 D2q(t)

dt2

]
.

By our choice of the function f(t) each term under the summation sign in equation

(5-2.1) is zero and we have

E(Wt) =

∫ TN

T0

f

∥∥∥∥D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
− τ 2 D2q

dt2

∥∥∥∥2

dt.

Since f(t) > 0 for almost every t ∈ [T0, TN ] and by virtue of the smoothness of the

integrand we then have∥∥∥∥D4q(t)

dt4
+R

(
D2q(t)

dt2
,
Dq(t)

dt

)
Dq(t)

dt
− τ 2 D2q(t)

dt2

∥∥∥∥ = 0.

In other words, we have shown that a necessary condition for a curve q ∈ Ω to be a

minimizer of J is that

D4q(t)

dt4
+R

(
D2q(t)

dt2
,
Dq(t)

dt

)
Dq(t)

dt
− τ 2 D2q(t)

dt2
≡ 0,

t ∈ [Ti−1, Ti] , i = 1, . . . , N . We are left to show that q is C2 on [T0, TN ]. To do that,

let Wt ∈ TqΩ be a vector field that satisfies

D

dt
Wt =

D2q

dt2
(
T+

i

)
− D2q

dt2
(
T−i
)
,

for i = 1, . . . , N − 1. This and equation (5-2.2) imply that

E (Wt) =
N−1∑
i=1

∥∥∥∥D2q

dt2
(
T+

i

)
− D2q

dt2
(
T−i
)∥∥∥∥2

= 0,

which implies that D2q
dt2

(
T+

i

)
= D2q

dt2

(
T−i
)
. Hence, q is shown to be C2. Since q

satisfies a fourth order differential equation, it must also be smooth on [T0, TN ].
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5.3 Dynamic Interpolation with Motion Constraints

Here we consider the dynamic interpolation, τ -elastic variational problem with

the motion constraints (5-1.5). The result is known for τ = 0 [33] and similar prob-

lems have been dealt with extensively by many authors in relation to nonholonomic

mechanics and control (see [58].) Here we re-derive the necessary conditions for an

arbitrary value of τ (i.e., the problem P τ .)

As in [33], define the one forms ωi(X) = 〈Xi, X〉 and the two forms dωi, i =

1, . . . , l, where d is the exterior derivative. Defining y as the contraction operator,

the 1-form Xydωi satisfies: Xydωi(Y ) = ωi(X, Y ). One may define tensors Si such

that Siq : TqM → TqM , by setting dωi(X, Y ) = 〈Si(X), Y 〉 = −〈Si(Y ), X〉. We

now have a theorem for normal extremals of problem P τ . The following theorem is

a generalization of results found in [55, 30].

Theorem 5.3.1. A necessary condition for q ∈ Ω to be a normal extremal for

problem P τ is that q is C2 and there exist smooth functions λi(t) such that

D4q(t)

dt4
+ R

(
D2q(t)

dt2
,
Dq(t)

dt

)
Dq(t)

dt
− τ 2 D2q(t)

dt2

−
l∑

i=1

dλi

dt
Xi −

l∑
i=1

λiSi

(
Dq

dt

)
≡ 0 (5-3.1)

and 〈
Dq

dt
,Xi(q)

〉
= ki, i = 1, . . . , l (l < n) (5-3.2)

for t ∈ [Ti−1, Ti] , i = 1, . . . , N .

Proof First, augment the Lagrangian by terms

l∑
i=1

λi

〈
Dq

dt
,Xi(q)

〉
=

l∑
i=1

λiωi

(
Dq

dt

)
.
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The counterpart of Equation (5-2.1) for the problem P τ is

d

dε
J (αε)

∣∣∣∣
ε=0

=

∫ TN

T0

[〈
Wt,

D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
− τ 2 D2q

dt2

〉
+

l∑
i=1

λi

〈
D

∂t

Dα

∂ε
,Xi(α)

〉 ∣∣∣∣
ε=0

+
l∑

i=1

λi

〈
Dα

∂t
,
D

∂ε
Xi(α)

〉 ∣∣∣∣
ε=0

]
dt

+
N−1∑
i=1

〈
DWt(Ti)

dt
,
D2q(T−i )

dt2
− D2q(T+

i )

dt2

〉
.

The last term in the integrand is simply

l∑
i=1

λi

〈
Dα

∂t
,
D

∂ε
Xi(α)

〉 ∣∣∣∣
ε=0

=
l∑

i=1

λi

〈
Dq

dt
,∇WtXi

〉
,

where ∇WtXi is the covariant differentiation of Xi, i = 1, . . . , l, with respect to Wt.

As for the second term in the integrand, integrate by parts to obtain∫ TN

T0

l∑
i=1

λi

〈
D

∂t

Dα

∂ε
,Xi(α)

〉 ∣∣∣∣
ε=0

dt

= −
∫ TN

T0

l∑
i=1

[
dλi

dt
〈Wt, Xi(q)〉+ λi

〈
Wt,

DXi(q)

dt

〉]
dt,

where the third property in equations (A-4.1) has been used. Making use of some

of the properties of the Riemannian connection and recalling the definition of the

exterior derivative of a one form ω:

dω(X, Y ) = Xω(Y )− Y ω(X)− ω ([X, Y ])

for all vector fields X and Y on M , then, for the one forms ωi such that ωi(Wt) =

〈Wt, Xi〉, one has

dωi (X, Y ) = 〈∇XXi, Y 〉 − 〈∇YXi, X〉 .

Setting X = Dq
dt

and Y = Wt, we thus have

−
l∑

i=1

λi

〈
Wt,

DXi(q)

dt

〉
+

l∑
i=1

λi

〈
Dq

dt
,∇WtXi

〉
= −

l∑
i=1

λidωi

(
Dq

dt
,Wt

)

= −

〈
l∑

i=1

λiSi

(
Dq

dt

)
,Wt

〉
.
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From the above, d
dε
J (αε)

∣∣
ε=0

reduces to

d

dε
J (αε)

∣∣∣∣
ε=0

=

∫ TN

T0

[〈
Wt,

D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt

−τ 2 D2q

dt2
−

l∑
i=1

dλi

dt
Xi −

l∑
i=1

λiSi

(
Dq

dt

)〉
dt

+
N−1∑
i=1

〈
DWt(Ti)

dt
,
D2q(T−i )

dt2
− D2q(T+

i )

dt2

〉
≡ 0.

Next, define a smooth real-valued function f(t) on [T0, TN ] such that f(Ti) =

f ′(Ti) = 0 for i = 0, . . . , N and f(t) > 0 on (Ti−1, Ti) for i = 1, . . . , N . One can set

Wt := f(t)W̃t, where W̃(t) is arbitrary and such that Wt still satisfies the properties

(A-4.1). This sets the term outside the integral to zero. Moreover, since Wt is an

arbitrary tangent vector field, this immediately results in the necessary conditions

for the trajectory q to be an extremal of the variational problem P τ . These are

D4q

dt4
+R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
− τ 2 D2q

dt2
−

l∑
i=1

dλi

dt
Xi −

l∑
i=1

λiSi

(
Dq

dt

)
≡ 0

and the constraints 〈
Dq

dt
,Xi(q)

〉
= ki, i = 1, . . . , l (l < n)

and, therefore, proving the theorem.

�

5.4 An Application to Interferometric Imaging

As an illustration for the above notions, we consider the execution of a two-

spacecraft spiral maneuver as will be discussed in Chapter 6 and as in [45]. Though

this problem may be physically achievable, it is very inefficient fuel-wise. We study

this example for its simplicity. More practical and interesting examples include spi-

raling about a libration point in a Halo orbit. In the current problem, however,
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spacecraft # 1 is fixed in space while spacecraft # 2 is made to move along a linear

spiral, as defined below. The intuition behind this type of maneuver for interferomet-

ric imaging applications can be found in Chapter 6 and in [45], which we summarize

as follows. As spacecraft # 2 executes the linear spiral motion and recedes away from

the fixed spacecraft # 1, the baseline between the two spacecraft increases linearly

from a minimum value to a maximum value. Mapping this motion to the two-

dimensional spatial frequency domain (also known in the literature as the u-v plane)

of the two-dimensional (optical) signal, the optical system samples all frequencies

inside a desired “coverage” area. The size of this coverage area is inversely propor-

tional to the system’s achievable angular resolution; The larger the coverage area is

the smaller the angular resolution becomes. This two-spacecraft spiral maneuver is

one simple way to achieving frequency domain plane coverage. Other constellation

designs that achieve this goal also exist (see Chapter 7 and [18, 19, 20].)

We study two versions of the problem. First, we take the manifold M to be R2

and impose a constraint that forces the motion of the second spacecraft to follow a

linear spiral (Case A.) We also study the problem in R3, where we desire to execute

the spiral motion on a sphere (Case B.) Here, we may treat the spiral as a motion

constraint and set M to be the sphere. One may think of this as a tentative precursor

to dealing with a formation restricted to moving on a spherical manifold about a

central body (e.g. an asteroid.) Eventually, the goal is to add a central gravitational

field. This problem will be dealt with in a future chapter.

Case A Here we treat the manifold M as R2 and impose a constraint that forces the

motion of the second spacecraft to follow a linear spiral. The equations of motion,

in Cartesian coordinates, of spacecraft # 2 (with spacecraft # 1 fixed at the origin)
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are given by

ẍ = ux and ÿ = uy, (5-4.1)

where ux and uy are the control variables. The spiral constraint, in polar coordinates,

is given by

r = ς (π + θ) , (5-4.2)

where r =
√
x2 + y2, tan θ = y

x
, ς = λ

πθp
, and λ and θp are constant parameters de-

fined in Chapter 6. This is a holonomic constraint that can be expressed in (cartesian

coordinates) differential form by

(
x
√
x2 + y2 + ky

)
dx+

(
y
√
x2 + y2 − kx

)
dy = 0. (5-4.3)

Let q(t) = [x(t) y(t)]T . It is desired to solve the τ -elastic variational problem, where

we aim at minimizing

1

2

∫ T

0

[〈
D2q(t)

dt2
,
D2q(t)

dt2

〉
+ τ 2

〈
Dq(t)

dt
,
Dq(t)

dt

〉]
dt, (5-4.4)

subject to the motion constraint:〈
Dq

dt
,X1(q)

〉
= 0, (5-4.5)

the boundary conditions:

x(0) = x0, y(0) = y0, x(T ) = xT , and y(T ) = yT (5-4.6)

and the dynamics (5-4.1), where the vector field X1(q) is given by

X1 =

 x
√
x2 + y2 + ky

y
√
x2 + y2 − kx


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and the values of x0, y0, xT and yT are defined to satisfy the motion constraint at

t = 0, T –to be found in Chapter 6.

First, note that since M = R2 we have D/dt = d/dt and the curvature tensor,

R, is identically equal to zero. The corresponding differential form for the constraint

(5-4.3) is given by ω1 =
(
x
√
x2 + y2 + ky

)
dx +

(
y
√
x2 + y2 − kx

)
dy. The two

form dω1 is therefore dω1 = −2ςdx∧dy, where ∧ denotes the wedge product. Next,

the one form dq
dt

ydω1 is found to be

dq

dt
ydω1 = 2ς (ẏdx− ẋdy)

and therefore we have

S1

(
dq

dt

)
= 2ς

(
ẏ
∂

∂x
− ẋ

∂

∂y

)
.

Since l = 1, then set λ1 = λ. Theorem (5.3.1) then implies that an optimal

solution to this version of the problem should satisfy the differential equations

d4x

dt4
− τ 2 d2x

dt2
− dλ

dt

(
x
√
x2 + y2 + ky

)
− 2ςλẏ = 0,

d4y

dt4
− τ 2 d2y

dt2
− dλ

dt

(
y
√
x2 + y2 − kx

)
+ 2ςλẋ = 0,

the constraints (5-4.5) and the boundary conditions (5-4.6).

Case B Here we study the problem in R3 and treat the spiral as a motion constraint

and set M to be a sphere of constant radius ρ. M has dimension equal to 2. Thus,

we choose to work with the spherical coordinates θ and φ (see Figure (5.1).) We may

now consider the following equations of motion for spacecraft # 2:

θ̈ = uθ, and φ̈ = uφ, (5-4.7)

where uθ and uφ are the control variables. We then impose the spiral constraint

(5-4.2) in terms of the coordinates θ and φ as follows. Since r is the projection of
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ρ onto the x-y plane, then r = ρ sinφ. The spiral constraint can be expressed in

(spherical coordinate) differential form as

− ςdθ + ρ cosφdφ = 0. (5-4.8)

Let q(t) = [θ(t) φ(t)]T . It is desired to solve the τ -elastic variational problem,

where we aim at minimizing (5-4.4) subject to the motion constraint:〈
Dq

dt
,X1(q)

〉
= 0, (5-4.9)

the boundary conditions:

θ(0) = θ0, φ(0) = φ0, θ(T ) = θT , and φ(T ) = φT (5-4.10)

and the dynamics (5-4.7), where the vector field X1(q) is given by

X1 =

 −ς

ρ cosφ


and the values of θ(0) = θ0, φ(0) = φ0, θ(T ) = θT , and φ(T ) = φT are defined

to satisfy the motion constraint and lie on M at times 0 and T . Note that we are

only interested in the projection of the motion onto a plane parallel to the x − y

plane, where x = r cos θ and y = r sin θ. With spacecraft # 2 moving on only a

hemisphere, spacecraft # 1 will be fixed at (0, 0,+ρ) or (0, 0,−ρ) if θ̇(0) > 0 or

θ̇(0) < 0, respectively.

First, we need to compute the curvature vector field R
(

D2q
dt2
, Dq

dt

)
Dq
dt

for this

problem. Following standard methods for computing the curvature tensor (see, for

instance, [59, 60]), one finds that

R

(
D2q

dt2
,
Dq

dt

)
Dq

dt
=

[
D2φ

dt2
Dφ

dt

Dθ

dt
− D2θ

dt2

(
Dφ

dt

)2
]
∂

∂θ

+

[
D2θ

dt2
Dθ

dt

Dφ

dt
− D2φ

dt2

(
Dθ

dt

)2
]

sin2 φ
∂

∂φ
.
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The corresponding differential form for the constraint (5-4.8) is given by ω1 = −ςdθ+

ρ cosφdφ. The two form dω1 turns out to be dω1 = 0 and, therefore, Dq
dt

ydω1 = 0 and

Si

(
Dq
dt

)
= 0. Since l = 1, then set λ1 = λ. Theorem (5.3.1) implies that an optimal

solution to this version of the problem should satisfy the differential equations

D4θ

dt4
+

D2φ

dt2
Dφ

dt

Dθ

dt
− D2θ

dt2

(
Dφ

dt

)2

− τ 2 D2θ

dt2
+ ς

dλ

dt
= 0,

D4φ

dt4
+

[
D2θ

dt2
Dθ

dt

Dφ

dt
− D2φ

dt2

(
Dθ

dt

)2
]

sin2 φ− τ 2 D2φ

dt2
+ ρ cosφ

dλ

dt
= 0,

the constraints (5-4.9) and the boundary conditions (5-4.10).

Remarks

1. To obtain differential equations for the lagrange multipliers λi, i = 1, . . . , l, one

differentiates the motion constraints (5-3.2) three times, which are sufficient as

long as the assumption that the vector fields Xi, i = 1, . . . , l, are independent.

2. The first term in the cost function J of Equation (5-4.4) penalizes fuel ex-

penditure. The second term is included because in applications such as the

two-spacecraft imaging constellation it is desired to execute the maneuver at

the slowest possible speed within a certain time period, T , in order to improve

image quality (i.e., maximize the number of collected photons.)

3. In Case A, one may treat the manifold M as the linear spiral and imbed it in

R2. The equations of motion of spacecraft # 2 are still given by Equations (5-

4.1). Letting q(t) = [x(t) y(t)]T , it is desired to solve the τ -elastic variational

problem, where we aim at minimizing (5-4.4) subject to the dynamics (5-4.1)

without the imposition of any further motion constraints. Thus, the last two

terms in Equation (5-3.1) are now eliminated at the expense of computing the

curvature tensor, R.
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4. For Case B, an alternative approach could have been followed. We may study

the problem in R3 and treat the spiral as a motion constraint and set M to

be a sphere of radius ρ. The equations of motion, in Cartesian coordinates, of

spacecraft # 2 are given by

ẍ = ux, ÿ = uy, z̈ = uz. (5-4.11)

We set M to be the sphere of radius ρ, and impose the spiral constraint (5-4.3)

on R3.

Let q(t) = [x(t) y(t) z(t)]T . It is desired to solve the τ -elastic variational

problem, where we aim at minimizing (5-4.4) subject to the motion constraint:〈
Dq

dt
,X1(q)

〉
= 0, (5-4.12)

the boundary conditions:

x(0) = x0, y(0) = y0, z(0) = z0,

x(T ) = xT , y(T ) = yT , z(T ) = zT (5-4.13)

and the dynamics (5-4.11), where X1(q) is given by

X1 =


x
√
x2 + y2 + ky

y
√
x2 + y2 − kx

0


and the values of x0, y0, z0, xT , yT and zT are defined to satisfy the motion

constraint and lie on M at t = 0, T . The resulting trajectory is different from

that obtained in Case B. The reason is that we have chosen a different set of

control signals to be minimized.
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5. Similarly to Remark 2, one may treat M in Remark 3 as R3 and impose two

motion constraints: 〈
Dq

dt
,Xi(q)

〉
= 0, i = 1, 2

corresponding to the sphere (i = 1) and the spiral (i = 2), where the vector

fields Xi(q), i = 1, 2, are given by

X1 =


x

y

z

 , and

X2 =


x
√
x2 + y2 + ky

y
√
x2 + y2 − kx

0

 .

Here we avoid computing the curvature R (which is zero everywhere) at the

expense of having an additional lagrange multiplier that would need to be

computed when integrating the differential equations that an optimal trajectory

must satisfy.

6. The imaging problem as stated above does not involve interpolation constraints.

The only constraints are the boundary conditions, the dynamics, and some

geometric or motion constraints. Thus, the results obtained in Section (5.3)

are generalized versions of the problem (with interpolation constraints on q.)

One may easily think of extensions to the above example were interpolation

constraints to be imposed.
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Figure 5.1: Variable definition for Case B.

5.5 Conclusion

In this chapter we derived necessary conditions for minimizing the cost function

for a trajectory that evolves on a Riemannian manifold and satisfies a second order

differential equation together with some interpolation, smoothness and motion con-

straints. The cost function we consider in this chapter is a weighted sum of the norm

squared of the acceleration and the norm squared of the velocity and is motivated

by multi-spacecraft interferometric imaging applications. We defined the dynamic

interpolation problem, derived the necessary conditions for an optimal solution and

gave examples motivated by an imaging application.



CHAPTER 6

Optimal Fuel-Image Motion Planning for a Class

of Dual Spacecraft Formations

In this chapter we first introduce a class of spiral motions that satisfies imaging

objectives and seek simple solutions to the problem of motion design and control of

a formation for imaging applications. Based on the observations drawn from these

simple controls, an optimal control problem is formulated for the proposed class

of spiral motions to achieve minimum fuel consumption, while satisfying imaging

constraints. The first main contribution made in this chapter is that we combine

two ideas introduced separately in the literature and propose a maneuver that offers

improved imaging performance. We then formulate an optimal control problem to

minimize fuel consumption and further maximize image quality by minimizing the

relative speed, which is proportional to the signal-to-noise ratio of the reconstructed

image. We use the maximum principle to derive the necessary optimality conditions

and show that they are also sufficient and that the resulting control law is unique.

Finally, we apply a continuation method to solve for the unique optimal trajectory.

118
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6.1 Motion Design for Wave Number Plane Coverage

In this chapter we address the issue of motion design and control for an interfer-

ometric observatory composed of two satellites that ensures a non-zero value of the

MTF within a desired region in the wave number plane. We assume that the system

is in free space; the only forces acting on the system are the spacecraft thrusters.

Note that this is a reasonable analogue for a spacecraft at the libration point L2. For

example, in [61], the authors discuss the feasibility of nulling natural forces and re-

placing them with “new” dynamics. In this and sections (6.2) and (6.3), we motivate

the coplanar dual spacecraft spiraling maneuver and give simple examples. In Sec-

tions (6.5), (6.6) and (6.7), we generalize the formation to dual spacecraft spirals on

a paraboloid and formulate an optimal control problem which we solve numerically

in Section (6.8).

In the coplanar problem, one of the spacecraft is stationary and located at the

origin of an inertial reference frame. Let q1 ≡ 0 and q2 be the position vectors

of the first and second satellites, respectively. Thus q2 also describes the relative

position vector between the two satellites. Since we only consider the motion in a

plane perpendicular to the line of sight of the observatory, let q = (r, θ) in polar

coordinates be the projection of q2 onto such plane. Here we only consider the

motion of the second spacecraft (the first is fixed at the origin) and only one of the

picture frame discs (while the second will have an identical motion that is symmetric

about the origin.) Thus, by (r̃, θ) we imply the polar coordinates of one picture frame

disc center. One way to ensure full coverage of the resolution disc is to initialize the

second spacecraft such that at t = 0 we have (r̃ = 1
θp
, θ = 0), make it follow a linear

spiral as a function of θ, and to impose the terminal condition that at t = T we
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have (r̃ = (m+1)
2θp

, θ = (m−1)π
2

), where T is the terminal time. This motion implies

that the two picture frame discs are initialized such that they lie outside the picture

frame disc whose center is fixed at the origin, and moves spirally outwards till they

lie outside resolution disc.

Note that r̃ = 0 is a singularity, which produces poor numerical results for the

motion near the origin, and thus we do not initialize the system at this value. How-

ever, the discussion at the end of Section (2.1) implies that initializing the system

with r̃ = 1/θp results in some regions close to the origin of the wave number plane

that will not be covered (the shaded region in Figure (6.1).) It will be shown in

simulation that this is not necessarily true, and that the initial condition we impose

suffices for full coverage, especially near the origin. Thus r̃ and θ are constrained to

satisfy

r̃(θ(t)) =
1

πθp

(π + θ) , θ ∈
[
0,

(m− 1)π

2

]
. (6-1.1)

This implies that

r(θ(t)) =
λ

πθp

(π + θ) , θ ∈
[
0,

(m− 1)π

2

]
. (6-1.2)

The first and second time derivatives of the constraint (6-1.2) also need to be satisfied:

ṙ =
λ

πθp

θ̇, ∀t ∈ [0, T ] , (6-1.3)

and

r̈ =
λ

πθp

θ̈, ∀t ∈ [0, T ] , (6-1.4)

where ṙ and r̈ are the first and second time derivatives of r with respect to time.

Figure (6.1) shows an example of the trajectory in the physical and wave number

planes for an object that is located at z̄ = 15pc (1pc= 3.085 × 1013km), with a

picture frame that is L̄ = 12, 760km wide, with m = 17 pixels and, thus, a pixel size
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of L = 750.6km (i.e. this constellation maneuver is capable of detecting any object

whose size is greater than L.) These are the values that are used throughout this

chapter. These values correspond to applications such as JPL’s Terrestrial Planet

Finder (TPF) and they could also be adjusted for Earth imaging applications. In

the latter case, the maneuver spans a few meters only, as opposed to few thousands

of kilometers as in the example we treat in this chapter.
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Figure 6.1: Motion in the physical (in meters, top) and wave number (dimensionless,
bottom) planes.

6.2 Equations of Motion with a Spiral Constraint

In this section we derive the constrained equations of motion of the second space-

craft relative to the origin. After dividing throughout by the mass of the second

spacecraft, the two degree of freedom equations of motion for the system are de-
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scribed in polar coordinates by

r̈ − rθ̇2 = un, (6-2.1)

and

rθ̈ + 2ṙθ̇ = ut, (6-2.2)

where un is the radial component of the thrust vector and ut is the tangential compo-

nent of the thrust vector, both divided by the mass of the spacecraft. Applying the

configuration constraint in (6-1.2) to the system of equations (6-2.1)-(6-2.2) results

in the following two dependent equations that describe the motion

θ̈ − f(θ)θ̇2 = ũn, (6-2.3)

and

f(θ)θ̈ + 2θ̇2 = ũt, (6-2.4)

where f(θ) = π + θ, ũn = πθp

λ
un and ũt = πθp

λ
ut. Note that these two equations

are equivalent. By solving for θ̈ in (6-2.3) and (6-2.4) and equating the resulting

expressions, one finds that the tangential and radial components of the force-per-

mass vector are related such that

ũn = −
[
f(θ) +

2

f(θ)

]
θ̇2 +

1

f(θ)
ũt. (6-2.5)

By solving either (6-2.3) or (6-2.4) such that θ goes from 0 to (m−1)π
2

we are

guaranteed that the spacecraft will have gone through one entire “image” maneuver

and covered the wave number plane.
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6.3 Simple Controllers to Achieve Imaging Objectives

In this section we investigate the performance of five controllers that are designed

to satisfy the spiral motion constraint. The two main performance considerations

are image quality and fuel consumption. Image quality requires full coverage of

the resolution disc and the attainment of a desired signal-to-noise ratio. An image

quality performance measure was stated in Section (2.2), which we advise the reader

to review. We re-write the main equations here again. First, the image quality

performance measure can be expressed as:

I =

∫ T

0

dt

∫
dν
(
1− ΓR (ν, t)

)
, (6-3.1)

where R is a “risk factor” and Γ(ν, t) is the estimated signal-to-noise ratio of the

interferometric measurement divided by the desired signal-to-noise ratio. Using Pois-

son statistics in a semi-classical photon arrival fluctuation calculation (Section 4.4.3

in [62]), this can be shown to be proportional to the square root of the MTF magni-

tude. Hence, Γ is given by:

Γ(ν, t) =

 1 if αM̂1/2 ≥ 1

αM̂1/2 otherwise

, (6-3.2)

where α is inversely proportional to the desired signal-to-noise ratio and M̂ is com-

puted from Equation (2-1.21). The larger the risk factor R the more conservative the

imaging performance measure becomes. Regions in the wave number plane where Γ

is less than unity correspond to spatial frequencies of the signal that do not satisfy

the desired signal-to-noise ratio, while Γ = 1 implies both coverage and achievement

of the desired signal-to-noise ratio at the corresponding spatial frequency.

Recall also that since the Âp functions are evaluated at points corresponding

to the trajectories of the relative position vectors, note that the rate at which the
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Âp(ν − q
λz̄

) function moves in the frequency domain is proportional to the relative

velocity between the spacecraft pair. Hence, if the relative velocity has a large

magnitude, Âp moves too fast in the frequency domain. This, in turn, may not allow

for the MTF to accumulate to a satisfactory level to achieve the desired SNR (as

reflected in the Γ function) and, hence, results in reduced signal strength allowing

for the noise signal to overwhelm the measured signal. This results, by definition,

to Γ < 1. This implies that the value of Γ and, hence,the SNR, function is inversely

proportional to the square root of the relative speed between the spacecraft in the

constellation. Therefore, there is a critical relative speed v∗ such that the picture

frame discs achieve Γ = 1 at the frequencies they visit and such that Γ < 1 if the

relative speed v < v∗.

In Section (2.1), the model for the picture frame disc given by Equation (2-1.23),

we have assumed that the area covered by the picture frame disc is being covered in

a uniform fashion. However, the coverage it achieves has a nonuniform distribution

that resembles a Gaussian. It can be shown that the width of this distribution

is determined by the relative speed between the spacecraft. For low speeds the

picture frame disc could even have a diameter that is slightly larger than 1/θp. For

large speeds the picture frame disc will have a distribution with an effective width

that is smaller than 1/θp. Thus, speed primarily affects signal-to-noise ratio and

the distribution of the signal within the picture frame disc as it moves in the wave

number plane.

The performance measure used for fuel consumption is

U =

∫ T

0

(
u2

n(t) + u2
t (t)
)
dt. (6-3.3)

The two cost functions in (6-3.1) and (6-3.3) are the basis for evaluating the imaging
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performance and fuel consumption. The sum J = w1I + w2U , where wi (i = 1, 2)

are weighting coefficients, could be used as the objective function for a nonlinear

optimal controller that optimizes both fuel consumption and image quality. Next we

consider benchmark problems for controller design.

Maneuver 1: Constant Speed Motion As mentioned above, it is desirable to

have a uniform signal-to-noise ratio over the entire resolution disc region in the wave

number plane. This can be achieved by setting the magnitude of the velocity to be:

V =

√(
rθ̇
)2

+ ṙ2 = v∗, (6-3.4)

which is constant. Taking the derivative of this condition,

rθ̇
(
ṙθ̇ + rθ̈

)
+ ṙr̈ = 0, (6-3.5)

substituting r, ṙ and r̈ using (6-1.2)-(6-1.4) and rearranging one gets the closed loop

differential equation

θ̈ = − f(θ)

1 + f 2(θ)
θ̇2, (6-3.6)

which will achieve full coverage of the wave number plane if it satisfies the correct

boundary conditions. From Equation (6-2.3), the radial component of the control

thrust is given by

ũn = −f(θ)θ̇2

[
1 +

1

1 + f 2(θ)

]
. (6-3.7)

Using this and Equation (6-2.5), the tangential component, ũt is thus

ũt = θ̇2

(
2− f 2(θ)

1 + f 2(θ)

)
. (6-3.8)

Maneuver 2: Constant Tangential Velocity A simplified version of the

situation considered in the previous paragraph is to assume that only the tangential
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component of the velocity vector is constant; Vt = rθ̇ is constant. Taking the the

derivative of this condition,

ṙθ̇ + rθ̈ = 0, (6-3.9)

substituting r, ṙ and r̈ using (6-1.2)-(6-1.4) and rearranging one gets the closed loop

differential equation

θ̈ = − 1

f(θ)
θ̇2. (6-3.10)

From Equation (6-2.3), the radial component of the control thrust is given by

ũn = −θ̇2

[
f(θ) +

1

f(θ)

]
. (6-3.11)

Using this and Equation (6-2.5), the tangential component, ũt, is thus

ũt = θ̇2. (6-3.12)

Maneuver 3: Constant Angular Rate Next, consider the situation where θ̇

is a constant. Thus θ̈ = 0, which implies that θ is a linear function of time. After

applying the boundary conditions, one obtains an explicit solution for θ

θ(t) =
(m− 1)π

2T
t. (6-3.13)

Since ṙ = λ
πθp
θ̇, it is also constant and r̈ = 0. From Equation (6-2.3), the radial

component of the thrust vector is given by

ũn = −f(θ)θ̇2. (6-3.14)

And from Equation (6-2.4), the tangential component of the thrust vector is given

by

ũt = 2θ̇2. (6-3.15)
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Maneuver 4: Zero Tangential Acceleration Consider not applying any tan-

gential thrust; then ũt = 0 and Equation (6-2.5) implies that

ũn = −
[
f(θ) +

2

f(θ)

]
θ̇2. (6-3.16)

Finally, the closed loop differential equation is

θ̈ = − 2

f(θ)
θ̇2. (6-3.17)

6.3.1 Results

In the results we present here, Maneuver (1) represents the benchmark solution

to the problem. It is the solution that achieves the two imaging objectives since (1)

it follows a linear spiral that completely covers the desired resolution disc and (2) it

moves at a constant speed that is sufficient to attain the desired signal-to-noise ratio.

First we determined the value of v∗ and set the initial condition for Maneuver (1)

such that the spacecraft has an initial speed equal to v∗. This speed is guaranteed to

be maintained by the additional speed constraint (6-3.4). We simulated the system

and determined the terminal time T . Thus, for all other cases, we set the initial

conditions such that each individual maneuver is completed at t = T . Finally, we

use Eqs. (6-3.1) and (6-3.3) to evaluate the performance of all four motions. A

reference speed, v∗, that achieves the desired signal-to-noise ratio is assumed to be

30m/s and T was found to be 17 days and 17 hours.

Figures (6.2)-(6.6) show the time evolution of r, θ, V , un and ut for all four

maneuvers. Figures (6.7) and (6.8) show how the Γ function accumulates and how

the image forms with time for Maneuvers (1) and (4). These represent the two

interesting cases: Maneuver (1) is the benchmark solution and Maneuver (4) shows

that Γ by itself evaluated at the end of the maneuver is not sufficient to judge
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Figure 6.2: r(t) for Maneuver (1) (solid), Maneuver (2) (dash-dotted), Maneuver (3)
(dotted) and Maneuver (4) (dashed.)

the quality of the final image. Maneuver (2) produces results almost identical to

Maneuver (1) and we will only comment on the results for Maneuver (3).

The image formation algorithm was developed by our group at the University of

Michigan and has been used in this section to demonstrate the concepts presented

in this chapter. The algorithm assumes a given target planet, which includes planet

surface details. It also assumes a statistical model for noise. It simulates the motion

of the spacecraft, computes the resulting Γ function, and estimates the image.

For Maneuver (1), note that the speed is constant throughout the maneuver

(upper left chart in Figure (6.4).) Consequently, we expect a uniform Γ function

throughout the wave number plane (Figure (6.7)); the desired signal-to-noise ratio is

attained everywhere in the plane. However, for Maneuver (4), we note that we start

off with a speed of 110m/s, which is larger than v∗. That is why near the center of

the resolution disc (i.e. by the fifth day) we can see some partial coverage, resulting
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Figure 6.3: θ(t) for Maneuver (1) (solid), Maneuver (2) (dash-dotted), Maneuver (3)
(dotted) and Maneuver (4) (dashed.)

in a signal-to-noise ratio that is lower than the desired. We also expect that for

Maneuver (4), the picture frame disc to be significantly narrower than the nominal

value, 1/θp. Thus, at low frequencies the formation in Maneuver (1) performs better

than the formation in Maneuver (4).

On the other hand, as the the spacecraft in Maneuver (4) proceeds beyond the

fifth day, its speed drops below v∗, thus, achieving the desired signal-to-noise ratio.

Moreover, one should expect a wider picture frame disc signal distribution. Beyond

the fifth day of the maneuvers, both cases will achieve equal imaging performance

for all but the last 2π radians of the maneuvers. During the last spiral revolution,

the spacecraft in Maneuver (4) will have a wider picture frame disc than that of

Maneuver (1) and will, thus, furnish bonus high frequency coverage in the wave

number plane.

Therefore, during one phase of the maneuvers the formation in Maneuver (1)



130

 V
, m

/s
 

30

30

30

30

30

30

30

30

0 2 4 6 8 10 12 14 16 18
Time, days

30

30. 5

31

31. 5

 V
, m

/s
 

0 2 4 6 8 10 12 14 16 18
Time, days

0 2 4 6 8 10 12 14 16 18
5

10

15

20

25

30

35

40

45

50

55

Time, days

 V
, m

/s
 

20

40

60

80

100

120

140

 V
, m

/s
 

0 2 4 6 8 10 12 14 16 18
Time, days

Figure 6.4: The total speed for Maneuver (1) (upper left), Maneuver (2) (upper
right), Maneuver (3) (lower left) and Maneuver (4) (lower right.)

has superior performance than the formation in Maneuver (4). During the second

phase the reverse is true. Figure (6.9) is a surface plot of the difference between the Γ

functions of Maneuvers (1) and (4). Computing the imaging performance measure (6-

3.1) one finds that Maneuver (4) has an overall smaller imaging performance measure

than Maneuver (1) (Table (1).) This implies that the bonus coverage the formation

in Maneuver (4) achieves at high frequencies outweighs the deficient coverage at low

frequencies. If the imaging performance is restricted to the resolution disc only, then

Maneuver (1) will achieve better imaging performance than Maneuver (4) because

the latter leaves gaps at low frequencies.

