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CHAPTER|

INTRODUCTION

1.1 Two-point boundary value problems

Thanks to Galileo and his telescope, we have been able tovebaewnide range of
bodies, from comets to stars. These observations made fhera&ton of space easier
than the exploration of the Earth. For instance, Christod@umbus’ voyage to the
Orient would have been successful if he had known the aabgatibn of the Orient. He
would have not mistaken it for the Americas. However, Galgd¢elescope cannot be used
to find the paths (orbits) that lead to the observed bodieshatido wait two centuries for
Kepler's and Newton’s works before being able to find the&eterKepler's (1571-1630)
and Newton’s (1643-1727) discoveries allow us to undedsggmavitational laws and to
describe the motion of celestial bodies as solutions ofnangh differential equations. As
a result, the orbits that lead to celestial bodies can bed@srsolutions of the differential
equations that meet boundary conditions given by an irptigition (where we are) and a
final position (where we want to go). Lambert (1728-1777)falized this problem and
transformed it into an algebraic equation whose soluti@ve nspired many papers in the
last centuries [24]. Despite this simplification, we usyidhve the problem in its ordinary
differential equation formulation and search for the uregpe initial conditions that meet

the target.



Problems such as the one Lambert considered are oftena@teras two-point bound-
ary value problems. As the terminology indicates, the mostroon case of two-point
boundary value problems is where boundary conditions gpaaed to be satisfied at two
points, usually the starting and ending values of the iatiégm (as in the Lambert prob-
lem). In daily life, everyone from researchers to athletesfaced with such problems,
although they may not be formulated in such formal termsniitteg a car trip or a mis-
sion to Mars, taking a goal shot in soccer or aiming a misallef these are examples of
two-point boundary value problems where initial and finadifons are specified and the
corresponding velocities need to be found.

There are crucial distinctions between initial value peol (problems for which the
initial position and velocity are known) and two-point baany value problems. In the
former case we are given an “acceptable” solution at thé(@tétial value) and just march
along by numerical integration to its end (final value). le tatter case, the boundary
conditions do not determine a unigue solution to start withrandom choice among
all solutions that satisfy these (incomplete) startingrimtary conditions is almost certain
to not satisfy the boundary conditions at the other specji@dt(s). To illustrate this
difference, suppose one is at an intersection between t&etst so that one can choose
among four directions. In a typical initial value problemstarting direction is given
and one just drives along the road, without knowledge bétamd of the final destination.
In contrast, if one is given a final destination instead ofaatstg direction, we obtain
a two-point boundary value problem. Solving this problenmigre difficult since one
needsa priori, to try each road to find the one that reaches the requireddestination.
Thus, for an arbitrary boundary value problem it is not sisipg that iteration is required
in general to meld boundary conditions into a single glolmdliteon of the differential

equations. Many iterative techniques have been developedtioe years, several in the



field of optimal control, since the necessary conditionfarmality can be formulated as
two-point boundary value problems. In the following we diss two classes of numerical
methods for solving two point boundary value problems, lietimg iterative.

The shooting method [79, 12] implements the same stratedlgeasne used in the
above example. It consists of choosing values for all of theethdent variables at one
boundary. These values must be consistent with any bourdagitions for that bound-
ary, but otherwise are initially guessed randomly. Aftéegration of the differential equa-
tions, we in general find discrepancies between the desoaddary values at the other
boundary. Then, we adjust the initial guess to reduce thissegghancies and reiterate this
procedure again. The method provides a systematic apptoadiving boundary value
problems, but suffers several inherent limitations. Asswamzed by Bryson and Ho ([19]

p 214),

The main difficulty with this method is getting started; ,i.&nding a first

estimate of the unspecified conditions at one end that pesdasolution rea-
sonably close to the specified conditions at the other ende r€hson for
this peculiar difficulty is that the extremal solutions afeen very sensitive to

small changes in the unspecified boundary conditions.

To get rid of the sensitivity to small changes in initial gses, techniques such as the
multiple shooting method [58] were developed. They cordisreaking the time domain
into segments and solving a boundary value problem on eatllesé segments. In this
manner, nonlinear effects are limited over each segmenhgrbthe other hand the size of
the problem is increased. However, the choice of the intalditions still remains as the
main hurdle to successfully apply shooting methods to ang ki problem.

Relaxation methods [80] use a different approach. The diffigal equations are re-

placed by finite-difference equations on a mesh of pointsdtners the range of the inte-



gration. A trial solution consists of values for the depertdariables at each mesh point,
not satisfying the desired finite-difference equations, mecessarily even satisfying the
required boundary conditions. The iteration, now callddxa&tion, consists of adjusting

all the values on the mesh so as to bring them into succegsileer agreement with the

finite-difference equations and simultaneously with tharmtary conditions. In general,

relaxation works better than shooting when the boundargitions are especially delicate

or subtle. However, if the solution is highly oscillatoryethmany grid points are required
for accurate representation. Also, the number and posttfidhe required mesh points

are not knowra priori and must be adjusted manually for each problem. In addition,
solutions to the differential equations develop singtikssi attempts to refine the mesh to
improve accuracy may fail.

In order to plan future space missions, over the years relsei& have developed more
and more accurate “maps” of motion in space. In this respecte sophisticated math-
ematical models have been developed, such as the threegoodiem, the four-body
problem, and their many variants whose names begin with'‘fuestricted”, “circular”,
“elliptic”, “planar”, etc... As these dynamical models leemcreased in accuracy, the asso-
ciated boundary value problems usually becdraelerto solve. This is especially true as
many of these problems can contain chaotic trajectoriesseextreme sensitivity makes
it difficult to find solutions. With the advent of computerswever, the two methods men-
tioned earlier are still able to solve most of the two-poiotibdary value problems. They
may require substantial time to find an appropriate initis#gs and/or computer memory
to refine the mesh, but they often succeed.

However, proposed space missions continue to gain in coditypland, most likely,
many of tomorrow’s missions may involve several spaceandéirmation. These missions

require one to solve a large number of boundary value prablemwhich the boundary



conditions may in turn depend on parameters. For instaageconfigure a formation of
N spacecraft, there ar®¥! possibilities in general, that isy! boundary value problems
need to be solved. A¥ increases, the number of boundary value problems drartigtica
grows. Similarly, suppose that we plan to reconfigure a spaéieformation to achieve
an interferometry mission. We may require the spacecrdfetequally spaced on a circle
perpendicular to the line of sight they should observe. &t tase, the final positions are
specified in terms of the angle that indicates the positidh@&pacecraft on the circle. In
order to find the value of the angle that minimizes fuel exienel, infinitely many bound-
ary value problems may need to be solved. As a result, theitlges mentioned above
are no longer appropriate as they require excessive cotipuiand time. The present
research has been motivated by the need for new methodsresadslich complex prob-
lems that arise in spacecraft formation design (we actsallye the above two spacecraft
formation design problems in Chapter VIII). Specifically, develop a novel approach to
solve Hamiltonian boundary value problems based on therggng functions. Our ap-
proach outperforms traditional methods for spacecrafh&dion design and has a broader
impact leading to new results in optimal control theory amthie study of the phase space

structure of Hamiltonian systems.
1.2 Scope of the thesis

In this thesis, we present a very general theory to solvegaiot boundary value prob-
lems for Hamiltonian systems. Our method relies on the Ham#n nature of the system
to naturally describe the nonlinear phase flow in terms ofumbdary value problem. There
are very few works in the literature that take a similar poiiiew. In linear systems the-
ory there exists a matrix, sometimes called the perturbatiatrix, that describes the flow

as a boundary value problem. This matrix verifies a Riccataggn and can be com-



puted from the state transition matrix. It is widely used ptimal control theory to solve

linear quadratic terminal controllers and regulators [1®guidance and navigation, and
in astrodynamics to study the relative motion of two spa&i¢i0]. For nonlinear sys-

tems, however, we could not find any such work save in the fietgeometric integrators.

Methods based on generating functions [57, 21, 45] allowtorgerive symplectic inte-

grators as solutions to several boundary value problemsveMer, these boundary value
problems are restricted to those for which the initial andlfstates are almost identical
and the transfer time is small, as they are designed to gensirggle steps in long-time
integrations.

The method we have developed is based on Hamilton-Jacadmyth®/sing generat-
ing functions found by solving the Hamilton-Jacobi equatiove can describe the phase
flow as a boundary value problensuch an approach is very powerful as it allows one
to solve any Hamiltonian two-point boundary value problenmg®nly simple function
evaluations; no iterations or initial guesses are requirédaddition, this research has im-
plications in several other fields: 1) In optimal controldhg it allows one to develop an
explicit solution procedure that finds an analytical formtfee nonlinear optimal feedback
control law for a general class of problems. Most importarttlis procedure overcomes
some of the barriers to truly reconfigurable control. 2) Byipgshe search for periodic
orbits as a two-point boundary value problem with constsaiwe develop techniques to
find families of periodic orbits, and to exhibit the geomeaifyphase space about particular
solutions. A similar procedure allows us to find relativeipeic orbits that are of particu-
lar interest when designing spacecraft formation trajgeso 3) In linear systems theory,
we recover and extend the results on perturbation matreeslabed by R.H. Battin.

Our research is not confined to theoretical work, howevermjfdement our insight,

we develop a robust algorithm to compute a Taylor seriesresipa of the generating



functions. We pay particular attention to the numerics, @smethod is based on the
symplectic structure of the phase flow, a property that magtreserved during integra-
tion. In particular, we present a general framework thaivedl one to study discretiza-
tion of certain dynamical systems. This generalizes ganlak on discretization of La-
grangian and Hamiltonian systems on tangent bundles aadgent bundles respectively
[67, 96, 71, 39, 40, 41, 87]. In addition, as noticed by Arn@d6], generating functions
may develop singularities which prevent the integratiamfrgoing forward in time. Us-
ing the Legendre transformation, we are able to avoid thespilarities, and therefore
continue the integration. Furthermore, our algorithm eggplo any Hamiltonian system
independent of the complexity of its vector field.

Finally, for optimal control problems, we develop a diserataximum principle that
yields necessary conditions for optimality. These condgiare in agreement with the
usual conditions obtained from the Pontryagin maximumappie and define symplectic

algorithms that solve the optimal control problem.

1.3 Thesis organization

This thesis is organized into three main parts.

The first part includes Chapters Il and Il and deals with themtbktical aspects of the
present research. In Chapter Il, we briefly review some feataf Hamiltonian systems
and then focus on the Hamilton-Jacobi theory. Three poihtsesv are adopted, as they
all provide a different perspective on the theory and offeoavenient framework to work
with in the rest of this dissertation. On one hand, the viana point of view relates tra-
jectories of Hamiltonian systems to critical points of atagrfunction. On the other hand,
the two geometric points of view characterize trajectoagepaths on the tangent bundle.

Although the two geometric approaches require advancedensdtical tools and is there-



fore less accessible, it remains central to the understgradithe discrete Hamilton-Jacobi
theory developed in Chapter IV. We believe that the globalp&we give in this chapter
is a unique exposition on the Hamilton-Jacobi theory in Whiidferent points of view are
considered. Chapter Il is the backbone of this thesis. Wedihrew that the generating
functions solve any two-point boundary value problem ingghspace. The properties of
the generating functions are studied, with a special eniploamsmultiple solutions, sym-
metries, singularities, and their relation to the stateditéon matrix.

The second part of the thesis focuses on the numerics of quoagh and includes
Chapters IV and V, and part of Chapter VI. Since our novel apgraa solve boundary
value problems relies on the symplectic structure of thesptilow, we must understand
how this property is preserved during integration. Thisivadéd the work presented in
Chapter IV, although we go far beyond our initial objectivgeSifically, we introduce a
general framework that allows us to study discretizatidnsagrangian and Hamiltonian
systems. In particular, we show how to obtain a large clasdisarete algorithms us-
ing the geometric approach. We give new insight into the Navknmodel, for example,
and develop a discrete formulation of the Hamilton-Jacbhéoty. Based on some results
given in Chapter IV on the numerics of Hamiltonian systemslgorithm that solves the
Hamilton-Jacobi equation for generating functions is ttgved in Chapter V. This algo-
rithm converges locally in the spatial domain and globallyhie time domain. Moreover,
using the Legendre transformation we are able to handlergimg function singulari-
ties, and therefore are able to continue the integrationenTkve introduce an indirect
approach to compute generating functions based on thaliag&lue problem. Accuracy,
convergence and properties of our algorithm are studiedalllyj the first part of Chap-
ter VI focuses on the numerics of optimal control problemse &tend the framework

introduced in Chapter IV to develop a discrete maximum ppilecthat yields necessary



conditions for optimality that define symplectic algorittmANe show that we are able to
recover most of the classical symplectic algorithms angithte its use with an example
of a sub-Riemannian optimal control problem.

In the third and last part of this dissertation (second pa@lapter VI and Chapters
VII and VIII) we analyze a variety of problems in several fieldsing the theory devel-
oped in the first part, together with the algorithm presemtetthe second part. Section
6.3 concerns optimal control problems. We show that the rg¢ing function theory al-
lows one to develop an explicit solution procedure that fiadsanalytical form for the
nonlinear optimal feedback control law for a general cldgzroblems. We illustrate this
procedure with an example of the targeting problem in thé tHike-body problem and
show that it overcomes some of the barriers to truly recordigle control. In Chapter
VII, we use generating functions to derive necessary anfitgift conditions for the ex-
istence of periodic orbits of a given period, or going threagiven point in space. These
conditions reduce the search for periodic orbits to eitlodviisg a set of implicit equa-
tions, which can often be handled graphically, or to findimgitoots of an equation of one
variable only. Specific examples of finding periodic orbitshe vicinity of other periodic
orbits and around the Libration points in the three-bodybfem are studied. Finally, in
Chapter VIII we study spacecraft formation flight. Specifigaie consider the design of
spacecraft formations in Earth orbit. For our analysis tifeceof the J, and.J; gravity
coefficients are taken into account and the reference tomjeis chosen to be an orbit with
high inclination ¢{ = 7/3) and eccentricityd = 0.3). Two missions are considered. First,
given several tasks over a one month period, modeled as ooatfigns at given times, we
find the optimal sequence of reconfigurations to achieveetkeesks with minimum fuel
expenditure. Next, we find stable configurations such thesgacecraft stay close to each

other for an arbitrary, but finite, period of time. Both of tkaasks are extremely difficult
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using conventional approaches, yet are simple to solvegubmtheory we developed in

this dissertation.



CHAPTER I

HAMILTONIAN SYSTEMS AND THE
HAMILTON-JACOBI THEORY

The dynamics of real world systems are often too complex ablenfull analytical
studies and efficient numerical simulations. Thus suchesysieed to be efficiently mod-
eled. Models must not only provide an accurate picture ofélaé system, but they must
also be tractable analytically and/or numerically. Thesguirements make modeling a
very challenging task. In many different fields such as clsémicelestial mechanics and
plasma physics, Hamiltonian systems have been identifiadelsvant class of models. In
particular, they are often a highly accurate approximalienause non-dissipative forces
are dominant. Most importantly, they have a very rich sticestand distinctive properties
[1, 5, 63, 66, 14] such as preservation of Poigcewvariants, variational principles, the
abundance of periodic and quasi periodic motions, the ulyigd chaos, symmetry and
reduction and canonical transformation theory.

These features make the questions one asks about them,eametthods used to an-
swer these questions, fundamentally different from the chgeneral dynamical systems.
One of these features, the Hamilton-Jacobi theory, destidbclass of coordinate trans-
formations, known as canonical transformations, thawalone to transform Hamilto-

nian systems into dynamically trivial ones while presegvineir structure and properties.

11
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Since Hamilton discovered their existence they have bedealyi
used to solve a variety of challenging problems, from irdégg
non-trivial dynamical systems to deriving symplectic grors.