On the other hand, because the spacecraft in Maneuver (4) is forced to move at
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Figure 6.5: Radial acceleration, un, for maneuver (1) (upper left), Maneuver (2)
(upper right), Maneuver (3) (lower left) and Maneuver (4) (lower right.)

a speed lower than that in Maneuver (1), more fuel is required to slow it down than

that in Maneuver (1). Indeed, Maneuver (4) results in the least efficient maneuver

as far as fuel consumption is concerned but it is the most efficient in terms of image

quality.

Table (1) shows a summary of the performance of all four maneuvers. We note

that, as one might expect, Maneuvers (1) and (2) perform almost equally. Both

result in intermediate image quality and fuel expenditure. Maneuver (3) requires

the least amount of fuel but with the poorest performance. The reverse statement

is true for Maneuver (4). Therefore, this result suggests that there exists a tradeoff

between image quality and fuel expenditure.
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Figure 6.6: Tangential acceleration, ut, for Maneuver (1) (upper left), Maneuver (2)
(upper right), Maneuver (3) (lower left) and Maneuver (4) (lower right.)

I, ×109 U , m/s
Maneuver (1) 5.14 0.53
Maneuver (2) 5.13 0.55
Maneuver (3) 6.27 0.46
Maneuver (4) 4.62 15.02

Table 6.1: Performance measures for Maneuvers (1)-(4).

Note that the imaging performance index (6-3.1) is a function of the final time,

T . As T is increased sufficiently the above result will change. For instance, in the

limit as T approaches infinity, the partial coverage (Γ < 1) that Maneuver (4) leaves

behind at low frequencies represents a nonzero constant quantity which is being

integrated over an infinite time horizon. Thus, the resulting performance index will
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be infinite, which means that Maneuver (4) is infeasible in the limit. For Maneuver

(1), on the other hand, satisfying the critical speed threshold, v∗, ensures that for

all past coverage we have Γ = 1. However, note that the integral computed up to

any finite point in time will be nonzero due to the remaining uncovered region of

the resolution disc. Moreover, any maneuver that results in Γ = 1 everywhere in

the resolution disc with a finite imaging performance index in finite time, such as

Maneuver (1), is also expected to do so in the limit as T approaches infinity. Thus we

see that in the limit as T approaches infinity Maneuver (1) will be feasible whereas

maneuver (4) will be considered infeasible.

6.4 Dual Spiraling on a Paraboloid

Let us now consider having the collector spacecraft evolve on a virtual paraboloid,

whose axis of symmetry coincides with the common formation line of sight, in three

dimensional space as shown in Figure (6.10). The paraboloid results in improved fo-

cusing properties for the constellation [36]. Combining this new constraint with spiral

such that the collector spacecraft evolves on a spiral embedded on the paraboloid

should result in both improved focusing properties as well as improved signal content

(the effect of covering the frequency plane using a spiral maneuver.)

A third important consideration to take into account is signal-to-noise ratio (SNR)

of the reconstructed image. It is desired that all frequencies in DR be sampled while

maximizing SNR. Recalling the discussion at the end of Section (2.2), SNR can

be controlled by controlling the relative speed (projected on the observation plane,

which is perpendicular to the line of sight) between the spacecraft in the formation

(see Chapter 2 and [5, 40].) As the projected relative speed between the spacecraft

pair is minimized, the achievable SNR is maximized. Intuitively, as a spacecraft
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Figure 6.7: Γ (top four figures) and estimated image (bottom four figures) at t = 0,
at t = 5.9 days, at t = 11.8 days and at t = 17.7 days for Maneuver (1).

moves slower, it spends more time in the neighborhood of a relative position state

in space. This leads to more photon (that is, image information) collection from
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Figure 6.8: Γ (top four figures) and estimated image (bottom four figures) at t = 0,
at t = 5.9 days, at t = 11.8 days and at t = 17.7 days for Maneuver (4).

that neighborhood, resulting in a stronger signal. This is analogous to the notion of

exposure time in photography, where the longer the shutter time, the more photons
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Figure 6.10: The basic interferometer.

get deposited on the photographic film and the better is the image.

The above provides a guideline for the formulation of an optimal control problem.

The problem we consider is slightly different than the τ -elastic variational or the

dynamic coverage problems considered in Chapter 5 and in [40, 38, 43] in that it is a

restricted version of these problems to handle the dual-spacecraft formation described
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above. The spacecraft are modeled as point particles. With the combiner spacecraft

fixed at the focus of the paraboloid, the collector is constrained to move along a

spiral embedded on a paraboloid, which is a one dimensional manifold. Hence, the

system possesses only a single degree of freedom, which is the motion on the one

dimensional manifold. SNR is taken into account by attempting to minimize a cost

functional that is a weighted sum of the projected relative speed and fuel. The goal

is to solve for the time parametrization of the control vector that minimizes the cost

functional and reconstruct the time history of the collector spacecraft’s traversal of

the spiral curve embedded on the manifold.

Here is how the rest of the chapter is organized. In Section (6.5), we briefly re-

view the various aspects of image reconstruction. In Section (6.6), we give a general

description of the model in three dimensions and define the various variables involved

in the three-dimensional situation. With this done, we are in a position to define the

optimal control problem and derive the necessary optimality conditions. These nec-

essary conditions are shown to also be sufficient by proving that the optimal control

problem is strictly convex. Strict convexity also guarantees that a solution of the

optimality conditions is in fact unique. This is done in Section (6.7). In Section (6.8),

we apply a continuation method to solve the necessary and sufficient conditions and

verify that, indeed, they are solutions by showing that the Hamiltonian is constant

along the trajectory. This furnishes the unique optimal trajectory. We conclude with

some final remarks on future work in Section (6.9).

6.5 Imaging and the Coverage Problem

In this section we briefly review the various aspects of multi-spacecraft interfer-

ometric imaging given in Section (3.2). The discussion is for a generic formation
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of any number of spacecraft. In later sections, we specialize the discussion to dual

spacecraft interferometry. Consider a formation of N spacecraft. Let qi denote the

coordinates of the ith spacecraft, i ∈ I = {1, . . . , N}. For later development, consider

qi to belong to some one- or two-dimensional continuously differentiable manifold M

embedded in R3. Also let qi = (xi, yi, zi) denote the position of the ith spacecraft in

R3. In general, we have

qi = (xi, yi, zi) = f(qi), (6-5.1)

where f : M → R3 is a continuously differentiable mapping on M .

Let O = R2 be the observation plane (see Figure (6.10.) The observation plane is

a plane perpendicular to the line of sight (which we assume to be along the z-direction

in R3) and whose origin coincides with the point (0, 0, 0) (that is, the origin of R3.)

Assume that the maximum displacement along the line of sight of any spacecraft in

the formation is bounded above by ε. That is to say zi < ε. Let z̄ denote the range

from the observation plane to the target to be imaged. As shown in Chapter 2, if

ε� z̄, then any inter-spacecraft off-set along the line of sight between the spacecraft

in the formation does not affect the quality of the reconstructed image [5]. Since

the goal in the Origins program is to reconstruct images of extra-solar objects, the

assumption that ε� z̄ is valid.

Hence, in extra-solar interferometric imaging, we are interested in the relative

position dynamics as projected onto the observation plane O. We are therefore

interested in the projected relative trajectories:

q̃ij(t) = P (qj(t)− qi(t)) , (6-5.2)

where q̃ij : [0, T ] → O are curves on O and P is the mapping that projects relative

trajectories in M onto the observation plane O. Note that P = Pxy ◦ f , where
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Pxy : R3 → R2 is a linear projection mapping having the matrix representation 1 0 0

0 1 0

 . (6-5.3)

In multi-aperture interferometry, there are two main imaging goals. The first is

simply referred to as frequency domain coverage. Here, we only state the coverage

goal and refer the reader to [5] for a more detailed discussion. We are interested in

having the resolution disc as defined by the set DR =
{

(νx, νy) :
√
u2 + v2 ≤ 1/θr

}
be completely covered by some ball of radius rp centered at λq̃ij(t), for some t ∈

[0, T ], i and j, where θr is the angular resolution and λ is the wavelength of the

electromagnetic signal of interest. An image is said to be successfully completed if a

maneuver M satisfies the following condition.

Definition 6.5.1. (Successful Imaging Maneuver) An imaging maneuver M is

said to be successful if, for each (νx, νy) ∈ DR, there exists a time t ∈ [0, T ] and some

i, j = 1, . . . , N such that (νx, νy) ∈ B̄rp (λq̃ij(t)), where B̄x(y) is a closed ball in R2

of radius x centered at y. rp is proportional to the size of the telescope’s airy disc.

The second objective is that all frequencies in DR must be sampled while max-

imizing the signal-to-noise ratio (SNR.) SNR can be controlled by controlling the

relative speeds between the spacecraft in the formation [5]. As the projected relative

speed, denoted by ‖q̇ij‖, between a spacecraft pair is minimized, so is the achievable

SNR. Intuitively, as a spacecraft moves more slowly, it has more time spent in the

neighborhood of a relative position state in space. This leads to more photon (that is,

image information) collection from that neighborhood, resulting in a stronger signal.

This is analogous to the notion of exposure time in photography, where the longer

the shutter time is, the more photons get deposited on the photographic film and

the better the image gets.
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6.6 A Class of Dual-Spacecraft Interferometers

In this section we state the two geometric constraints imposed on the position

of the collector spacecraft. We also derive the equations of motion of the collector

spacecraft in terms of a single coordinate, which we choose to be the arc length

traversed by the collector along the spiral.

6.6.1 The Paraboloid Virtual Surface

The combiner spacecraft carries the ability to delay any wavefront it receives

in its own aperture by an amount equal to twice the distance to the center of the

paraboloid, thus simulating the delay for a ray that passes through the focus and

reflects back to it. The collector spacecraft flies anywhere along the paraboloidal

surface, carrying a mirror that reflects a second segment of the wavefront to the

combiner at the focus, which then interferometrically combines the light from the

two received apertures to synthesize a baseline equal to the perpendicular separation

of the two spacecraft. Because optical delay lines are difficult to build with large

delays, one can then chose to use a very deep virtual paraboloid, and fly the collector

spacecraft far up “above” the focal-point spacecraft, allowing for a much longer

baseline than the focal spacecraft’s length of delay for its local wavefront might

indicate. However, the main reason for a paraboloid surface choice for the collector

spacecraft is that a plane wavefront reflecting off a paraboloidal surface will come to

a common focus.

In cartesian coordinates a generic paraboloidal surface is described by:

z =
1

2

(
ρ2

β2
− β2

)
, (6-6.1)

where

ρ =
√
x2 + y2
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and β is a parameter that controls the depth of the paraboloid. Note that vertex of

the paraboloid is located at the point (0, 0,−β2/2).

6.6.2 The Spiral Maneuver

In the x-y plane, the projected position may be given in terms of polar coordinates

(ρ, θ). One way to ensure full coverage of the resolution disc DR is to initialize the

second spacecraft such that at t = 0 we have (ρ = 1
θp
, θ = 0), make it follow a linear

spiral as a function of θ, and to impose the terminal condition that at t = T we have

ρ = (m+1)
2θp

, θ = (m−1)π
2

), where T is the terminal maneuver time. The number m is

an integer that is equal to the number of pixels in the reconstructed image and θp

is a parameter such that θp = mθr. This motion implies that the two coverage balls

B̄rp(q̃12) and B̄rp(q̃21) are initialized such that they lie outside the central (fixed) ball

B̄rp (q̃00) = B̄rp (0, 0) and move spirally outwards till they lie outside the resolution

disc DR. Thus ρ and θ are constrained to satisfy

ρ(θ) = k (π + θ) , θ ∈
[
0,

(m− 1)π

2

]
, (6-6.2)

where k = λ
πθp

. Note that in general we take θ ∈ [0,∞) and not restrict it to the set

[0, 2π).

Figure (6.1) shows an example of a trajectory in the physical and frequency

planes for an object that is located at z̄ = 15pc (1pc= 3.085× 1013km), with a field

of view that is L̄ = 12, 760km wide, with m = 17 pixels and, thus, a pixel size of

L = 750.6km (i.e. this constellation maneuver is capable of detecting any object

whose size is greater than L.) These values correspond to applications such as JPL’s

Terrestrial Planet Finder (TPF) and they could also be adjusted for Earth imaging

applications [3]. In the latter case, the maneuver spans a few meters only, as opposed

to few thousands of kilometers.
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As shown by the illustration in Figure (6.1), the spiral maneuver is capable of

entirely ensuring the coverage of the resolution disc DR. Hence, it ensures attaining

a successful maneuver.

6.6.3 Equations of Motion

Since we have a single spacecraft to control, then the number of spacecraft N =

1. Enforcing the constraints (6-6.1) and (6-6.2) one finds that the position of the

collector spacecraft in terms of the angular position θ is given by:

q(θ) = (x, y, z) =

(
(k(π + θ) cos θ, k(π + θ) sin θ,

1

2

(
k2

β2
(π + θ)2 − β2

))
.

(6-6.3)

We will use the arc length q traversed along the spiral as the single global coordinate

on the one-dimensional manifold M . The arc length q is obtained as a function of θ

using the definition of the arc length of a curve in space:

q(θ) = h(θ) =

∫ θ

0

∥∥∥∥∂q(θ′)

∂θ′

∥∥∥∥ dθ′,

where

∂q

∂θ
= [k cos θ − k (π + θ) sin θ] ex + [k sin θ + k (π + θ) cos θ] ey +

[
k2 (π + θ)

β2

]
ez,

(6-6.4)

where ex, ey and ez denote unit vectors in the x, y and z directions, respectively.

By the geometry of the problem described in previous paragraphs, it is easy to see

that the function h is both one-to-one and onto. Hence, given a value for q, one can

uniquely solve for θ using

θ = h−1(q). (6-6.5)

Though, one can obtain h(θ) explicitly in terms of θ (we omit it here due to space

restrictions), there does not seem to an analytic expression for h−1.
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Let et and en denote the unit vectors tangent and normal unit vectors at a point

q(t) ∈ M , respectively. If we v = vet = q̇et denote the velocity of the collector

spacecraft, a = utet + anen its acceleration and u = utet + unen the thrust vector

applied to the collector, then the equations of motion are written in path-variable

form as [63]:

q̇ = v

v̇ = ut, (6-6.6)

where we assume a unit mass for the collector spacecraft. Note that the normal

component of the control vector is constrained to satisfy:

un = an =
v2

R(θ)
, (6-6.7)

where R(θ) is the radius of curvature of the curve M expressed in terms of the polar

angle location θ. R is given by 1
R

=
∥∥∥det

dq

∥∥∥ = ‖(det/dθ) · (dθ/dq)‖. In terms of θ, we

find that1

1

R(θ)
=

r(θ) [k2(π + θ)2 + β4 (1 + (π + θ)2)]√
β4 (2 + (π + θ)2)2 + k2 (1 + (π + θ)2 (3 + (π + θ)2))

.

In computing the curvature, we have used:

dq = r(θ)dθ =

∥∥∥∥∂h∂θ
∥∥∥∥ dθ, (6-6.8)

where

r(θ) = k

√
1 +

(
1 +

k2

β4

)
(π + θ)2. (6-6.9)

1All symbolic computations were verified in Mathematicar.
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6.7 Necessary and Sufficient Optimality Conditions

In this section we first formulate an optimal control problem and use the maxi-

mum principle to derive the necessary conditions. We then show that the problem

is convex and, hence, that the necessary optimality conditions are also sufficient.

With the two geometric constraints imposed on the collector spacecraft, we have

achieved a successful maneuver (by virtue of the paraboloid constraint) and achieved

improved focusing properties (by virtue of the paraboloid constraint.) We are then

left with only one degree of freedom, namely the time parametrization of the arc

length q(t). This may finally be determined by formulating an optimal control prob-

lem that aims at choosing the time parametrization that minimizes the speed and

fuel expenditure of the collector spacecraft, which are the last two criteria to be con-

sidered in the motion path planning problem for the dual-spacecraft interferometer.

The goal is to minimize the cost functional:

J =

∫ T

0

1

2
〈u,u〉+

τ 2

2
〈ṽ, ṽ〉 dt (6-7.1)

subject to the dynamic constraints (6-6.6) and the boundary conditions:

q(0) = 0, v(0) = v0, q(T ) = qT , v(T ) = vT , (6-7.2)

where qT = h
(
θ = (m−1)π

2

)
. In Equation (6-7.1), ṽ = ˙̃q is the projected velocity of

the collector on the x-y plane and u = utet + unen is the total thrust vector. 〈·, ·〉

denotes the Euclidean inner product defined on R3.

To compute ṽ in terms of q and q̇, we first need to obtain an expression for θ̇ in

terms of q and q̇. Differentiating Equation (6-6.4), we obtain

q̇ = r(θ)θ̇, (6-7.3)
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where r(θ) is given by Equation (6-6.9). Using this and Equations (6-6.3) and (6-6.5),

we have:

ṽ = ẋex + ẏey = Px(θ, v)ex + Py(θ, v)ey, (6-7.4)

where

Px(θ, v) =
v

r(θ)

[
k cos (θ)− k (π + θ) sin (θ)

]
Py(θ, v) =

v

r(θ)

[
k sin (θ) + k (π + θ) cos (θ)

]
.

In fact, one can show that

〈ṽ, ṽ〉 =
k2v2

r2(θ)

[
1 + (π + θ)2] . (6-7.5)

Hence the cost is given by:

1

2
u2

t +
v4

2R2(θ)
+
τ 2

2

k2v2

r2(θ)

(
1 + (π + θ)2

)
. (6-7.6)

Note that any variable that is an explicit function of θ is also a function, implicitly,

of q via the relation (6-6.5).

We now apply the maximum principle to derive the necessary optimality condi-

tions. First define the pre-Hamiltonian:

Ĥ(θ, v, ut, p1, p2) = −1

2
u2

t −
v4

2R2(θ)
− τ 2

2

k2v2

r2(θ)

(
1 + (π + θ)2

)
+ p1v + p2ut,

(6-7.7)

where p1 and p2 are the momenta variables. From the necessary optimality condition

∂Ĥ
∂ut

= 0, we find that ut = p2. Substituting this into Equation (6-7.7), we get the

Hamiltonian function:

H(θ, v, p1, p2) = p1v +
1

2
p2

2 −
v4

2R2(θ)
− τ 2

2

k2v2

r2(θ)

(
1 + (π + θ)2

)
. (6-7.8)



146

The necessary conditions are given by:

q̇ =
∂H

∂p1

= v

v̇ =
∂H

∂p2

= p2

ṗ1 = −∂H
∂q

= − 1

r(θ)

[
v4

R3(θ)

∂R

∂θ
(6-7.9)

−τ
2k2v2

r2(θ)
(π + θ) +

τ 2k2v2

r3(θ)

∂r

∂θ

[
1 + (π + θ)2

] ]
ṗ2 = −∂H

∂v
= −p1 +

2v3

R2(θ)
+
τ 2k2v

r2(θ)

[
1 + (π + θ)2

]
.

We have used the fact that ∂q/∂θ = r(θ) and used the chain rule in computing the

derivative of r(θ) and R(θ) with respect to q. Since we have q̇ = v = r(θ)θ̇, the

necessary conditions may also be expressed in terms of (θ, v, p1, p2) as:

θ̇ =
v

r(θ)

v̇ =
∂H

∂p2

= p2

ṗ1 = −∂H
∂q

= − 1

r(θ)

[
v4

R3(θ)

∂R

∂θ
(6-7.10)

−τ
2k2v2

r2(θ)
(π + θ) +

τ 2k2v2

r3(θ)

∂r

∂θ

[
1 + (π + θ)2

] ]
ṗ2 = −∂H

∂v
= −p1 +

2v3

R2(θ)
+
τ 2k2v

r2(θ)

[
1 + (π + θ)2

]
.

Since the equations are all stated explicitly in terms of θ and not q, the necessary

conditions in the form (6-7.10) are more convenient to use in the computations in

the next section.

We now show that the necessary conditions (6-7.9) (equivalently, (6-7.10)) are

also sufficient and that there exists a unique solution to the problem. This is done

by showing that we have a strictly convex optimal control problem. First, we need

the following standard result.
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Lemma 6.7.1. Let f(x) = h(g(x)) : R → R, where g : R → R is concave and

h : R → R is convex and non-increasing. Then f(x) is convex.

Proof This is a standard result which is easily proven as follows. Note that f ′′(x) =

h′′(g′)2+h′g′′, where the prime indicates the derivative with respect to the argument.

Since, g is concave, then g′′ ≤ 0 for all x in R. Since h is convex, then h′′ ≥ 0 and

since it is non-increasing, then h′ ≤ 0 for all x ∈ R. This shows that f ′′(x) ≥ 0 for

all x ∈ R. Hence, f(x) is convex for all x ∈ R.

�

Strict convexity is obtained if h were strictly convex and strictly decreasing (that

is, h′′(x) > 0 and h′(x) < 0 for all x ∈ R) and g(x) were strictly concave (that is,

g′′(x) < 0 for all x ∈ R.)

Since the dynamics (6-6.6) are linear and the variables q, v and ut are all uncon-

strained (that is, q, v, ut ∈ R) and, hence, belong to trivially convex sets, we only

need to show that the cost function in Equation (6-7.1) is strictly convex in q, v and

ut to guarantee sufficiency of the necessary conditions and uniqueness of the solution

(see Corollary on page 214 and Theorem 10 on page 216 in [64].) Since the cost

(6-7.6) is quadratic in ut, then it is strictly convex in ut. It is also strictly convex in

v since it is a sum of a quadratic and a fourth power of v (both are strictly convex

and the sum of two strictly convex functions is also strictly convex.)

What remains to show is that the cost (6-7.6) is convex in q. This is done by

showing that h1(θ) = 1/R2(θ) and h2(θ) = (1 + (π + θ)2)/r2(θ) are convex and non-

increasing in θ and that θ = h−1(q) is concave in q. Since the sum of two convex

functions is also convex, then the q-dependent terms of the cost (6-7.6) is convex.
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First, note that:

h′1(θ) = − χ1(θ)

k2 [k2(π + θ)2 + β4(1 + (π + θ)2)]4
< 0 (6-7.11)

and

h′′1(θ) =
χ2(θ)

k2 [k2(π + θ)2 + β4(1 + (π + θ)2)]5
> 0 (6-7.12)

for all θ ∈ [0, (m− 1)π/2] where

χ1(θ) = 2β8(π + θ)

[
β8(2 + (π + θ)2)(4 + (π + θ)2)

+k4(3 + (π + θ)2(6 + (π + θ)2))

+2β4k2(6 + (π + θ)2(6 + (π + θ)2))

]
> 0

and

χ2(θ) = 2β8

[
3k6(π + θ)2(7 + (π + θ)2(10 + (π + θ)2))

+β12(−8 + (π + θ)2(2 + (π + θ)2)(19 + 3(π + θ)2))

+β8k2(−12 + (π + θ)2(104 + (π + θ)2(80 + 9(π + θ)2)))

+β4k4(−3 + (π + θ)2(87 + (π + θ)2(85 + 9(π + θ)2)))

]
> 0

for all θ ∈ [0, (m − 1)π/2]. Hence, h1(θ) is strictly convex and is strictly decreasing

for all θ ∈ [0, (m− 1)π/2]. For h1, first write it explicitly in θ:

h2(θ) =
1 + (π + θ)2

k2
[
1 +

(
1 + k2

β4

)
(π + θ)2

] .
The derivatives of h2 are given by:

h′2(θ) = − 2β4(π + θ)

[k2(π + θ)2 + β4(1 + (π + θ)2)]2
< 0

and

h′′2(θ) =
2β4 [3k2(π + θ)2 + β4(−1 + 3(π + θ)2)]

[k2(π + θ)2 + β4(1 + (π + θ)2)]3
> 0
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for all θ ∈ [0, (m − 1)π/2]. Hence, h2(θ) is strictly convex and is strictly decreasing

for all θ ∈ [0, (m − 1)π/2]. Finally, we need to show that θ = h−1(q) is strictly

concave. Using Equation (6-6.8), we have

dθ

dq
=

1

r(θ)

and

d2θ

dq2
= − 1

r2(θ)

dr

dθ

dθ

dq
.

Since, dθ/dq = 1/r and

dr

dθ
=

k2

r(θ)

(
1 +

k2

β4

)
(π + θ)

then we have

d2θ

dq2
= − k2

r4(θ)

(
1 +

k2

β4

)
(π + θ),

which is strictly negative for all θ ∈ [0, (m − 1)π/2]. This shows that θ = h−1(q) is

a strictly concave function of q for all value of θ in the desired range.

The above arguments show that we have a strictly convex problem since we have

a strictly convex cost function, linear dynamics and since the space of candidate

trajectories (q(t), v(t), ut(t)) ∈ R3, which is trivially convex, for all t ∈ [0, T ]. Based

on the Corollary on page 214 and Theorem 10 on page 216 in [64], this gives the

following result.

Theorem 6.7.1. The necessary conditions (6-7.9) (or, equivalently, (6-7.10)) are

also sufficient. A solution to these necessary and sufficient conditions is the unique

optimal solution to the optimal control problem.
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6.8 Numerical Solution

In this section we numerically obtain the unique solution to the necessary and suf-

ficient conditions given by Equations (6-7.9) or (6-7.10). We use Matlabr’s bvp4c.m

function, the two-point boundary value problem solver. This uses a simple shooting

method that requires an initial guess for the time parameterized states: q(t) (or θ(t)),

v(t), p1(t) and p2(t). Since an initial guess is hard to obtain, we use continuation

method (homotopy) to solve the problem (a general discussion of the method applied

to two point boundary value problems can be found in Chapter 7 in [65].) This is

done as follows.

First let us re-derive the necessary conditions for the modified cost functional.

The goal is to minimize the cost functional:

Jε =

∫ T

0

1

2
u2

t +
ε

2

[
v4

R2(θ)
+
τ 2k2v2

r2(θ)

(
1 + (π + θ)2

)]
dt. (6-8.1)

For this cost function, one can show that the Hamiltonian and the necessary and

sufficient optimality conditions are given by:

Hε(θ, v, p1, p2, ε) = p1v +
1

2
p2

2 −
ε

2

[
v4

R2(θ)

τ 2k2v2

r2(θ)

(
1 + (π + θ)2

) ]
. (6-8.2)

The necessary conditions are given by:

q̇ = v

v̇ = p2

ṗ1 = − ε

r(θ)

[
v4

R3(θ)

∂R

∂θ
(6-8.3)

−τ
2k2v2

r2(θ)
(π + θ) +

τ 2k2v2

r3(θ)

∂r

∂θ

[
1 + (π + θ)2

] ]
ṗ2 = −p1 + ε

[
2v3

R2(θ)
+
τ 2k2v

r2(θ)

(
1 + (π + θ)2

) ]
.
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Note that these are still sufficient and that the solution is unique for each ε ∈ [0, 1].

If we set ε = 0, then the necessary and sufficient conditions become:

q̇ = v

v̇ = p2

ṗ1 = 0

ṗ2 = −p1,

which now form a set of linear differential equations. One can easily solve these

differential equations to obtain:

q(t) = v0t−
t3

6
p0

1 +
t2

2
p0

2

v(t) = v0 −
t2

2
p0

1 + tp0
2 (6-8.4)

p1(t) = p0
1

p2(t) = −tp0
1 + p0

2,

where p0
1 and p0

2 are constants given by:

p0
1 = − 6

T 2
(vT + v0) +

12

T 3
qT

p0
2 =

6

T 2
qT −

2

T
vT −

4

T
v0

and where qT , v0 and vT are the boundary conditions.

In a continuation method, one uses the solution to the problem with ε = ε0 = 0

(that is, Equations (6-8.4)) as the initial guess for ε1 = δ, where δ is a sufficiently

small parameter. Assuming that the problem with ε = ε1 = δ has been successfully

solved, one then uses this solution as the initial guess for the next step with, say,

ε = ε2 = 2δ. This is repeated until ε = εj = jδ is sufficiently close to ε = 1. At this

point, we are able to solve the two point boundary value problem (6-8.3) with ε = 1,

which corresponds to the original problem (6-7.9) we are seeking to solve.
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Consider the optimal control problem with τ = 10, β = 10, T = 1000 seconds,

q0 = 0, qT = 5.26 × 105 km, vT = v0 = 0 m/s and using the same values used

to generate Figure (6.1) which give k = 1.154 × 104. The continuation method is

applied starting with the explicit solution (6-8.4) (corresponding to ε = 0) with a

step size of δ = 0.01. The result is shown in Figure (6.11). In the figure, we plot the

solution with ε = 0, ε = 0.33, ε = 0.50, ε = 0.67 and ε = 1.0, which corresponds to

the desired solution to our problem. To show that, indeed, the solution is continuous

in q(t) and v(t) (which is not clear in Figure (6.11) since solutions roughly overlap),

q(t) and v(t) are plotted in Figure (6.12) for t ≤ 100.01 seconds. One can now see

that the solution varies smoothly as a function of ε.

As a final check on the numerical solutions shown in Figure (6.11), the Hamil-

tonian Hε must be constant along the motion for every value of ε. Evaluating Hε

for the different values of ε, we get Hε=0(t) = 4.982 × 106 (with 0% deviation from

the mean value since this is the exact solution), Hε=0.33(t) = 3.74 × 108 (0.22% de-

viation), Hε=0.5(t) = 5.57 × 108 (0.23% deviation), Hε=0.67(t) = 7.40 × 108 (0.25%

deviation) and Hε=1(t) = 1.09 × 109 (0.26% deviation) on average for all values of

time t ∈ [0, 1000]. The small perturbations in the values of the Hamiltonian is at-

tributed to numerical errors involved in the computation, where we note that as ε is

increased, the % error increases. The Hamiltonian is plotted in Figure (6.13).

6.9 Conclusion

In this chapter, we reviewed the main elements of formation flying for imaging

applications, including the coverage problem. We specialized the discussion to a

class of two spacecraft spiraling formations on a paraboloidal surface. The geometry

of the problem was described and the governing dynamic equations derived. We
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Figure 6.11: q(t), v(t) and ‖u(t)‖ for ε = 0 (exact solution), ε = 0.33, ε = 0.50,
ε = 0.67 and ε = 1.00, which is the desired solution for the optimal
control problem.
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Figure 6.12: q(t), v(t) and ‖u(t)‖ for t ≤ 1.401 seconds.

then formulated an optimal control problem that aims to minimize a cost functional

composed of a weighted sum of fuel expenditure and the projected relative speed.
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ε = 1.00.

This cost function is chosen to both reduce mission fuel costs and improve image

quality by increasing SNR. The necessary conditions were derived and were shown

to be sufficient. We also showed that the solution is unique. We used a continuation

procedure to solve the resulting two point boundary value problem and numerically

find the optimal trajectory. Results show evidence of a tradeoff between image

quality and fuel expenditure. A parametric study will also be conducted to study

the effects of the various model parameters on image quality.



CHAPTER 7

Interferometric Observatories in Earth Orbit

In this chapter we propose a class of satellite constellations that can act as interfer-

ometric observatories in Low Earth Orbit (LEO), capable of forming high angular

resolution images in time scales of a few hours without the need for active control.

First we review the requirements to achieve these imaging goals in Section (7.1). In

Section (7.2) we define a class of constellations that can achieve these goals in LEO.

An optimization procedure is also defined that supplies m pixels of resolution with a

minimum number of satellites. For the example considered, this procedure results in

an observatory that is within 0-2 satellites from a lower bound of
√
m satellites. We

introduce a linear imaging constellation and formulate a concise 0-1 mathematical

program, the solution of which is the solution to optimal aperture configuration for

full coverage of the wave number plane. This is done in Sections (7.3) and (7.4).

The effect of eccentric spacecraft trajectories and gravity field J2 perturbations

on wave number plane coverage are considered in Sections (7.5) and (7.6). Condi-

tions for complete wave number plane coverage are found for certain classes of orbit

perturbations. This analysis leads to design criteria for interferometric observatories

that ensure wave number plane coverage as a function of perturbation strength. In

Section (7.5.1), we show that any perturbation in orbit eccentricity induces lack of

156
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u-v plane coverage. Hence, under J2 short-period perturbations, the u-v plane is not

completely covered since J2 is sufficient to cause perturbations in eccentricity. In

Section (7.5.2), we address short-period J2 perturbations and derive expressions for

in-plane perturbations in position as a function of the orbital elements and obtain an

upper bound for the magnitude of the perturbed in-plane position vector. In Section

(7.6), we adjust the nominal observatory design in such a way as to guarantee full

coverage of the u-v plane under general eccentricity perturbations and short-period

J2 effects.

Finally, in Section (7.8) we discuss some practical implementation issues and the

use of the zonal J2 effect to scan the observatory across the celestial sphere. We

conclude the chapter with some final remarks in Section (7.9).

7.1 Review

In this section we summarize the discussion in Section (2.1). Let qij be the

projected relative position between spacecraft i and j, where i, j = 0, 1, . . . , N − 1

and N is the number of satellites, onto the observation plane O. Let z̄ be the distance

from the image plane to the observation plane. Denote by the term “picture frame”

the angular extent of the intended image on the image plane. The picture frame

has a diameter of length L̄. Pixelating the image plane into an m × m grid, the

size of each pixel is L = L̄/m, and the resulting angular resolution is θr = L/z̄.

Additionally, the angular extent of the desired picture frame is given by θp = L̄/z̄,

leading to θp = mθr.

Recall Figure (7.1). Dimensions of features in the wave number plane are the

reciprocals of the corresponding dimensions in the physical plane. Thus the resolution

disc is a disc of diameter 1/θr and is the region where we desire the MTF to have
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nonzero values (henceforth, simply denoted by wave number plane coverage.) The

picture frame region is a circular disc of diameter 1/θp. Therefore, the diameter of the

resolution disc is m times the diameter of the picture frame disc in the wave number

plane. As the relative position vector of two spacecraft varies in the physical plane,

the picture frame disc moves in the wave number plane, where its center follows

the trajectory of the vector given by ±qij/λ, where λ is the imaging wavelength

of interest. Each satellite, by itself, will contribute a disc that is centered at the

origin with a diameter of 1/θp, and each pair of satellites will contribute two discs

of diameter 1/θp located 180 degrees apart with a radius of
qij

λ
from the center,

where qij = |qij|. Define the minimum relative distance between satellites to be

dmin = λ/θp. To completely cover the resolution disc in the wave number plane it

is sufficient to have satellites distributed such that there exist pairs with relative

distances dmin, 2dmin, · · · , 1
2
(m− 1)dmin. Let dmax = 1

2
(m− 1)dmin.

Telescope
field-of-view

Required
angular
resolution
=θ

Image Plane

x

y

Picture frame
=θ p

r
ν x

y
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Figure 7.1: Physical and wave number plane variables. To indicate time progress,
we show the trajectory on an interval [t0, t].
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7.2 Circular Orbit Constellations

We propose a class of very long baseline constellations that achieves the require-

ment that the wave number plane be completely covered. The satellite constellation

is placed on a circular arc that is a segment of a low Earth orbit and whose center is

located at the center of the Earth (see Figure (7.2).) The satellites are distributed

such that the second satellite is located at a distance of dmin from the first satellite,

the third at 2dmin from the first, the fourth at 3dmin from the first, and so on. Thus,

a constellation of Nf satellites will have the N th satellite located at a distance of

(N − 1)dmin from the first. This distribution, defined as the “fundamental” constel-

lation, implies that there are m = 2Nf − 1 pixels and ensures the complete coverage

of the wave number plane, once the constellation is rotated 180o (i.e. after half an

orbit period.) Figure (7.2) shows the geometry of this configuration for Nf = 3

satellites (m = 5 pixels.) We nominally assume that the orbit plane is perpendicular

to the line of sight to the target.

To compute the precise locations of the satellites in the constellation, specify

wavelength of interest, λ, and the desired angular extent of the picture frame θp =

L̄/z̄. Given a number of satellites Nf , or the number of pixels m, one then obtains

the corresponding angular resolution, θr, and knowledge of θp enables us to compute

dmin and dmax. Throughout this note we use the following values: λ = 10 × 10−6m,

z̄ = 7.408 × 1014km (∼ 24 parsec from the Earth), L̄ = 13 × 103km ro = 7, 200km

and dmin = 569.52km.

Let ı and  be two orthogonal unit vectors in the orbit plane, the position vector
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of the nth satellite, n = 0, · · · , Nf − 1, is

qn(t) = ro

{[
cos(ωt)

(
1− n2

2

(
dmin

ro

)2
)
− sin(ωt)n

dmin

ro

√
1−

(n
2

)2
(
dmin

ro

)2
]
ı

+

[
sin(ωt)

(
1− n2

2

(
dmin

ro

)2
)

+ cos(ωt)n
dmin

ro

√
1−

(n
2

)2
(
dmin

ro

)2
]


}
,

(7-2.1)
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where ω is the orbit angular velocity of the nominal circular orbit

ω =

√
µ

r3
o

, (7-2.2)

and ro is the orbit radius. The relative position vector from satellite l to satellite n

is given by

qlk(t) = dmin

{[
cos(ωt)(l2 − n2)

dmin

2ro

+ sin(ωt)

−n
√

1− n2

(
dmin

2ro

)2

+ l

√
1− l2

(
dmin

2ro

)2
]ı

+

[
sin(ωt)(l2 − n2)

dmin

2ro

+ cos(ωt)

n
√

1− n2

(
dmin

2ro

)2

− l

√
1− l2

(
dmin

2ro

)2
]}.
(7-2.3)

In the wave number plane the relative position vector is q̃lk = qlk/λ, a vector

emanating from the origin with its tip at the center of the picture frame disc. Ignoring

orbit perturbations, the above satellite arrangement guarantees that each qlk has a

constant magnitude (since they are distributed along the same circular orbit), which

is given by

q̃lk =
2roκ

λ(Nf − 1)

×

√√√√√((l2 − n2)
κ

Nf − 1

)2

+

n
√

1−
(

nκ

Nf − 1

)2

− l

√
1−

(
lκ

Nf − 1

)2
2

,

(7-2.4)

where κ = dmax

2ro
. Note that 0 < κ ≤ 1, where κ → 0 as either dmax → 0 or ro → ∞.

The latter case arises if the constellation is placed on an orbit with small curvature.

As κ → 0 we have q̃lk → dmin/λ. κ = 1 only when dmax = 2ro (i.e. when the

constellation spans 180o.)
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Note that all qlk’s rotate at the same (constant) rate, ω and that this constellation

will sweep out the resolution disc in the wave number plane over half an orbit. If

the line of sight is tilted away from the orbit normal by an angle ε, coverage of the

wave number plane will range from full angular resolution θr to a minimum angular

resolution of θr ·cos ε. Figure (7.2) shows the wave number plane coverage for Nf = 3.

Note that imaging in the opposite direction is possible by rotating the spacecraft 180o

about the radius vector.

For the above parameters, the observatory is performing 1.9461×10−6 milli-arcsec

imaging at 10µm. Formation keeping and spacecraft pointing of a formation having a

maximum baseline of about 14,000km, with a 24pc target and under the influence of

J2, drag and other perturbations is expected to be a difficult control problem. This

may require much tighter pointing requirements than the Hubble Space Telescope.

However, note that each aperture in our constellation will probably not be as large

as and will not involve as many flexible structures as the Hubble Space Telescope.

Moreover, note that since all the spacecraft lie on the same circular orbit, they will

all be subject to the same differential perturbations, whose short-term effects are

small. Still, these short-term effects can be accounted for by performing accurate

relative position measurements between the spacecraft -an issue that is not specific

to our observatory, but that is common to a typical interferometric formation.

7.3 Minimizing the number of satellites for a given resolu-
tion

In the fundamental constellation, we define the “fundamental” baselines by q0,n

(n = 0, . . . , N − 1) and the “bonus” baselines by ql,n, l 6= 0. By themselves, the

fundamental baselines guarantee complete coverage of the wave number plane over
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half an orbit period, and the bonus baselines provide redundant coverage. For large

Nf , there will be an excessive number of multiple coverage areas, implying that the

number of satellites can be reduced with the resolution disc still being completely

covered.

To carry out this minimization it is not necessary to consider the two dimensional

wave number plane, and is sufficient to consider the one dimensional wave number

space. Define a ray in the wave number plane parameterized by the radius ν ∈

[0, νmax], where νmax = 1/(2θr). Let the contribution of each pair of satellites (l, n)

to the image coverage be given by

fln(ν) =

{
1 if ν ∈ [q̃ln − d̄min

2
, q̃ln + d̄min

2
]

0 otherwise

, (7-3.1)

for l = 0, . . . , N − 1 and n = l, . . . , N − 1, where d̄min = dmin/λ. Next, define the

function Q(ν) = 1
N

∑N−1
l=0

∑N−1
n=l fln(ν) which is the superposition of all contributions.

Figure (7.2) shows Q for N = Nf = 3 (m = 5 pixels) and Figure (7.3) shows Q for

Nf = 16 (m = 31.) For the Nf = 1, 2, 3 and 4 cases removing any satellite

will immediately cause a portion of the resolution disc to not be covered, thus the

minimum number of satellites for these cases is Nmin(m) = 1
2
(m + 1). For larger

numbers of satellites (i.e., larger number of pixels, m) this is not true.

Our current minimization problem is stated as: “Starting from a fundamental

constellation, with a corresponding fixed number of pixels m, maximize the number

of satellites that can be removed from the constellation under the constraint that

Q(ν) > 0 on the interval ν ∈ [0, νmax].” The constraint ensures complete coverage of

the wave number line, meaning that each point on the line is covered by at least one

satellite pair. Satellite arrangements that violate the lower bound are immediately

discarded as they will have “gaps” in the wave number line, which lead to spatial
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frequencies that will not be covered.

To solve this problem, an algorithm was implemented that computes the Q func-

tion for the fundamental constellation and all its subsets, found by removing one

satellite at a time, two at a time, and so forth. Satellite combinations that violate

the lower threshold are discarded and the remaining solutions with a minimum num-

ber of satellites, Nmin(m), constitute the minimal set. Note that for a given m there

may be several different constellations with the same, minimum, number of satellites.

In a fundamental constellation of Nf satellites, there are up to

Nf∑
n=1

 Nf

n

 = 2Nf − 1 (7-3.2)

trials that this algorithm may need to make, for large Nf this is unreasonably large.

There are, however, numerous ways to speed up the computation by restricting the

space of trials considered, some of which have been used in our computations. This

algorithm has been implemented for m = 3, 5, 7, . . . , 39, the results summarized

in Table (1). Figure (7.3) shows Q for a fundamental constellation of Nf = 16

satellites (m = 31 pixels) and a minimum of Nmin(31) = 8 satellites. The Nmin curve
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shown is the one that maximizes the area under the Q curve over all the 28 possible

constellations with 8 satellites, and is comprised of satellites 0, 1, 2, 3, 4, 5, 10 and 15.

It is important to note that the minimal sets may change with the factor dmin

ro
in

Equation (7-2.4).

A lower bound on the size of a constellation can be determined as follows. For a

constellation of N satellites, there are exactly N

2

 =
1

2
N (N − 1)

baselines. Each baseline provides 2 pixels, plus one for the self pixels giving a total

of m = N(N − 1) + 1. Thus a lower bound on the number of satellites to cover m

pixels is given by:

Nlb = int+

[
1

2

(
1 +

√
4m− 3

)]
,

where int+ [x] is the smallest integer larger than or equal to x. A solution can have

no fewer than this number of satellites in the constellation without having gaps in

the wave number plane. Moreover, there may not exist solutions with Nmin = Nlb.

For example, for m = 15 the minimal solution has Nmin = 5, which is equal to the

lower bound. For m = 29 the minimal solution has Nmin = 7, which has one more

satellite than the lower bound of 6 (see Table (1).) For large m, the lower bound is

approximately int+ [
√
m].

7.4 The Linear Array and its Relation to the LEO constel-
lation

Assume now that we distribute the spacecraft on a linear segment instead of a

circular arc (see Figure (7.4).) There are two ways in which such a situation may

rise. The first situation is exemplified by a multi-aperture single spacecraft mission.
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Fundamental Number Minimum Number Lower
number of of Number of of Bound
satellites Pixels Satellites Solutions Nlb

(Nf ) m = 2Nf − 1 Nmin

1 1 1 1 1
2 3 2 1 2
3 5 3 1 3
4 7 4 1 3
5 9 4 2 4
6 11 5 3 4
7 13 5 3 4
8 15 5 1 5
9 17 6 10 5
10 19 6 3 5
11 21 6 2 5
12 23 7 18 6
13 25 7 12 6
14 27 7 4 6
15 29 7 1 6
16 31 8 28 6
17 33 8 19 7
18 35 8 3 7
19 37 9 142 7
20 39 9 91 7

Table 7.1: Summary of results for a 7200 km orbit, with dmin

ro
= 0.0791 and θp =

1.75× 10−11.

With the apertures arranged on a line, as opposed to a circular arc, we could still

achieve full wave number coverage by a simple 180o rotation of the spacecraft about

an axis that is along the line of sight. Since the solution we propose for the LEO

observatory hinges on the assumption that the apertures are rigidly connected and

the whole constellation performs a simple rotation about an axis passing through

the Earth center, then the concept design proposed above should apply for the linear

aperture spacecraft as well in a space-based short baseline interferometric mission.

We may then want to address the same question posed above: how to achieve max-

imum angular resolution with the minimum number of satellites and without gaps
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on the wave number line? For example, University of Michigan’s proposed EV3M

[66] imaging spacecraft is one where all apertures are positioned linearly to maxi-

mize the achievable angular resolution of the spacecraft with three apertures only

(Nf = 4 s/c, Nmin = 3 s/c, m = 7 pixels), while fully covering the wave number

plane.

Second, note that in the limit as κ → 0, an Earth-orbiting constellation may

be approximated, to first order, as a linear array constellation. Thus a solution of

the linear constellation will be the same as that for the Earth-orbiting constellation

for κ sufficiently small (i.e. either dmax or ro sufficiently small.) As will be shown

below, the optimization problem for the linear array can be expressed as a 0-1 math-

ematical program that can be solved using existing techniques. Techniques, such

as evolutionary programming, furnish solutions for high dimensional problems with

small computational time, as opposed to exhaustive search algorithms as the one

discussed above. This is an advantage in constellation design especially in the case

where the constellation contains a very large number of small-sized satellites, where

an exhaustive algorithm may take weeks of computation time even on the fastest

computers available nowadays. Below, the linear array constellation problem will be

formulated, solution techniques will be discussed and, in the next section, how this

solution can be used as one for the Earth-orbiting array will be discussed.

dmin dmin dmin dmin dmin dmin dmin

Linear Array of Apertures

Figure 7.4: Linear Array Layout

In the “fundamental” arrangement of a linear array of apertures, the relative
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distance between satellites l and n on the wave number line is given by:

q̃lk = |n− l| dmin

λ
. (7-4.1)

In Section (2), we parameterized the wave number line by the actual wave number,

ν. Instead, suppose we parameterize it by νλ
dmin

. Thus, for the linear constellation,

each satellite pair will contribute to a “wave number bin” [χ̄− 0.5, χ̄+ 0.5] centered

at χ̄, where χ̄ = q̃lkλ
dmin

.

Let xi denote the state of each aperture: xi is 1 if it is selected as a member of

the constellation or 0 if not. So, x ∈ BNf , where B = {0, 1} and Nf is the number

of satellites in the fundamental set. Note that for a particular choice of apertures,

cTx represents the total number of satellites for that particular choice of apertures,

where c is an Nf vector of 1’s.

Next, it can be shown that bn(x) = xT Ikx, n = 1, . . . , Nf , is equal to the number

of contributions to interval number n, where the first interval is centered at the origin

and the Nf th interval is the outermost one and where In is a matrix of zeros except

for the (n−1)st super diagonal. For example, if Nf = 5 and satellites 1, 2, 4 are only

selected, then the total number of satellites is equal to [1 1 1 1 1] · [1 1 0 1 0]T = 3

satellites. Also, for this case b1 = 3 contributions due to satellites 1, 2 and 4 each

paired with itself,

b2 = [1 1 0 1 0]



0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

0 0 0 0 0





1

1

0

1

0


= 1,

contributions due to the pairing of satellites 1 and 2, b3 = 1 contributions due to

pairing of satellites 2 and 4, b4 = 1 contributions due to pairing of satellites 1 and
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4 and finally b5 = 0 due to no pairing of satellites which are 5dmin apart from each

other.

Thus the set of designs with the minimum number of satellites that completely

cover the wave number line are all global solutions to the following minimization

problem:

minx cTx

s.t. bn(x) ≥ 1, n = 1, . . . , Nf (7-4.2)

x ∈ BNf .

This problem is generally known in the literature as a combinatoric/integer 0-

1 programme, mostly with linear cost function and linear constraints [67]. The

solution of this problem requires the minimization of a linear cost function subject

to a quadratic constraint. Still, general 0-1 programming techniques exist to solve

the program in Equation (7-4.2).

7.4.1 Numerical Results

We first attempt to solve this problem by applying a thorough search algorithm

as discussed in the previous section. Figure (7.5) shows the number of feasible

solutions (top left), the number of minimal solutions (top right), Nmin (bottom left)

and the CPU time (using a a.5GHz IBM platform) in seconds (bottom right.) The

advantage of this algorithm is that it gives complete information on all possible

minimal solutions (e.g. they configuration of spacecraft in each solution.) The main

drawback is the computational time involved to obtain the results. For example, for

Nf = 21 spacecraft there are 2.5 × 105 feasible solutions that all require evaluation

of their Q functions consuming about 7 hours using the exact search algorithm.
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Figure 7.5: Exact Search Algorithm Results

To decrease the amount of CPU time, a statistical approach to solving the above

0-1 program is to utilize an evolutionary programming (EP) method. This is schemat-

ically summarized in Figure (7.6). The results of applying this algorithm are shown

in Figure (7.7). We notice a tremendous amount of computation time savings. Using

this algorithm we can arrive at solutions in about 18 seconds for Nf = 21 spacecraft.

Due to the random nature of the search algorithm of the EP method, we note that

we do not have full information regarding the total number of solutions available,

the size of the feasible set or the exact design of the constellation (i.e. we may only

know what Nmin is, but not the exact spacecraft chosen for the design.)

A closer look at the right hand plot in Figure (7.6) shows that we seem to be able

to get the correct solution up to Nf = 32. However, for Nf = 37 we notice a drop
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Figure 7.6: An Evolutionary Programming Method

in Nmin. Since it is not possible for a larger fundamental constellation (that achieves

higher angular resolution) to achieve a smaller Nmin than a smaller fundamental

constellation, then we know that the Nmin obtained using the EP algorithm is for

Nf = 37 is not correct. This result casts larger doubt that the results obtained for

Nf > 37 will be correct either, though we could be confident that results for values

of Nf ≤ 36 seem to be plausible.
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Figure 7.7: EP Algorithm Results

We observe that the algorithm performs poorly for higher values of Nf though

much more faster than the exact search algorithm. In general one would trade off

accuracy of solutions for speed in an EP algorithm. One may wish to improve
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the results, though at the expense of longer computational time, by constricting the

offspring generated to be ones that are visible in the first place. The results are shown

in Figure (7.8), where we observe that consistent results are obtained for values of

Nf ≤ 23. For Nf = 23, the computation time is 1.8 hours versus 18 seconds for the

general EP algorithm and more than 7 hours for the thorough search algorithm.
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Figure 7.8: Restricted EP Algorithm Results

7.4.2 The Linear Array and the Earth-Orbiting Observatory

Assume that we can find a distance preserving isometry, φ, between the (curved)

Earth-orbiting and the linear array geometries discussed above. As mentioned above,

the significance of the linear problem is that we can readily solve this problem (as

stated in Equation (7-4.2)) and then compute the corresponding solution on the

curved one-dimensional space through the inverse mapping φ−1 (see Figure (7.9).)

The main benefit is that we can utilize techniques available in the literature for

solving the 0-1 program in Equation (7-4.2) to compute the solution to an Earth-

orbiting configuration. First, recall the definition for an isometry and isometric
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spaces [68]:

Definition 7.4.1 (Isometry and Isometric Spaces). Let M1 and M2 be two

topological spaces. An isometry φ : M1 → M2 is a one-to-one correspondence such

that d2(φ(x), φ(y)) = d1(x, y) for all x, y ∈M1, where d1(·, ·) and d2(·, ·) are distance

functions on M1 and M2, respectively. If there exists an isometry φ : M1 → M2,

then M1 and M2 are called isometric.

7dmin 6dmin
5dmin

4dmin

3dmin

2dmin

dmin

d
m

in
d

m
in

d
m

in
d

m
in

d
m

in
d

m
in

d
m

in

φ( )

φ  ( )−1

Curved Observatory Linear Observatory

Figure 7.9: Relation between the Linear And Earth-Orbiting Constellations

S1 being the circle in R2 with radius ro, let MC ⊂ S1 denote the one-dimensional

space for a curved Earth-orbiting constellation and ML ⊂ R1 be the one-dimensional

space, which is simply a line segment on R1, for the linear aperture constellation.

Let dC(sl, sn) be the Euclidean distance in R2 between satellites n and l on MC

and let dL(sl, sn) be the Euclidean distance in R1 between satellites n and l on ML.

dC and dL are given by

dC(sl, sn) =
2roκ

λ(Nf − 1)

×

√√√√√((l2 − n2)
κ

Nf − 1

)2

+

n
√

1−
(

nκ

Nf − 1

)2

− l

√
1−

(
lκ

Nf − 1

)2
2

(7-4.3)
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Figure 7.10: Critical value of κ, κ∗, for 5 ≤ Nf ≤ 10.

and

dL(sl, sn) = |n− l| dmin/λ (7-4.4)

Due to the way spacecraft are arranged in the fundamental configuration, MC and

ML may not have an isometry. That is because if MC is simply unfolded onto ML,

spacecraft nodes on MC do not map onto spacecraft nodes on ML. Though it is true

that the real line R1 and the circle S1 have the isometry φ(t) = (ro sin t, ro cos t) :

R1 → S1 ⊂ R2 using a metric that measures distance along the curves, this is not

true in our case because the metric we use is the direct shortest distance between

points in R2 as opposed to a metric along S1.

For κ 6= 0, points on MC ⊂ S1 are shifted when MC is unfolded onto ML. Despite

the fact that the total distance from the zeroth spacecraft to the (Nf−1)st spacecraft

is preserved and is equal to dmax, distances between intermediate spacecraft are not.

However, note that:

lim
κ→0

dC(sl, sn) = dL(sl, sn). (7-4.5)

In other words, dC(sl, sn) → dL(sl, sn) as the curvature of MC or dmax approach zero.



175

Thus, for sufficiently small κ, the solution to the linear array should be identical

to that of the curved array to first order. In the next section we show results that

indicate that for sufficiently small κ, the solution to the mathematical program in

Equation (7-4.2) is also a solution to the Earth-orbiting constellation configuration.

7.5 Effects of Orbit Perturbations on the Constellation

In this and the next section we discuss the effect of J2 orbit perturbations on

image quality and propose a procedure to modify the constellation design to abate

the effects of these perturbations.

7.5.1 Eccentricity Effects on Wave Number Plane Coverage

In this section we study the effects that small orbital perturbations have on the

constellation trajectories in orbit, and, in turn, on wave number plane coverage. The

main objective is to show that any general eccentricity perturbation immediately

leads to gaps in the frequency domain. This implies that for a J2-perturbed orbit,

frequency domain gaps are expected to occur, which is addressed in the next section.

Below, we denote by N the number of spacecraft in the constellation (either minimal

or fundamental, but not otherwise1.) Let the set I be the set of spacecraft indexes

in the set of chosen spacecraft. Here we assume that κ is sufficiently small for the

linear array assumption to hold. With this assumption, solutions to (7-4.2) will also

be solutions to the curved constellation (that is, κ 6= 0.)

Let x and y be the axes of a fixed frame of reference whose origin O is located at

the center of the Earth (see Figure (7.11).) In the x-y frame, the spacecraft locations

1This assumption is made in order to facilitate the proofs of Theorem 3.1 below.
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are approximated by

xi = r0 cos(nt) + Ai sin(nt+ φi) cos(nt)−
[
y0

i − 2Ai cos(nt+ φi)
]
sin(nt),

yi = r0 sin(nt) + Ai sin(nt+ φi) sin(nt) +
[
y0

i − 2Ai cos(nt+ φi)
]
cos(nt).

Constellation

Orbit

X

Y

CW Frame

x

y
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ri

Spacecraft i

O'

(x  , y  )i i
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Figure 7.11: The problem geometry.

Recall that qi is the position vector of the ith spacecraft in the x-y reference

frame. In the wave number plane, the coordinate of the ijth picture frame disc is,

thus, given by

x̃ij(t) :=
xj(t)− xi(t)

λ

=
1

λ

{
[Aj sin(nt+ φj)− Ai sin(nt+ φi)] cos(nt)

−
[(
y0

j − y0
i

)
− 2 (Aj cos(nt+ φj)− Ai cos(nt+ φi))

]
sin(nt)

}
,

ỹij(t) :=
yj(t)− yi(t)

λ

=
1

λ

{
[Aj sin(nt+ φj)− Ai sin(nt+ φi)] sin(nt)

+
[(
y0

j − y0
i

)
− 2 (Aj cos(nt+ φj)− Ai cos(nt+ φi))

]
cos(nt)

}
.
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Note that q̃ij(t) = (1/λ)qij(t) = qj − qi, i, j ∈ I is simply equal to the vector

(x̃ij(t), ỹij(t)) in the wave number plane.

Now, for this general setting of the problem, we consider the following question:

Let ‖·‖2 denote the 2-norm on R2. Fix a wave number vector v = (vx, vy) ∈ R2

such that ‖v‖2 ≤ 1/(2θr). For any i, j ∈ I, does there exist a set of time intervals

T ∈ [0, 2π/n] (possibly just singleton sets) such that the inequality

‖q̃ij(t)− v‖2 ≤
1

2θp

(7-5.1)

holds? In other words, are points in the wave number plane of magnitude v =√
v2

x + v2
y , v ≤ 1/(2θr), covered for some time during a single orbit period? Bsy

construction one answer is that if Ai = 0 for all i ∈ I, then for each v ≤ 1/(2θr)

there exists an i and j such that the inequality holds, and, thus, coverage of the

resolution disc is achieved. This can be proven as follows.

Assumption 7.5.1. Note that due to the symmetry of the trajectories in the wave

number plane, one can assume that j ≥ i, i, j ∈ I, and study the trajectories q̃ij(t).

The trajectories of q̃ij(t) with i ≥ j will follow a path symmetric to those with j ≥ i.

Henceforth, we assume that j ≥ i.

Theorem 7.5.1. If Ai = 0 for all i ∈ I, then the inequality (7-5.1) is satisfied for

all v ≤ 1/(2θr).

Proof If Ai = 0 for all i ∈ I, we have

x̃ij = −1

λ

(
y0

j − y0
i

)
sin(nt), and

ỹij =
1

λ

(
y0

j − y0
i

)
cos(nt).

Let v = (vx, vy) have polar coordinates (v, θv). Then, vx = v cos θv and vy = v sin θv.
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Thus,

‖q̃ij(t)− v‖2
2 =

∥∥∥∥(−1

λ

(
y0

j − y0
i

)
sin(nt)− vx,

1

λ

(
y0

j − y0
i

)
cos(nt)− vy

)∥∥∥∥2

2

=
1

λ2
(j − i)2d2

min + v2 +
2

λ
(j − i)dmin (sin(nt)vx − cos(nt)vy) .

First, if v < 1/(2θp), let j = i, for any j, i ∈ I, and therefore we have

‖q̃ij(t)− v‖2
2 = v2 <

1

2θp

,

which proves the theorem for v < 1/(2θp). On the other hand, if 1/(2θp) ≤ v ≤

1/(2θr), then there exists n = 1, . . . , Nf − 1 such that [1/(2θp)] [n− (1/2)] ≤ v ≤

[1/(2θp)] [n+ (1/2)]. In either a minimal or the fundamental constellation, by design

there exist spacecraft i and j such that j − i = n for all n = 1, . . . , Nf − 1. Let

j − i = n. Therefore, we have

‖q̃ij(t)− v‖2
2 = n2d

2
min

λ2
+ v2 +

2kv

θp

(cos θv sin(nt)− sin θv cos(nt))

≤
(

2n2

θ2
p

+
n

θ2
p

)
(1 + cos θv sin(nt)− sin θv cos(nt)) +

1

4θ2
p

,

where the inequality v ≤ [1/(2θp)] [n+ (1/2)] and the fact that dmin/λ = 1/θp have

been used. If we set nt = θv− (π/2), then 1+cos θv sin(nt)− sin θv cos(nt) = 0. This

results in

‖q̃ij(t)− v‖2
2 ≤

1

4θ2
p

,

which proves the theorem for 1/(2θp) ≤ v ≤ 1/(2θr).

�

Remark 7.5.1. Note that the phase angles φi, i ∈ I, are not defined when Ai = 0,

i = 0, . . . , N − 1.

Corollary 7.5.1. If Ai = A and φi = φ for all i ∈ I then the inequality (7-5.1) is

satisfied for all v ≤ 1/(2θr).
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Proof If Ai = A and φi = φ for all i ∈ I, then we have

x̃ij = −1

λ

(
y0

j − y0
i

)
sin(nt), and

ỹij =
1

λ

(
y0

j − y0
i

)
cos(nt)

and the proof follows as in Theorem (7.5.1).

�

Next, we assume that all Ai = A, i ∈ I, are the same but the phase angles may

be arbitrary. This case is of special interest. Assume we have knowledge of the upper

bound on orbit eccentricity, denoted emax, for all spacecraft orbits. Thus, the maxi-

mum amplitude any one of the spacecraft ellipses in the CW frame achieves is given

by Ai = A = emaxro, for all i ∈ I. By studying this version of the problem, we can

make some useful conclusions regarding wave number plane coverage and, possibly,

ideas for how to take these perturbations into account in the design of interferometric

observatories so that they attain complete coverage of the wave number plane.

From Corollary (7.5.1), if all spacecraft were in phase then the wave number plane

is completely covered. This represents one extreme. The other extreme is when any

two neighboring spacecraft2 are 180 degrees out of phase with each other. Since

distance is an invariant under any frame of reference, the center of the ijth picture

frame can be expressed as

‖q̃ij(t)‖2
2 =

(
x̃2

ij + ỹ2
ij

)
= x̃2

ij + ỹ2
ij,

where x̃ij = (1/λ) (xj − xi) and ỹij = (1/λ) (yj − yi):

x̃ij(t) =
1

λ
[Aj sin(nt+ φj)− Ai sin(nt+ φi)] , (7-5.2)

ỹij(t) =
1

λ

{(
y0

j − y0
i

)
− 2 [Aj cos(nt+ φj)− Ai cos(nt+ φi)]

}
(7-5.3)

2In a minimal solution, recall that neighboring satellites are not necessarily such that j = i± 1.
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Furthermore, let

q̃∗ij =

(
0, (j − i)

dmin

λ

)
be the nominal (zero eccentricity) relative position vector, where the components

are given in the CW frame. Thus, for Ai = A, i ∈ I, and assuming that j and i

correspond to neighboring spacecraft with say, φi = 0 and φj = π, we then have

fij =
∥∥q̃ij − q̃∗ij

∥∥2

2
=

4A2

λ2

[
1 + 3 cos2(nt)

]
,

which represents the magnitude square of the position deviation. The deviation fij

attains a maximum value of 16A2/λ2 at nt = 0, π and a minimum value of 4A2/λ2 at

π/2, nt = 3π/2. This implies that portions of the resolution disc will not be covered

if the existing spacing is chosen with no overlap. An example is given in Figure 7.12

for Nf = 2. In the figure, the dotted circle represents the wave number disc, the

solid line represents q̃ij and the dashed lines are the boundaries of the picture frame

disc. Shaded regions represent those parts of the resolution disc that are not covered.

Indeed the minimum and maximum values of ‖q̃ij‖2 take place along the νx axis and

νy-axis, respectively. Note that the x-y axes are out of phase from the νx-νy axes by

π/2 due to the fact that the spacecraft are initialized in an upward position. This

upward configuration corresponds to points on the νy axis in the frequency domain

as opposed to the νx axis.

Further, assume eccentricity perturbations such that Ai = A, i ∈ I, and that

each neighboring spacecraft are 180◦ out of phase from each other, the minimum

possible distance between any neighboring spacecraft is given by dmin− 4A. In order

that no two neighboring spacecraft trajectories cross each other we must constrain

A < dmin/4, which corresponds to a bound on eccentricity e ≤ dmin/(4ro). Figure

(7.13) shows the trajectory in the wave number plane for a two spacecraft system
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Figure 7.12: Wave number plane trajectory for a 180◦ out-of-phase two spacecraft
system with equivalent eccentricity (A = emaxro, emax = 1× 10−4, ro =
7.2× 103km.)

with path crossing (A = emaxro = 14.4 km > dmin/4 = 5.93 km and emax = 0.002,

whereas the upper bound on e is 8.24 × 10−4.) Note here that when the spacecraft

are closest to each other, higher portions of the wave number plane are not covered.

Hence, if the perturbation in the eccentricity is such that

A <
dmin

4
(7-5.4)

then the potential for spacecraft crossing each others’ paths, and, consequently, the

potential for collisions, is diminished.

The above discussion implies that for equal Ai, i ∈ I, we must have equal phases

for complete coverage. In practice, however, trajectory initialization errors will al-

ways exist. We next assume that such errors do exist. In other words we assume that

φj − φi is sufficiently small. First note that with Ai = A, i ∈ I, equations (7-5.2)

can be re-written as

x̃ij(t) =
A

λ
{sin(nt) [cos(φj)− cos(φi)] + cos(nt) [sin(φj)− sin(φi)]} ,

ỹij(t) = (j − i)
dmin

λ
+

2A

λ
{sin(nt) [sin(φj)− sin(φi)]− cos(nt) [cos(φj)− cos(φi)]} .
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Figure 7.13: Trajectory crossing in the wave number plane for a two spacecraft
constellation with equivalent eccentricity (A = emaxro, e = 0.002,
ro = 7.2× 103km.)

With φj, φi ≈ 0, linearize x̃ij and ỹij with respect to φi and φj to obtain

x̃ij(t) ≈ A

λ
cos(nt) (φj − φi) ,

ỹij(t) ≈ (j − i)
dmin

λ
+

2A

λ
sin(nt) (φj − φi) .

Thus, we have

fij =
∥∥q̃ij − q̃∗ij

∥∥2

2
=
A2

λ2
φ2

ij

[
1 + 3 sin2(nt)

]
,

where φij = φj − φi is the difference in initial values of the phase angles. This

shows that perturbations due to small errors in phase have a second order effect on

the ensuing trajectory. The deviation fij attains a maximum value of 4A2φ2
ij/λ

2 at

nt = π/2, 3π/2 and a minimum value of A2φ2
ij/λ

2 at nt = 0, π.

Assume now that all spacecraft are in phase with arbitrary Ai and φi = 0, i ∈ I.

Then one finds that the deviation fij is given by fij = (A2
ij/λ

2) [1 + 3 cos2(nt)], where

Aij = Aj − Ai. First, note that the perturbation is second order in the difference in

amplitudes. Hence, initializing the spacecraft with a sufficiently small error leads to

second order effects on the relative trajectories. Therefore, fij attains a maximum
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value of 4A2
ij/λ

2 at nt = 0, π and a minimum value of A2
ij/λ

2 at nt = π/2, 3π/2.

An example is shown in Figure (7.14). Note that some higher frequency components

are not covered.
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Figure 7.14: Wave number plane trajectory for an in-phase two spacecraft system
with different eccentricities (A1 = 2.569km, A2 = 1.341km.)

To illustrate the complexity of the problem in the general case, Figure (7.15)

shows the trajectories in the wave number plane and their lack of coverage regions

(the shaded areas) for the cases when Nf = 2 and Nf = 5, for which the nominal

minimal solutions contain No = 2 and No = 4 spacecraft, respectively, with randomly

chosen eccentricities and phases. For the former case, we have A0 = 4.65 km (e0 =

6.46×10−4) and A1 = 4.04 km (e1 = 5.61×10−4) and φ0 = 165.99◦ and φ1 = 204.42◦.

For the latter case, we have a maximum eccentricity of 4.97× 10−4 and a minimum

eccentricity of 4.86 × 10−5 and a maximum phase of 356.43◦ and a minimum phase

of 5.40◦, where the spacecraft with index i = 2 6∈ I.

Finally, Figure (7.16) shows the result for Nf = 5 with a maximum eccentric-

ity of 1.5 × 10−3 and a minimum value of 3.20 × 10−4 and a maximum phase of

335.37◦ and a minimum phase of 197.56◦. These values result in path crossing since

A1, A4 > dmin/4 = 5.93 km. Note the complexity of the wave number plane coverage
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Figure 7.15: Wave number plane trajectory for (a) Nf = 2 and (b) Nf = 5.

trajectories as well as the lack of coverage area.
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Figure 7.16: Wave number plane trajectory for Nf = 5 with path crossing.

7.5.2 J2 Effects on Imaging

In this section we study short-period perturbation effects of the second zonal

harmonic, J2, on frequency domain coverage. In [23], the authors derive necessary

conditions to establish J2 invariant relative orbits using mean orbital elements, work-

ing with the first order secular J2 effects. The resulting conditions guarantee that the

drift rate of the ascending node and the mean argument of latitude is the same for

all spacecraft in the formation. The gravity coefficient J2 also induces short-period
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perturbations within a single orbit period. These perturbations will in general result

in a lack of frequency domain coverage.

As discussed earlier in the Chapter and as in [19], secular drift in the longitude of

the ascending node allows the observatory to scan the entire celestial sphere within

one nodal period. Reference [23] derives the conditions necessary for formation keep-

ing by controlling inter-spacecraft distances. This is because nominal trajectories in

[23] are allowed to be different. We, on the other hand, will use their conditions to

ensure that each spacecraft does not drift from its nominal circular path as opposed

to maintaining formation directly. This is by virtue of the fact that all spacecraft in

our observatory have identical nominal trajectories.