In the present work, we propose a novel approach to solviog tw

point boundary value problems based on these transfornsatio
Hamilton (15&)5_1865) For the sake of clarity it is important to first derive Hamiito
Jacobi theory and study generating functions. In this drapte
adopt three different points of view; one is variational &vd are geometric. We believe
that each of them provide a different perspective on the Hamdacobi theory and offer

a convenient framework to work with in the following chaster

The variational point of view  Even though the Lagrange and Hamilton equations were
historically not derived from variational principles (serof the history may be gleaned,
for example, from Marsden and Ratiu [66}31 and Bloch et al. [14]), variational prin-
ciples play an important role in dynamical systems theorireyTessentially state that
trajectories as defined by Newton'’s laws correspond tccatipoints of a certain function,
or in other words, the actual path of a particle is the onerthiaimizes a certain function.
Such a formulation allows one to make analogies with geamefitics (that light always
takes the shortest path) and optimal control theory (seeBéogh and Crouch [15], Bloch
et al. [14], and Chapter VI) for instance. It also provides ardmate-free formulation for
describing the dynamics. Most importantly, this approatioduces a “main” function
(the one that is minimized), knowledge of which is sufficismtecover the full dynamics
of the system. In the present research, our interest in thatieal approach is three-
fold: 1) It naturally yields the Hamilton-Jacobi theory. IR)Chapter IV, we introduce its

discretecounterpart to study and derive symplectic integratordt 8)lows one to study
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optimal control problems (Chapter VI).

The geometric points of view In the Hamiltonian formalism, the dynamics of a par-
ticle is described in the phase space consisting of codrebrend associated momenta.
The phase space, together with a symplectic two-form (comea-form) may be given
the structure of a symplectic manifold (contact manifolspectively). Therefore, in the
geometric approaches the key idea is no longer the existdreckinction that needs to be
minimized, but the symplectic and contact structures. Rstaince, we will show that the
flow conserves the symplectic (contact) two-form. Thesergedc approaches are central
in this dissertation because: 1) they allow one to studysargies in the Hamilton-Jacobi
theory (Section 3.2.3). 2) they provide a convenient fraor&wor deriving adiscrete
Hamilton-Jacobi theory (Section 4.5).

This chapter is organized as follows: The first section ohiikes Hamiltonian systems
using the variational and the two geometric approachesisissd above. The second sec-
tion focuses on the Hamilton-Jacobi theory; all three Eoafitview are presented. Sections
2.2.3 and 2.2.4 use advanced concepts of geometry to ptbsegéometric approaches.
Hence, they may be less accessible than the section addpéingriational point of view
(Section 2.2.1). Although the geometric approaches tageilith the variational point
of view give a global and unique picture on the Hamilton-dadbeory, these last two
sections 2.2.3 and 2.2.4 may be skipped by those who areteotsted in the geometric

aspects of this theory.

2.1 Hamiltonian systems

Several approaches may be adopted to study HamiltoniaarsgstFor the bulk of

this dissertation, however, we focus on only three, theati@mmal and two geometric ap-
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proaches. The purpose of this section is to give the estatdas on each of them, not to
review all of their features. We refer to [1, 5, 27, 28, 60, 68, 14, 82] for more details
on these topics.

In the following, = is a vector with components;. We choose not to use the usual
notationx or 7 since we believe that there should not be any confusion., Adscassume

Einstein summation convention, i.e;y; = > . ;y;.

Definition 1.1 (Hamiltonian system). A system is called Hamiltonian if there exists a
smooth functiorf (¢, p, t) fromR™ x R™ x R to R such that its dynamics can be described

by equations of the form:

: oH
qi = S

Opi (2.1)
. _ _0H
Pi = Toq -

H is called the Hamiltonian function and Eqr&.1) are known as Hamilton’s equations.

Remarkll.2. Consider a dynamical system with Lagrangian functiofa, ¢,t) where
q = (¢, -+ ,q,) are generalized coordinates. lIifis hyperregular, i.e.g—{; is a global
isomorphism, then the system is also Hamiltonian and theilttanian function isH =
(p,q) — L(q,q,t), where(,) is the standard dot producty, ¢) = p’q. We say thatH is

the Legendre transform df.

Proof. The dynamics of a Lagrangian system is given by the Eulerdrage equations:

d (0L oL
— - =0. 2.2
If L is hyperregular we can uniquely define the associated mamenrt (p1,--- ,p,)

from the Legendre transformation:

oL, .
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Let H(q,p,t) = (p,q4) — L(q, ¢,t). Then the system of Euler-Lagrange’s equation (Eqg.

(2.2)) is equivalent to the system of Hamilton’s equatidagr(s. (2.1)). O

Remarkll.3. The Legendre transformation transforms functions on aovespace into
functions on the dual space. It has a geometric interpogtdiiat we will make use of in
the following. In fact, the Legendre transformation can derfulated as an optimization
problem. For sake of simplicity, we consider a one degreesgfdom dynamical system
whose Lagrangian functioh(q, ¢) verifiesdet (%) > 0. We can construct the Legendre
transformation in the following way (Arnold [5]). We drawdlgraph ofL as a function
of ¢ assumingy fixed. Letp be a given number and defié(q, p) = langlep, §(p)) —
L(q,4(p)), whereg(p) is to be specified. The# is the Legendre transform df if and
only if ¢(p) is chosen so that H has a maximum with respect&b(p), i.e., %—Ij =0or

equivalentlyp = g—g.

Remarkll.4. Hamiltonian systems may not be mechanical systems. Fariostin opti-
mal control theory, necessary conditions for optimalitglgia Hamiltonian system under
sufficient smoothness conditions (Section 6.1). Such &sydbes not have any physical
significance and may not be Lagrangian. For instance, in @nhapive derive neces-
sary conditions for optimality for a sub-Riemannian optirnahtrol problem and show
that they yield a degenerate Hamiltonian function. In suabes, we cannot define the
Lagrangian from the Hamiltonian function. We need to uselthgrange multipliers to

perform a well-defined Legendre transform (Bloch et al. [14])

2.1.1 Variational principles and Hamiltonian dynamics

The key element in the variational approach for studyingaayical systems is the
existence of some functions whose extrema correspond talachjectories of particles.

There are many such functions, each of them defining a diffegiational principle. The
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most famous ones may be the Hamilton principle, the modifiathiton’s principle and
the principal of critical action, but many other variatibpanciples exist and we refer to
Arnold [5], Greenwood [28], Bloch et al. [14] and referenchkerein for a more com-
plete presentation. In this section, we focus on only twaat@mnal principles, Hamilton’s
principle and the modified Hamilton’s principle. As notideglGreenwood [28], “the vari-
ational principle of most importance in dynamics is Hammlsoprinciple which was first
announced in834”. Hamilton’s principle is a variational principle on thengent bundle,
very powerful for studying Lagrangian systems. HowevergasiHamiltonian systems lie
on the co-tangent bundle, it does not apply directly to theystems. Therefore it needs
to be modified. The modified version is called the modified Hams principle, it is the
counterpart of the Hamilton principle on the co-tangentdien

Consider a configuration manifol@ and a Lagrangian functioh on the extended

configuration spac&' Q x R.

Theorem 1.5 (Hamilton’s principle). Ciritical points offtz1 Ldt in the class of curves
v : R — Qwhose ends arg = ¢y att = tob andg = ¢, att = t;, correspond to
trajectories of the Lagrangian system whose endsjaed ¢, andq; att;.

Proof. We use the calculus of variations to search for the criticahs of ftzl Ldt:

t b oL oL
5/ Lgq,q,t)dt = / (—5qi—|— —,5qi> dt
to ( ) o \9q 04q;

b oL d oL oL 1"
= — =) bgudt + | 20qi|
/to (3% dtaqz’) ! {3%‘ qL)

where the Einstein summation convention is used. Sincedhations at the end points

vanish, we obtain the Euler-Lagrange equations:

oL daL
dqi  dtog;
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Consider now a Hamiltonian functiai on the extended phase spac&) x R.

Theorem 11.6 (Modified Hamilton’s principle). Critical points ofj;';l(<p, 4) — H)dt in
the class of paths : R — 7" Q whose ends lie in the n-dimensional subspacesq, at
t =tyandg = ¢; att = t; correspond to trajectories of the Hamiltonian system whose

ends arey, atty andg; att;.

Proof. We proceed to the computation of the variation.

oH OH
£(<p,q> ) /7((] pi + pidg 9.0~ 3, p)

B " . 0H )
= [pzd%]to_'—[y[(qz 95, opi Pit 5, o | dt .

Therefore, since the variation vanishes at the end pohmtsantegral curves of Hamilton’s

equations are the only critical points. O

The Hamilton principle allows for variations of the path om-alimensional mani-
fold whereas the modified Hamilton principle varies curvasa®@n-dimensional mani-
fold. Thus, Hamilton’s principle is a particular case of thedified Hamilton’s principle
with the peculiarity that both principles are equivalent dgnamical systems with non-
degenerate Lagrangians. Indeed, for these systémgslefined as the Legendre transform
of L, that is,¢ andp are such that{ is maximized with respect tg for everyp (see

Remark I1.3). As a consequence, along extrema we have:

[y~ me = [ L

which proves the equivalence of both principles for nonethegate Lagrangian systems.

RemarHlI.7. The conditions for a curve to be an extremal of a functional does not depend
on the choice of coordinate system. Therefore, these \@raltprinciples are coordinate

invariant.
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2.1.2 Symplectic and contact geometries

The variational approach allows one to characterize the @ibar dynamical system
as an extremum of a functional. In contrast, the flow is chteraed as a path on the
tangent bundle of the configuration manifold in the geornedpproaches. In addition,
the notion of Hamiltonian systems is generalized to vecwd$i on symplectic (contact)
manifolds. This section is inspired by Abraham and Marsddrapd is intended to in-
troduce the geometric framework necessary to present theltda-Jacobi theory. We do
not intend to provide a complete view on this topic and redeklbbraham and Marsden [1]

and references therein for further analysis.

Phase space approach (symplectic geometry)

In this paragraph, we present the Hamiltonian formalismaidtonomous systems us-
ing symplectic geometry. In particular, we introduce théamof vector fields and show

that the phase space can be given the structure of a synepieatiifold.

Definition I1.8. A symplectic form on a manifol# is a non-degenerate, closed, two-form
wonpP.

A symplectic manifoldP, w) is a manifold together with a symplectic fotmon P.

A canonical one-form of®, ¢, is defined such that = —df. By the Poincag lemma
[1], 6 is well-defined, at least locally.

The charts guaranteed by Darboux’s theorem (see e.g. [114p are called symplec-

tic charts and the component functiopsp; are called canonical coordinates.

In a symplectic chart,

w = qui/\dpi, (2.4)
i=1

0 = Zpidqi. (25)
1=1
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Remarkil.9. 0 as defined by Eq. (2.5) is not unique. In a symplectic chagtfaowing

expressions are also valid:= —>_" | ¢;dp;, or more generally

n—k n
0=— Z%’dpi + Z qidp; , Yk <n. (2.6)
i=1 i=n—k

Definition 11.10. Let(P,w) be a symplectic manifold and : P — R a smooth function.

The vector field\y defined by
iXHw = dH, (27)

is called a Hamiltonian vector field.

(P,w, Xp) is called a Hamiltonian system.

Proposition 11.11. Given a configuration spac€@, and a hyperregular Lagrangiaik
on Q, we naturally construct a Hamiltonian system @s Q,w, Xy ), whereT*Q is the

cotangent bundle of, w is defined by Eq(2.4) and H is the Legendre transform @f.

Proposition 11.12. Locally, using the canonical coordinates, a Hamiltoniasteyn on a

symplectic manifold reads:

. H H
Xy =J-dH, orequivalentlyg; = 8_7 pi = —8 ; (2.8)
Ipi 9q;
0 I
whereJ =
-1 0

Proof. The definition of the Hamiltonian vector field (Eq. (2.7)) ispeessed in local

coordinates as:

iXH(Z dg; A\ dp;) = a—qd% + Z a—pdpi . (2.9)

Let X4 be:
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Then,

1

iXH(Z dqz A dpl) = Z(ZXHCZQZ) A dpl — Z dql N (ZXHdpl)
= Z qidp; — pidg; .
Identifying this last equation with Eq. (2.9) leads to Eq8{2 O

Extended phase space approach (contact geometry)

Non-autonomous Hamiltonian systems have an extra varitidetime, as compared
to autonomous systems. As a result, the phase space be@emes-dimensional and
the above material does not apply (symplectic manifoldsodeven dimension). There
are two ways to handle this difference: one may either cengfte time as a generalized
coordinate and associate with it a generalized momentuogr@ider the time as an addi-
tional parameter. When the time plays the role of a genedhtimerdinate, the system is
parametrized by an additional independent paramet®bviously, the Hamiltonian func-
tion is not a function ofr. Therefore, th&n-dimensional non-autonomous Hamiltonian
system is transformed into Zn + 2-dimensional autonomous Hamiltonian system that
can be studied using symplectic geometry. An alternatiiapproach, the extended
phase space approach, consists in giving the extended pbaseq, p, t) the structure of

a contact manifold.

Definition 11.13. A contact formw on a manifoldM is a closed two-form, with maximal
rank.

A contact manifold is a pai{M,w) consisting of an odd-dimensional manifold
and a contact fornr on M

An exact contact manifoldM, #) consists of d2n + 1)-dimensional manifolo\ and

a one-form¥ on M such that A (df)™ is a volume oM
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The next theorem is the equivalent of the Darboux theorem €sg. [1, 66, 14]) in

symplectic geometry. It gives the canonical formw@ndé.

Theorem 11.14. Let (M, w) be a contact manifold. For each € M there is a chart

(U, ¢) atz with ¢p(u) = (q1(u), -+ , gn(u), p1(u), -, pn(u), w(u)) such that
wiy = dg; A dp; . (2.10)
Similarly, if (M, #) is an exact contact manifold, there is a chélit, ) at = such that
Oy = dt + pidg; . (2.11)

Before going into more details of the dynamics on a contactifolan we introduce
the characteristic bundle. It is used to characterize comtams, and therefore contact

manifolds.

Definition 11.15. Letw be a two-form oM. Define
R,={v=(z,v) € TM]’" =0},

wherev® is a one-form such that’(w) = w(z)(vi, w).
R, is called the characteristic bundle of
A characteristic vector field is a vector field such thatixw = 0, that is, X (z) €

R,, Vx € M.

Proposition 11.16. The characteristic bundl&,, of a contact formw has one-dimensional
fibers, and so is sometimes called the characteristic linedlhi
Moreover, ifw is closed and its characteristic line bundle is one-dimenal, thenw

is a contact form.
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Proof. Let (M,w) be a contact manifold of dimensig2n + 1). Thenw has rank2n
and for everyx € M, there is a one-dimensional vector spacec 7,M such that,
YoeV, YweT,M, wx)(v,w) =0, ie. R, has one-dimensional fibers.

The second part is proved as follows. Sincés closed, we only need to prove that
it is maximal rank. But sincd?,, has one-dimensional fibers,is of rank2n, that is, of

maximal rank. O

Proposition 11.17. Let# be a nowhere zero one-form on2n + 1)-manifold M and let
Ry = {v = (z,v1) € TM|0(z)(vy) = 0} be its characteristic bundle. The&m1, 9) is an

exact contact manifold if and onlydp is non-degenerate on the fibersiky.

Proof. Ry is 2n-dimensional, s@d is non-degenerate o, if and only if (d0)™ # 0. By
definition of A and Ry, this is so if and only i) A (df)™ # 0.

0

In the above we have introduced the contact structure amddd&o characterize it
using the characteristic bundle. We now prove that this ephgeneralizes the symplectic
structure to non-autonomous Hamiltonian systems. Spaliyfiave show that the sym-
plectic structure of the phase space of autonomous syst@miecextended to a contact
structure. Next, we focus on non-autonomous systems. Weeadtfe notion of (time-

dependent) vector fields and give the extended phase spac¢aaicstructure.