In our work we address short-period J2 effects as follows. Let E = (a, e, χ,Ω, ω, ı),

where a is the semi-major axis, e is the eccentricity, ı is the inclination, Ω is the

longitude of the ascending node, ω is the argument of perigee and M = nt − nτ =

nt + χ is the mean anomaly with τ being the time at epoch. First, we have the

following relationship between the perturbations in the position vector q in a frame

we denote by FE, which is fixed at the center of the Earth (hence, the subscript E

in FE), and perturbations in the orbital elements:

∆q =
∂q

∂E
∆E, (7-5.5)

where ∆ denotes a perturbation in the variable under consideration. Since, x, y and

z can be expressed in terms of E as

x = r [cos Ω cos (f + ω)− sin Ω sin (f + ω) cos ı]

y = r [sin Ω cos (f + ω) + cos Ω sin (f + ω) cos ı] (7-5.6)

z = r sin (f + ω) sin ı.
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where

r =
a(1− e2)

1 + e cos f
(7-5.7)

and f is the true anomaly, then we have

∂q

∂E
=


∂x
∂a

∂x
∂e

∂x
∂f

df
dM

dM
dχ

∂x
∂Ω

∂x
∂ω

∂x
∂ı

∂y
∂a

∂y
∂e

∂y
∂f

df
dM

dM
dχ

∂y
∂Ω

∂y
∂ω

∂y
∂ı

∂z
∂a

∂z
∂e

∂z
∂f

df
dM

dM
dχ

∂z
∂Ω

∂z
∂ω

∂z
∂ı

 , (7-5.8)

where dM/dχ = 1 and

df

dM
=

(a
r

)2 (
1− e2

) 1
2 . (7-5.9)

Note, however, that the choice of elements E is singular for an orbit whose

eccentricity is nominally zero. Hence, we use the set of orbital elements E′ =

(a, ı, ε,Ω, h, k), where ε = Ω + ω + χ is the mean longitude of the epoch, h = e sinω

and k = e cosω. In what follows we refrain from taking the limit as e → 0 until

later in the analysis in order to fully cancel out any tentative singularities in the

derivation. If we write ∆E′ = T−1∆E with

T−1 =



1 0 0 0 0 0

0 0 0 0 0 1

0 0 1 1 1 0

0 0 0 1 0 0

0 sinω 0 0 e cosω 0

0 cosω 0 0 −e cosω 0


(7-5.10)

then we have

∆q =
∂q

∂E
T∆E′. (7-5.11)
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Let G = lime→0
∂q
∂E
T . Then G is given by

G =

 cΩcω+f − sΩcısω+f asΩsısω+f −a
(
cΩsω+f + sΩcıcω+f

)
a (1− cı) sΩ−(ω+f)

sΩcω+f + cΩcısω+f −acΩsısω+f a
(
−sΩsω+f + cΩcıcω+f

)
a (1− cı) cΩ−(ω+f)

sısω+f acısω+f asıcω+f −asıcω+f

a
2

[
sΩcı

(
2 + c2ω + c2f

)
+ cΩ

(
s2f + s2ω

)]
−a

2

[
cΩ

(
2 + c2f − c2ω

)
− sΩcı

(
s2f − c2ω

)]
a
2

[
sΩ

(
s2f + s2ω

)
− cΩcı

(
2 + c2ω + c2f

)]
−a

2

[
sΩ

(
2 + c2f − c2ω

)
+ cΩcı

(
s2f − c2ω

)]
−ası

2

(
2 + c2f + c2ω

)
−ası

2

(
s2f − s2ω

)
 ,

where we use the notation su = sinu and cu = cosu. With ∆E′ = {∆ap, ∆ıp,

∆εp, ∆Ωp, ∆hp, ∆kp}, note that the elements of ∆E′ are dimensionless except for

∆ap. Hence, we normalize ∆ap by its mean value a for dimensional consistency. By

defining ∆E′′ = {∆ap/a,∆ıp,∆εp,∆Ωp,∆hp,∆kp}, one can rewrite the relation in

equation (7-5.11) as ∆q = G0∆E′′, where

G0 = a


cΩcω+f − sΩcısω+f sΩsısω+f −cΩsω+f − sΩcıcω+f (1− cı) sΩ−(ω+f)

sΩcω+f + cΩcısω+f −cΩsısω+f −sΩsω+f + cΩcıcω+f (1− cı) cΩ−(ω+f)

sısω+f cısω+f sıcω+f −sıcω+f

1
2

[
sΩcı

(
2 + c2ω + c2f

)
+ cΩ

(
s2f + s2ω

)]
− 1

2

[
cΩ

(
2 + c2f − c2ω

)
− sΩcı

(
s2f − c2ω

)]
1
2

[
sΩ

(
s2f + s2ω

)
− cΩcı

(
2 + c2ω + c2f

)]
− 1

2

[
sΩ

(
2 + c2f − c2ω

)
+ cΩcı

(
s2f − c2ω

)]
− sı

2

(
2 + c2f + c2ω

)
− sı

2

(
s2f − s2ω

)
 .

The basic equations to be used to obtain ∆E′′ are Lagrange’s planetary equations,

which express the rate of change of the orbit elements as a function of the perturbing

function and the mean orbit elements. The perturbing function that expresses the

short-period J2 perturbations is given by [69]

F =
3

2

µJ2R
2

a3

(a
r

)3
{(

1

3
− 1

2
sin2 ı

)[
1−

(r
a

)3 (
1− e2

)−3/2
]

+
1

2
sin2 ı cos 2 (f + ω)

}
. (7-5.12)

The Lagrange planetary equations can be found in equation (6.29) in [69] for the set

E. One may proceed as in [69] (Section (10.4.1)) to obtain closed form solutions for

the non-singular set of orbital elements E′′ with f being the independent variable.
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However, given the complexity of the equations under consideration, this tends to be

a tedious computation. An alternative method is to use the relation ∆E′ = T−1∆E

to compute the osculating orbital element deviations ∆E′ from ∆E that can be found

in [69] (pages 317-318.) Note again that we let e be arbitrary to obtain ∆E′ and

then take the limit as e→ 0. Extracting the periodic part of the motion only (since

secular terms cancel out in a relative motion study), the resulting equations are

∆ap

a
=

3

2

J2R
2

a2
sin2 ı cos 2(f + ω)

∆ıp =
3

8

J2R
2

a2
sin 2ı cos 2(f + ω)

∆εp =
3

4

J2R
2

a2

[
− 2 + 5 sin2 ı+ 2 cos ı

(
− sinω cosω

+2 sinω cosω cos2 f − sin f cos f + 2 cos2 ω sin f cos f
)]

(7-5.13)

∆Ωp =
3

4

J2R
2

a2
cos ı sin 2(f + w)

∆hp =
1

16

J2R
2

a2
[3 sin(ω + f) (1 + 7 cos 2ı) + 7 sin 3(ω + f) (1− cos 2ı)]

∆kp =
1

16

J2R
2

a2
[3 cos(ω + f) (3 + 5 cos 2ı) + 7 cos 3(ω + f) (1− cos 2ı)] ,

where the independent variable is the true anomaly f as opposed to time t. These

equations will become singular for small inclinations. However, we are interested in

orbits with an inclination ı = 45◦ to be able to scan the entire celestial sphere within

one nodal period. We do not make the substitution ı = 45◦ here to allow for other

applications for which ı = 45◦ is not the case.

Therefore, we have ∆q = G0∆E′′, where ∆E′′ is computed from equation (7-

5.13). Note that the perturbations ∆q are expressed in the Earth-fixed frame FE.

However, we are interested in in-orbital plane perturbations in spacecraft positions

–assuming that the line of sight is perpendicular to the orbit plane3. Perturbations

3If we are imaging in a direction not perpendicular to the orbit plane (say in the polar direction
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of the position vector in a direction normal to the orbit plane do not affect the image

quality. This is due to the fact that the range to the target, z̄, is too large to have

J2-induced perturbations in the normal direction affect image quality4.

Let I,J,K be a dextral set of orthonormal unit vectors, where I points towards the

ascending node, K is perpendicular to the orbit plane and J is such that J = K× I.

Denote this moving frame by FO. For this choice of frame, the coordinates, x, y, Z,

in the FO frame are related to the coordinates, x, y, z, in the FE frame by
x

y

Z

 = R


x

y

z

 ,
where the rotation matrix R is given by

R =


cΩ sΩ 0

−sΩcı cΩcı sı

sΩsı −cΩsı cı

 .

Let PO = [ x y Z]T and PE = [ x y z]T . The perturbed coordinates are therefore

related by5

∆PO = R∆PE.

Hence we have

∆PO = RG0∆E′′. (7-5.14)

for a 45◦ inclination orbit), then perturbations normal to the orbit plane will affect frequency domain
coverage. This, however, is a more complex problem (as picture frame discs become elliptic) and
we restrict our attention to the case when the line of sight is perpendicular to the orbit plane.

4In fact, one can show that even significant deviations along the line of sight, which is normal
to the observation plane (that is, in our case, the orbit plane) do not affect image quality.

5The matrix R is a function of mean orbit elements and, hence, ∆R = 0.
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Next, we derive a conservative upper bound for perturbations in the x and y

coordinates of PO. First let PXY
O = [x y]T = IXY PO, where the projection matrix

IXY is given by

IXY =

 1 0 0

0 1 0

 ,
and let

∥∥∆PXY
O

∥∥ =
√

∆x2 + ∆y2 denote the magnitude of the total in-plane pertur-

bation of the position vector. Therefore, we have

∥∥∆PXY
O

∥∥ = ‖IXYRG0∆E′′‖ . (7-5.15)

If we let H = IXYRG0, then by the Schwartz and triangular inequalities we have

∥∥∆PXY
O (f)

∥∥ ≤ ‖H‖ · ‖∆E′′‖

≤ ‖H‖
(∣∣∣∣∆aa (f)

∣∣∣∣+ |∆ı(f)|+ |∆ε(f)|+ |∆Ω(f)|+ |∆h(f)|+ |∆k(f)|
)

= ‖H‖∆(f),

where ∆(f) denotes the second term (in brackets) after the second inequality. Finally,

one now simply computes the maximum in-plane deflection in the magnitude of the

position vector as

∆OP
maxq = max

0≤f≤2π
‖H‖∆(f). (7-5.16)

Equation (7-5.15) or (7-5.16) can now be used to obtain a conservative estimate of

deflection of a spacecraft from its nominal circular trajectory due to short-period

J2 effects. With this, one may further assume the linear array design, in which

the slightest perturbation from the nominal trajectory will immediately induce gaps

in the frequency domain, is used. Note that this assumption is also conservative

because, in a curved constellation, redundant multiple coverage exists between the

different picture frame circular trajectories (that is to say, the frequency “bins” blend
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into each other.) Therefore, if the nominal design is modified such that with the J2

perturbations in any of the spacecraft’s position is given given by ∆OP
maxq, we can

then guarantee complete coverage of the frequency domain. This we investigate in

Section (7.6).

Note that there are several definitions for a matrix norm. With each choice of

norm a different upper bound is obtained. The most widely used matrix norms

are the 1, 2, infinity and Frobenius norms. For more on matrix norms, consult

any reference on linear algebra such as [70].) It was generally found that these

approximations were too conservative and the least conservative was the two-norm.

On the other hand, one may also compute the exact expression for
∥∥∆PXY

O

∥∥ from

equation (7-5.15). If we set Ω = ω = 0 and ı = 45◦,
∥∥∆PXY

O

∥∥ is computed as

∥∥∆PXY
O

∥∥ =

√
512

512

J2R
2

a
(126− 34 cos 2f + 3 cos 4f − 14 cos 6f − 49 cos 8f)

1
2 .(7-5.17)

Figure 7.17 shows a comparison between the exact value for
∥∥∆PXY

O

∥∥ and the con-

servative upper bound on
∥∥∆PXY

O

∥∥ using the two-norm for 0 ≤ f ≤ 2π with

a = 7, 200km. Even though the two-norm definition is the least conservative, we

observe in Figure (7.17) that this approximation is an order of magnitude higher

than the exact maximum value. One may also compute the maxima and minima

of
∥∥∆PXY

O

∥∥ from equation (7-5.17).
∥∥∆PXY

O

∥∥ was computed numerically and was

found to have a maximum value of

0.6116
J2R

2

a
= 3.73 km

at f = 0.39π, 0.61π, 1.39π, 1.61π and a minimum value of

1

4

J2R
2

a
= 1.53 km

at f = 0, π.
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Figure 7.17: Exact
∥∥∆PXY

O

∥∥ (solid) and the conservative upper bound ∆OP
maxq using

the two-norm (dash-dotted.)

7.6 Design for Complete Wave Number Plane Coverage Un-
der Perturbations

7.6.1 Eccentricity Corrections

In this section we modify the design procedure to account for perturbations due to

orbit eccentricities and J2. First, note that perturbations in relative position vectors

result in gaps in the frequency domain at high and low frequencies, where high

frequency components correspond to the finer details of an image and low frequency

components correspond to the coarser details. Hence, since it is meaningless to

attempt to reconstruct an image with fine details while ignoring the main, coarser

details, low frequency components are more crucial to be able to reconstruct than

higher frequency components. Based on this observation, and since we will not be

able to account for both low and high frequency gaps within a single orbit period,

the nominal configuration design is modified to ensure coverage of the low frequency
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components at the cost of leaving out the highest spatial frequencies. This is done

as follows.

Let ∆max denote the maximum perturbation in the frequency domain. ∆max may

correspond to either perturbations in orbit eccentricity or, more generally, to J2.

For simplicity, we will use perturbations in orbit eccentricity to illustrate how the

design is modified to ensure low frequency coverage. At the end of this section, we

also comment on how this is done to counterbalance J2 effects. Simply shifting the

centers of the picture frame discs by an amount of ∆max corresponds to decreasing the

inter-spacecraft distances by an amount of λ∆max in the physical domain. Therefore,

if dmin = λ/θp is the nominal distance between a pair of spacecraft in the fundamental

set, then let

d∗min = dmin − λ∆max = λ

(
1

θp

−∆max

)
(7-6.1)

be the new inter-spacecraft distance in the fundamental set. This also leads to a total

contraction of the constellation. Consequently, this leads to shifting the centers of

the picture frame discs in the frequency domain by ∆max. While under perturbations,

this design modification ensures “closing up” all low frequency gaps at the cost of

decreasing the overall effective system resolving power. To regain coverage of the

higher frequencies, we may append the constellation by an additional spacecraft to

increase the maximum constellation baseline as well as improve the effective angular

resolution of the observatory.

Note that the minimal design that follows from the modified configuration of the

fundamental set may be different from that derived from the nominal fundamen-

tal set. However, since the modified fundamental configuration ensures coverage of

low frequencies, the minimal configuration, by definition, will also retain the same

property.
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We now give some examples. In Section (7.5.1), the first scenario we considered

was that of having two spacecraft which are 180◦ out of phase but with the same

eccentricity. The maximum perturbation in the frequency domain was computed as√
fij = 4A/λ. Hence, we set ∆max = 4A/λ. The top left plot in Figure (7.18) shows

the frequency domain coverage for the modified design corresponding to the nominal

trajectory used in Figure (7.12). Note that all low frequency content is recovered at

the expense of additional lack of high frequency coverage.

The top right plot in Figure (7.18) shows frequency domain coverage using the

modified design corresponding to two in-phase spacecraft with different eccentricities.

This plot is the modified version of the one that appears in Figure (7.14). Here we

set ∆max =
√
fij = 2 |A1 − A0| /λ as discussed in Section (7.5.1). Again, we achieve

complete coverage of the lower frequency components at the cost of additional lack

of high frequency coverage.

If δi
max is the maximum perturbation in the position of spacecraft i ∈ I, then

note that whenever the inter-spacecraft spacing is decreased we must ensure not to

violate the inequality

δi
max + δj

max < d∗min, i, j ∈ I (7-6.2)

for any two neighboring spacecraft i and j, otherwise the spacecraft may cross paths,

which, in turn, may lead to collisions. To give an example where this may hap-

pen, consider again the problem where Nf = 2, A0 = 4.65 km and A1 = 4.04

km and phases φ0 = 165.99◦ and φ1 = 204.42◦. The unmodified frequency cov-

erage is shown in Figure (7.15) (left.) As a conservative estimate, we may set

λ∆max = 4 max{A0, A1} = 18.6 km. However, as shown in Figure (7.18) (bottom

left), this leads to trajectory crossing since d∗min/4 = 1.29km < A0, A1. One may

obtain expressions for fij, from which one can compute the maximum deviation in
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the frequency domain for the ijth picture frame disc. This is then used to compute

∆max. By iteration, it was found that setting λ∆max = 1.25λmax{A0, A1} = 5.81

km indeed ensures coverage of low frequency content as shown in the bottom right

plot in Figure (7.18). We note here that d∗min = 17.93 km > 2A0 + 2A1 = 17.38 km

and the condition (7-6.2) is met. Hence path crossing does not take place.
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Figure 7.18: Modified wave number plane coverage corresponding to Figures 7.12,
7.14 and the left plot of Figure (7.15).

7.6.2 J2 Corrections

Finally, for J2, the inter-spacecraft distance may be set at

d∗min = dmin − 2 max
i∈I

max
0≤f≤2π

∥∥PXY
Oi

∥∥
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assuming that the maximum perturbation of a pair of spacecraft from their nominal

path occur at different points in time. Analogous to the eccentric orbit case, this

choice for d∗min will ensure complete coverage of the frequency domain despite the

short-period J2 perturbations. Using the same numerical values for Ω, ω and a as

in Section (7.5.2), we find that the maximum perturbation of each spacecraft from

its nominal value is 3.73km. Hence, we have d∗min = dmin − 2× 3.73 = dmin − 7.46 in

kilometers. Note that in the frequency domain ∆max = 7.46× 103/λ = 7.46× 108 for

a signal with a wavelength λ = 10µm.

7.7 On the Optimality of a Class of Circular Earth-Orbiting
Observatories

In this section we show that the circular Earth-orbiting observatory is optimal in

the sense of Chapter 2. Hence, Chapter 2 is a prerequisite to this section.

We choose the terminal time T such that T spans an integer multiple, say l, of

the orbit period To: T = lTo. The reason for having to wait for multiple orbits

before capturing an image is due to the fact that coverage in the frequency domain

is radially uneven. That is to say, for each ν∗ ∈ R, we have even coverage for all ν

satisfying ‖ν‖ = ν∗ after each half orbit period. However, as ν∗ changes, the value of

z changes (in fact decreases as shown above.) Hence, we choose l such that after l/2

orbit periods the value of the normalized MTF z(ν, t) is at least unity everywhere

inside the resolution disc Dv. If we let h denote the saturation function:

h(x) =

 x 0 ≤ x < 1

1 x ≥ 1

then we require to have the terminal condition on z be given by

h(z(ν, T )) = 1 (7-7.1)
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for all ν ∈ Dv. Specifying T automatically specifies the orbit size.
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Figure 7.19: Physical distribution in the wave number plane for a three-spacecraft
formation.

Since we are now dealing with a system of particles under the influence of gravity,

let us now re-derive the necessary conditions with a gravitational field modeled in

the system dynamics. Hence, the dynamics are now given by:

q̇i(t) = vi(t)

v̇i(t) = ui + g(qi) (7-7.2)

for all spacecraft i = 1, . . . , N . The cost function and initial conditions are as before.
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The function Ĥ is now given by:

Ĥ(t) =
N∑

i=1

[pqi
· vi + pvi

· (ui + g(qi))]

+µpy

(
N∑

i=1

‖ui‖2

)
+

〈
pz(ν, t),

N∑
l,n=1,n6=l

Âp (ν − qmn)

〉
. (7-7.3)

The necessary condition for optimality still implies that

ui = − 1

2µpy

pvi

and, hence, the Hamiltonian is given by:

H(t) =
N∑

i=1

[
pqi

· vi −
‖pvi

‖2

4µpy

+ pvi
· g(qi)

]
+

〈
pz(ν, t),

N∑
l,n=1,n6=l

Âp (ν − qmn)

〉
,

(7-7.4)

Transversality conditions are the same as before:

pqi
(T ) = pvi

(T ) = 0

pz(ν, T ) = pf
z (ν) (7-7.5)

py(T ) = 1.

The necessary optimality conditions are now given by:

q̇i(t) = vi(t)

v̇i(t) = −pvi
(t)

2µ
+ g(qi)

ẏ(t) =
N∑

i=1

‖pvi
(t)‖2

4µ
(7-7.6)

ż(ν, t) =
N∑

l,n=1,n6=l

Âp (ν − qmn(t))

ṗqi
(t) = −∇qi

g(qi) · pvi

+
1

λz̄

〈
pf

z (ν),
N∑

n=1, 6=i

(
−∇Âp(ν − qin(t)) +∇Âp(ν + qin(t))

)〉
ṗvi

(t) = −pqi
(t)
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Nominally for the circular orbit observatory, fuel is not required to keep formation

(ignoring J2 and, possibly, drag for LEO and other perturbations.) Hence we have

ui(t) = 0 for all t ∈ [0, T ]. Hence we have the following results: pvi
(t) = pqi

= 0.

Hence, the corresponding transversality conditions (namely, pvi
(T ) = pqi

(T ) = 0)

are immediately satisfied. The necessary conditions then become:

q̇i(t) = vi(t)

v̇i(t) = g(qi)

ẏ(t) = 0 (7-7.7)

ż(ν, t) =
N∑

l,n=1,n6=l

Âp (ν − qmn(t))

0 =

〈
pf

z (ν) ,
N∑

n=1, 6=i

(
−∇Âp(ν − qin(t)) +∇Âp(ν + qin(t))

)〉
.

Note that the first two equations in the equations (7-7.7) simply express the Ke-

plarian motion in differential equation form, which is necessary by design. Secondly,

the initial condition y(0) = 0 and the third equation gives y(t) = 0 for all t ∈ [0, T ].

In particular the total cost is y(T ) = 0. Since the cost functional is positive definite,

then if the formation satisfies the terminal necessary conditions, then the Earth-

orbiting observatory is optimal. To check for this we need to verify that the terminal

condition (7-7.1) and that the last condition in Equation (7-7.7) are satisfied. By

construction, the formation makes enough orbits l such that at terminal time T we

have h(z(ν, T )) = 1 and, hence, satisfying the terminal condition. As for the last

condition in Equation (7-7.7), Similar to the discussion made in the last paragraph

of Section (2.6), any symmetric function pf
z (ν) (such as pf

z (ν) ≡ 0) will satisfy this

condition by symmetry of the the second term in the inner product. This shows that

the Earth-orbiting formation is an optimal solution to the problem.

A final remark is in order. The basic assumption above is that the formation
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maintains its rigidity. The Earth-orbiting observatory will maintain formation even

when in eccentric orbits as long as the spacecraft elliptic motions are in phase and

have the same value for the semi-major axis. Once rigidity is not maintained, gaps

emerge and symmetries will be broken in the frequency domain. This will immedi-

ately violate the necessary conditions and the formation does not satisfy the necessary

conditions, in the strict mathematical sense discussed in this chapter, and is thus

sub-optimal.

7.8 The Interferometric Observatory

The Earth-orbiting constellation configurations proposed above will completely

cover the wave number plane in half an orbit period, while imaging for several orbital

periods will result in improved image quality. Thus, over a short period (days at

most) an image can be formed. If we place the constellation in an inclined orbit,

the orbit plane will precess relative to inertial space and the constellation will scan

across the celestial sphere at a constant rate, effectively repeating its coverage after

half a nodal period. The precession rate of the orbit plane is given by [69]

˙̄Ω = −3

2

√
µ

r3
o

R2
oJ2

r2
o

cos(ı),

where Ro = 6378.14km is the Earth’s radius, J2 = 0.00108263 is the second zonal

harmonic of the Earth, µ = 3.986005 × 105km3/s2 is the Earth’s gravitational con-

stant, ı is the inclination, ro is the orbital radius, and the precession period of the

node is T = 2π
˙̄Ω
. For an 800km altitude orbit inclined at 45o to the equator, the

precession period is 77 days. For a constellation in a 45o or 135o inclination orbit,

every point on the celestial sphere can be imaged with an angular resolution ranging

from θr to θr/
√

2 within half a nodal period.
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An important design consideration is the speed at which the picture frame disc

moves in the wave number plane, as this affects the image quality. The larger this

speed is, the poorer the image quality becomes. Given an upper bound on the wave

plane velocity, v∗, and a desired angular resolution, θr, this constrains the angular

rate at which the picture frame disc moves in the wave number plane, equal to

the mean motion of the orbit, ω ≤ 1
2
v∗θr. This bounds the desired orbit radius,

ro ≥ 3

√
4µ

(v∗θr)2
. Thus, the choice of orbit radius does not depend only on the desired

baselines (determined from the desired angular resolution), but also on the desired

image quality. Note that it is possible to trade a higher speed in the wave number

plane (shorter period) with additional observations, striking a balance between the

two.

Other issues of concern are the signal detection, transmission and interference.

There are certain optical technologies that are assumed to exist for the proposed very

long baseline LEO observatory to be feasible. We assume that either a heterodyne

or a direct detection method is used. Heterodyne detection has the advantage of se-

lecting and detecting only the components of the wavefront of the source that are in

phase with the wavefront of a local laser oscillator [71]. Thus, heterodyne detection

furnishes phase information. On the other hand, direct detection, though less effi-

cient as far as signal to noise is concerned, is still feasible via spatial filtering with a

glass fiber to obtain a single geometric mode [72]. Local heterodyne detection, how-

ever, has a major advantage over direct detection Michelson interferometry. Direct

detection requires that the detected signal be divided into N − 1 equal parts, where

N is the number of satellites in the constellation, corresponding to N − 1 baselines.

This results in the reduction of the signal by a factor of N − 1. Each of the N − 1

signals will possess a reduced SNR. This is exacerbated due to the presence of large
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background noise and the long distances over which the signals are transmitted from

each spacecraft to a combiner spacecraft. For wavelengths above ∼ 4µm, heterodyne

detection is likely to be superior because of these problems with direct detection. It

could be shown, however, that below ∼ 4µm, direct detection will have better SNR

properties than heterodyne detection. For a 10µm mission, such as the one proposed

in this chapter, heterodyne detection is advantageous.

A technique different from heterodyne detection is also under investigation by our

group at the University of Michigan. This is Fourier Transform Spectral Interferome-

try for electric field reconstruction in a separated spacecraft interferometric mission.

Novel optical techniques exist, such as Dual-Quadtrature Spectral Interferometry

(DQSI) and Spectral Phase Interferometry for Direct Electric Field Reconstruction

(SPIDER), that aim at the full characterization of an electric field, both temporally

and spatially [73, 74]. The goal of such research, which has so far been developed for

highly coherent sources and is currently being developed for non-coherent sources,

is to extract necessary information in digital form that allow for performing the

interference process digitally on a microchip. Once such digital information is avail-

able, these can be sent via communication links such as radio frequency signals to a

central processing unit located on one of the spacecraft for the mutual intensity com-

putations and metrology measurements. In light of technologies such as heterodyne

detection or electric field reconstruction, a very long baseline mission such as the one

we propose in this chapter should be feasible as far as the optics are concerned.

A final remark is that JPL’s Terrestrial Planet Finder (TPF) technology is an IR

interferometer that currently does not involve baselines longer than 100m between

apertures. TPF may provide an angular resolution that is as small as 0.75 milli-

arcsec at 3µm and 1000m baseline. This corresponds to single pixel detection of a
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planet located 0.5AU from a sun-like star [3]. The main aim of TPF is to detect

an earth-like planet by separating the planet from its parent star and capturing its

light on a single pixel. In contrast, the underlying aim of the proposed observatory

is to form a multi-pixel image of the disk of the planet. In consequence, the very

long baseline constellation, such as the example we use here, offers 1.9461 × 10−6

milli-arcsec resolution at 10µm and a longest baseline of over 14,000km.

7.9 Conclusion

In this chapter, the imaging objectives are stated and a class of constellations that

can achieve high angular resolution images in LEO was discussed. An optimization

procedure is also defined that supplies m pixels of resolution with a minimum num-

ber of satellites. We introduced a linear imaging constellation and formulated a 0-1

mathematical programme, the solution of which is the solution to the optimal aper-

ture configuration for full coverage of the wave number plane. This in turn, helps

to numerically solve the constellation design problem for a general Earth-orbiting

constellation.

A sufficient condition for complete u-v plane coverage when under eccentric orbits

was stated and proven. We also addressed short period effects of J2 on imaging. First,

we derived analytical expressions for the maximum perturbations in the position of

the constellation spacecraft as a function of the osculating orbit elements. These

studies lead to design criteria that ensure wave number plane coverage as a function

of perturbation size for both eccentricity and J2 perturbations. The modified design,

however, leads to additional lack of coverage of higher frequencies and reduces the

overall resolving power of the constellation.

Finally, we discussed how the zonal J2 effect can be utilized to scan the observa-
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tory across the celestial sphere and, finally, we discuss some practical implementation

issues. Future research will study the behavior of similar constellations subject to

more general gravitational fields.



CHAPTER 8

Conclusion and Future Work

This dissertation aims at using the relationship between the motion of an inter-

ferometric imaging formation and the quality of the reconstructed image –via the

notion of the Modulation Transfer Function– for the motion design and guidance of

the formation. The MTF was introduced in Chapter 2 and was used to formulate an

optimal control law that seeks to improve the quality of the image while minimizing

fuel expenditure. This problem has close connections to problems in optimal control

of infinite dimensional systems since there are two independent variables (time t and

frequency ν) appearing in the dynamics. The main difference between the imaging

problem and other problems involving wave propagation is that the former has no

transport properties, that is, the constraints are only finite dimensional differential

equations as opposed to partial differential equations. Optimal control of infinite

dimensional systems, in general, has not reached its maturity and is subject to open

research. For more on optimal control of infinite dimensional systems, see for ex-

ample [75]. In particular, future research will focus on optimal control of infinite

dimensional systems and the multi-spacecraft imaging problem.

Using tools from geometric mechanics and differential geometry, in Chapter 3

we introduce the dynamic coverage optimal control problem. Instead of deriving

205
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an optimal control law that is explicitly a function of image quality as was done

in Chapter 2, in the dynamic coverage problem the resulting control law is only a

function of the relative position and velocity vectors between all spacecraft in the

formation. Such a control is shown to result in the same optimal behavior as obtained

in Chapter 2. Though the problem is formulated assuming a point particle model

for each spacecraft, since the problem statement is given on generic manifolds, the

model may be extended to formations of rigid bodies, where spacecraft attitude is

also taken into account.

The modeling of each spacecraft as a rigid body was studied in Chapter 4. The

problem statement as formulated in Chapter 4 (as well as the dynamic interpolation

problem of Chapter 5) is appropriate only for dual spacecraft formations, assuming

one spacecraft is fixed in space and the second free to evolve in R3. In particular, the

main contribution of Chapter 4 is the introduction and analysis of the optimal tra-

jectory tracking problem on SE(3). Future work will focus on extending this problem

to formations of three or more spacecraft. Some related open problems include the

use of Poisson reduction theory to reduce the complexity of the system by utilizing

the presence of conserved quantities (such as energy or momentum) plus any sym-

metric properties of the system. For more on the history of reduction theory, see

Chapter 1 in [76] and [89] and references therein. Another related open problem is

that of applying geometry-preserving numerical integrators to formations of space-

craft. The development of numerical integrators that preserve the structure (such

as the Lie algebra properties of a Lie group) or conserved quantities (such as energy

and momentum) have received special attention in recent years. See for example [77]

and [78] and references therein. On the other hand, the development of geometry

preserving numerical schemes for solving two point boundary value problems still
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remains an open problem, see [79] for example.

In Chapter 6, the dual spacecraft spiraling (on the paraboloid) formation was

introduced. An optimal control problem was formulated that aims at meeting the

imaging constraints while minimizing fuel consumption and improving the signal-

to-noise ratio. It was shown that the problem is convex and that a unique and

global optimal solution exists. The method of continuation was used to solve for the

unique global optimal trajectory. Open problems include the extension of this class

of spiraling maneuvers to three or more spacecraft formations, analogous to the four

spacecraft time-optimal spiraling maneuver introduced in [5].

Finally, an Earth-orbiting observatory that satisfies the necessary conditions for

optimality, with the potential to be implemented in a future Origins mission, was

proposed and studied in Chapter 7. Future research will study the behavior of these

constellations when subject to other types of perturbations such as drag and the

influence of a third body. Practical implementation issues, such as signal synchro-

nization, transmission, digitization, storage and processing are also of significant

concern and must also be the subject of future research.



APPENDICES

208



209

APPENDIX A

Mathematical Background to Geometric

Mechanics and Optimal Control

In this appendix we give a very brief introduction to basic notions from differential

geometry and geometric mechanics. It is not intended by any means to be compre-

hensive. We include material in this appendix based on three reasons. Firstly, we

may include material in this appendix that is implicitly at the heart of the geometric

tools used in the main body of the dissertation. For example, Lagrange multipliers

appearing in many chapters are objects that belong to the cotangent space. The

cotangent space itself is not explicitly discussed in the body of the dissertation but

we do so in this appendix. Secondly, we will also make definitions and include results

that are needed, not in the main body of the dissertation, but to make other defini-

tions and derive other results included in and are central to the dissertation. Finally,

often we include material that will not be used anywhere in this dissertation. The

goal is to make this appendix a bit more comprehensive in nature. The interested

reader should thus consult the following references on the theory and applications of

geometric mechanics (not in any specific order) for a full and comprehensive under-

standing of this beautiful subject matter.

Differential Geometry: The books by Abraham, Marsden and Ratiu [80], Boothby
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[60], Burke [81], Crampin and Pirani [82], do Carmo [83] and [84], Kobayashi

and Nomizu [85], Milnor [41], Onishchik and Vinberg [50], the comprehensive

multi-volume book by Spivak [59], Warner [52] and references therein.

Geometric Mechanics: The books by Abraham and Marsden [86], Abraham, Mars-

den and Ratiu [80], Arnold [87], Bloch [42], Burke [81], Monforte [88], Marsden

[89] and references therein.

Geometric Control Theory: The books by Bloch [42], Bullo and Lewis [51], Agra-

chev and Sachkov [90], Jurdevic [91], Monforte [88], Marsden [89], Marsden and

Ratiu [92], Murray, Li and Sastry [93] and references therein.

Geometric Optimal Control Theory: The book by Agrachev and Sachkov [90],

the thesis by Camarinha [55] and the papers by Noakes, Heinzinger and Paden

[30], Crouch and Jackson [35], Crouch and Jackson [31], Crouch and Silva-Leite

[32] and [33], Crouch, Silva-Leite and Camarinha [34], Silva-Leite, Camarinha

and Crouch [94] and references therein.

Geometry and Space Time Physics: The beautiful book by Misner, Thorne and

Wheeler [95].

A.1 Basics of Differential Geometry

A.1.1 Fundamentals

Definition A.1.1 (Diffeomorphism). Let M and N be two sets. A map φ : M →

N is a diffeomorphism if the inverse map φ−1 : N →M exists and is C∞.

Definition A.1.2 (Homeomorphism and Homeomorphic Sets). A continuous

map f : A ⊂ Rn → Rn is a homeomorphism onto f(A) if f is one-to-one and the



211

inverse f−1 : f(A) ⊂ Rn → Rn is continuous. In this case A and f(A) are called

homeomorphic sets [84].

Definition A.1.3 (Local Chart). Let S be a set. A local chart on S is a bijection,

φ, from a set U ⊂ S to an open subset of some finite dimensional vector space F .

Definition A.1.4 (Compatibility of Local Charts). Two local charts (Ui, φi)

and (Uj, φj), with Ui, Uj ⊂ S and Ui

⋂
Uj = 0, are compatible if the overlap maps

(for example φji = φj · φ−1
i |φi (Ui

⋂
Uj)) are C∞ diffeomorphic.

Definition A.1.5 (Atlas). An atlas A on S is a family of charts {(Ui, φi) : i ∈ I}

such that

1. S =
⋃
{Ui|i ∈ I}.

2. Any two charts in A are compatible.

Definition A.1.6 (Equivalence of Atlases). Two atlasesA1 andA2 are equivalent

if A1

⋂
A2 is an atlas.

Definition A.1.7 (Differentiable Structure). A differentiable structure I on S

is an equivalence class of atlases on S.

Definition A.1.8 (Maximal Atlas). The union of atlases in I, AI =
⋃
{A|A ∈ I}

defines the maximal atlas of I.