Proposition 11.18. Let (P,w) be a symplectic manifold; : R x P — P the projection
on P and®w = m*w. Then(R x P,w) is a contact manifold.
The characteristic line bundle af is generated by the vector fieldbn R x P given
by:
t(s,z) = ((s,1),(2,0) € Ts,)(Rx P) ~T,.R x T,P
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If w = df andf = dt +7*0, wheret : R x P — R is the projection ofR, thenw = df

and (R x P, ) is an exact contact manifold.

Proof. Clearly,do = m*dw = 0, sow is closed. To show that is maximal rank, it suffices
to show that the fibers of its characteristic bundle is omeegisional (Prop. 11.16). Let

((s,2),v1) € Ry, then for allv, € T, .)(R x P),
(s, z)(v1,v2) =0,

that is:

w(2)(Tr*vy, T*vy) =0, Yuy.

Sincew is non-degenerate, we conclude that'v, = 0, i.e.,
Ry = {((S7Z)’ (U, O))|U < R}

has a one-dimensional fiber.

To prove thatR x P, §) is an exact contact manifold, we need to show hatds)" #
0, that is,dt is non-zero on the characteristic line bundlecofBut, we have just proved
that the fibers of the characteristic line bundle are of disimnl and are generated by
(1,0) € T,R x T.P at any point(s, z) € R x P. Furthermoredt(s)(1,0) = 1. Thus,f is

non-zero on the fiber ak; and(R x P, 0) is an exact contact manifold. O

Similarly to the autonomous case, non-autonomous Hanmliosystems are charac-

terized by their vector fields. In this case, however, theydmfined on contact manifolds.

Definition 11.19. Let (P,w) be a symplectic manifold and : R x P — R. For each
t defineH; : P — R;z — H(t,z), Xg : Rx P — TP;(t,z) — Xpg,(z) and the
suspensioXy; : R x P — T(R x P) ~ TR x TP; (t,2) — ((t,1), Xu(t, 2)).

With ¢ as defined in Prop. 11.18Xy =t + Xy.



24

Hence, the time-dependent vector fiéld, is obtained by freezingand constructing
the usual Hamiltonian vector field. Such a definition yieldssical Hamilton’s equations

of motion:

Proposition 11.20. Let (U, ¢) be a symplectic chart ¢ with

(b(u) = (Q1(u)7 T 7Qn<u>>p1(u)7 T 7pn<u))7

and(R x U,t x ¢) a chart ofR x P, wheret is the projection ontd® defined previously.
Thenc: I — R x U;t — (t,b(t)) is an integral curve ofX ;, or equivalentlyp : I — U

is an integral curve ofXy, if and only if:

qb)] = 22(tb(1)),
(1)) = —2L(t,b(t)).

We now bring together the concept of contact manifold anddeésnition of time-

dependent vector fields to give tertendeghase space a contact structure.

Theorem 11.21. (Cartan) Let(P,w) be a symplectic manifold andl : R x P — R. Let

w = 7*w as defined above and
wg=w+dH Ndt, (2.12)
Then,

1. (R x P,wp) is a contact manifold,

2. Xy generates the line bundle of;; X is the unique vector field satisfying
iXHwH =0 and iXHdt =1.

3. ifw=dfandly = 7*0 + Hdt, thenwy = dfy.
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Proof. 1. dwy = dw + d(dH A dt) = 0, sowy is closed. Furthery coincides witho
on vectors of the forni(s,0), (z,v)) € TsR x TP on whichw is non-degenerate as we
saw before (Prop. (11.18) states that, 0), (z,v)) is not in Rz). Thus,wy is closed and
of maximal rank andR x P, wy) is a contact manifold.

2. For all vector field onR x P,
i, oY) = &(Xp,Y)
= w(Tr- Xy, Tr-Y)
= w(Xy,Tr-Y). (2.13)
Thus,

iXHwH = iXH(IJ + (Z'X-HdH)dt — dH(iXHdt)

= w(XH,TW-Y)Jr%—}tI(Y}-Y)—dH-Y

= 0 (2.14)

sinceiy dH = dH(t) = o andig, dt = iy x,dt = dit(t) = 1. The characteristic
bundle being one dimensional; is unique.

3. First, we can readily verify thaty = dfy. Moreover,
Op(Xy) = (m0)(Xyg+1t)+ Hdt(Xg +1)
= 0(Xy)+H. (2.15)

Thus,f does not vanish on the characteristic bundle @f We conclude thaR x P, 0 )

iS an exact contact manifold. O

2.1.3 Properties of Hamiltonian systems

We briefly introduced Hamiltonian systems using three diifét points of view. These

approaches provide us with different perspectives on thaiycs of Hamiltonian systems
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and offer a convenient framework to work with in the follogirBut before going further
we need to recall a few properties of Hamiltonian systemsidgve restrict ourselves to

those properties that are of interest for the present relsear

Properties of autonomous Hamiltonian systems

Autonomous Hamiltonian systems have distinctive propertMost of them are not of
prime interest for the following and so we do not mention thétowever, there are some,
such as the conservation of energy and the invariance ofytnplsctic two-form along

the flow, we need to pay particular attention to.

e The conservation of energy constrains the motion of a pattidie on an energy sur-
face. This property is important for the understanding efdlgnamics of a Hamil-
tonian system. Therefore, the energy may need to be presetven proceeding to

numerical simulations (see Chapter IV for more details os tibyic).

e The invariance of the symplectic two-form along the flow is thost important fea-
ture of Hamiltonian systems. It implies volume conservatod additional stability
properties, for instance. Most importantly, it allows oneetmbed the phase space

in a symplectic manifold.
Let &, be the phase flow of the Hamiltonian systém w, Xy )
o :P - P
(g0:p0) — (@4 (q0,p0) = q(q0, Do, t), ®F(q0, o) = P(q0, o, 1)) (2.16)
Proposition 11.22. &, preserves the symplectic structure, i(@;)*w = w

Proof. From the Lie derivative theorem (Bloch et al. [14] p&&J¢ andix,w = dH, we

obtain:

d
%@t*w == (I)t*EXW = (I)t*(l.XHd + dZXH)u) =0.
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O

Corollary 11.23. Each of the formgw)?, (w)3, - - - is an integral invariant of®;. If the
dimension ofP is 2n, then the conservation af* is equivalent to volume conservation in
the phase space.

Proposition 11.24 (Energy conservation). H o &, = H, i.e., the energy is conserved

along trajectories.
The proof is straightforward using the definition of the wedteld X .

Properties of non-autonomous Hamiltonian systems

The geometry of the phase space of nhon-autonomous Hanaitt@ystems is different
from that of autonomous systems. As a result, non-autoneragstems do not have the
same properties. In particular, the energy is not preseal@t trajectoriesl{;, H # 0)

and the contact two-form is an invariant of the time-depenhfew of X

Proposition 11.25 (Non energy conservation).The energy of non-autonomous Hamilto-

nian systems is not conserved along the flow, Lg,, H = %—If #0
Proof. SinceXy =t + Xp, Ly, H=dH(t+ Xp) = dH(t) = 2. O

Proposition I1.26. The contact two-formsy, w%, - - - are invariant forms ofX ;.

Proof. Sincewy, is closed and\ ; is a characteristic vector field of;, we haveLXHwH =
ig,dwy +dig wy = 0. Ly being a derivation, we directly obtain that w}; = 0 as

well. O
Proposition 11.27. dt A w}, = dt A &™ is an invariant volume element fof ;.
Proof. SinceLy, dt = d(dt - Xp) = d(1) = 0, we have:

LXH(dt /\w}f]) = (LXHdt) /\w?{ =0.
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2.2 Local Hamilton-Jacobi theory

We now move on to the derivation of the Hamilton-Jacobi tiedhe Hamilton-Jacobi
theory describes a class of coordinate transformatiolgdceanonical transformations,
that allow one to transform Hamiltonian systems. In the jonew section, we introduced
the Hamiltonian formalism from three different points oewi Depending on the ap-
proach we took, the formalism we used was very different.ikgtance, in the variational
approach the symplectic two-form does not have any signifieand in the geometric ap-
proach, trajectories are not critical points of any funasioHowever, all these approaches
are equivalent. The same will hold for the Hamilton-Jacbkorry: canonical transforma-
tions have different definitions depending on the adoptedtpd view, yet they are all

equivalent.

¢ In the variational approach, we saw that the key idea is tistence of a function
whose critical points are trajectories of the system. Asm@sequence, canonical
transformations are defined with respect to this concepecifipally, a coordinate
transformation is canonical if it preserves this relatiipsetween critical points

and trajectories.

¢ In the symplectic geometry approach, the symplectic twoafes the main object.
Therefore, in this context canonical transformations &feneéd as coordinate trans-

formations that preserve the symplectic two-form.

e Finally, the extended phase space approach relies on ti@ctstructure, that is, on
the contact two-form. Thus, canonical transformationsthose that preserve the

contact two-form.
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Although the variational and symplectic geometry appreadaan be found in many text-
books, the contact geometry point of view does not seem tabiyeaccessible, except
partially in Abraham and Marsden [1]. We believe that thebglgicture we give in this
chapter is a unique exposition on the Hamilton-Jacobi theéomwhich the different points

of view are confronted.

2.2.1 The variational approach

Definition 11.28. Let H define a Hamiltonian system. Th¢n: P x R — P x R is a
canonical transformation fronfy, p, t) to (Q, P, t) if and only if:

()- f is a diffeomorphism,

(2)- f preserves the time, i.e., there exists a functiosuch thatf (z,t) = (g:(z),t),

(3)- Critical points offt’;1 ((P, Q) — K(Q,P, t)) dt correspond to trajectories of the
Hamiltonian system, wherk& (Q, P, t) is the Hamiltonian function expressed in the new

set of coordinates.

Consider a canonical transformation between two sets otlauates in the phase space
f:(g,p,t) — (Q, P,t) and letH (¢, p,t) and K (Q, P,t) be the Hamiltonian functions of
the same system expressed in different sets of coordinBtes Def. 11.28, trajectories

correspond to critical points g@? ((P, Q) — K(Q, P, t)) dt. Therefore, they are integral

of:
- ol
Q = on 2.17)
P = _gg;la

i.e., f preserves the canonical form of Hamilton’s equations.
Conversely, suppose thétis a coordinate transformation that preserves the canonica
form of Hamilton’s equations and leaves the time invaridet £ (Q, P,t) be the Hamil-

tonian in the new set of coordinates, then from the modifiethitan’s principle (Thm.



30

11.6), critical points of

/ttl <<P, 0) — K(Q, P, t)) dt

correspond to trajectories of the system. Thpigs a canonical map. These last two

remarks are summarized in the following lemma:

Lemma I1.29. The third item in Def. 11.28 is equivalent to:
(4)- f preserves the canonical form of Hamilton’s equations amdtéw Hamiltonian

function isK (Q, P, t).

Remarkil.30. The definition we give is different from the one given in maaytbooks.
Often the third item reduces to:

(5)- f preserves the canonical form of Hamilton’s equations.

The example given by Arnold in “Mathematical Methods of CieasMechanics” [5],
p 241 sheds light on the difference on these two definitions. Fstaimce, consider the
transformationf : (¢,p,t) — (Q = ¢, P = 2p,t) and the harmonic oscillator with

Hamiltonian functionZ (¢, p) = 3p* + 3¢*. The equations of motion for this system are:
¢q=p, p=-—¢. (2.18)
In the new set of coordinates, these equations transfoon int
Q= 5 P=-2Q. (2.19)

Define K (Q, P) = 1 P? + Q2. Then Eqns. (2.19) may be written as:

Q:a—K p—_9% (2.20)

oP’ 0Q "’
that is, Eqns. (2.19) may be written as Hamilton’s equatiofs a result,f preserves
the canonical form of Hamilton’s equations. However, adogg to Def. 11.28, f is

not a canonical transformation because the Hamiltoniarhefntew system should be

K(Q,P)=1pP*+1Q%
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We consider again a canonical transformatfoand a Hamiltonian system defined by

H. Along trajectories, we have by definition:

/ <ZPQZ K(Q,P, t)) dt =0. (2.22)

From Eqgns. (2.21) - (2.22), we conclude that the integrardseotwo integrals differ at
most by a total time derivative of an arbitrary functiéh
Xn:pidqi — Hdt = zn: P;dQ; — Kdt + dF (2.23)
i=1 j=1
Such a function is called a generating function for the ca@artransformationf.
is, a priori, a function of both the old and the new variables and time. fWeesets of
coordinates being connected by the equations, namelyf(q,p,t) = (Q, P,t), F can
be reduced to a function @ + 1 variables among thén + 1. Thus, we can defing”
generating functions that havevariables inP; andn in P,. Among these are the four

kinds defined by Goldstein [27]:

Fl(qla'” 7QHJQ17”' 7Qn7t>7 F2<q17"' 7Qn7P17”' 7Pn7t>7

F3(p17"' apnana"' 7Qn7t)7 F4(p17"' 7pn)P1)"' 7Pn7t)‘

Let us first consider the generating functibr(q, @, t). The total time derivative of

reads:

0 F1 Z 8F1 8F 1

an dt.

dFl (Q7 Qv t)

=1
Hence Eqg. (2.23) yields:

n n

8F1 aFl aF‘l
, — ——)dq; — H P + - K —dt . 2.24
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Assume thatq, Q, t) is a set of independent variables. Then Eq. (2.24) is eqgnvab:

8F1 3F1 a171
pi = aq (q Q ) z:_aQi<QaQ7t)7K(Q7_%a

0Fy 0Fy

2 B+ 5 . (2.25)

t) = H(q,

Eqns. (2.25) characteriZg. If (¢, Q) is not a set of independent variables, we say that
is singular (see Chapter Il for more details on singulasjtie

Now let us consider more general forms of generating funstioLet (i1, - - - ,1,)
(tpt1s- -+ 50n) @and(ky, - -+, k) (Krg1, -+ -, k) be two partitions of the s€tl, - - - ,n} into
two non-intersecting parts such that< --- < iy, ip41 < -+ < iy, k1 < -+ < k;
andk,.; < --- < k,. In addition, we defind, = (i1, -+ ,ip), I, = (ipt1, - ,in),

K, = (ky, - k)andK, = (k.y1, - k). If

(qlp7pfp7QK7‘7P[_(r> = (qh?'" yQips Pipy1r " " 7pin7Qk17"' 7ri7pk7»+17"' 7Pkn)

are independent variables, then we can define the genefatiotion

Flp,Kr (QIp7pfp7 QKM Pf(ﬂ t) .

ExpandingdF, r, yields:

n

o = 3 T+ 3 Sy, 3 Sk,

a=1 a=p+1

8F] 8F] K
=K gp e gt 2.26
Z o, Pt (2.26)

a=r+1

and rewriting Eq. (2.23) as a function of the linearly indegeent variables leads to:

p n r n
> pida,— Y qodp,—Hdt =) Py dQy,— Y QudPy,—Kdt+dFy, k. , (2.27)

a=1 a=p+1 a=1 a=r+1

where

Fr ok, = I+ Z Qko Pr, — Z QioPi - (2.28)

a=r+1 a=p+1
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Eqg. (2.28) is often referred to as thegendre transformatignt allows one to transform
one generating function into another.