Definition A.1.9 (Differentiable Manifold). A differentiable manifold is the pair

(S, I), where S is a set and I is a differentiable structure (often taken as the maximal

atlas.)
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Example The n-sphere, Sn, is a manifold. To see this, in Rn+1, Sn is the set of

all q ∈ Rn+1 such that ||q|| = 1. One can locally construct bijections from Sn to Rn,

say, stereographically from the south or north pole onto a hyperplane tangent to the

north or south pole, respectively. These are two bijections with the south or north

pole, respectively, removed, onto Rn. In a region covered by both coordinate systems,

we are able to change coordinates smoothly and, thus, any two such bijective maps

are compatible. The resulting topology on Rn is the same as that induced on Sn in

Rn+1. Thus, Sn is a manifold in Rn+1[86].

Definition A.1.10 (Submanifold). N ⊂M is a p-dimensional submanifold if and

only if ∀q ∈ N, ∃ (U, φ) a chart, where q ∈ U and φ : U → (q1, . . . , qn), such that

φ|U
⋂
N → (q1, . . . , qp, 0, . . . , 0), where (q1, . . . , qn) are some coordinates on F (F as

defined in definition (A.1.3).

Definition A.1.11 (Embedded Submanifold). M is said to be an embedded

k-dimensional submanifold of Euclidean space Rn if in a neighborhood U of every

q ∈M there exists n−k functions f1 : U → R, . . . , fn−k : U → R such that the inter-

section of U withM is given by f1 = 0, . . . , fn−k = 0 and vectors gradf1, . . . , gradfn−k

are linearly independent.

Definition A.1.12 (Tangent Space and Tangent Vectors). If M is a man-

ifold k-dimensional manifold in En (i.e. Rn with an Euclidean norm) then every

point q has a k-dimensional tangent space TqM ; the orthogonal compliment to

{gradf1, . . . , gradfn−k}. Vectors in TqM are called tangent vectors to M at q.

Definition A.1.13 (Tangent Maps on Rn). Let E and F be vector spaces and

let f : U ⊂ E → V ⊂ F , where U and V are open sets and f is class mathcalCr+1.
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Define the tangent map of f , Tf (or, f∗), by Tf : TU = U × E → TV = V × F ,

where Tf(u, e) = (f(u),Df(u) · e), e ∈ E and u ∈ U . Tf is of class mathcalCr.

The tangent space to M at q is the set of all tangent vectors to curves in M

passing through q. In other words, if c(t) is an arbitrary curve in M , with c(0) = q,

the tangent space is the set of all vectors v = q̇ = d
dt

∣∣
t=0

c(t).

Definition A.1.14 (Equivalence of Curves). Two curves c1(t) and c2(t) are said

to be equivalent at q if c1(0) = c2(0) = q and limt→0
c1(t)−c2(t)

t
= 0 in some chart.

A tangent vector to M at q is an equivalence class of curves c(t) with c(0) = q.

The set of all tangent vectors at M is the tangent space at q ∈M , TqM .

Definition A.1.15 (Tangent Bundle). The tangent bundle of M is the set TM =⋃
q∈M TqM .

Definition A.1.16 (Tangent Bundle Projection). Let (q1, . . . , qn) be local coor-

dinates on M(q) and denote by q̇1, . . . , q̇n the components of a tangent vector in this

coordinate system. (q, q̇) give local coordinates on TM . The mapping τ : TM →M

maps a tangent vector q̇ at the point q ∈M . τ is called the tangent bundle projection.

Remark A.1.1. Note that τ : (q, q̇) → q is not a one-to-one mapping. Moreover,

the mapping τ−1(q) = TqM is called the fiber over q.

Definition A.1.17 (Tangent Maps on Manifolds). Let M and N be two differ-

entiable manifolds and let q ∈ M . A tangent map is a mathcalC1 map f : M → N

given by Tfq = f∗q : TqM → Tf(q)N . More precisely, let v ∈ TqM and consider

any curve c(t) with c(0) = q and dc(t)
dt

∣∣
t=0

= v. Then, Tfq(v) = d
dt

∣∣
t=0
f(c(t)). The

union of all such mappings gives the tangent map Tf = f∗ : TM → TN .

Remark A.1.2. Tfq(v) does not depend on the chosen curve c(t).
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Definition A.1.18 (Vector Fields). A vector field on a manifold M is a section

of the tangent bundle TM of M . In other words, it is a map X : M → TM such

that X(q) ∈ TqM , ∀q ∈M .

Let (U, φ) be a coordinate chart around q ∈M and let λ be a smooth function on

M . With this coordinate chart associate n tangent vectors at q:
(

∂
∂φ1

)
q
, . . . ,

(
∂

∂φn

)
q
,

which are defined as: (
∂

∂φi

)
q

(λ) =

[
∂ (λ · φ−1)

∂qi

]
X=φ(q)

These vectors form a basis for the tangent space at q. In other words, any vector

v ∈ TqM can be written as v =
∑n

i=1 vi

(
∂

∂φi

)
q
. A nice way to put it is that a vector

field is a rule for picking a tangent vector at every point in the manifold.

The set of all vector fields on M is denoted by X (M).

Definition A.1.19 (Integral Curve). Let U ⊂ Rn be an open set and let X ∈

X (M) be a vector field on U . An integral curve of X with initial condition q0 is

differentiable curve c defined on some open interval I ⊂ R containing 0 such that

c(0) = q0 and c′(t) = X(c(t)) for all t ∈ I.

Locally, if X is given by (q1, . . . , qn), i.e. X = q1 ∂
∂q1

+ . . . + qn ∂
∂qn

, and c(t) =

(c1(t), . . . , cn(t)) the above definition implies that ċi = qi(c1(t), . . . , cn(t)), i = 1, . . . , n.

A.1.2 Exterior Forms and Tensors

Definition A.1.20 (Exterior One-Forms). An exterior form of degree one on a

vector space Rn is a linear function mapping Rn to R. Under vector addition and

scalar multiplication, the set of all such forms is itself a vector space called the dual

space of Rn, denoted by (Rn)∗.
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If φ1, . . . , φn is a basis for (Rn)∗ and ω =
∑n

i=1 aiφi is an arbitrary one-form, then

ω(v) =
∑n

i=1 aiφi(v), where v is a vector in Rn.

The dual basis is defined by φj(ei) = δij, where ei, i = 1, . . . , n, form a basis for

Rn.

Example A simple one-form is the work done by a force field F ∈ R3 on the

displacement d. The one-form is expressed by ω(d) = 〈F,d〉, where 〈·, ·〉 is the inner

product in Euclidean space [87].

Definition A.1.21 (Exterior Two-Forms). An exterior form of degree two, ω2 :

Rn×Rn → R, is a function on pairs of vectors, which is bilinear and skew symmetric.

In other words,

ω2(λ1v1 + λ2v2,v3) = λ1ω
2(v1,v3) + λ2ω

2(v2,v3), ∀v1, v2, v3 ∈ Rn, λ1, λ2 ∈ R

ω2(v1,v2) = −ω2(v2,v1), ∀v1, v2 ∈ Rn.

The set of all two-forms on Rn forms a vector space.

Example The oriented area of the parallelogram constructed on the vectors v1

and v2 in R2 is a two-form given by

ω(v1,v2) =

∣∣∣∣∣∣∣
v11 v12

v21 v22

∣∣∣∣∣∣∣ ,
where v1 = v11e1 + v12e2 and v2 = v21e1 + v22e2 [87].

Exercise For every two-form ω in Rn, ω(v,v) = 0 for all v ∈ Rn. This is obvious

from the second property of two-forms given in the above definition; ω(v,v) =

−ω(v,v) and, thus ω(v,v) = 0 [87].
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Definition A.1.22 (Exterior k-Forms). An exterior form of degree k, ω : Rn ×

Rn . . .×Rn → R, is a function on k vectors, which is k-linear and antisymmetric. In

other words,

ω(λ1v1 + λ2v
′
1,v2, . . . ,vk) = λ1ω(v1,v2, . . . ,v3) + λ2ω(v′1,v2, . . . ,vk),

∀ v′1, vk ∈ Rn, λ1, λ2 ∈ R

ω(vi1 , . . . ,vik) = (−1)νω(v1, . . . ,vk), ∀v1, . . . , vk ∈ Rn,

where

ν =

 0 if the permutation i1, . . . , ik is even

1 if the permutation i1, . . . , ik is odd

.

Example The oriented volume of a parallelepiped with edges v1, . . ., vn in

Euclidean space Rn is an n-form. The volume is given by

ω(v1, . . . ,v1) =

∣∣∣∣∣∣∣∣∣∣∣
v11 · · · v1n

...
...

vn1 · · · vnn

∣∣∣∣∣∣∣∣∣∣∣
,

where vi =
∑n

j=1 vijej. This is an n-form because the determinant operation satisfies

the two properties of a general n-form that are stated in definition (A.1.22) [87].

Remark A.1.3. Defining the addition and scalar multiplication operations for k-

forms by

(ω1 + ω2)(v1,v2) = ω1(v1,v2) + ω2(v1,v2)

and

(λω)(v1,v2) = λω(v1,v2),

respectively, one has a real vector space for the set of all k-forms on Rn.
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Fact A.1.1. The vector space of k-forms on Rn is a finite-dimensional vector space

with dimension Ck
n. For example, the vector space of two-forms on Rn is a finite-

dimensional space with dimension C1
n = n(n− 1)/2 [87].

Definition A.1.23 (Exterior Product of Two One-Forms). The exterior prod-

uct of two one-forms ω1 and ω2 is the two-form defined by

ω1 ∧ ω2(v1,v2) =

∣∣∣∣∣∣∣
ω1(v1) ω2(v1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣∣ .
Exercise To show that the above definition for the exterior product is indeed a

two-form note that first we have

ω1 ∧ ω2(v2,v1) =

∣∣∣∣∣∣∣
ω1(v2) ω2(v2)

ω1(v1) ω2(v1)

∣∣∣∣∣∣∣
= ω1(v2)ω2(v1)− ω2(v2)ω1(v1)

= − [ω1(v1)ω2(v2)− ω2(v1)ω1(v2)]

= −

∣∣∣∣∣∣∣
ω1(v1) ω2(v1)

ω1(v1) ω2(v1)

∣∣∣∣∣∣∣
= −ω1 ∧ ω2(v1,v2),



218

which is the second property in definition (A.1.21). As for the first property in the

definition, note that

ω1 ∧ ω2(λ1v1 + λ2v
′
1,v2) =

∣∣∣∣∣∣∣
ω1(λ1v1 + λ2v

′
1) ω2(λ1v1 + λ2v

′
1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
λ1ω1(v1) + λ2ω1(v

′
1) λ1ω2(v1) + λ2ω2(v

′
1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣∣
= (λ1ω1(v1) + λ2ω1(v

′
1))ω2(v2)

− (λ1ω2(v1) + λ2ω2(v
′
1))ω1(v2)

= λ1

∣∣∣∣∣∣∣
ω1(v1) ω2(v1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣∣+ λ2

∣∣∣∣∣∣∣
ω1(v

′
1) ω2(v

′
1)

ω1(v2) ω2(v2)

∣∣∣∣∣∣∣
= λ1ω1 ∧ ω2(v1,v2) + λ2ω1 ∧ ω2(v

′
1,v2).

Thus the first property is also satisfied. Therefore, the exterior product of two one-

forms as defined in definition (A.1.23) is indeed a two-form.

Definition A.1.24 (Exterior Product of k One-Forms). More generally, sup-

pose that we are given k one-forms ω1, . . . ,ωk. The exterior product is defined as

(ω1 ∧ . . . ∧ ωk) (v1, . . . ,vk) =

∣∣∣∣∣∣∣∣∣∣∣
ω1(v1) · · · ωk(v1)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣
.

Exercise One can show that the exterior product of k one-forms is itself a k-form.

Let Ω = (ω1 ∧ . . . ∧ ωk). Thus we need to show that Ω is a k-form. To do this we

need to show that Ω(λ1v1+λ2v
′
1, . . . ,vk) = λ1Ω(v1, . . . ,vk)+λ2Ω(v′1, . . . ,vk), which
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is true because

Ω(λ1v1 + λ2v
′
1, . . . ,vk) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω1(λ1v1 + λ2v
′
1) · · · ωk(λ1v1 + λ2v

′
1)

ω1(v2) · · · ωk(v2)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λ1ω1(v1) + λ2ω1(v
′
1) · · · λ1ωk(v1) + λ2ωk(v

′
1)

ω1(v2) · · · ωk(v2)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=

k∑
i=1

(−1)i+1 (λ1ωi(v1) + λ2ωi(v
′
1))

∣∣∣∣∣∣∣∣∣∣∣
ω1(v2) · · · ωk(v2)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣
i

= λ1

∣∣∣∣∣∣∣∣∣∣∣
ω1(v1) · · · ωk(v1)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣
+ λ2

∣∣∣∣∣∣∣∣∣∣∣
ω1(v

′
1) · · · ωk(v

′
1)

...
...

ω1(vk) · · · ωk(vk)

∣∣∣∣∣∣∣∣∣∣∣
= λ1Ω(v1, . . . ,vk) + λ2Ω(v′1, . . . ,vk),

where we have used the definition of a matrix determinant and the fact that ω1, . . . ,ωk

are one-forms. If we let A be a (k − 1) × k matrix, |A|i is defined here as the

determinant of the matrix A with the ith column and ith row removed. The sec-

ond property that we need to show is that Ω(vi1 , . . . ,vik) = (−1)νω(v1, . . . ,vk),

∀v1, . . . , vk ∈ Rn. This can be shown in a fashion similar two that used in the

above example for the exterior product of two one-forms using some properties of

the determinant.

Definition A.1.25 (Tensors). Let E be a vector space. A a multi-linear map of



220

the form

Tr
s(E) = L(r+s)(E∗, . . . , E∗︸ ︷︷ ︸

r copies

, E, . . . , E︸ ︷︷ ︸
s copies

) : E∗ × . . .× E∗︸ ︷︷ ︸
r copies

×E × . . .× E︸ ︷︷ ︸
s copies

→ R

is called a tensor on E. It is said to be contravariant of order r and covariant of

order s. It is also said to be of type

 r

s

.

Definition A.1.26 (Tensor Product). Let t1 ∈ Tr1
s1

(E) and t2 ∈ Tr1
s1

(E). The

tensor product t1 ⊗ t2 ∈ Tr1+r2
s1+s2

(E) is given by

t1 ⊗ t2(β
1, . . . , βr1 , γ1, . . . , γr2 , f1, . . . , fs1 , g1, . . . , gs2)

= t1(β
1, . . . , βr1 , f1, . . . , fs1)t2(γ

1, . . . , γr2 , g1, . . . , gs2),

where βi, γi ∈ E∗ and fi, gi ∈ E.

Remark A.1.4. Let t ∈ T0
k(E,R). t is called skew symmetric if

t(e1, . . . , ek) = sign(σ) t(eσ(1), . . . , eσ(k)),

where σ(·) is a permutation. in other words, t changes sign whenever two entries are

interchanged.

Remark A.1.5. One can skewify an element t of T0
k(E) by using the alternating

map:

A t(e1, . . . , ek) =
1

k!

∑
σ∈Sk

sign(σ) t(eσ(1), . . . , eσ(k)),

where Sk is the set of all possible permutations.

Example If α and β are two one-forms, then

A (α⊗ β)(v1,v2) =
1

2!
(α(v1)β(v2) + (−1)α(v2)β(v1))

=
1

2
(α(v1)β(v2)− α(v2)β(v1))

=
1

2!
α ∧ β((v)1, (v)2).
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Definition A.1.27 (Exterior Product). Let α ∈ T0
k(E) and B ∈ T0

l (E). The

exterior (wedge) product, α ∧ β ∈ Λk+l(E) is defined by

α ∧ β =
(k + l)!

k!l!
A(α⊗ β),

where Λk+l(E) is the set of (k + l)-forms on E.

A.1.3 Differential Forms

One can now extend the notions introduced in the previous section to tensor

fields and differential forms on a manifold M . First, lets consider the differential

one- and two-forms.

Definition A.1.28 (Differential One-Form). Let M be a manifold and f : M →

R be a C1 function. Let q ∈M and c(t) be a smooth curve in M with c(0) = q. The

differential one-form of f at q, dfq, is the linear map dfq : TqM → R defined as

follows. Let v = d
dt
c(t)

∣∣∣∣
t=0

, then dfq(v) = d
dt

∣∣∣∣
t=0

f(c(t)). dfq is a one-form on TqM .

Denote by df the smooth map that maps the tangent bundle, TM , to the real line;

df : TM → R.

Fact A.1.2. Every differential one-form on the space Rn with a given coordinate

system q1, q2, . . . , qn can be written uniquely in the form

ω = a1(q)dq1 + a2(q)dq2 + · · ·+ an(q)dqn,

where the coefficients ai(q, i = 1, . . . , n, are smooth functions [87].

Definition A.1.29 (Tensor Field k-form). Denote by Γr
s(M) the rth-order con-

travariant and sth-order covariant tensor field. t ∈ Γr
s(M) has the local form

t(u) = ti1,i2,...,ir
j1,j2,...,js

(u)
∂

∂qi1
⊗ . . .⊗ ∂

∂qir
⊗ dqj1 ⊗ . . .⊗ dqjs ,

where u ∈ U and U is a local chart.
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Definition A.1.30 (Differential k-Form). A differential k-form ωk
∣∣
q

at a point

q of a manifold M is an exterior k-form on the tangent space TqM to M at q.

Fact A.1.3. Denote by Ωk(M) the set of differential k-forms on M . The differential

form ω ∈ Ωk(M) on M , has the local form

ω(q) =
∑

i1<···<ik

ai1,...,ik(q)dqi1 ∧ . . . ∧ dqik ,

with i1 < · · · < ik.

Definition A.1.31 (Cotangent Vectors, Cotangent Spaces and the Cotan-

gent Bundle). Let M be an n-dimensional differentiable manifold. A cotangent

vector is a one-form on the tangent space to M at q ∈ M . The dual or cotangent

space, denoted T∗
qM , to the tangent space TqM is the set of all cotangent vectors to

M at q and is an n-dimensional space. The union of the cotangent spaces to M at

all points q ∈M is called the cotangent bundle, denoted T∗M .

Definition A.1.32 (Exterior Derivative). Let α = αi1,...,ikdq
i1 ∧ . . . ∧ dqik be a

differential k-form. Define the exterior derivative, d(·), as dα =
∂αi1,...,ik

dqi dqi ∧ dqi1 ∧

. . .∧dqik , where i1 < . . . < ik. In particular, note that d(qi) = ∂qi

∂qi dq
i = dqi and that

d(dqi) = ∂(1)
∂qi dqi ∧ dqi = 0.

Definition A.1.33 (Interior Product). Let M be a manifold, X be a vector field

on M and ω ∈ Ωk+1(M) a (k + 1)-form. The interior product, iXω(·), is defined by

iXω(q1, q2, . . . , qk) = ω(X, q1, q2, . . . , qk) ∈ Ωk(M).

iXω(·) is sometimes denoted Xy ω.

Example Let α and β be two one-forms. Then {iX(α ∧ β)} (Y) = α∧β(X,Y) =

α(X)β(Y) − α(Y)α(X). More generally, if α is a k-form and β is a l-form, then

iX(α ∧ β) = ((iXα ∧ β) + (−1)klα ∧ (iXβ).
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Definition A.1.34 (Pull-Back and Push-Forward). Let α be a k-form on a

smooth manifold N and let φ : M → N , where M is also a smooth manifold.

Define the pull-back operation on α by φ, denoted φ∗α, by (φ∗α) (v1, . . . ,vk) =

α(φ(q))(Tqφ · v1, . . . ,Tqφ · vk), for some q ∈ M , and where vi ∈ TqM , i =

1, . . . , k. The push-forward operation on α by φ−1, denoted φ∗α, is defined as

(φ∗α) (v1, . . . ,vk) =
(
(φ−1)

∗
α
)
(v1, . . . ,vk).

Definition A.1.35 (Exterior Derivative). The exterior derivative of a k-form α

on a manifold M is a (k+1)-form, denoted dα, defined by the following proposition.

Proposition A.1.1. There exists a unique mapping d from k-forms to (k+1)-forms

on M such that

1. If f ∈ mathcalC∞(M), then df is the differential of f .

2. dα is linear in α; d(c1α1 + c2α2) = c1d(α1) + c2d(α2).

3. Product rule: if α is a k-form and β a l-form, then d(α ∧ β) = dα ∧ β +

(−1)kα ∧ dβ.

4. d(dα) = 0.

5. d is local: d(α|U) = dα
∣∣
U
.

In local coordinates, if α = αi1,...,ikdq
i1 ∧ . . . ∧ dqik , then dα is given by

dα =
∑

j

dαi1,...,ik

dqj
dqj ∧ dqi1 ∧ . . . ∧ dqik .

Lemma A.1.1. The d operator commutes with pull-back: d(φ∗α) = φ∗(dα).

Definition A.1.36 (Lie Derivative). Let α be a k-form and X be a vector field

on M with flow Φt : M →M ; q → qt. The Lie derivative of α along X is defined as

LXα = lim
t→0

1

t
[Φ∗

t · α(qt)− α(q)] =
d

dt
Φ∗

tα
∣∣
t=0
.
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Theorem A.1.1 (Lie Derivative Theorem).

d

dt
Φ∗

tα = Φ∗
tLXα.

Example Given a vector field X on M and a function f : M → R, then the Lie

derivative of f along X is given by

LXf = lim
t→0

1

t
[f(q + tv)− f(q)] = ∇f · v,

which the directional derivative of f along v, where q ∈ M and v ∈ TqM (i.e.

X =
∑n

i v
i ∂
∂qi and v = [v1 v2 · · · vn]).

If Y is a vector field on N and φ : M → N , then the pull-back φ∗Y is a vector

field on M , given by: (φ∗Y) (q) = Tqφ
−1 ·Y ·φ, which is the tangent map inverse of

φ.

Definition A.1.37 (Differential Operators and Derivations). A differential

operator is one that measures some of the terms in the Taylor Series expansion of

a map. A first order differential operator that is sensitive to the linear terms is

called a derivation. In other words, an operator X (such as a vector field) is called

a derivation if it obeys the Leibniz rule for derivatives

X(fg) = fX(g) + gX(f),

where f and g are two functions [81].

The following paragraphs are essential for subsequent developments.

Definition A.1.38 (The Lie Bracket). Let X and Y be two vector fields and

f : M → R. One can then operate on f with X to find at every point the derivative

of f in the direction of X, X(f). The outcome of this operation, X(f), is another

function, which can be operated on by Y, Y[X(f)]. The Lie bracket of X and Y,

[X,Y], defines a unique vector field: [X,Y] : f → X[Y(f)]−Y[X(f)].
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Example The derivative of f = x2 + y2 in the direction (∂/∂x + ∂/∂y) is given

by (∂/∂x+ ∂/∂y)(x2 + y2) = 2(x+ y).

Theorem A.1.2. The Lie bracket of two vector fields X and Y is a derivation.

Proof

[X,Y](fg) = X[Y(fg)]−Y[X(fg)]

= X[fY(g) + gY(f)]−Y[fX(g) + gX(f)]

= fX[Y(g)] + gX[Y(f)]− fY[X(g)]− gX[Y(f)]

= f {X[Y(g)]−Y[X(g)]}+ g {X[Y(f)]−Y[X(f)]}

= f [X,Y](g) + g[X,Y](f),

where the fact that X and Y are both (linear) vector fields, then each is a derivation.

�

Theorem A.1.3. The Lie bracket satisfies the Jacobi identity; if X, Y and Z are

vector fields, then:

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y]] = 0.

Proof Let f be a smooth function on M . First, compute [X, [Y,Z]]:

[X, [Y,Z]](f) = X {Y[Z(f)]− Z[Y(f)]} − [Y,Z] {X(f)}

= X {Y[Z(f)]} −X {Z[Y(f)]} −Y {Z[X(f)]}+ Z {Y[X(f)]} .

Likewise, we have

[Y, [Z,X]](f) = Y {Z[X(f)]} −Y {X[Z(f)]} − Z {X[Y(f)]}+ X {Z[Y(f)]}

and

[Z, [X,Y]](f) = Z {X[Y(f)]} − Z {Y[X(f)]} −X {Y[Z(f)]}+ Y {X[Z(f)]} .
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Summing the above three expressions one obtains Jacobi’s identity.

�

Remark A.1.6. The Lie bracket [X,Y] is sometimes denoted LXY. So, if Φt is

the flow of X, then the dynamic definition of the Lie derivative applies: LXY =

d
dt

∣∣
t=0
φ∗tY.

A.2 Fiber Bundles

Definition A.2.1 (The Fiber Bundle). A fiber bundle is a space M for which

the following are given: a space B called the base space, a projection φ : M → B

with fibers φ−1(r), r ∈ B, homeomorphic to a space F , a structure group G of

homeomorphisms of F into itself, and a covering of B by open sets Uj, satisfying

1. the bundle is locally trivial; that is φ−1(Uj) is homeomorphic to the product

space Uj × F and

2. if hj is the map giving the homeomorphism on the fibers above the set Uj, for

any q ∈ Uj

⋂
Uk, then hj

(
h−1

k

)
is an element of the structure group G.

The bundle is called a principal bundle if the fibers of the bundle are homeomorphic

to the structure group and it is called a vector bundle if it is homeomorphic to a

vector space.

In simple terms, the fiber bundle is a pair of manifolds M and B and a projection

π : M → B. The base space B is the space on which the field is defined, M is the

space where the field is graphed, while π is the map that assigns to each point on

the graph a point in B where the field variable is defined. For r ∈ B, π−1(r) is called

the fiber over r and is the space of field variables (the fiber.) These fibers usually
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have a geometric structure, but, in case they are all vector spaces, then the bundle

is referred to as a vector bundle [81].

Example The simplest example for a fiber bundle is that of the graph of a real-

valued function f : Rn → R. The graph of f lies in a space that has one additional

dimension, Rn+1. f is now a hypersurface in the larger (n + 1)-dimensional space.

The original space, Rn, is the base space B, whereas the larger (n + 1)-dimensional

space is the fiber bundle M . For n = 2, a point in the base B is (x, y), where x and y

are the coordinates. The corresponding point in the bundle M is (x, y, f(x, y)) and

π[(x, y, f(x, y))] = (x, y), while π−1(x, y) = (x, y, f(x, y)).

Example TS1 is a vector bundle, the tangent bundle to the circle. The base is

S1 and the fibers are homeomorphic to R.

Definition A.2.2 (Section). A section is a map Γ : B →M such that π ·Γ(r) = r.

Γ assigns to each point a field quantity at that point.

Example An important bundle is the cotangent bundle defined above. This

is the field of one-forms on a manifold M , T∗M . Let q be the coordinates for

points in M , ω be a one-form on M , whose coordinates are p. Thus, ω = pdq =∑n
i=1 pidq

i. Reasonable coordinates for a point in the cotangent bundle T∗M is

(q1, . . . , qn, p1, . . . , pn). The base space here would be M , the fiber bundle is T∗M

and the projection π : T∗M →M : π(q1, . . . , qn, p1, . . . , pn) = (q1, . . . , qn).

Example The tangent bundle, TM , is another fiber bundle. The base space is

the manifold M . The tangent space together with M constitute the fiber TM . Rea-

sonable coordinates for a point in the cotangent bundle TM is (q1, . . . , qn, v1, . . . , vn),
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where (v1, . . . , vn) is the coordinate of a tangent vector. The projection π : TM →

M : π(q1, . . . , qn, v1, . . . , vn) = (q1, . . . , qn).

For the case of real-valued functions, the values of f at different points on B

can be directly compared and the gradient of the function (its local rate of change)

furnishes the geometric structure. However, for bundles where the fibers are fields

(such as a vector field) as opposed to function values, field values are not directly

comparable. To be able to compare field-values at different points on the manifold,

additional structure is added to the manifold so that the field values all lie in spaces

of similar structure (but not necessarily in the same space.)

For vector fields on a planar manifold one can directly compare the field values

and come up with constant fields (that do not vary from one point on the manifold to

another.) For an arbitrary manifold. A connection is a tool that is used to single out

fields that are “constant” (at least in some sense) across the base space M . These

fields are called horizontal fields. First, the notion of a vertical space will be defined.

Definition A.2.3 (Vertical Space). Given a fiber bundle M with a projection

map π, let Tqπ denote the tangent map at any point. The kernel of Tqπ at

any point q is called the vertical space and is denoted by Vq: Vq = Ker(Tqπ) ={
vq ∈ TqM : Tqπ (vq) = 0 ∈ Tπ(q)B

}
.

Definition A.2.4 (Ehresmann Connection). An Ehresmann connection A is a

vertical vector-valued one-form on M that satisfies:

1. Aq : TqM → Vq is a linear map for each point q ∈M .

2. A is a projection: A(vq) = vq, ∀vq ∈ Vq.

Definition A.2.5 (Horizontal Space). The horizontal space Hq is the kernel of

Aq: Hq = Ker (Aq) = {vq ∈ TqM : Aq (vq) = 0 ∈ Vq}.
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Fact A.2.1. TqM = Hq ⊕ Vq; TqM is the direct sum of Hq and Vq.

Lemma A.2.1. Let the bundle coordinates be defined by (rα, sa) for the base and

fiber. Thus, π(rα, sa) = rα. Then the connection A can be represented locally by a

vector-valued differential form ωa: A = ωa ∂
∂sa , where ωa(vq) = dsa + Aa

α(vq)dr
α.

Proof Let vq be an element of TqM : vq =
∑

β ṙ
β ∂

∂rβ +
∑

b ṡ
b ∂

∂sb . Then ωa(vq) =

ṡa +Aa
αṙ

α and A(vq) = (ṡa +Aa
αṙ

α) ∂
∂sa . Thus, A(A(vq)) = ωa ∂

∂sa

[
(ṡa + Aa

αṙ
α) ∂

∂sa

]
=

(dsa + Aa
α(r, s)drα) (ṡa + Aa

αṙ
a) ∂2

(∂sa)2
= (ṡa + Aa

αṙ
a) ∂

∂sa = A(vq). This shows that

A = ωa ∂
∂sa is a projection. As for linearity, A = ωa ∂

∂sa is evidently linear as the

vector-valued differential one-form ωa is linear by definition.

�

Definition A.2.6 (Horizontal Lift). Given an Ehresmann connection A, a point

q ∈ M and a vector vr ∈ TrB tangent to the base at a point r = π(q) ∈ B, define

the horizontal lift of vr to be the unique vector vh
r in Hq that projects to vq under

Tqπ: Tqπ(vh
q) = vq.

Definition A.2.7. The horizontal part of a vector Xq ∈ TqM is defined as: hor Xq =

Xq − A(q) ·Xq.

Fact A.2.2. From the above one concludes that the vertical projection is a map

given by: (ṙα, ṡα) → (0, ṡa + Aa
αṙ

α) and the horizontal projection is a map given by:

(ṙα, ṡα) → (ṙα,−Aa
αṙ

α).

Definition A.2.8 (Curvature of a Connection). The curvature of a connection

A is the vertical-vector-valued two-form B on M defined by its action on two vector

fields X and Y on M by: B(X,Y) = −A ([hor X, hor Y]), where the bracket [·, ·]

denotes the Jacobi-Lie bracket of vector fields obtained by extending the stated

vectors to vector fields.
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Definition A.2.9 (Linear Connections). A linear connection is one where the

sum of two horizontal sections be horizontal; if (ṙα, ṡa) and
(
q̇α, ˙̂sa

)
are horizontal,

then so should be
(
ṙα, ṡa + ˙̂sa

)
. In other words, if ṡa+Aa

α(r, s)q̇α = ˙̂sa+Aa
α(r, ŝ)q̇α =

0, then it is required that ṡa + ˙̂sa + Aa
α(r, s + ŝ)q̇α = 0. In this case, the connection

coefficients take the form: Aa
α =

∑
b Γa

αb(q)sb.

Definition A.2.10 (Affine Connections). If the bundle is the tangent bundle, the

connection is called affine and the coefficients given in definition (A.2.9) are called

the components of the affine connection in the tangent bundle.

Definition A.2.11 (Parallel Transport). A tangent vector vq is said to be parallel

transported along a curve q(t) if vq is always horizontal along the curve. In other

words, A(vq) ≡ 0 along q(t).

Definition A.2.12 (Geodesic Motion and its Equation). In the tangent bundle

sa = ṙa. The geodesic motion along a curve q(t) is defined as the motion for which

the tangent vector is parallel transported along the curve. From lemma (A.2.1) and

definition (A.2.9), we have the equation of geodesic motion: A(vq) = r̈a+Γa
bcṙ

bṙb = 0.

Definition A.2.13 (The Covariant Derivative). A linear connection in the tan-

gent bundle can be defined as a map from two vector fields (X,Y) → ∇XY that

satisfies the following properties:

1. ∇fX+gYX = f∇XZ + g∇YZ,

2. ∇X(Y + Z) = ∇XY +∇XZ, and

3. ∇X(fY) = f∇XY + (df ·X)Y,

where f and g are two smooth functions, X, Y and Z are vector fields and df ·X

is the Lie derivative, or the directional derivative of f along X (see example after
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Theorem (A.1.1).) ∇ can be represented as an expansion of its basis vectors, ∇∂/∂qi
,

and each can be expanded in terms of a set of basis vectors for the vector field

∂/∂qj: ∇∂/∂qk
∂/∂qi =

∑
j Γj

ki
∂

∂qj
. If X and Y are two vector fields given locally by

X = Xk (∂/∂qk) and Y = Y j (∂/∂qj), respectively, then properties (1) and (3) above

imply:

∇XY =
∑

k

∑
j

∇Xk ∂
∂qk

Y j ∂

∂qj

=
∑

k

∑
j

(
XkY j∇ ∂

∂qk

∂

∂qj
+XkdY j · ∂

∂qk

∂

∂qj

)
=

∑
i

∑
k

∑
j

[
XkY jΓi

kj +Xj ∂Y
i

∂qj

]
∂

∂qi

Next, let us revisit the geodesic equations. Note that the ith component of q̇ is given

by q̇i∂/∂qi. One can now compute ∇q̇q̇ using the above properties:

∇q̇q̇ =
∑

i

∑
j

∇q̇i∂/∂qi
q̇j∂/∂qj

= q̇i∇∂/∂qi
q̇j ∂

∂qj

= q̇i ∂

∂qi
q̇j ∂

∂qj
+ q̇iq̇jΓk

ij

∂

∂qk

=
(
q̈j + Γj

ikq̇
iq̇k
) ∂

∂qj
= 0,

where the chain rule has been used for the fourth equality and the last equality is

true by virtue of the geodesic equations introduced in definition (A.2.12). Thus, the

geodesic equations can be written as ∇q̇q̇ = 0. ∇q̇q̇ is sometimes denoted by D2q
dt2

.

Finally, the covariant derivative, denoted DX
dt

, is defined as DX
dt

= ∇q̇(t)X. In local

coordinates the covariant derivative is given by: DX
dt

= ∇q̇(t)X = ∇q̇i∂/∂qi
Xj∂/∂qj =(

q̇j ∂Xi

∂qj + Γi
kjX

kq̇j
)

∂
∂qi =

(
Ẋ i + Γi

kjX
kq̇j
)

∂
∂qi . Finally, note that if we set X = q̇,

we recover the geodesic equations.

One should think of DX
dt

as the time derivative of the field X on Tq(t)M as the
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systems evolves on M with time. When M is flat space Rn, then DX
dt

is simply the

time derivative of the filed in Rn. And since it is flat space, we have Tq(t)M = M

and thus the operation D
dt

is simply d
dt

. In other words, DX
dt

= dq
dt

.

Definition A.2.14 (Curvature and Torsion Tensors). Let X, Y and Z be

arbitrary vector fields on M . The curvature tensor R and the torsion tensor T are

defined by

R(X,Y)(Z) = ∇X(∇YZ)−∇Y(∇XZ)−∇[X,Y](Z)

and

T (X,Y) = ∇XY −∇YX− [X,Y].