We then substitute Eq. (2.26) into Eq. (2.27):

" OF " OF OF
S (P, + SEEAQr, + Y (2 = Qu)dPy, — Kdt + — 2 dt

o1 a@ka a—ri1 8Pka ot
p n
aFIp,KT 5FI,,,KT
= Z(pz‘a - )dg;, — Z (gi, + )dpi, — Hdt, (2.29)
dq; op;
a=1 @ a=p+1 @
and obtain the set of equations that characterizeg, :
OFy, K,
P, = — (a1,, 71, K.y Pr.s 1) (2.30)
qr1,
OFy, k,
i, = - On- (qu7pI_p7 QKM PI_{M t) ) (231)
Pr,
OF;
PKT = — a Ip,Kr (qu7pfp’ QK—,»? PKT-’ t) y (232)
Qr,
0F; K,
Qr, = —po(ar, 91, Qs i 1), (2.33)
K
0F, Kk OF, Kk
K P T o P ™ P* t —
(QK’V" OPRT ) aQKT ) KT7 )

aF[pJ(T aFlp7Kr
3pr ’ aQIp

OFI K
i, t P (2.34
7p1p7 )+ 6t ( )

H(qua -
For the case where the partitions dte--- ,n)() and()(1,--- ,n) (i.e.,p = n and
r = 0), we recover the generating functién, which verifies the following equations:

oF,
oP’

or,
oq’

OF,
t)+ 5 (2.35)

bi = —(q,P,t), Qz

P K
i (0. P.1), K(

= Pt)=H
aPZ 7t> (Q7

The case = 0 andr = n corresponds to a generating function of the third kifg,

OF3 OF} OF; OF, OF,
;= —— P=—— KQ,——=,t)= H(——— —.

qZ 8pl (p?Q’t)7 7 8@1([),@’15)’ (Q? aQ?t) ( ap 7p7t)+ at
(2.36)

Finally, if p = 0 andr = 0, we obtainFy:
8F4 8F4 (9F4 8F4 8F4

;= — Pt ;= Pt), K(———,Pt)=H(—,p,t)+— . (2.37
6= =, P, Q=GR Pt K(=gp Pty = HG L p )+ 50 (237)
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For a generating function to be well-defined, we need to miagkessumption that its
variables are linearly independent. In Chaptéf we see that this hypothesis is often not
satisfied. The following property grants us that at least@inide generating function is

well-defined at every instant.

Proposition 11.31. Let f : P, x P, be a canonical transformation. Using the above
notation, there exist at least two partitiodg and K, such that(q;,, p; , Q. Pk, ,t) are

linearly independent.

Proof. Suppose we cannot find su¢hand K,. Then, we could generate the canonical
transformation using less th&n variables. Using the local inversion theorem, we con-

clude that this is in contradiction witfibeing a diffeomorphism (Def. 11.35). O

In the class of canonical transformations, changes of ¢oateks that transform the
system to equilibriumK = constant) are of particular interest: they transform the system
into a trivial one. For these particular transformationg, §2.34) simplifies into the

Hamilton-Jacobi equation.

Theorem 11.32 (Hamilton-Jacobi). Let f be a canonical transformation and lét;, .,
be the associated generating function. Thetransforms the Hamiltonian to equilibrium

if and only if F; k, verifies the Hamilton-Jacobi equation:

8FIP,KT
ot

OF OF
+ H(qr,, — Ip , Ip.r ,Di.,t) = constant . (2.38)
opr,  Oq, 77

Proof. On one hand, iff transforms the system to equilibrium thé&h = constant and
Eqg. (2.34) simplifies into Eq. (2.38). On the other hand, i$ a canonical transformation
and Iy, g, verifies the Hamilton-Jacobi equation, th&n= constant, i.e., the system is

transformed to equilibrium. O
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Remarkll.33. Generating functions are not unique. Bdth x, and Iy, x, + constant
verify the Hamilton-Jacobi equation and Egns. (2.30)32.3 herefore, Eq. (2.38) may

be equivalently written as:

aFIp,Kr

( aF[var 8Flp7K7"
at qu7

dpr, = O,

Pret) = 0. (2.39)

In the literature, Eq. (2.39) is often called the Hamilt@edbi equation and Eq. (2.38) is
not given any name. Starting in Chapter Ill, we follow this wemntion and the Hamilton-

Jacobi equation will always refer to Eq. (2.39) except agtise mentioned.

Thm. 11.32 is the backbone of the theory we present in thisadistion. It relates
solutions of the Hamilton-Jacobi partial differential @tjon to canonical transformations
that map Hamiltonian dynamical systems into trivial ondserg are many such mappings,

all of them satisfy the Hamilton-Jacobi equation but witfiedent boundary conditions.

2.2.2 The generating function for integrating the equationsof motion

The Hamilton-Jacobi theory has found many applications twe years. It was first
used to integrate the equations of motion of integrable Haman systems. Branching
from this, a variety of applications were developed. Fotanse, it was used to derive
symplectic integrators [57, 21, 45] and prove the existesfdde action-angle variables
[5]. In this section, through a non-trivial example, we @neisthe use of the Hamilton-
Jacobi theory for integrating the equations of motion. Hxample, taken from Classical
Dynamics [28], will help us to highlight fundamental difearces between the classical

approach and the method we develop in this dissertation.

Example 11.34 (The two-body problem). The two-dimensional two-body problem con-

sists of a particle of unit mass attracted by an inversefsoggiavitational force to a fixed
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point. The dynamics of the particle is described by the Hamihn function:

H(r,0,pr,po) = % (pf + f—f) - %
where(r, #) are polar coordinates centered at the fixed point. Sthéetime-independent,
H is conserved along the trajectory (Prop. 11.24). In addittbdoes not appear i and
therefore its conjugate momentym has a constant value. Now consider the generating
function of the second kind associated with the extendedgflaw canonical transfor-

mation': Fy(r,0,t,p,,, Pe,» p¢)- From Eqgns. (3.10)-(3.11) and the fact thatand H are

constants of motion, we can wrifé in the following form [28]:

F2<7’, 97 taprmp@mpt) = ptt +p99 + W(T’, _H7 p@) .

Then the Hamilton-Jacobi equation (3.12) reads:

1L /oW\* 2 u
Sl (R IS 2
2(87") +27’2 r+

Integration of the Hamilton-Jacobi equation yields:

’ I Dy
FQ(T,Q,t,pTO,pQO,—H>:/ \/—2H+2—__gd717
o r T

wherer is the value of- at the initial timet, = 0. Now recall Eq. (3.11):

, - 9B
O T 9H
/T dr

= {— =,

ro \/—2H+2§—f—g
F.
o, — —2b
8p9dr

_ /T Do
ro T/ —2HT? + 2ur — p-

Integration of this last equation provides the equation ofiom:

2
Pa/# 2
r 1+ecos(«9)’w eree =/1+2Hp;/1n

lIn the extended phase space, the time plays the role of aalizeer coordinates with associated mo-
mentump, = —H.
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Thus, the Hamilton-Jacobi theory allows us to find the eguatof motion for the two-
body problem. The methodology used is very general sinceisteped to find a canonical
map that transforms the system into an easily integrable ©he search for such a map
remains difficult and this aspect limits the use of the HamH@acobi theory in practice.
Instead, in the present research we focus on a single tramstion, the one induced by the
phase flow that maps the system to its initial state. Undertthnsformation, the system
is in equilibrium and every point in phase space can be censitito be an equilibrium
point. In general, we cannot compute this transformatidnvé were able to find this
transformation, it would mean that we could integrate theatiqns of motion) and so
we focus on the generating functions that generate thisftsamation. In particular, we
prove that they solve two-point boundary value problems p@#dll) and we develop an
algorithm for approximating them (Chapter V).

We now derive the Hamilton-Jacobi equation from geometiats of view. Both ap-
proaches for autonomous and non-autonomous dynamicahsystre presented. The out-
line is inspired from the text “Foundations of Mechanics] Iplit the definition of canon-
ical transformations was modified to allow for comparisotiwihe variational approach.
Section 2.2.3 deals with autonomous Hamiltonian systeymsi{ectic geometry) whereas
Section 2.2.4 is focused on non-autonomous systems (¢g@ametry). Again, these two
sections use advanced concepts of geometry and are treele$sraccessible. Those who
are not interested in the geometry of the Hamilton-Jacamh may skip the end of this
chapter. Results in the next two sections are not used in tleving, however similar

reasoning is developed to derive the discrete Hamiltookigbeory (Section 4.5).
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2.2.3 From the phase space point of view

We first define the concept of canonical transformations anpsgctic manifolds.
Then we introduce the generating functions and finally @etine Hamilton-Jacobi equa-
tion.