The following fact is needed in Chapter 5.

Fact A.2.3. Let X, Y, Z and W be vector fields, then the curvature tensor satisfies

(see [41], page 53)

〈R (X,Y)Z,W〉 = 〈R (W,Z)Y,X〉 .

A.3 Riemannian Manifolds and Connections

Definition A.3.1 (Riemannian Manifold). A Riemannian manifold is an n-

dimensional differentiable manifold M together with a choice , for each q ∈ M , of

an inner product 〈 , 〉 in TqM that varies differentiably with q in the following sense.

For some (hence all) parametrization qα : Uα →M with q ∈ qα (Uα), the functions

gij (u1, . . . , un) = 〈 ∂
∂ui

,
∂

∂uj

〉, i, j = 1, . . . , n,

are differentiable at q−1
α (q); here (u1, . . . , un) are the coordinates of Uα ⊂ Rn[84].

Remark A.3.1. A differentiable manifold with a positive definite quadratic form

〈·, ·〉 on every tangent space TqM is called a Riemannian Manifold . 〈·, ·〉, often

written g(·, ·), is called a Riemannian metric.
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Definition A.3.2 (Gradient Flows). Let f be a smooth function on a Riemannian

manifold M with metric g(·, ·) = 〈·, ·〉. The gradient flow of f , gradf , is the flow of

the vector field defined by df(v) = 〈gradf,v〉 for any v ∈ TM .

Definition A.3.3 (Reduced Bundle). Let M be a manifold with a Riemannian

metric g. For each q ∈ M , one can define a set of orthonormal bases for TqM . A

reduced bundle of the tangent bundle TM is one whose fibers are orthonormal bases

and that has a structure group O(n) (the set of n dimensional orthogonal matrices.)

Definition A.3.4 (Riemannian Connections). A Riemannian connection (also

called the Levi-Civita connection) is a unique affine connection on M , such that

∇g = 0 and the torsion tensor T is identically zero. If the metric is given by

g =
∑
gijdq

idqj, then the connection coefficients are given by

Γi
jk =

∑
l

1

2
gil

[
∂gjl

∂qk
+
∂gik

∂qj
+
∂gjk

∂ql

]
,

which are called the Christoffel symbols . gil denotes the il-th element of the inverse

of g.

A.4 Calculus of Variations on Manifolds

In this section, we introduce the notion of a variational vector field. This allows

us to introduce the necessary notation and tools to derive the necessary conditions

for apply the calculus of variations on manifolds.

Let M be a smooth (C∞) n-dimensional Riemannian manifold with the Rieman-

nian metric denoted by 〈·, ·〉 at a point q ∈M . Thus the length of a tangent vector

v ∈ TqM is denoted by ‖v‖ = 〈v,v〉1/2, where TqM is the tangent space of M at q.

We take ∇ to be the Levi-Civita connection and is, hence, assumed to be symmetric

throughout the entirety of this appendix.
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We will use D/dt and∇v to denote the covariant time derivative. The manifoldM

is assumed to be parallelizable. That is, there exists vector fields X1(q), . . . ,Xn(q) ∈

TqM at each point q ∈ M such that 〈Xi,Xj〉 = δij for all q ∈ M , where δ is the

Kronecker delta. In this appendix we take Xi to be the standard basis Xi = ∂i = ∂
∂qi

,

where q = (q1, q2, . . . , qn).

Let Ω be the set of all C1 piecewise smooth curves q : [0, T ] →M in M such that

q(0) = q0 and q(T ) = qT are fixed. The set Ω is called the admissible set. For the

class of C1 curves in Ω we introduce the C1 piecewise smooth one-parameter variation

of a curve q ∈ Ω by

qε : [0, T ]× (−ε, ε) → M

(t, u) → q(t, ε) = qε(t).

A vector field Y along a variation qε is defined as the mapping that assigns to

each (t, ε) ∈ [0, T ] × (−ρ, ρ) a tangent vector Y(t, ε) ∈ TqεM . For example, the

vector fields Dqε

∂ε
and Dqε

∂t
are defined by

Dqε

∂ε
f =

D

∂ε
(f ◦ qε) and

Dqε

∂t
f =

D

∂t
(f ◦ qε) ,

respectively, where f is a C∞ real-valued function on M . With ε = 0, the vector

fields Dqε

∂ε
and Dqε

∂t
are now restricted to q and the C1 piecewise smooth vector field

along q, v(t) := D
∂t

qε(t, 0), is the velocity vector field along q. On the other hand,

the C1 piecewise smooth vector field Wt = W(t) := D
∂ε

qε(t, 0) ∈ TqΩ is called the

variational vector field associated with qε along q.

The one-parameter variation qε is characterized infinitesimally by the vector space

TqεΩ by setting qε(t) = expq(t)(εWt), where expq(t) is the exponential map on M .

qε is said to be admissible if, for each ε ∈ (−ρ, ρ), the curve qε satisfies the boundary
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conditions

qε(t, 0) = q(t),

Dqε

∂ε
(t, 0) = Wt

Dqε

∂ε
(0, 0) =

Dqε

∂ε
(T, 0) = 0 (A-4.1)

D

dt

Dqε

∂ε
(t, 0) =

D

dt
Wt is continuous on [0, T ]

D

dt

Dqε

∂ε
(0, 0) =

D

dt

Dqε

∂ε
(T, 0) = 0.

The following two facts will be needed in Chapter 5.

Fact A.4.1. A one-parameter variation qε(t, u) satisfies (see [41], page 50)

D

∂ε

Dqε

∂t
=

D

∂t

Dqε

∂ε
.

Fact A.4.2. Let Y be a vector field along qε, then (see [41], page 52)

D

∂ε

D

∂t
Y − D

∂t

D

∂ε
Y = R

(
Dqε

∂ε
,
Dqε

∂t

)
Y.
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APPENDIX B

Systems on Lie Groups

The purpose of this appendix is to discuss optimal control problems on Lie groups,

especially the special orthogonal group SO(3). Though some of the results presented

in Section (B.4) are new, to the author’s knowledge, it also serves to set the stage

for the more general optimal control problem discussed in Chapter 4.

We discuss basic properties of Lie groups. Specifically, we are interested in the

group of rigid body motions SE(3) and its subgroups. We begin with basic nomen-

clature and definitions. More detailed discussions can be found in [93], [51], [49] and

[92].

B.1 Nomenclature and Basic Definitions

This section relies heavily on Section 2 of [49]. Although the focus of this work

is SE(3), in this section we study proper subgroups of SE(3), denoted by G with Lie

algebra denoted by g. We often specialize the result to the SE(3) case directly. We

begin by stating the equations of motion for a dynamical system with state g ∈ G.

First, one can express the first time derivative of g as either a left or right control

system:

ġ = gVb, or ġ = Vsg, (B-1.1)
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respectively, where Vb ∈ g is the velocity in body frame and Vs ∈ g is the velocity

in spatial frame. The system ġ = gVb is said to be left-invariant since it is invariant

under left multiplication by constant matrices, while the system ġ = Vsg is said to be

right-invariant since it is invariant under right multiplication by constant matrices.

For all g ∈ G and all X,Y ∈ g the adjoint map Adg and the matrix commutator

adX are defined as

AdgY = gYg−1

adXY = [X,Y] = XY −YX.

On SE(3), a group element g is represented as a pair g = (R, p) ∈ SO(3) × R3

and velocity by the pair V = (ω̂, v) ∈ so(3) × R3 using homogeneous coordinates

(SO(3) is the special orthogonal group of rotations and so(3) is its Lie algebra.) In

matrix form, these are given by

g =

 R p

0 1

 and V =

 ω̂ v

0 0

 . (B-1.2)

The operator ·̂ : R3 → so(3) is such that ω̂y = ω × y, × being the vector cross

product. Viewing Adg and adV to be acting on elements of g written as column

vectors in R6, one can show that

Adg =

 R 0

p̂R R

 and adV =

 ω̂ 0

v̂ ω̂

 .
With the kinematics given by equation (B-1.1), the dynamic equation of motion

is given by

V̇b = f(g,Vb) + U, (B-1.3)

where, for the sake of later sections, we only work in body coordinates (that is, with

left invariant systems.) From now on, we dismiss the superscript b that denotes a
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body-fixed frame and simply use V. The vector field f(g,V) ∈ se(3) represents the

system’s internal drift and U ∈ se(3) is the control input. The drift term has the

general form:

f(g,V) =

 f̂r(g,V) ft(g,V)

0 0

 , (B-1.4)

where f̂r ∈ so(3) corresponds to rotational drift and ft ∈ R3 corresponds to transla-

tional drift. Likewise, we have

U =

 τ̂ u

0 0

 , (B-1.5)

for the control input, where τ̂ ∈ so(3) is the input torque acting on the body and

u ∈ R3 is the input force assumed acting at the body’s center of mass. The vector

fields f̂r, ft, τ̂ and u take up the following forms:

f̂r(g,V) =


0 −fr3(g,V) fr2(g,V)

fr3(g,V) 0 −fr1(g,V)

−fr2(g,V) fr1(g,V) 0

 , ft =


ft1(g,V)

ft2(g,V)

ft3(g,V)

 ,

τ̂ =


0 −τ3 τ2

τ3 0 −τ1

−τ2 τ1 0

 , u =


u1

u2

u3

 . (B-1.6)

B.2 Preliminary Remarks on Metrics

Much of what is presented in this section can be found in [96] and [84]. If a bilinear

form defined on the tangent space at each point on a manifold M is smooth, positive-

definite and symmetric then it qualifies as a Riemannian metric andM is then called a

Riemannian manifold. If a bilinear form is smooth, symmetric but indefinite, then the

corresponding metric is called semi-Riemannian. On an n-dimensional manifold, a
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metric 〈·, ·〉 is locally characterized by an n×n matrix of C∞ functions gij = 〈Xi,Xj〉,

where Xi, i = 1, . . . , n, form basis-vector fields for the tangent space. If the metric

is defined globally, then the matrix gij completely defines the metric.

On SE(3), an inner product on the Lie algebra se(3) can be extended to a Rie-

mannian metric over the manifold using left (or right) translations as follows. Let

W be a positive-definite matrix, S1, S2 ∈ se(3), let the inner product at the identity

e be given by:

〈S1, S2〉 |e = sT
1Ws2,

where si is the 6 × 1 matrix representation of Si, i = 1, 2. If V1 and V2 are arbi-

trary vector fields at an arbitrary group element g ∈ SE(3), then the inner product〈
Ṽ1, Ṽ2

〉 ∣∣∣∣
g

on the tangent space TgSE(3) can be defined by a left-invariant metric

given by:

〈
Ṽ1, Ṽ2

〉 ∣∣∣∣
g

=
〈
g−1Ṽ1, g

−1Ṽ2

〉 ∣∣∣∣
e

= 〈V1,V2〉
∣∣∣∣
e

= vT
1 Wv2,

where vi is the 6×1 matrix representation of Vi = g−1Ṽi, i = 1, 2. A right-invariant

metric is defined analogously.

B.3 The Exponential Map, the Logarithmic Map and Expo-
nential Coordinates

We now make more definitions. For proofs, see [49]. On any proper subgroup of

SE(3), the exponential map exp : g → G is a surjective map and a local diffeomor-

phism, where g is the Lie algebra associated with the proper subgroup G.

Lemma B.3.1 (Exponential Map, [49]). Given ψ̂ ∈ so(3) and X = (ψ̂, q) ∈
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se(3), then we have Rodrigues’ formula:

expSO(3)

(
ψ̂
)

= I + sin (‖ψ‖) ψ̂

‖ψ‖
+ (1− cos (‖ψ‖) ψ̂2

‖ψ‖2

expSE(3) (X) =

 expSO(3)

(
ψ̂
)

A(ψ)q

0 1

 ,
where ‖·‖ is the standard Euclidean norm and

A(ψ) = I +

(
1− cos (‖ψ‖)

‖ψ‖

)
ψ̂

‖ψ‖
+

(
1− sin (‖ψ‖)

‖ψ‖

)
ψ̂2

‖ψ‖2 .

X = log(g) ∈ g is defined to be the exponential coordinates of the group element g

in an open neighborhood of the origin (dense in) G. The logarithmic map is regarded

as a local chart of the manifold G.

Lemma B.3.2 (Logarithmic Map, [49]). Let (R, p) ∈ SO(3) × R3 be such that

tr(R) 6= −1. Then

logSO(3)(R) =
φ

2 sinφ

(
R−RT

)
∈ so(3),

where φ satisfies cosφ = 1
2
(tr(R)− 1) and |φ| < π. The logarithmic map on SE(3)

is given by:

logSE(3)(R, p) =

 ψ̂ A−1(ψ)p

0 0

 ∈ se(3), (B-3.1)

where ψ̂ = logSO(3)(R) and

A−1(ψ) = I − 1

2
ψ̂ + [1− α(‖ψ‖)] ψ̂2

‖ψ‖2 (B-3.2)

and α(y) := (y/2) cot(y/2).

Elements of the Lie algebra se(3) may either represent a velocity as in equation

(B-1.1) (with a velocity element denoted by V = (ω̂, v)) or the matrix logarithm of
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the state as in equation (B-3.1) (with a velocity element denoted by X = (ψ̂, q)).

With the latter view, elements of se(3) are therefore also viewed as states. An element

of SE(3) is given by g = (R, p).

Remark B.3.1 ([49]). The following identities hold true:

A−1(ψ)R(ψ) = R(ψ)A−1(ψ) = A(ψ)−T ,

A(ψ)R(ψ) = R(ψ)A(ψ) = 2A(2ψ)− A(ψ), (B-3.3)

d

d ‖ψ‖
A(ψ) =

1

‖ψ‖
(R− A(ψ)) ,

where R(ψ) = expSO(3)(ψ̂).

Example B.3.1 (Exponential and Logarithmic Maps on SE(2), [49]). The

orientation angle θ has the skew symmetric matrix form

θ̂ =

 0 −θ

θ 0

 ∈ so(2).

Let X = (θ̂, q) ∈ se(2) . Then we have

expSO(2)(θ̂) =

 cos θ − sin θ

sin θ cos θ


expSE(2)(X) =

 expSO(2)(θ̂) A(θ)q

0 1

 ,
where

A(θ) =
1

θ

 sin θ −(1− cos θ)

(1− cos θ) sin θ

 .
For SE(2), the singularity occurs at tr(R) = −2 as opposed to tr(R) = −1 for

SE(3). Let (R, p) ∈ SO(2) × R2 be such that tr(R) 6= −2. Then logSO(2)(R) = θ̂,
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where cos θ = R11, sin θ = R21 and |θ| < π. Then we have:

logSE(2)(R, p) =

 θ̂ A−1(θ)p

0 1

 ∈ se(2),

where θ̂ = logSO(2)(R) and A−1(θ) =

 α(θ) θ/2

−θ/2 α(θ)

, with α(·) as defined above.

The results stated next give explicit formulas that relate the time derivative of

X(t) = log(g(t)) with the body and spatial velocities Vb and Vs, respectively. For

the linear time-dependent case X(t) = tY, it can be shown that that Ẋ = Y =

Vb = Vs. In fact we have: Y = Ẋ = d log(g(t))
dt

= d log(g)
dg

ġ = g−1ġ = Vb. Since

Vs = ġg−1 = gg−1ġg−1 = gVbg−1 = Adg(V
b), then Vs = Adg(Y) = Y. Hence,

Y = Vb = Vs. For the general case, the results are not straight forward and will be

the subject of the next paragraphs.

The first result expresses the body and spatial velocities as integral functions of

the time derivative of X(t), the exponential coordinates of g(t).

Theorem B.3.1 (Integral Formulas). Let g(t) be a smooth curve on G, X(t) =

log(g(t)) be the exponential coordinates of g(t), Vb = g−1ġ the body velocity and

Vs = ġg−1 the spatial velocity. Then Ẋ is related to Vb and Vs through:

Vb =

∫ 1

0

Adexp(−λX(t))

(
Ẋ
)

dλ

Vs =

∫ 1

0

Adexp(λX(t))

(
Ẋ
)

dλ.

Proof Define Vb
λ such that it satisfies the differential equation:

d

dt
exp (λX(t)) = exp (λX(t))

(
λVb

λ

)
,

where λ ∈ [0, 1]. Note that if we set λ = 1, we have:

ġ =
d

dt
exp (X(t)) = exp (λX(t))

(
Vb

1

)
= gVb

1
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such that Vb = Vb
1. Using the definition of Vb

λ, we then have

d

dλ

[
d

dt
exp (λX(t))

]
=

d

dλ

[
exp (λX(t))

(
λVb

λ

)]
= X(t) exp (λX(t))

(
λVb

λ

)
+ exp (λX(t))

d

dλ

(
λVb

λ

)
.

= X(t)
d

dt
[exp (λX(t))] + exp (λX(t))

d

dλ

(
λVb

λ

)
.

But this is also equal to:

d

dt

[
d

dλ
exp (λX(t))

]
=

d

dt
[X(t) exp (λX(t))]

= Ẋ exp (λX(t)) + X(t)
d

dt
exp (λX(t)) .

Hence, we have:

exp (λX(t))
d

dλ

(
λVb

λ

)
= Ẋ exp (λX(t))

implying that:

d

dλ

(
λVb

λ

)
= exp (−λX(t)) Ẋ exp (λX(t)) = Adexp(−λX(t))Ẋ

Integrating this equation over λ from λ = 0 to λ = 1, we get:

Vb =

∫ 1

0

d

dλ

(
λVb

λ

)
dλ = Vb

1 =

∫ 1

0

Adexp(−λX(t))Ẋdλ.

Finally, since Vs = AdgV
b, then:

Vs = AdgV
b = AdexpX(t)

∫ 1

0

Adexp(−λX(t))Ẋdλ

=

∫ 1

0

Adexp(X(t)) exp(−λX(t))Ẋdλ

=

∫ 1

0

Adexp(X(t)−λX(t))Ẋdλ

=

∫ 1

0

Adexp((1−λ)X(t))Ẋdλ.
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Letting µ = 1− λ, then we have:

Vs = −
∫ 1

0

Adexp(µX(t))Ẋdµ.

The theorem is proven.

�

Theorem B.3.2 (Derivative of the Exponential Coordinates). Let g(t) be a

smooth curve on G, X(t) = log(g(t)) be the exponential coordinates of g(t), Vb =

g−1ġ the body velocity and Vs = ġg−1 the spatial velocity. Then Ẋ is related to Vb

and Vs through:

Ẋ =
∞∑
i=0

(−1)nBi

i!
adi

X

(
Vb
)

=
∞∑
i=0

Bi

i!
adi

X (Vs) ,

where {Bi} are the Bernoulli numbers1. The first of these equations could be written

in the form Ẋ = BXVb, where the symbols BX denote:

BX =
∞∑
i=0

(−1)nBi

i!
adi

X.

Remark B.3.2. Noting that B2k+1 = 0 for all k > 0 and that B0 = 1, B1 = −1/2,

1The Bernoulli numbers {Bi} are a sequence of signed rational numbers that can be defined by
the identity

x

ex − 1
=

∞∑
i=0

Bnxi

i!
.
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B2 = 1/6 and B4 = −1/30, then the first three terms for Ẋ are given by:

Ẋ = Vb − B1

2
adXVb +

∞∑
m=1

B2m

(2m)!
ad2m

X Vb = Vb +
1

2
adXVb

+
1

12
ad2

XVb − 1

120
ad4

XVb + . . .

= Vs +
B1

2
adXVs +

∞∑
m=1

B2m

(2m)!
ad2m

X Vs = Vs − 1

2
adXVs

+
1

12
ad2

XVs − 1

120
ad4

XVs + . . .

and that the two expressions differ only in the second term. Note that for small X,

the matrix series is full rank and absolutely convergent. In particular at X = 0 we

have Ẋ = Vb = Vs.

Remark B.3.3. For a generic group G, let the finite dimension of G be given by

n. Therefore, the rank of the linear operator adX is at most n and by the Cayley-

Hamilton theorem there exist functions hi(X), i = 1, . . . , n, such that adn+1
X =∑n

i=1 hi(X)adi
X. But since adXX = 0 for any X ∈ g, then the rank of adX is at most

n− 1.

Lemma B.3.3 (Time Derivative of Exponential Coordinates on SO(3),

[49]). Let R(t) be a smooth curve on SO(3) such that tr(R(t)) 6= −1. Let ψ̂(t) =

log(R(t)) be the exponential coordinates of R(t) and ω̂ = R−1Ṙ the body angular

velocity. Then we have:

ψ̇ = ω‖ +
1

2
(ψ × ω) + α (‖ψ‖)ω⊥

=

(
I +

1

2
ψ̂ + (1− α (‖ψ‖)) ψ̂2

‖ψ‖2

)
ω,

where α(y) = (y/2) cot(y/2) and ω = ω‖ + ω⊥ is the orthogonal decomposition of ω

along span{ψ} and span{ψ}⊥.
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Lemma B.3.4 (Time Derivative of Exponential Coordinates on SE(3), [49]).

Let g(t) = (R(t), p(t)) be a smooth curve on SE(3) such that tr(R(t)) 6= −1. Let

X(t) =
(
ψ̂, q
)

= log(g(t)) be the exponential coordinates of g(t) and Vb = g−1ġ be

the body velocity. Then we have:

Ẋ = BVb (B-3.4)

=

(
id +

1

2
adX + A (‖ψ‖) ad2

X +B (‖ψ‖) ad4
X

)
Vb,

where

y2A(y) = 2 [1− α(y)] +
1

2
[α(y)− β(y)] ,

y4B(y) = [1− α(y)] +
1

2
[α(y)− β(y)]

and α(y) = (y/2) cot(y/2) and β(y) = (y/2)2/ sin2(y/2). Additionally, the operator

BX can be written as:

BX =

 A(ψ)−T 0

? A(ψ)−T

 .
Remark B.3.4. The ? notation signifies that we do not care what the corresponding

element is. We do not care about the (2,1) and (2,2) blocks of BX since these

contribute to the zero elements (2,1) and (2,2) of the exponential coordinate Ẋ,

which is also in se(3) and, hence, ought to be zero regardless of what the second row

in BX is.

Lemma B.3.5 (Time Derivative of Exponential Coordinates on SE(2),

[49]). Let g(t) = (R(t), p(t)) be a smooth curve on SE(3) such that tr(R(t)) 6= −2.

Let X(t) =
(
θ̂, q
)

= log(g(t)) be the exponential coordinates of g(t) and Vb = g−1ġ =
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(ω̂, v) be the body velocity. Then we have:

θ̇ = ω

q̇ =
ω

θ

(
I − A(θ)−T

)
q + A(θ)−Tv

= ω

 (1− α(θ))/θ −1/2

1/2 (1− α(θ))/θ

 q +

 α(θ) θ/2

−θ/2 α(θ)

 v.
B.4 Optimal Control of the Rigid Body

B.4.1 Metric on so(3)

For the subgroup SO(3) ⊂ SE(3), one uses the Killing form, denoted 〈·, ·〉K , to

define an inner product on its Lie algebra so(3) as follows. On any Lie group G with

Lie algebra g, the Killing form 〈·, ·〉K is defined as the bilinear operator on g× g:

〈X,Y〉K , tr(adX · adY) (B-4.1)

for all X,Y ∈ g. The group G is said to be semi-simple if 〈·, ·〉K is non-degenerate.

For a compact Lie group, 〈·, ·〉K is both non-degenerate and negative definite. Hence,

for a compact Lie group G, an inner product on the Lie algebra g can be defined by

〈·, ·〉 , −α 〈·, ·〉K , α > 0. For SO(3) we set α = 1
2

so that 〈Ω1,Ω2〉 = −1
2
Tr (Ω1Ω2) =

〈ω1, ω2〉R3 with Ω1 = ω̂1 ∈ so(3), Ω2 = ω̂2 ∈ so(3) and ω1, ω2 ∈ R3. It can be shown

that 〈·, ·〉 is Ad-invariant. That is, 〈·, ·〉 satisfies:

〈X,Y〉 = 〈AdgX,AdgY〉 (B-4.2)

for all g ∈ G. Moreover, the matrix commutator satisfies:

〈adZX,Y〉 = −〈X, adZY〉

for all X,Y,Z ∈ g. To get a Riemannian manifold structure on G, the Ad-invariant

inner product 〈·, ·〉 on the algebra g induces and Ad-invariant metric on G by either

a left or right translation.
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We now derive some basic results and relate these results to previously published

ones.

B.4.2 Euler’s Equation as a Constrained Optimal Control Problem

EOMs in body-fixed frame

In this section we derive Euler’s equations (the rotational equations of motion)

for the rigid body starting with the kinematic equation of motion (in body-fixed

frame):

Ṙ = RΩb, (B-4.3)

where R is the body’s rotation matrix and Ωb ∈ so(3) is the body’s angular velocity

expressed as a matrix in the Lie algebra. With ωb the body’s angular velocity,

Ωb = ω̂b. To derive Euler’s equations, we minimize the kinetic energy:

J =

∫ T

0

1

2

〈
Ωb,J(Ωb)

〉
dt (B-4.4)

subject to the constraint given by equation (B-4.3) and the boundary conditions:

R(0) = R0, R(T ) = RT , (B-4.5)

where the inner product 〈·, ·〉 corresponds to the Killing form as defined in Section

(B.4.1). J : so(3) → so(3) is the symmetric2, positive definite, and, hence, invertible

operator defined by:

J(Ω) = JΩ + ΩJ, ∀Ω ∈ so(3), (B-4.6)

where J is a diagonal matrix satisfying Ji + Jj > 0 for all i 6= j. The elements of

J are related to the standard diagonal moment of inertia tensor I by I1 = J2 + J3,

2J is symmetric with respect to the inner product 〈·, ·〉 defined by the Killing form.
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I2 = J3 + J1 and I3 = J1 + J2 (see [42], page 349.) Hence, for any Z ∈ so(3), it is

easy to check that

J(Z) =


0 −z3(J1 + J2) z2(J1 + J3)

z3(J1 + J2) 0 −z1(J2 + J3)

−z2(J1 + J3) z1(J2 + J3) 0

 =


0 −I3z3 I2z2

I3z3 0 −I1z1

−I2z2 I1z1 0

 .
Using the calculus of variations, we append the cost function (B-4.4) with the

constraint (B-4.3) to obtain the modified cost functional:

J =

∫ T

0

1

2

〈
Ωb,J(Ωb)

〉
+
〈
Λb, RT Ṙ− Ωb

〉
dt (B-4.7)

where Λb is a Lagrange multiplier matrix. Though adjoint variables (that is, Lagrange

multipliers) belong to the cotangent space so∗(3), an element of the cotangent space

is identified with an element of the tangent space through Λ∗ (·) = 〈Λ, ·〉, where

Λ∗ ∈ so∗(3). In equation (B-4.7), we have appended the cost with equation (B-4.3)

expressed as an element of so(3): RT Ṙ−Ωb = 0, where RT Ṙ ∈ so(3) and Ωb ∈ so(3).

In what follows, vε(t) = vε(t, ε) denotes a variation of the variable v such that

vε(t, 0) = v(t). Hence we have:

∂

∂ε
Jε =

∫ T

0

〈
δΩb +B(W,Ωb),J(Ωb)

〉
+

〈
Λb,

D

∂ε

(
RT

ε Ṙε

)
− D

∂ε
Ωb

ε

〉
dt

=

∫ T

0

〈
δΩb,J(Ωb)− Λb

〉
dt (B-4.8)

+

∫ T

0

〈
B(Wb,Ωb),J(Ωb)− Λb

〉
+

〈
−DΛb

dt
+ [Λb,Ωb],Wb

〉
dt,

where Jε = J (Rε, vε,Ωε),

δΩb(t) =
3∑

i=1

∂ωb
εi

∂ε
(t, 0)Xi ∈ so(3),

and

B(Wb,Ωb) =
3∑

i=1

ωb
i (t)∇WbXi ∈ so(3).
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Wb is the variational vector field that is defined as follows (see [50], page 41, for a

right control system.) For a perturbed element Rε(t, ε) that satisfies Rε(t, 0) = R(t),

we have an analogous expression to (B-4.3) such that for some Wb ∈ so(3) we have

∂R/∂ε
∣∣
ε=0

= RW b ∈ TRSO(3). [·, ·] denotes the Lie bracket, and ∇ is the covariant

derivative. Here, Xi (i = 1, 2, 3) is a set of basis vector fields for so(3) and ωb
i (i =

1, 2, 3) are the components of Ωb such that Ωb =
∑3

i=1 ω
b
iXi. In deriving the above

expressions use has been made of the following identities: 〈B,J(C)〉 = 〈J(B), C〉

and 〈[B,C], D〉 = 〈B, [C,D]〉 for all A ∈ SO(3) and B,C,D ∈ so(3)3. We have also

integrated by parts:∫ T

0

〈
Λb,

DWb

dt

〉
dt =

∫ T

0

(
Λb
)∗(DWb

dt

)
dt

= −
∫ T

0

D
(
Λb
)∗

dt

(
Wb
)
dt+

[〈
Λb,Wb

〉]T
0

= −
∫ T

0

〈
DΛb

dt
,Wb

〉
dt,

where W(0) = W(T ) = 0 by virtue of the boundary conditions (B-4.5).

First order necessary conditions for optimality are obtained by setting ∂Jε/∂ε
∣∣
ε=0

=

0. By the independence of δΩb and Wb in equation (B-4.8), the first integral in the

equation is zero and we get:

Λb = J(Ωb). (B-4.9)

Hence, we have
〈
B(Wb,Ωb),J(Ωb)− Λb

〉
= 0 and (B-4.8) implies

DΛb

dt
= [Λb,Ωb]. (B-4.10)

3For all A ∈ SO(3) and B,C,D ∈ so(3), using simple properties of the trace operator
we have 〈B,J(C)〉 = − 1

2Tr (BJ(C)) = − 1
2Tr (B(JC + CJ)) = − 1

2 [Tr (BJC) + Tr (BCJ)] =
− 1

2 [Tr (BJC) + Tr (JBC)] = − 1
2Tr ((BJ + JB)C) = 〈J(B), C〉. For the identity 〈[B,C], D〉 =

〈B, [C,D]〉, see Theorem (21.3) on page 113 in [41] for the generic compact Lie group case.
For the case at hand, we have: 〈[B,C], D〉 = − 1

2Tr(BCD − CBD) = − 1
2Tr(BCD − BDC) =

− 1
2Tr(B(CD −DC)) = 〈B, [C,D]〉.
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Recalling that the angular momentum is defined as M b = J(Ωb), then equation

(B-4.10) can be re-written in the familiar form of Euler’s equation:

DM b

dt
=
[
M b,Ωb

]
. (B-4.11)

Two final remarks are in order. Firstly, in the above discussion we have reserved the

covariant time differentiation D
dt

for vector fields (such as M b and Ωb) but have used a

simple time derivative (the dot over a variable) for coordinate variables (namely, the

variable R.) This is a standard notation that we adopt here. Secondly, if M b = m̂b,

then equation (B-4.11) is written in the more familiar form:

ṁb = mb × ωb.

Euler’s equation is of course expressed in the body-fixed frame. In a space-fixed

frame, we have ṁs = mb + ωb × mb = mb × ωb + ωb × mb = 0. That is, in a

space-faxed frame, angular momentum is conserved, which is a standard result.

We now derive the same result using an alternative approach using the calculus

of variations that does not rely on the use of Lagrange multipliers. If we replace Ωb

in the cost function with RT Ṙ and take variations, we get

∂Jε

∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈[
Ωb,Wb

]
+

DWb

dt
,J
(
Ωb
)〉

dt

=

∫ T

0

〈
Wb,−

[
Ωb,J

(
Ωb
)]
−

DJ
(
Ωb
)

dt

〉
dt,

which when set equal to zero gives the same result as before.

EOMs in space-fixed frame

Let us derive the equations of motions in a space-fixed frame. As noted at the

end of the previous section, we now ought to obtain the basic result that angular

momentum, which, as we shall see, turns out to have a more complex expression, is
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conserved. Hence, in this section we study the rigid body expressing its kinematic

equation in space-fixed frame:

Ṙ = ΩsR. (B-4.12)

We wish to minimize the same cost functional given by equation (B-4.4) (that is,

the kinetic energy) subject to the kinematics given by equation (B-4.12) and some

boundary conditions as given by equation (B-4.5). First, since Ṙ = RΩb = ΩsR,

then we have:

Ωs = RΩbRT . (B-4.13)

Hence, we have

J(Ωb) = JRT ΩsR +RT ΩsRJ =: J(R,Ωs) (B-4.14)

and the cost functional is given by the more complicated expression:

J =

∫ T

0

1

2

〈
Ωs, RJRT Ωs + ΩsRJRT

〉
dt.

Appending the cost by the term
〈
Λs, ṘRT − Ωs

〉
and performing the computation

as in the previous section (except that it now requires a bit more strenuous effort),

we obtain:

∂Jε

∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
δΩs,

(
RJRT Ωs + ΩsRJRT

)
− Λs

〉
dt

+

∫ T

0

〈
B(Ws,Ωs),

(
RJRT Ωs + ΩsRJRT

)
− Λs

〉
dt−

∫ T

0

〈
DΛs

dt
,Ws

〉
dt,

where now we define the right variation vector field Ws by ∂Rε/∂ε = WsRε. Hence,

the necessary optimality conditions are given by:

M s := Λs = RJRT Ωs + ΩsRJRT

DM s

dt
= 0, (B-4.15)
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where M s is the angular momentum as expressed in a space-fixed frame. The second

of equations (B-4.15) expresses the fact that angular momentum is conserved in an

inertial (Newtonian, or space-fixed) frame.

B.4.3 Second Order Optimal Control Problem

In body-fixed frame

We now study the minimum control problem in body-fixed variables, minimizing

J =

∫ T

0

1

2

〈
τ̂ b, τ̂ b

〉
dt (B-4.16)

subject to the second order dynamics:

Ṙ = RΩb

DM b

dt
=

[
M b,Ωb

]
+ τ̂ b (B-4.17)

and the boundary conditions:

R(0) = R0, Ωb(0) = Ωb
0, R(T ) = RT , Ωb(T ) = Ωb

T (B-4.18)

where τ̂ b ∈ so(3) is the skew symmetric form of the torque vector τ b ∈ R3. Note that

if we set J = 1
2
I, then M b = Ωb and we are able to make connections to previously

published results [30, 94, 55] for systems of the form:

ẋ = Ω

DΩ

dt
= τ̂ , (B-4.19)

where x = RT Ṙ.

We follow the same procedure as in the previous section by first formulating the

appended cost functional:

J =

∫ T

0

1

2

〈
τ̂ b, τ̂ b

〉
+
〈
Λb

1, R
T Ṙ− Ωb

〉
+

〈
Λb

2,
DM b

dt
−
[
M b,Ωb

]
− τ̂ b

〉
dt.
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Computing ∂Jε/∂ε, we get:

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
Dτ̂ b

dε

∣∣∣∣
ε=0

, τ̂ b − Λb
2

〉
dt

+

∫ T

0

〈
DΩb

dε

∣∣∣∣
ε=0

,−Λb
1 − J

([
Ωb,Λb

2

])
+
[
M b,Λb

2

]
− D

dt
J
(
Λb

2

)〉
dt

+

〈
Wb,−[Ωb,Λb

1]−
DΛb

1

dt
+ R

(
J(Λb

2),Ω
b
)
Ωb

〉]
dt, (B-4.20)

where R is the curvature tensor associated with SO(3). In obtaining equation (B-

4.20), use of the following identities and the ones utilized in the previous section has

been made:

D

dε

D

dt
Ωb

ε −
D

dt

D

dε
Ωb

ε = R(Wb,Ωb
ε)Ω

b
ε〈

J(Λb
2),R(Wb,Ωb)Ωb

〉
=

〈
Wb,R(J(Λb

2),Ω
b)Ωb

〉
We have also used the linearity of the operator J. We have, for example,

∂

∂ε
J
(
Ωb

ε

)
= J

(
∂Ωb

ε

∂ε

)
.

We then have the following theorem, which holds since in equation (B-4.20),

arbitrary variations in τ̂ , Ω and R are independent and, hence, their inner product

terms must be zero for ∂J /∂ε
∣∣
ε=0

= to hold.

Theorem B.4.1. Necessary optimality conditions for a trajectory (R,Ω, τ̂) to be the

optimal solution to the problem of minimizing (B-4.16) subject to the dynamics in

equation (B-4.17) and the boundary conditions in equation (B-4.18) are given by

Ṙ = RΩb

DM b

dt
=

[
M b,Ωb

]
+ Λb

2

τ̂ b = Λb
2 (B-4.21)

DΛb
1

dt
= −[Ωb,Λb

1] + R(J(Λb
2),Ω

b)Ωb

DJ(Λb
2)

dt
= [M b,Λb

2]− Λ1 − J(
[
Ωb,Λb

2

]
).
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and the boundary conditions (B-4.18).

We now make connections to previously published results under the assumption

that J = 1
2
I3×3, where I3×3 is the 3× 3 identity matrix. Let x = RTR and define the

variation vector field Wx such that ∂xε

∂ε

∣∣
ε=0

= Wx. Then∫ T

0

DWx

dt
dt =

∫ T

0

∂ẋε

∂ε

∣∣∣∣
ε=0

dt =

∫ T

0

∂

∂ε
RT

ε Ṙε

∣∣∣∣
ε=0

dt =

∫ T

0

[
Ω,Wb

]
+

DWb

dt
dt.

Thus Wb and Wx are related by

Wx = Wb +

∫ T

0

[
Ω,Wb

]
dt.

With this one can show that equation (B-4.20) can be written in terms of Wx as

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
Dτ̂ b

dε

∣∣∣∣
ε=0

, τ̂ b − Λb
2

〉
dt+

〈
DΩb

dε

∣∣∣∣
ε=0

,−Λb
1 −

DΛb
2

dt

〉
+

〈
Wx,−

DΛb
1

dt
+ R

(
Λb

2,Ω
b
)
Ωb

〉]
dt,

which implies that the necessary conditions could be re-written as

ẋ = Ωb

DΩb

dt
= Λb

2

τ̂ b = Λb
2 (B-4.22)

DΛb
1

dt
= R(Λb

2,Ω
b)Ωb

DΛb
2

dt
= −Λb

1.

Differentiating the third equation one more time and using the second equation, the

above necessary conditions for the special case when J = 1
2
I, we obtain the following

standard result

D3Ωb

dt3
+ R(τ̂ b,Ωb)Ωb = 0, (B-4.23)

which is the standard geodesic equation first derived in [30]. Hence we have the

following lemma.
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Lemma B.4.1. Under the assumption that J = 1
2
I3×3, then the necessary conditions

(B-4.21) are equivalently expressed as in equation (B-4.22) or equation (B-4.23).

The result in [30] is only true for rigid bodies with symmetric inertia properties

(up to a scalar multiple of the identity).

Example B.4.1 (Example on SO(2)). For SO(2), it is easy to verify that [Z,Y] ≡

0 for all X,Y ∈ so(2) and, hence, R(X,Y)Z = 1
4
[[X,Y]Z] ≡ 0, for all X,Y,Z ∈

so(2). Therefore, for the SO(2) case, the necessary conditions are:

Ṙ = RΩ

DM

dt
= Λ2

DΛ1

dt
= 0

DJ (Λ2)

dt
= −Λ1

τ̂ = Λ2.

If we let θ be the orientation of the planar body, then

θ̂ = log(R) =

 0 −θ

θ 0

 .
This corresponds to

R = exp
(
θ̂
)

=

 cos θ − sin θ

sin θ cos θ

 .
Recall that in the general three dimensional case J (Λ2) = JΛ2 + Λ2J , where J is a

diagonal matrix with entries J1, J2 and J3. In the two dimensional case, we have

J (Λ2) =

 0 −I3λ2

I3λ2 0


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and

M =

 0 −I3ω

I3ω 0

 ,
where Λ2 = λ̂2 and Ω = ω̂. I3 is the moment of inertia about the out-of-plane axis

of the body. With the above identifications, the necessary conditions (B-4.24) are

equivalently written as

θ̇

ω̇

λ̇1

λ̇2


=



0 1 0 0

0 0 0 1
I3

0 0 0 0

0 0 1
I3

0





θ

ω

λ1

λ2


.

These equations may be solved analytically to obtain:

θ(t) =
λ0

1

6I2
3

t3 +
λ0

2

2I3
t2 + ω0t+ θ0

ω(t) =
λ0

1

2I2
3

t2 +
λ0

2

I3
t+ ω0

λ1(t) = λ0
1

λ2(t) =
λ0

1

I3
t+ λ0

2,

where λ0
1 and λ0

2 are initial conditions on the Lagrange multipliers to satisfy the

terminal conditions imposed on θ and ω. In this case these are given by

λ0
1 =

21

2
I2
3T

3(θT − θ0)− 3
I2
3

T 2
ω0 +

3

2

I2
3

T 2
ωT

λ0
2 =

3

4
I3T

2(θT − θ0) +
1

2

I3
T
ω0 +

1

4

I3
T
ωT .

If no terminal conditions were specified, then the above initial conditions on the

multipliers will be replaced by the terminal conditions λ1(T ) = λ2(T ) = 0.

Say we wish to drive the system from an initial state θ(0) = θ0 = 0.5 radians,

ω(0) = ω0 = 0 to the terminal state θ(T ) = 0 and ω(T ) = 0, where T = 5π and
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Figure B.1: Attitude (left), angular velocity (center) and applied torque (right.)

I3 = 1. Figure (B.1) shows attitude, angular velocity and torque applied as a function

of time on [0, T ]. Note that the attitude converges to zero and the solution satisfies

the desired boundary conditions.

In space-fixed frame

In the space-fixed frame formulation, we wish to minimize

J =

∫ T

0

1

2
〈τ̂ s, τ̂ s〉 dt (B-4.24)

subject to the second order dynamics:

Ṙ = RΩs

DM s

dt
= τ̂ s (B-4.25)

and the boundary conditions:

R(0) = R0, Ωs(0) = Ωs
0, R(T ) = RT , Ωs(T ) = Ωs

T (B-4.26)

where τ̂ s ∈ so(3) is the skew symmetric form of the torque vector τ s ∈ R3. The

corresponding variational vector fields are such that ∂Rε/∂ε = WsR. In the current
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settings, we have:

∂J
∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈δτ̂ s, τ̂ s − Λs
2〉 dt

+

∫ T

0

〈
Ws,−DΛs

1

dt
+ [Ωs,Λs

1] +RJRT DΩs

dt
Λs

2 −
DΩs

dt
Λs

2RJR
T

+RJRT Λs
2

DΩs

dt
− Λs

2

DΩs

dt
RJRT + R(RJRT Λs

2 + Λs
2RJR

T ,Ωs)Ωs

〉
dt

+

∫ T

0

〈
DΩs

dε

∣∣∣∣
ε=0

,−Λs
1 −

D

dt

(
RJRT Λs

2 + Λs
2RJR

T
)〉

dt.

Hence, the necessary optimality conditions are given by:

τ̂ s = Λs
2

DΛs
1

dt
= [Ωs,Λs

1] +RJRT DΩs

dt
Λs

2

−DΩs

dt
Λs

2RJR
T +RJRT Λs

2

DΩs

dt

−Λs
2

DΩs

dt
RJRT + R(RJRT Λs

2 + Λs
2RJR

T ,Ωs)Ωs

D

dt

(
RJRT Λs

2 + Λs
2RJR

T
)

= −Λs
1.

B.5 Optimal Trajectory Tracking

In this section we study the optimal trajectory tracking problem. That is, we

wish to minimize the weighted sum of the control effort and the deviation of the

configuration of the body from a nominal trajectory, where the system is subject

to the dynamic constraints given by equations (B-1.1) and (B-1.3) and some initial

and terminal constraints. As was done before, we will study the problem on SO(n)

(n = 2, 3) first with some illustrations and then generalize the study to the SE(n)

(n = 2, 3) case. Illustrative examples will be given for SE(2).

B.5.1 Trajectory tracking on SO(n)

In this section we carry out the analysis in body-fixed variables. Hence, we will

drop the superscript b that identifies a body-fixed variable. Let Rd(T ) ∈ SO(n) be a
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given trajectory to be tracked and, as above, the body’s configuration be denoted by

R(t) ∈ SO(n). Before embarking on deriving the main result, we have to decide on

a choice for the error signal. The error signal we choose is e(t) = Rd(t)
TR(t). It is

easy to see that e(t) ∈ SO(n): eT e = RTRdR
T
dR = I, the identity, and det

(
RT

dR
)

=

det
(
RT

d

)
det (R) = det (Rd) det (R) = 1. When R(t) = Rd(t) for any t ∈ [0, T ], then

e(t) = I. Hence, we desire to have e as small as possible. Next, we have to quantify

the smallness of of e. That is, we need to define a distance function on SO(n) to be

able to measure how far away e(t) is from identity. We have the following result.

Proposition B.5.1 (Distance Metric on SO(n), [49]). With respect to an Ad-

invariant metric 〈·, ·〉, the distance between an element g ∈ G and the identity

eG ∈ G of a compact Lie group G is given by the norm of the logarithmic func-

tion: 〈log(g), log(g)〉1/2.

Hence, a measure of the tracking error is given by 〈log(e), log(e)〉. With these

definitions, the optimal trajectory tracking problem is given by:

Problem B.5.1. Minimize

J =

∫ T

0

1

2
〈τ̂ , τ̂〉+

β

2

〈
log
(
RT

d (t)R(t)
)
, log

(
RT

d (t)R(t)
)〉

dt (B-5.1)

subject to the second order attitude dynamics

Ṙ = RΩ (B-5.2)

DM

dt
= [M,Ω] + τ̂

and the boundary conditions

R(0) = R0, Ω(0) = Ω0, R(T ) = RT , Ω(T ) = ΩT . (B-5.3)

β ≥ 0 is a weighting parameter.
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Before embarking on deriving the necessary optimality conditions, we need the

following result.

Theorem B.5.1 (Derivative of the Distance Function, [49, 97]). Let G be a

compact Lie group with a bi-invariant metric 〈·, ·〉. Consider a trajectory g(λ) ∈ G

parameterized by the variable λ, such that g(λ) never passes through a singularity of

the exponential map. Then

1

2

d

dλ
‖g‖2

G = 〈log(g),Z〉 , (B-5.4)

where ‖·‖G denotes the distance metric on G: ‖·‖G = 〈·, ·〉1/2. Z is a vector field that

satisfies ∂
∂λ
g(λ) = gZ.

The variable λ may either denote the time variable t or the perturbation variable

ε. In applications such as PD control on the Euclidean group [49], λ denotes the

time variable. On the other hand, in the calculus of variations and the current

setting, λ denotes the perturbation variable ε. Indeed, note that the perturbed error

is given by eε(t) = RT
d (t)Rε(t). Hence, we have: ∂

∂ε
eε = eε(t)W(t), where W(t) is

the left-invariant variation vector field associated with the curve R(t): ∂
∂ε
Rε(t)

∣∣
ε=0

=

R(t)W(t).

With the above definitions, we are in a position to formulate the appended cost

functional:

J =
1

2
〈τ̂ , τ̂〉+β

2

〈
log
(
RT

dR
)
, log

(
RT

dR
)〉

+
〈
Λ1, R

T Ṙ− Ω
〉
+

〈
Λ2,

DM

dt
− [M,Ω]− τ̂

〉
.

Taking variations of this expression and using Theorem (B.5.1), we obtain

∂Jε

∂ε

∣∣∣∣
ε=0

=

〈
Dτ̂ε
dε

∣∣∣∣
ε=0

, τ̂ − Λ2

〉
+

〈
W, β log

(
RT

dR
)
− [Ω,Λ1]−

Dλ1

dt
+ R (Λ2,Ω)M

〉
+

〈
DΩε

dε

∣∣∣∣
ε=0

,−Λ1 −
DJ (Λ2)

dt
− J ([Ω,Λ2]) + [M,Λ2]

〉
dt.
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R is the riemannian curvature tensor associated with the special orthogonal group.

For any compact Lie group (such as the special orthogonal group) we have

Lemma B.5.1 (Riemannian Curvature Tensor for Compact Lie Groups,

[41]). Let G be a Lie group with a bi-invariant Riemannian metric. If X,Y,Z are

left invariant vector fields on G, then R (X,Y)Z = 1
4
[[X,Y] ,Z].

Hence, we have the following theorem.

Theorem B.5.2. The first order necessary optimality conditions for the problem

(B.5.1) are given by:

Ṙ = RΩ

DM

dt
= [M,Ω] + Λ2

DΛ1

dt
= β log

(
RT

dR
)
− [Ω,Λ1] +

1

4
[[Λ2,Ω] ,M ]

DJ (Λ2)

dt
= −Λ1 − J ([Ω,Λ2]) + [M,Λ2]

τ̂ = Λ2.

We now study this result for the two cases of interest: SO(2) and SO(3).

Trajectory Tracking on SO(2)

For SO(2), it is easy to verify that [Z,Y] ≡ 0 for all X,Y ∈ so(2) and, hence,

R(X,Y)Z = 1
4
[[X,Y]Z] ≡ 0, for all X,Y,Z ∈ so(2). Therefore for the SO(2) case,
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the necessary conditions are:

Ṙ = RΩ

DM

dt
= Λ2

DΛ1

dt
= β log

(
RT

dR
)

(B-5.5)

DJ (Λ2)

dt
= −Λ1

τ̂ = Λ2.

If we let θ be the orientation of the planar body, then

θ̂ = log(R) =

 0 −θ

θ 0

 .
This corresponds to

R = exp
(
θ̂
)

=

 cos θ − sin θ

sin θ cos θ

 .
Similar expressions are obtained for the desired rotation matrix Rd but replacing the

orientation θ with the desired orientation angle θd. Since

RT
dR =

 cos(θ − θd) − sin(θ − θd)

sin(θ − θd) cos(θ − θd)


and, hence,

log(RT
dR) =

 0 −(θ − θd)

θ − θd 0

 .
Recall that in the general three dimensional case J (Λ2) = JΛ2 + Λ2J , where J is a

diagonal matrix with entries J1, J2 and J3. In the two dimensional case, we have

J (Λ2) =

 0 −I3λ2

I3λ2 0


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and

M =

 0 −I3ω

I3ω 0

 ,
where Λ2 = λ̂2 and Ω = ω̂. I3 is the moment of inertia about the out-of-plane axis

of the body. With the above identifications, the necessary conditions (B-5.5) are

equivalently written as

θ̇

ω̇

λ̇1

λ̇2


=



0 1 0 0

0 0 0 1
I3

β 0 0 0

0 0 − 1
I3

0





θ

ω

λ1

λ2


+



0

0

−β

0


θd(t). (B-5.6)

Note here that the closed-loop system is unstable with eigenvalues given by

± 1

2

√
2

I3
β1/4(1− ı), ± 1

2

√
2

I3
β1/4(1 + ı). (B-5.7)

This observation, of course, is an example that represents the difficulty with extend-

ing the present work to an infinite-time horizon even for the two-dimensional case.

For linear systems, such as the two-dimensional problem we consider here, the insta-

bility does not pose a problem in the finite-horizon since linear systems do not have

a finite escape time. On the other hand, for the infinite-time horizon problem we

need to satisfy the Ricatti condition to ensure stability of the closed loop system. For

a nonlinear system, however, the system possesses a finite escape time and, for the

finite horizon time, we need to ensure that the terminal maneuver time T is smaller

than the escape time.

We now consider an example. Say we wish to drive the system from an initial state

θ(0) = θ0 = 0.5 radians, ω(0) = ω0 = 0 to the terminal state θ(T ) = 0.2 cosT and

ω(T ) = 0, where T = 5π. The trajectory to be tracked is given by θd(t) = 0.2 cos t.
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Figure B.2: Tracking error (left) and applied torque (right) for three different values
of β: β = 1, 50, 100.

This is a two point boundary value problem. We use Matlabr’s bvp4c boundary

value solver. The tracking error is plotted in Figure (B.2). Note that the error

converges to zero and the solution satisfies the desired terminal conditions.
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APPENDIX C

Optimal Control on Riemannian Manifolds with

Potential Fields

This appendix is an extension of the work done by the author in Chapter 5 and

in [40], where necessary conditions for minimizing the cost function for a trajec-

tory that evolves on a Riemannian manifold and satisfies a second order differential

equation together with some interpolation, smoothness and motion constraints were

derived. In this appendix, we investigate the inclusion of a generalized potential

field in the dynamics. This problem is motivated by two-spacecraft interferometric

imaging applications, where the formation is evolving in some generalized potential

field. The corresponding necessary conditions are derived and connections are made

with previous results. The appendix is concluded with an example.

C.1 Problem Statement

In this appendix we consider systems that satisfy dynamics of the form:

Dq

dt
(t) = v(t)

Dv

dt
(t) = u(t) + ∆q(t) (V (q (t))) , (C-1.1)

where q : [0, T ] →M is a curve on M , v(t) ∈ Tq(t)M , u(t) ∈ TTq(t)M and V : M →

R is the potential energy function. ∆q(t)(·) denotes the gradient with respect to the
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metric g computed at the point q(t). ∆q(t) (V (q (t))) may equivalently be written in

the form [dV ]#q(t), where d denotes the exterior derivative and ω# denotes the sharp

operator acting on the form ω to yield a vector field (see pages 85 and 95 in [42] and

page 58-9 in [88] for a discussion on the gradient field and treating potential fields.)

Moreover, let u(t) ∈ TTq(t)M be given by

u(t) =
m∑

i=1

ui(t)Xi(q(t)), (C-1.2)

where m ≤ n and Xj, j = 1, . . . , n, satisfy 〈Xj,Xk〉 = δjk. In other words, Xj

is an orthonormal set of vector fields on Tq(t)M . Mathematically, this assumption

limits the class of manifolds we consider (to parallelizable manifolds) for the general

problem formulation, but is satisfied for the special case where we deal with real life

systems of particles in space. Thus, we have:

〈u(t),u(t)〉 =
m∑

i=1

u2
i (t). (C-1.3)

m = n corresponds to the fully actuated system, whereas m < n corresponds to the

under-actuated situation. Here is a statement of the problem we are considering.

Problem C.1.1. Find critical values of

J τ (q) =
1

2

∫ T

0

[
〈u,u〉+ τ 2

〈
Dq(t)

dt
,
Dq(t)

dt

〉]
dt, (C-1.4)

over the set Ω of C1-paths q on M , satisfying

• the dynamic constraints (C-1.1),

• q
∣∣
[0,T ]

is smooth,

• boundary conditions

q(0) = q0, q(T ) = qT , v(0) = v0, v(T ) = vT , (C-1.5)
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• and the motion constraints〈
Dq

dt
,Xi(q)

〉
= ki, i = 1, . . . , l (l < n) (C-1.6)

for Xi, i = 1, . . . , n, linearly independent vector fields in some neighborhood of

q and given constants ki, i = 1, . . . , l.

In Chapter 5, we assumed that the system is evolving in a gravity-free space.

Here we extend this work by including a potential field in the formulation. This

has applications where the formation is evolving in a gravitational field such as in

the vicinity of a libration point or when under the effect of planetary gravitational

fields. It is also worth noting that the use of geometric control methods for spacecraft

formation flying has received little attention, whereas extensive investigations have

been conducted in the field of of robotic path planning (for more on this issue, see

Section (IV) in [8].) This work is an attempt to use geometric optimal control theory

for spacecraft formation motion planning.

Whenm < n and the control variables belong not to TTM but to TM and directly

control the system speeds as opposed to the accelerations, the problem is known at

the SubRiemmannian optimal control problem. See for example [98], [99] and [42]

and references therein for the treatment of these kinematic control problems. In

this appendix we restrict our attention to the fully actuated dynamic version of the

problem.

Assumption C.1.1. Each particle is fully actuated in all n directions. That is to

say m = n.

Moreover, we may ignore the motion constraints (C-1.6). As shown in Chapter 5

and in [40], these constraints are automatically appended to the final expression for
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the necessary conditions corresponding to the unconstrained problem. Here, again,

once the necessary conditions are obtained for systems with a potential field, the

motion constraints are simply appended to the necessary conditions. In Section

(C.3) we derive the necessary conditions for the full problem (C.1.1).

C.2 Necessary Conditions for Optimality

As in [35], in this section we follow a Lagrangian approach to obtaining the first

order necessary conditions that provide an optimal solution to the optimal control

problem (C.1.1) without the motion constraints (C-1.6). We also show that the La-

grangian approach yields results identical to those obtained by purely variational

approaches. In Section (C.3) we derive the necessary conditions for the full prob-

lem, including motion constraints. We now derive the necessary conditions using a

Lagrangian approach.

Appending the Lagrangian with the dynamic equations of motion, one obtains:

J τ (q,v,λ1,λ2,u) =

∫ T

0

λ1

(
Dq

dt
− v

)
+ λ2

(
Dv

dt
− u−∆V

)
+

1

2
〈u,u〉+

1

2
τ 2

〈
Dq

dt
,
Dq

dt

〉
dt,

where λi ∈ T ∗q(t)M , i = 1, 2, are the one-form Lagrange multipliers. We now proceed

by taking variations of J τ to obtain

∂

∂ε
J τ

∣∣∣∣
ε=0

=

∫ T

0

[
λ1

(
D

∂ε

Dq(t, ε)

dt
− Dv

∂ε
(t, ε)

)
+ λ2

(
D

∂ε

Dv(t, ε)

dt
− Du

∂ε
− D

∂ε
∆V

)
+

〈
u,

Du

∂ε

〉
+ τ 2

〈
Dq(t, ε)

dt
,
D

∂ε

Dq(t, ε)

dt

〉]
dt

∣∣∣∣
ε=0

=

∫ T

0

λ1

(
DW

dt
− δv −B(W,v)

)
+λ2

(
D

∂ε

Dv(t, ε)

dt

∣∣∣∣
ε=0

− δu−B(W,u)−∇W∆V

)
+ 〈u, δu + B(W,u)〉+ τ 2

〈
Dq

dt
,
DW

dt

〉
dt.



270

Integrating by parts and the fact that W(0) = W(T ) = 0, one obtains∫ T

0

λ1

(
DW

dt

)
dt = −

∫ T

0

Dλ1

dt
(W) dt (C-2.1)

and ∫ T

0

τ 2

〈
Dq

dt
,
DW

dt

〉
dt = −

∫ T

0

τ 2

〈
D2q

dt2
,W

〉
dt. (C-2.2)

Let Y be a vector field along q(t, ε), then we have the standard property [55]

D

∂ε

D

∂t
Y − D

∂t

D

∂ε
Y = R

(
Dq

∂ε
,
Dq

∂t

)
Y. (C-2.3)

Using this property and integrating by parts we have∫ T

0

λ2

(
D2v

∂ε∂t

)
dt =

∫ T

0

λ2

(
R(W,v)v +

D2v

∂t∂ε

)
dt

=

∫ T

0

λ2 (R(W,v)v)− Dλ2

dt
(δv + B(W,v)) dt.(C-2.4)

Using equations (C-2.1-C-2.4) and separating expressions involving W, δv and δu,

we now have

∂J τ

∂ε

∣∣∣∣
ε=0

=

∫ T

0

[
− Dλ1

dt
(W)− λ1 (B(W,v)) (C-2.5)

−Dλ2

dt
(B(W,v)) + λ2 (R(W,v)v)− λ2 (B(W,u))

−λ2 (∇W∆V ) + 〈u,B(W,u)〉 − τ 2

〈
W,

D2q

dt2

〉]
dt

+

∫ T

0

−λ1 (δv)− Dλ2

dt
(δv) dt+

∫ T

0

−λ2 (δu) + 〈u, δu〉 dt.

For an optimal solution, the first order necessary condition is that

∂J
∂ε

(q(t, ε),u(t, ε), t)

∣∣∣∣
ε=0

= 0 (C-2.6)

Using this condition and the fact that W, δu and δv are independent and arbitrary

for arbitrary ε, the last integral in equation (2.6) implies that u = λ]
2. The second

integral and condition (C-2.6) imply that

Dλ2

dt
(X) = −λ1(X) (C-2.7)
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for an arbitrary vector field X. u = λ]
2 implies that λ2 (R(W,v)v) = 〈u,R(W,v)v〉 =

〈W,R(u,v)v〉, using the standard properties of the curvature tensor [41]. This and

the fact that the first integral in equation (2.6) is zero for arbitrary W imply that

Dλ1

dt
(X) =

〈
R(u,v)v − τ 2 Dv

dt
,X

〉
− λ2 (∇X∆V ) (C-2.8)

for an arbitrary vector field X. Equations (C-1.1), (C-2.7), (C-2.8) and u = λ]
2 give

us the main theorem of this appendix.

Theorem C.2.1. The extremals of the optimal control problem (C.1.1), without the

motion constraints (C-1.6), must necessarily satisfy the following necessary condi-

tions for an arbitrary vector field X:

Dq

dt
= v

Dv

dt
= λ#

2 + ∆V

Dλ1

dt
(X) =

(
R(u,v)v − τ 2 Dv

dt

)[

(X)− λ2 (∇X∆V )

Dλ2

dt
(X) = −λ1(X)

u = λ#
2 ,

where Y[ denotes the flat operator acting on the vector field Y: Y[(·) = 〈Y, ·〉.

Remark C.2.1. In the proof for Theorem (C.2.1) we have not taken variations in

the multipliers λi, i = 1, 2. The reason is that taking variations in these terms results

in ∫ T

0

δλ1

(
Dq

dt
− v

)
+ (B(W,λ1))

(
Dq

dt
− v

)
+δλ2

(
Dv

dt
− u

)
+ (B(W,λ2))

(
Dv

dt
− u−∆cV

)
dt

in addition to terms involving variations of the arguments in the parentheses, which

we have used in the proof of the theorem. By the independence of δλi, i = 1, 2,
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their arguments must be zero. This yields the dynamic constraints (C-1.1). Hence,

the second and fourth terms in the above expression are zero since the arguments

in parentheses are zero. Thus, we omit taking variations of the multipliers though,

formally, we should have.

We now derive an alternative form to the above necessary conditions analogous to

that obtained in Chapter 5, [40] and [35]. In Section (C.3), we derive this alternate

form following a procedure found in in Chapter 5 and in [40], [33] and [55] including

the motion constraints (C-1.6).

Theorem C.2.2. The necessary conditions of Theorem (C.2.1) can equivalently be

written as 〈
Z,

D3v

dt3
+ R(u,v)v − τ 2 Dv

dt
− D2∆V

dt2

〉
= 〈u,∇Z∆V 〉

for any arbitrary vector field Z.

Proof Let Z be an arbitrary vector field. Then, by the fourth and fifth equations in

Theorem (C.2.1) we have:

D2λ2

dt2
(Z) = −Dλ1

dt
(Z) =

〈
Z,−R(u,v)v + τ 2 D2q

dt2

〉
+ 〈u,∇Z∆V 〉 .(C-2.9)

Since u = λ]
2

D2λ2

dt2
(Z) =

〈
Z,

D2u

dt2

〉
=

〈
Z,

D3v

dt3
− D2∆V

dt2

〉
. (C-2.10)

The statement of the theorem follows immediately from Equations (C-2.9) and (C-

2.10).

�

Note here that Theorem (C.2.2) is slightly different from that obtained in Chapter

5 and in [40] in that the control u appears directly in the equation as opposed to
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the acceleration D2q
dt2

. Note also that if we set ∆V = 0, we retrieve the gravity-free

necessary conditions appearing in [30, 40]:

D3v

dt3
+ R

(
Dv

dt
,v

)
v − τ 2 Dv

dt
= 0. (C-2.11)

C.3 Motion Constraints

In this section, we briefly re-derive Theorem (C.2.2) following a direct variational

procedure as in [40], [33] and [55]. For completeness, we also generalize the result to

the case of motion constraints given by equation (C-1.6).

As in [33], define the one forms ωi(Y) = 〈Xi,Y〉 and the two forms dωi, i =

1, . . . , l, where d is the exterior derivative. Defining y as the contraction operator,

the 1-form Xydωi satisfies: Xydωi(Y) = dωi(X,Y). One may define tensors Si

such that Siq : TqM → TqM , by setting dωi(X,Y) = 〈Si(X),Y〉 = −〈Si(Y),X〉.

Augmenting the cost function by the motion constraints

l∑
i=1

ηi

〈
Dq

dt
,Xi(q)

〉
=

l∑
i=1

ηiωi

(
Dq

dt

)
,

the perturbed cost function is given by

J τ
ε =

1

2

∫ T

0

〈u(t, ε),u(t, ε)〉+ τ 2

〈
Dα

∂t
,
Dα

∂t

〉
+

l∑
i=1

ηi

〈
Dα

dt
,Xi(α)

〉
dt,

where α denotes the perturbed trajectory q(t, ε). Taking variations of the cost

function and using the dynamics (C-1.1), we have

∂J τ

∂ε
=

∫ T

0

〈
u(t, ε),

D

∂ε

D2α

∂t2

〉
−
〈

u(t, ε),
D

∂ε
∆αV (α)

〉
+ τ 2

〈
D2α

∂ε∂t
,
Dα

∂t

〉
+

l∑
i=1

ηi

[〈
D

∂t

Dα

∂ε
,Xi(α)

〉
+

〈
Dα

∂t
,
D

∂ε
Xi(α)

〉]
dt.
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By the identity (C-2.3), we have

∂J τ

∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
u,

D2

∂t2
W

〉
+ 〈u(t),R (W,v)v〉

− 〈u(t),∇W∆V 〉+ τ 2

〈
D2α

∂ε∂t
,
Dα

∂t

〉 ∣∣∣∣
ε=0

+
l∑

i=1

ηi

[〈
DW

∂t
,Xi

〉
+

〈
Dq

∂t
,∇WXi

〉]
dt.

For the first term, we integrate twice by parts and apply boundary conditions (C-1.5)

to obtain ∫ T

0

〈
u,

D2W

∂t2

〉
dt =

∫ T

0

〈
D2u

dt2
,W

〉
dt.

For the third term, we use the property 〈Z1,R(Z2,Z3)Z4〉 = 〈Z2,R(Z1,Z4)Z3〉 to

obtain 〈u,R (W,v)v〉 = 〈W,R (u,v)v〉. For the fifth term we integrate by parts

once and use the boundary conditions (C-1.5) to obtain∫ T

0

τ 2

〈
D2α

∂ε∂t
,
Dα

∂t

〉
dt = −

∫ T

0

τ 2

〈
W,

D2q

dt2

〉
dt.

As for the first term under the summation in the cost function, integrate by parts to

obtain∫ T

0

l∑
i=1

ηi

〈
D

∂t

Dα

∂ε
,Xi(α)

〉 ∣∣∣∣
ε=0

dt = −
∫ T

0

l∑
i=1

dηi

dt
〈W,Xi(q)〉+ ηi

〈
W,

DXi(q)

dt

〉
dt.

Note that η is a scalar function (that is, it is neither a vector or a co-vector field) and,

therefore, we are justified in writing Dη/dt = dη/dt = η̇. We now study the sum of

the second term in this expression and the last term in the integrand. Making use of

some of the properties of the Riemannian connection and recalling the definition of

the exterior derivative of a one form ω: dω(X,Y) = Xω(Y)−Yω(X)−ω ([X,Y])

for all vector fields X and Y on M , then, for the one forms ωi such that ωi(W) =

〈W,Xi〉, one has dωi (X,Y) = 〈∇XXi,Y〉 − 〈∇YXi,X〉. Setting X = Dq
dt

and
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Y = W, we thus have

−
l∑

i=1

ηi

〈
W,

DXi(q)

dt

〉
+

l∑
i=1

ηi

〈
Dq

dt
,∇WXi

〉

= −
l∑

i=1

ηidωi

(
Dq

dt
,W

)
= −

〈
l∑

i=1

ηiSi

(
Dq

dt

)
,W

〉
.

The above discussion implies that for ∂J τ

∂ε

∣∣
ε=0

to be zero, we must have

〈
W,

D2u

dt2
+ R (u,v)v − τ 2 D2q

dt2
−

l∑
i=1

[
η̇iXi + ηiSi

(
Dq

dt

)]〉
− 〈u,∇W∆V 〉 = 0.

Since W is an arbitrary vector field, then the following theorem must hold true.

Theorem C.3.1. A necessary condition for an extremal, q(t), of the optimal control

problem (C.1.1), with the motion constraints (C-1.6), is:〈
Z,

D2u

dt2
+ R (u,v)v − τ 2 Dv

dt
−

l∑
i=1

[η̇iXi + ηiSi (v)]

〉
= 〈u,∇Z∆V 〉

for any arbitrary vector field Z.

Theorem (C.3.1) is a generalization of results found in [55] and [30] in that a drift

vector field is included in the model. We note that, without the motion constraints

(C-1.6) the resulting necessary condition is identical to that of Theorem (C.2.2),

where D2u
dt2

= D3v
dt3

.

C.4 Example

As an illustration for the above notions, we consider the execution of a two-

spacecraft spiral maneuver as in Chapter 5 and [45].

Here we study the problem in R3 and treat the spiral constraint as a motion

constraint and set M to be a sphere of constant radius ρ. M has dimension equal

to 2. Thus, we choose to work with the spherical coordinates θ and φ (see Figure
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(C.1).) We may now consider the following equations of motion for spacecraft # 2:

θ̈ = uθ + fθ, and φ̈ = uφ + fφ, (C-4.1)

where uθ and uφ are the control variables and fθ and fφ are components of the poten-

tial field. We then impose the spiral constraint (C-1.6) in terms of the coordinates θ

and φ as follows. Let r be the projection of ρ onto the x-y plane: r = ρ sinφ. The

spiral constraint can be expressed in (spherical coordinate) differential form as

− kdθ + ρ cosφdφ = 0, (C-4.2)

where k is some constant (see Chapter 6 for further details.)

Figure C.1: Variable definition for example.

Let q = (θ, φ). It is desired to solve problem (C.1.1), where we aim at minimizing

J τ subject to the motion constraint:

〈v,X1(q)〉 = 0, (C-4.3)

the boundary conditions:

θ(0) = θ0, φ(0) = φ0, θ(T ) = θT , and φ(T ) = φT (C-4.4)

and the dynamics (C-4.1), where X1(q) is given by

X1 = −k (∂/∂θ) + ρ cosφ (∂/∂φ)
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and the values of θ(0) = θ0, φ(0) = φ0, θ(T ) = θT , and φ(T ) = φT are defined to

satisfy the motion constraint and lie onM at times 0 and T . We are only interested in

the projection of the motion onto a plane parallel to the x-y plane, where x = r cos θ

and y = r sin θ. With spacecraft # 2 moving on one hemisphere, spacecraft # 1 will

be fixed at (0, 0,+ρ) or (0, 0,−ρ) if θ̇(0) > 0 or θ̇(0) < 0, respectively.

First, we need to compute the curvature vector field R (u,v)v for this problem.

Following standard methods for computing the curvature tensor (see, for instance,

[59, 60]), one finds that

R (u,v)v = −uθφ̇
(
θ̇ − φ̇

)
sin2 φ (∂/∂φ) .

The corresponding differential form for the constraint (C-4.2) is given by ω1 =

−kdθ + ρ cosφdφ. The two form dω1 is, therefore, dω1 = 0. Since l = 1, then

set η1 = η. The second time derivative of u is given by:

D2u

dt2
=

[
ḣ1 +

h1φ̇+ h2θ̇

tanφ

]
∂

∂θ
+
[
ḣ− h1θ̇ sinφ cosφ

] ∂

∂φ
,

where

h1 = u̇θ +
uθφ̇+ uφθ̇

tanφ
and h2 = u̇φ − uθθ̇ sinφ cosφ.

Next, we need to compute the first time derivative of v, which is found to be

Dv

dt
=

(
θ̈ +

2θ̇φ̇

tanφ

)
∂

∂θ
+
(
φ̈− θ̇2 sinφ cosφ

) ∂

∂φ
.

Finally, let Z = zθ
∂
∂θ

+zφ
∂
∂φ

be an arbitrary vector field, where zθ and zφ are arbitrary

scalar functions. Then, after a simple computation we have

〈u,∇Z∆V 〉 = uθ

[
zθ

(
∂fθ

∂θ
+

fφ

tanφ

)
+ zφ

(
∂fθ

∂φ
+

fθ

tanφ

)]
+uφ

[
zθ

(
∂fφ

∂θ
− fθ sinφ cosφ

)
+ zφ

∂fφ

∂φ

]
.
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We are now in a position to state the necessary condition from Theorem (C.3.1) in

coordinate form:

0 = zθ

[
− uθ

(
∂fθ

∂θ
+

fφ

tanφ

)
− uφ

(
∂fφ

∂θ
− fθ sinφ cosφ

)
+

dh1

dt
+
h1φ̇+ h2θ̇

tanφ
− τ 2

(
θ̈ +

2θ̇θ̇

tanφ

)
+ kη̇

]
+zφ

[
− uθ

(
∂fθ

∂φ
+

fθ

tanφ

)
− uφ

∂fφ

∂φ
+

dh2

dt
− h1θ̇ sinφ cosφ

−uθφ̇
(
θ̇ − φ̇

)
sin2 φ− τ 2

(
φ̈− θ̇2 sinφ cosφ

)
− ρ cosφη̇

]
.

However, since zθ and zφ are arbitrary and independent functions, then their coeffi-

cients in the above equation must be zero:

ḣ1 = uθ

(
∂fθ

∂θ
+

fφ

tanφ

)
+ uφ

(
∂fφ

∂θ
− fθ sinφ cosφ

)
−h1φ̇+ h2θ̇

tanφ
+ τ 2

(
θ̈ +

2θ̇θ̇

tanφ

)
− kη̇

ḣ2 = uθ

(
∂fθ

∂φ
+

fθ

tanφ

)
+ uφ

∂fφ

∂φ
+ h1θ̇ sinφ cosφ

−uθφ̇
(
θ̇ − φ̇

)
sin2 φ+ τ 2

(
φ̈− θ̇2 sinφ cosφ

)
+ ρ cosφη̇.

These are the necessary conditions for optimality.

One would have obtained the same necessary conditions if one had treated the

problem on R3 with the spiral and spherical constraints imposed on the state (namely,

the spherical coordinates.) However, working on the constrained manifold in the

coordinate free setting discussed in this appendix is both efficient and easier. For

more on this, we refer the reader to the remarks in Chapter 6.

C.5 Conclusion

As an extension to the work done by the authors in Chapter 5, in this appendix

we investigate the inclusion of a generalized potential field in the dynamics. This
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problem is motivated by two-spacecraft interferometric imaging applications, where

the formation is evolving in some generalized potential field. The corresponding nec-

essary conditions are derived and results are re-derived using alternative formalisms.
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APPENDIX D

Optimal control of under-actuated systems with

application to Lie groups

In this appendix we study a class of optimal control problems know as the τ -elastic

variational problem for second order, under-actuated systems. After introducing

and stating the problem, we derive the necessary optimality conditions using two

approaches. The first approach is purely variational where the resulting necessary

conditions are represented by a single fourth order differential equation. In the second

approach, we use the Lagrange multiplier technique. In this case, the necessary

conditions are represented by a set of four first order differential equations. We show

that the two results are equivalent. Finally, we further specialize the result for the

compact semi-simple Lie group case and use SO(3) as an example. We also make

some remarks on the SE(3) case, which is the subject of current research.

D.1 Introduction

In this appendix we use differential geometric techniques on Riemannian man-

ifolds to obtain necessary conditions for a class of optimal control problems. This

class of optimal control problems is known in the mathematical literature as τ -elastic

variational problems (see Chapter 5, [55] and [40] and references therein for more

on the τ -elastic variational problem.) Interest in the τ -elastic variational problem is
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two-fold. The first is pure interest in the mathematical and theoretical implications

of this problem as the resulting necessary conditions represent elastic curves that

deviate from geodesic curves joining the boundary points.

Secondly, the authors are generally interested in applying the results to multi-

spacecraft, especially dual spacecraft, formation flying for imaging applications. As

will be seen in the next section, the cost functional in the τ -elastic variational prob-

lem is a weighted sum of fuel expenditure and the relative speed between the space-

craft pair. In interferometric imaging, relative speed is inversely proportional to

the attained signal-to-noise ratio (see Chapter 2, [5] and [45] and references therein.)

Hence, the optimal control problem is suitable for the motion path planning problem

of a two-spacecraft formation. Modeling the formation as a pair of fully-actuated

point particles has been treated in Chapters 5 and 3, [40] and [38]. One may also

model the two-spacecraft as a pair of rigid bodies evolving in three-dimensional space

and, hence, as a system in SE(3)× SE(3) (two copies of the three-dimensional special

Euclidean group.) This however is a much harder problem and is subject to current

investigation.

We focus our attention on the case where the system is under-actuated, that

is, when the control vector spans a subspace of the tangent space at a point on the

manifold. Optimal kinematic control problems on Riemannian manifolds with under-

actuated systems are known in the literature as the sub-Riemannian optimal control

problem ([99].) In [99], the authors study a restricted version of the cost functional

we consider in this appendix (setting τ = 0.) Moreover, the authors in that paper

consider systems satisfying first order (that is, kinematic) differential equations. We,

on the other hand, study second order (dynamic) systems.

Here is how the appendix is organized. In Section (D.2), we state the problem and
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describe it in more detail. In Section (D.3), we provide some preliminary definitions,

facts and lemmas. In Section (D.4), we derive the necessary conditions for the general

problem. This is done following two approaches where one results in a single fourth

order differential equation and the second in four first order differential equations as

necessary conditions. We show that these results are indeed equivalent. In Section

(D.5), we specialize the result to the compact semi-simple Lie group case, where we

relate current results to those obtain previously in the literature. We use the SO(3)

Lie group case as an example. We conclude the appendix with a summary and final

remarks on future research in Section (D.6).

D.2 Problem Statement

In this appendix we consider systems that satisfy dynamics of the form:

Dq

dt
(t) =

dq

dt
(t) = v(t)

Dv

dt
(t) = u(t), (D-2.1)

where we now view q : [0, T ] → M as a curve on M , v(t) ∈ Tq(t)M and u(t) ∈

TTq(t)M . In this appendix, we are interested in the situation where u(t) be given by

u(t) =
m∑

i=1

ui(t)Xi(q(t)), (D-2.2)

where m < n. Thus, we have:

〈u(t),u(t)〉 =
m∑

i=1

u2
i (t). (D-2.3)

m = n corresponds to the fully actuated system, whereas m < n corresponds to the

under-actuated system. Different versions of the the optimal control problem with

m = n have been treated in the past. See, for example, [30], [33], [35], [35] and

[38, 43, 40]. The case where m < n has been treated in [98] and [99] for kinematic
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systems. In Section (D.1), we briefly described how our present work differs from

that in [99]. We now state the optimal control problem.

Problem D.2.1. Find critical values of

J τ (q) =
1

2

∫ T

0

[
〈u,u〉+ τ 2 〈v,v〉

]
dt, (D-2.4)

over the set Ω of C1-paths q on M , satisfying

• the dynamic constraints (D-2.1),

• q(t) is smooth for all t ∈ [0, T ],

• boundary conditions

q(0) = q0 q(T ) = qT

v(0) = v0 v(T ) = vT ,

(D-2.5)

• and the motion constraints〈
Dq

dt
,Xi(q)

〉
= ki, i = 1, . . . , l (l < n) (D-2.6)

for Xi, i = 1, . . . , n, linearly independent vector fields in some neighborhood of

q(t) and given constants ki, i = 1, . . . , l.

The above cost function is still motivated by optimal path planning for dual

spacecraft interferometric imaging formations. The results presented in Section (D.4)

are general enough to be applied to the multi-spacecraft interferometric imaging

problem, where the formation can be treated as either a set of two point particles

or two bodies. In the latter case, the formation evolves on SE(3), which is a non-

compact Lie group and is subject of current research.

The compact Lie group case is also of interest in that many previous results

(e.g., [99]) study the optimal control problem for Lie groups. It would be interesting
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and instructive to compare our current generalized results with those appearing in

previous literature. We do this in Section (D.5).

We may ignore the motion constraints (D-2.6). As shown in Chapter 5, these

constraints are automatically appended to the final expression for the necessary con-

ditions corresponding to the unconstrained problem. Here, again, once the necessary

conditions are obtained for systems with a potential field, the motion constraints are

simply appended to the necessary conditions.

D.3 Preliminaries

For basic notation and definitions, refer to Appendix A. In addition the results

found in Appendix A, we also need the following lemma.

Lemma D.3.1. Let Z be an arbitrary vector, W be a variational vector field and v

be the velocity vector field. Then, we have

Z (〈v,W〉) = 0.

Proof In local coordinates, let Z =
∑n

k=1 ζk∂k, v =
∑n

i=1 vi∂i and W =
∑n

j=1wj∂j.

Note that wj = ∂
∂ε
qj(t, ε). Then we have:

Z (〈v,W〉) =
n∑

k=1

ζk
∂

∂qk

(
n∑

i=1

vi
∂qi
∂ε

)

=
n∑

k=1

ζk

n∑
i=1

vi
∂2qi
∂qk∂ε

= 0,

where ∂2

∂qk∂ε
qi(t, ε) = ∂2

∂ε∂qk
qi(t, ε) = ∂

∂ε
δik = 0 and ∂vi

∂qk
= 0 since the components of

the velocity vector field v are independent of the local coordinates q1, . . . , qn.

�
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Lemma D.3.2. Let Z be an arbitrary vector, W be a variational vector field, v be

the velocity vector field and u = Dv
dt

be the control vector field. Then, we have

Z (〈u,W〉) = 0.

Proof of Lemma (D.3.2) is analogous to that of Lemma (D.3.1). Lemmas (D.3.1)

and (D.3.2) and the identity

X (〈Y,Z〉) = 〈∇XY,Z〉+ 〈Y,∇XZ〉

for arbitrary vector fields X, Y and Z, imply

〈v,∇ZW〉 = −〈∇Zv,W〉 (D-3.1)

and

〈u,∇ZW〉 = −〈∇Zu,W〉 . (D-3.2)

D.4 Necessary Conditions for Optimality

In this section we first pursue a purely variational approach in deriving the nec-

essary conditions for the problem (D.2.1) without the motion constraints (D-2.6).

That is, Lagrange multipliers will not be introduced to the Lagrangian. This purely

variational approach is used to derive necessary conditions in Chapter 5, [40], [99]

and [33]. However, to take into account the constraint that the control vector field u

only spans a subspace of the tangent space to M at some point q ∈M , the following

vector field will be introduced:

Zt =
n∑

k=m+1

ζk(t)Xk

such that 〈
Xk,

Dv

dt

〉
= 〈Xk,u〉 = 0, k = m+ 1, . . . , n (D-4.1)
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and

〈Zt,u〉 = 0. (D-4.2)

We will drop the subscript t in Zt to become Z.

Appending the cost function by the term (D-4.2), one obtains:

J τ =

∫ T

0

1

2
〈u,u〉+

τ 2

2
〈v,v〉+ 〈Z,u〉 dt. (D-4.3)

A control vector u solves

min
u
J τ (q,v,u) (D-4.4)

only if

∂

∂ε
J τ (qε(t, ε),vε(t, ε),uε(t, ε))

∣∣∣∣
ε

= 0, (D-4.5)

where vε(t, ε) and uε(t, ε) are defined analogous to qε(t, ε) in the previous section.

Replacing u with ∇vv in Equation (D-4.3) and taking variations with respect to ε,

one obtains:

∂J τ

∂ε

∣∣∣∣
ε=0

=

∫ T

0

[〈
Dv

∂t
,
D2vε

∂ε∂t

〉
+ τ 2

〈
v,

Dvε

∂ε

〉
+

〈
DZ

∂ε
,uε

〉
+

〈
Z,

D2vε

∂ε∂t

〉]
ε=0

dt.

We now set ∂qε

∂ε

∣∣
ε=0

= W, use Facts (A.4.1) and (A.4.2) and the standard connection

∇ property DZ
dε

= ∇WZ = ∇ZW+[W,Z] such that the right hand side of the above

equation becomes∫ T

0

〈
Dv

∂t
+ Z,R (W,v)v +

D

∂t

Dv

∂ε

〉
+ τ 2

〈
v,

D

∂t
W

〉
+ 〈∇ZW + [W,Z] ,u〉 dt.

Using Fact (A.2.3) for the curvature in the first term, integrating the τ 2 term by

parts and applying Lemma (D.3.2) (and the remarks thereafter) to the last term in

the integrand we obtain∫ T

0

〈
W,R

(
Dv

∂t
+ Z,v

)
v

〉
+

〈
Dv

∂t
+ Z,

D

∂t

D

∂t
W

〉
− τ 2

〈
Dv

∂t
,W

〉
+Z

(〈
W,

Dv

∂t

〉)
−
〈

W,∇Z
Dv

∂t

〉
+ 〈− [Z,W] ,u〉 dt.
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Recall that the Lie bracket is skew-symmetric: [W,Z] = − [Z,W] and that

LZ

〈
W,

D

∂t
v

〉
= 〈LZW,u〉+ 〈W,LZu〉 .

Observe, however, that

LZ (〈W,u〉) = Z (〈W,u〉) = 0

by Lemma (D.3.2). Hence, we have 〈[Z,W] ,u〉 = 〈LZW,u〉 = −〈W,LZu〉. From

this and the integration of the second inner product in the integrand twice by parts,

we obtain ∫ T

0

〈W,R (u + Z,v)v〉+
〈
∇3

vv +∇2
vZ,W

〉
− τ 2

〈
Dv

∂t
,W

〉
−〈W,∇Zu〉+ 〈W,LZu〉 dt.

Collecting terms, we finally obtain

∂J τ

∂ε

∣∣∣∣
ε=0

=

∫ T

0

〈
W,R (u + Z,v)v +∇3

vv +∇2
vZ

−τ 2 Dv

∂t
−∇Zu + [Z,u]

〉
dt. (D-4.6)

In obtaining Equation (D-4.6), repeated use has been made of the integration by

parts identity, for example,∫ T

0

〈
D

∂t
W,

Dv

∂t

〉
= −

∫ T

0

〈
W,

D

∂t

Dv

∂t

〉
dt,

and the fact that the variational vector field W is fixed at the boundary points 0

and T .

Since W is an arbitrary variational vector field, the condition (D-4.5) and Equa-

tion (D-4.6) immediately result in the main theorem of this appendix.
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Theorem D.4.1. A necessary condition for a control law u(t) to be an optimal

solution for the problem (D.2.1) without the motion constraints (D-2.6), is that it

satisfies the differential equation:

D2u

dt2
+ R (u + Z,v)v +

D2Z

dt2
− τ 2u−∇Zu + [Z,u] = 0

and the condition (D-4.2).

It can be easily checked that this result reduces to previously published results

in the literature. For example, if m = n, one can set Z = 0 in the above theorem to

obtain the necessary conditions for the fully actuated τ -elastic variational problem

(see Chapter 5, [40] and [33].)

We now derive the necessary conditions following the Lagrange multiplier ap-

proach and show that these are equivalent to those obtained in Theorem (D.4.1).

First, we define a bilinear form B (·, ·) that, for any vector field Y =
∑n

i=1 yiXi,

satisfies:

∇vY = Ẏ + B (v,Y)

∇WY = δY + B (W,Y) ,

where Ẏ =
∑n

i=1 ẏiXi, δY =
∑n

i=1
∂yi

∂ε
Xi, B (v,Y) =

∑n
i,j,k=1 viyjΓ

k
ijXk, B (W,Y) =∑n

i,j,k=1wiyjΓ
k
ijXk, and W =

∑n
i=1wiXi =

∑n
i=1

∂qεi

∂ε
Xi is the variation vector field

corresponding to the curve q(t). B(W, ·) is introduced in order to be able to sepa-

rate variations in the components of a vector field, δY, from variations in the basis

vector fields, which are contained in B (W,Y). It is important to separate these

terms since the variations δY are independent from W. This is true especially when

Y = v or u. As for B (v, ·), introducing this notation will be appreciated in the next

section when we treat the Lie group case.
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We append the Lagrangian in Equation (D-2.4) with the dynamics (D-2.1) and

the constraints (D-4.1) to obtain

J τ =

∫ T

0

1

2
〈u,u〉+

τ 2

2
〈v,v〉+ λ1

(
dq

dt
− v

)
+ λ2

(
Dv

dt
− u

)
+

〈
Z,

Dv

dt

〉
dt.

(D-4.7)

Taking variations of this expression, one obtains

∂J τ

∂ε
=

∫ T

0

〈u, δu + B (W,u)〉+ τ 2 〈v, δv + B (W,v)〉

+λ1

(
DW

dt
− δv −B (W,v)

)
+ λ2

(
D2v

∂ε∂t
− δu−B (W,u)

)
+ 〈∇WZ,u〉+ 〈Z, δu + B (W,u)〉 dt. (D-4.8)

Now, note that∫ T

0

λ1

(
DW

dt

)
dt = −

∫ T

0

Dλ1

dt
(W) dt,∫ T

0

λ2

(
D2v

∂ε∂t

)
dt =

∫ T

0

λ2

(
D2v

∂t∂ε
+ R (W,v)v

)
=

∫ T

0

−Dλ2

dt
(δv + B (W,u)) + λ2 (R (W,v)v) dt

〈∇WZ,u〉 = 〈∇ZW + [W,Z] ,u〉 = −〈W,∇Zu〉+ 〈W, [Z,u]〉 .

Hence, we have

∂J τ

∂ε
=

∫ T

0

〈u + Z, δu〉 − λ2 (δu) dt+

∫ T

0

τ 2 〈v, δv〉 − λ1 (δv)− Dλ2

dt
(δv) + 〈u, δu〉

+τ 2 〈v,B (W,v)〉 − λ1 (B (W,v))− λ2 (B (W,u)) + 〈Z,B (W,u)〉

−Dλ2

dt
(δv) + 〈W, [Z,u]〉 − Dλ1

dt
(W)− 〈W,∇Zu + R (u + Z,v)v〉 dt.

By the independence of W, δv and δu, we have the following theorem.

Theorem D.4.2. A necessary condition for a control law u(t) to be an optimal

solution for the problem (D.2.1) without the motion constraints (D-2.6), is that the



290

first order differential equations:

dq

dt
= v

Dv

dt
= u

Dλ1

dt
= ([Z,u]−∇Zu + R(u + Z,V)v)[

Dλ2

dt
= −λ1 + τ 2 (v)[

u + Z = λ]
2

〈Z,u〉 = 0

be satisfied on [0, T ].

In Theorem (D.4.2), ] and [ denote the sharp and flat operators (see [42] for

definitions.) In the above, the Lagrange multipliers λi, i = 1, 2, are viewed as

elements in the cotangent space T ∗M .

We now show that the necessary conditions from Theorem (D.4.2) are equivalent

to those of Theorem (D.4.1). First note that for an arbitrary vector field Y, Theorem

(D.4.2) implies that

D2λ2

dt2
(Y) =

〈
D2 (u + Z)

dt2
,Y

〉
.

and that

D2λ2

dt2
(Y) = −Dλ1

dt
(Y) + τ 2 〈v,Y〉

=
〈
− [Z,u] +∇Zu−R(u + Z,V)v + τ 2v,Y

〉
.

Equating these two expressions immediately result in the fourth order necessary

condition given in Theorem (D.4.1). Hence, we have the following Lemma.

Lemma D.4.1. The necessary conditions of Theorem (D.4.2) are equivalent to those

of Theorem (D.4.1).
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D.5 Optimal Control on Compact Semi-Simple Lie Groups

In this section we derive the necessary conditions from Theorem (D.4.1) where

the manifold M is a compact semi-simple Lie group G. Let g denote the Lie algebra

of G and define the metric such that � ·, · �: −1
2
κ (·, ·), where κ denotes the Killing

form on g. Recall that for semi-simple Lie groups, the Killing form is non-degenerate.

Let J : g → g be a positive definite linear mapping (the inertia tensor) that

satisfies:

� JX,Y � = � X, JY �

� JX,X � = 0 if and only if X = 0.

Let Rg denote the right translation on G by g ∈ G. If X,Y ∈ g, then the

corresponding right invariant vector fields are given by Xr
g = Xr(g) = Rg∗X and

Yr
g = Yr(g) = Rg∗Y, respectively. Hence a right invariant metric on G may be

defined as

〈Xr(g),Yr(g)〉 :=� X, JY � . (D-5.1)

Corresponding to this metric there exists a unique Riemannian connection ∇, which,

in turn, defines the bilinear form:

(X,Y) → B (X,Y) =
1

2

{
[X,Y] + J−1 [X, JY] + J−1 [Y, JX]

}
, (D-5.2)

for any X, Y ∈ g. If J were the identity, then B (X,Y) = 1
2
[X,Y]. In this appendix

we make the simplifying assumption J = I is the identity. The reason for doing this

is that the derivation becomes very cumbersome and lengthy in the general case,

which will be the focus of future work. We will drop the superscript r for right

invariant vector fields in the rest of the appendix.
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With q̇ = v =
∑n

i=1 viXi, then we have:

Dv

dt
=

n∑
i=1

v̇iXi +
n∑

i,j=1

1

2
vivj[Xi,Xj] =

m∑
i=1

v̇iXi

D2v

dt2
=

n∑
i=1

v̈iXi +
1

2

n∑
j,k=1

viv̇k [Xi,Xk] (D-5.3)

D3v

dt3
=

n∑
i=1

...
v iXi +

n∑
i,j=1

v̈ivj [Xj,Xj]

+
1

4

n∑
i,j,k=1

viv̇jvk [Xk, [Xi,Xj]] ,

where B(v,v) = ∇vv =
∑n

i,j=1
1
2
vivj[Xi,Xj] = 0 by the skew-symmetry of the Lie

bracket. Note here that v̇i = 0 for i = m + 1, . . . , n. This is a standard result that

can be found in [32]. We also need to compute [Z,u]:

[Z,u] =
n∑

i=m+1

m∑
j=1

ζiuj [Xi,Xj] . (D-5.4)

We now determine R (u + Z,v)v:

R (u + Z,v)v =
1

4
[[u + Z,v] ,v] (D-5.5)

=
1

4

n∑
j,k=1

vjvk

[[
m∑

i=1

uiXi +
n∑

l=m+1

ζlXl,Xj

]
,Xk

]
.

Finally, we need to compute the second-order time derivative of Z. This is easily

found to be:

D2Z

dt2
=

n∑
i=m+1

ζ̈iXi +
n∑

i=m+1

n∑
j=1

ζ̇ivj [Xj,Xi] +
1

2

n∑
i=m+1

n∑
j=1

ζiv̇j [Xj,Xi]

+
1

4

n∑
i=m+1

n∑
j,k=1

ζivjvk [Xk, [Xj,Xi]] . (D-5.6)

We are now in a position to state the necessary optimality conditions for the problem

(D.2.1). By Theorem (D.4.1), the necessary conditions are stated as:

0 =
...
v iXi − τ 2ukXk + v̈ivj [Xj,Xi] + ζ̈lXl + ζ̇lvi [Xi,Xl] + ζluk [Xl,Xk] (D-5.7)

+
1

4

{
vhvivj [Xj, [Xh,Xi]] + vivj [[ukXk + ζlXl,Xi] ,Xj] + ζlvivj [Xj, [Xi,Xl]]

}
,
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where we note that ∇Zu = B (Z,u) = 1
2
[Z,u] since Z and u are independent of the

coordinate q. We also used the fact that D2u
dt2

= D3u
dt3

. In Equation (D-5.7), we use

the Einstein convention of summation over each (individual) term, where the indexes

h, i, j are summed over 1, . . . , n, k over 1, . . . ,m and l over m+1, . . . , n. Finally, note

that the first term inside the curly brackets is zero, again, by the skew-symmetry of

the Lie bracket. Hence, in final form, the necessary conditions are given by:

0 =
...
v iXi − τ 2ukXk + v̈ivj [Xj,Xi] + ζ̈lXl + ζ̇lvi [Xi,Xl] + ζluk [Xl,Xk]

+
1

4

{
vivj [[ukXk + ζlXl,Xi] ,Xj] + ζlvivj [Xj, [Xi,Xl]]

}
, (D-5.8)

If we set τ = 0, this is the second order, dynamic version of the first order,

kinematic problem found in [32] (Theorem 6) and [99]. Moreover, if we set m = n

(hence, Z = 0) and τ = 0, then the above equation reduces to:

0 =
...
v iXi + v̈ivj [Xj,Xi] +

1

4

{
vivjvk [[Xk,Xi] ,Xj]

}
=

...
v iXi + v̈ivj [Xj,Xi] ,

where the term in curly brackets before the first equality sign is zero by the skew-

symmetry of the Lie bracket. This is exactly what is found in [30] and Lemma 4 in

[32].

Using the first equation in (D-5.3) as well as Equations (D-5.4) and (D-5.5), it is

easy to derive the first order form of the necessary conditions as given in Theorem
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(D.4.2). In the form of Theorem (D.4.2), the necessary conditions are:

n∑
i=1

q̇iXi =
n∑

i=1

viXi

m∑
i=1

v̇iXi =
m∑

i=1

uiXi(
Dλ1

dt

)]

=
1

2

n∑
i=m+1

m∑
j=1

ζiuj [Xi,Xj]

+
1

4

n∑
j,k=1

vjvk

[[
m∑

i=1

uiXi +
n∑

l=m+1

ζlXl,Xj

]
,Xk

]
Dλ2

dt
= −

∑
i

λi
1Υi + τ 2

n∑
i=1

viΥi,

where λ1 =
∑n

i=1 λ
i
1Υi and λ2 =

∑n
i=1 λ

i
2Υi and Υi, i = 1, . . . , n, is the co-frame

for T ∗M such that Υi (Xj) = δij.

We now give an example on the three dimensional group of rigid body rotations

SO(3). In this case, we have [X1,X2] = X3, [X2,X3] = X1 and [X3,X1] = X2. We

note, of course, that for the optimal control problem to be well defined, the system

we consider must be controllable. For example, the under-actuated system:

q̇ = v1X1 + v2X2 + v3X3

Dv
dt

= u1X1

(D-5.9)

is not controllable and, hence, the system can not be steered between any two arbi-

trary states. However, the system:

q̇ = v1X1 + v2X2 + v3X3

Dv
dt

= u1X1 + u2X2

(D-5.10)

is controllable. For this case we have Z = ζ3X3. After a long derivation, the fourth
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order necessary conditions in Equation (D-5.8) for SO(3) can be shown to be:

...
v 1 − τ 2u1 + ζ̇3v2 − ζ3u2

+
1

4

[
v1v2u2 + v1v3ζ3 − u1

(
v2

2 + v2
3

)]
= 0

...
v 2 − τ 2u2 − ζ̇3v1 + ζ3u1

+
1

4

[
v1v2u1 + v2v3ζ3 − u2

(
v2

1 + v2
3

)]
= 0

...
v 3 + ζ̈3 +

1

4

[
v1v3u3 + v2v3u2 − ζ3

(
v2

1 + v2
2

)]
= 0.

D.6 Conclusion

In this appendix, we use geometric tools to derive coordinate-free necessary con-

ditions for an optimal control problem, where the system is under-actuated and

evolves on a Riemannian manifold. We apply the results to semi-simple compact

Lie groups and relate our results to those appearing previously in the literature.

Current research focuses on the non-compact Lie group case, such as SE(3). Future

research will focus on adding more complexity to the model. Of particular inter-

est are adding a drift (gravitation) term and the treatment of additional holonomic

and/or nonholonomic constraints to the problem (D.2.1).
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APPENDIX E

Subject Index
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Index

J2, 3, 4, 8, 9, 156, 157, 162, 175, 184, 185,

187, 189–193, 195, 196, 199, 203

τ -elastic dynamic interpolation problem,

7, 102, 104, 107, 111, 113–115,

136, 280, 281, 288

admissible variation, 104

Affine connection, 230

affine connection, 233

angular resolution, 1, 8, 13, 23, 48, 110,

139, 156, 157, 159, 162, 166, 167,

171, 193, 200–203

Christoffel symbols, see Riemannian con-

nection coefficients

cotangent vectors, spaces and bundles, 222

covariant derivative, 50, 108, 230, 231,

234, 250, 251

curvature tensor, 63, 85, 87, 112–114, 116,

232, 271, 277, 286

SE(3), 84–87

SO(3), 86, 254, 262

differentiable manifold, 211

differential form, 221, 222

dual spacecraft

formation, 2, 6–8, 10, 58, 96, 109,

118, 119, 136, 144, 281, 283

interferometry, 7, 138

Dual-Quadrature Spectral Interferometry,

202

dynamic coverage problem, 6, 10, 46, 49,

73, 136, 205

dynamic interpolation, 7, 101, 102, 104,

107, 117, 266

Ehresmann connection, 228, 229

curvature of, 229

electric field reconstruction, 202

exterior derivative, 222, 223

exterior forms, 214–216

exterior product, 217, 218, 221

fiber bundle, 226

Fourier transform, 2, 21, 23
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Fourier Transform Spectral Interferome-

try, 202

frequency domain, see wave number plane

fundamental constellation, 159, 162–164,

167, 168, 171, 174, 178, 193

group of rigid body motions, see special

Euclidean group

group of rigid body rotations, see special

orthogonal group

horizontal space, 228

Huygens-Fresnel principle, 17, 18, 20

image intensity estimate, definition, 18

image plane, 16, 19, 23, 157

image quality, 2, 6, 8, 9, 20, 34, 45, 102,

114, 118, 123, 125, 128, 131, 138,

155, 175, 189, 200, 201

inertia operator, 80, 248, 254

integral curve, 214

interferometric imaging, 1, 2, 7, 16, 19,

46, 48, 73, 101, 102, 104, 109, 110,

117, 137, 138, 266, 279, 281, 283

interferometric missions, 15, 166, 202

interferometric observatories, 4, 8–10, 22,

96, 119, 156, 179

practical considerations, 200

IR interferometer, 202

isometry, 172–174

spaces, 173

LEO observatory, 8, 156, 166, 201

Levi-Civita connection, 233

libration point, 109, 119, 268

Lie algebra, 76, 92, 236, 237, 239, 240,

247, 248, 291

Lie bracket, 224

Lie derivative, 223

Lie group, 5, 9, 13, 14, 90, 95, 236, 247,

282, 283, 288

compact, 5, 247, 250, 260–262, 280,

282, 283, 291, 295

non-compact, 85, 283, 295

semi-simple, 85, 280, 282, 291, 295

line of sight, 48, 97, 119, 133, 138, 159,

162, 166, 188, 189

linear array, 167, 172, 175, 190

linear connection, 230

coefficients, 230

maximum principle, 8, 16, 26, 28, 29, 32,

45, 118, 144, 145



299

measure function, 49, 50, 71, 72

Michelson interferometry, 201

Modulation Transfer Function, 2, 6, 9, 15,

16, 22, 23, 25, 26, 45, 119, 123,

124, 157, 205

normalized, 27, 31, 45, 196

motion constraints, 7, 49, 95, 101, 103,

104, 107, 110–117, 266, 268, 269,

271–273, 275–277, 283–285, 288,

289

MTF, see Modulation Transfer Function

mutual intensity function, definition, 18

noise model, 15, 16, 24, 45

observation

plane, 16, 17, 22, 48, 64, 91, 133, 138,

157, 189

surface, 16

one-parameter variation, 234, 235, 249

optimal control of infinite dimensional sys-

tems, 205

orbit perturbations, 156, 161, 162, 175,

179, 182, 199

J2, 157, 175, 189, 191, 203

correction, 192, 196

differential, 162

eccentricity, 157, 175, 180, 181, 193

short-period, 157, 184, 185

orbital elements, 157, 184–187, 189, 203

Origins Program, 1, 3, 138

paraboloidal constraint, 7, 8, 10, 46, 54,

60, 61, 97, 119, 133, 137, 140, 141,

144, 152

parallel transport, 230

parallelizable manifolds, 47, 234, 267

picture frame, 23

disc, 23, 26, 30, 36–40, 42, 43, 72, 119,

120, 124, 129, 157–159, 161, 176,

179, 180, 189, 193, 195, 201

function, 19, 22, 36, 42

pull-back and push-forward, 223

resolution

disc, 6, 16, 23, 28, 36, 39, 48, 62, 71,

119, 120, 123, 125, 127, 128, 130,

133, 139, 141, 142, 157, 158, 162,

163, 177, 180, 196

interval, 39, 41, 42

Riemannian connection, 95, 99, 108, 228,

233, 274, 291
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coefficients, 63, 233

Riemannian curvature, 262

Riemannian manifold, 5, 7, 101, 117, 232,

233, 238, 247, 280, 281, 295

Riemannian metric, 232, 233, 238, 239,

262

rigid body equations of motion

body-fixed frame

SE(3), 77

SO(3), 248

space-fixed frame

SE(3), 83

SO(3), 251

SE, see special Euclidean group

semi-Riemannian metric, 238

signal-to-noise ratio, 6, 8, 25, 26, 48, 49,

102, 118, 123–125, 127–129, 133,

137, 139, 155, 201, 202, 281

SNR, see signal-to-noise ratio

SO, see special orthogonal group

Space Technology 3, 54, 61

special Euclidean group, 7, 10, 75, 76, 78,

79, 81, 84–90, 92, 95, 96, 99, 236,

237, 239–241, 246, 247, 259, 261,

280, 281, 283, 295

special orthogonal group, 10, 78, 79, 81,

85–87, 93, 99, 236, 237, 245, 247,

254, 256, 259, 260, 262, 280, 282,

294, 295

Spectral Phase Interferometry, 202

spiraling, 4, 8, 60–62, 64, 109–116, 118,

119, 123, 127, 129, 133, 137, 140–

142, 275, 276, 278

ST-3, see Space Technology 3

structure group, 226, 233

sub-Riemannian optimal control, 281

subgroup, 10, 79, 236, 239, 247

successful maneuvers, 6, 48, 50–52, 61,

71, 72

tangent

bundle, 213

bundle projection, 213

maps, 213

space, 212

tensor, 219

field, 221

product, 220

Terrestrial Planet Finder, 121, 141, 202,

203

torsion tensor, 232



301

TPF, see Terrestrial Planet Finder

variation vector field, 59, 234, 252, 255,

261, 288

vector fields, 214

vertical space, 228

wave number interval, 39

wave number line, 163, 168, 169

wave number plane, 2, 15, 22–27, 30, 41,

119, 120, 122–125, 128, 129, 156–

159, 161–163, 165, 167, 176, 177,

179–181, 183, 200, 201, 203

coverage, 8, 9, 23, 156, 158, 162, 166,

175, 179, 183, 203
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