Canonical transformations

Definition 11.35. Let (P;,w;) and (P, wy) be symplectic manifolds. &>-mappingf :

P1 — P, is called symplectic or canonical if and onlyfifw, = w;.

We now prove that this definition is equivalent to Def. 11.2Birst we show that it

implies thatf is a diffeomorphism, and then prove the other two items of DeA8.
Proposition 11.36. If f is symplectic therf is a diffeomorphism.

Proof. Supposef is not a diffeomorphism, i.e., there existss P; such that
v € T,Py|Tf-vy=0.
Sincef is symplectic, we have:
Yoy € TPy | v # 0, wi(@)(v1,v2) = wa(f(2))(Tf - 01, Tf - v2).

The right hand side is zero but the left hand side is not. Basdontradiction and therefore

f is a diffeomorphism. OJ

Lemma ll.37. Let(P;,w;) and(P,,w,) be symplectic manifolds aryfda canonical trans-

formation, f : P1 — Pa; (¢,p) — (Q,P). Then,f*w, = w; can be written in matrix

form asF?JF = J whereF is locally defined by := g—ﬁ and J is the local matrix
0 1

representation of the symplectic two-form using canonioakdinates:.J =
-1 0
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Proof. Using local canonical coordinates the symplectic forms (Earboux’s theorem):

wi =) dgi Ndpi, wr =) dQ; NdP,.

In addition, f being symplectic is equivalent t'ws; = wy, that is,

Vo = (qu"' ydny, D1y - 7pn) € Pla vvlv”? € TxP17
wao(f(@))(Tf v, Tf - va) = wi(x)(vr,v2).
This last equation reads & JF = J in matrix form. 0J

Let (P;, w1, Xy) define a Hamiltonian systeniP,, w,) define a symplectic manifold
and f be a canonical transformatiofi,: P, — Ps; (¢,p) — (Q, P).
By definition, X'y is an Hamiltonian vector field if and only ify,,w; = dH. Define

Xk = f.Xy and let us show thaX; is a Hamiltonian vector field.

iXle = dH,
if*XKf*WQ = dH,
f*(iXng) = dH,

iXKWZ = f*dH (240)

Hence, Xk is a Hamiltonian vector field for the Hamiltonian functign#, that is, for the
Hamiltonian functionH expressed as a function of the new variables.

We summarize this last result in the following proposition.

Proposition 11.38. Let X5 be an Hamiltonian vector field with Hamiltonian functiéh
Then, f being a canonical transformation is equivalent foX being an Hamiltonian

vector field with Hamiltonian functiomi, H.

Prop. 11.36 together with Prop. 11.38 show the equivaleneereen Def. 11.35 and

Def. 11.28.
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Generating functions  We now introduce the concept of generating functions. Mbst o
the results in this section are taken from Abraham and Mars#®@undations of Mechan-

ics” [1].
Proposition 11.39. Let(P;,w;) and (P, w,) be symplectic manifolds; : P; x Py, — P;
the projection ontd?;, : = 1,2 and

Q = mjw — Tws . (2.41)
Then:

1. Qis a symplectic form of?; x Ps;

2. amapf : P, — P, is symplectic if and only if;Q2 = 0, wherei; : I'y — Py x Py

is the inclusion map antl; is the graph off.

Proof. We need to verify thaf) is closed and non-degenerate. Singes closed andl

commutes with the pull-back, we have:
dQ = d(rjw; — mws),
= mydw; — mydws
= 0,
Thus, ) is closed.
Letus choose = (x1,25) € Py xPyandv = (vy,vs) € Tp(P1XPa) ~ Ty, P1XTy, Po

such that

Vw = (wy, wz) € Tp(P1 X P2), Qp)(v,w) =0.
Let us show that is zero.
Qx)(v,w) = wi(m(z))(Tm v, Tmy - w) — wo(ma(x))(Tme - v, T'my - w)

= wl(xl)(vl,wl) — WQ(.%'Q)(UQ,U)Q) . (242)
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Eq. (2.42) is zero for alfw,, w-) if and only if each of the terms are zero, that is,
wl(xl)(vl, U)l) = O, le and WQ(.C(IQ)(UQ,’(UQ) = O, sz .

Sincew; is non-degenerate, we conclude that= v, = 0. ThusQ is closed and non-
degenerate, i.e} is a symplectic form.

We now prove the second statemefitinduces a diffeomorphism @?, onI'; so we
can write

T senls = {(0,Tf-v)lv € TP}
Therefore,

(@) (w, (@) (v, Tf - v1),(v2, TS - v2))
= wi(z)(v1,v2) — w2 (f(@))(Tf - v1, TS - v2)
= (w1 — [fw2)(@)(v1, v2) -

We conclude thaf is symplectic if and only if ;2 = 0. O

Q2 being closed, the Poindatemma guaranties the existence of a one-férauch that
locally 2 = —d©. Now we assume thgtis symplectic. Then, we havg}0 = i}dO = 0,
i.e.,i30 is closed. Using again the Poinedemma, we show that there exists locally a

function " : T'y — R such that}© = dF.

Definition 11.40. Such a functiorf’ is called a generating function for the symplectic map

f. In addition, F is locally defined and is not unique (sirt¢és not unique, Eq(2.6)).

If (¢, ,qn,p1, -+ ,pn) are coordinates o, and (Q1,--- ,Qn, P, -+, F,) are
coordinates orP,, thenI'; can be given a chart in several ways. For instatcenay

appear as a function 6;, ;) or of (¢;, P;), and so forth depending of the choicetf

o Let’ 4, = p;dg; andb, = P,dQ;,

2The Einstein convention for indices is used.
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theni}0 = itmi0y — ijm0s = (w1 0if)*pidg; — (m2 0 if)* P;dQ;. SUuppose is a

function of (¢*,--- ,¢", @, - -+ , Q™). Then from

oF oF .
we conclude that:
oOF oF
- P = — ) 2.4
Pi= g, and P, 90, (2.43)

We recover the generating function of the first kifidq:, - - - , ¢n, @1, - , Qn)-

o Letd, = pidg; anddy = —Q;dF;,

thenit© = i3m0, — ijm30y = (m1 0if)*pidg; + (m2 0 if)*QidP;. SUppose’ is a
function of (¢;, P), then using}© = dF" we conclude that:

oF oF

We recover the generating of the second kiadyy, - - - , gn, P1,- -+, Pp).

¢ Different choices ob yield different generating functions. In the same manner, w

can recover the@” generating functions introduced previously (Section).2.

The Hamilton-Jacobi theory  The theorems we give in this section are not taken from
“Foundations of Mechanics” [1] and, as far as we know, cameotound in the literature
(although we believe that they are well-known). e the configuration space of an
autonomous Hamiltonian system and consider a canonigaftranationf : 79 —
T*Q;(q,p) — (Q, P). Without loss of generality, we focus on the generating fioms

of the first kind,F, associated witlf. Sincef is time-independent, the energy expressed
in either set of coordinates is conserved along trajedpiie., H(q,p) = constant =

K(Q, P). Using Eq. (2.43) this last equation reads:

o0Fy 0F,
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In addition, if we assume thdttransforms the system to equilibrium th&nis a constant

and Eq. (2.45) simplifies into

Hig, ~E. (2.46)

a—q)
Eq. (2.46) is the time-independent Hamilton-Jacobi eguatlhe remainder of this sec-
tion is devoted to explaining the derivation of this timel@épendent Hamilton-Jacobi equa-
tion in more detail.

In the following f is a canonical transformation froffi*Q to 7+ Q; f(q,p) = (Q, P)
and Xy is the Hamiltonian vector field associated withon (7% Q, wy = dg; Adp;). From
Prop. 11.38, Xk = f.Xpy is the Hamiltonian vector field associated with the function

K= f*H on (T*Q,WQ = dQl A dPZ)

Theorem I1.41. Let F} : @ x Q — R be a smooth function. Defifigq, Q) = 22 (q, Q)

= B¢

and P(q, Q) = —%—}S(q, Q). Then the following two conditions are equivalent:

1. I3 is the generating function associated wjth

2. e Forevery curve:(t) in Q satisfying:
¢(t) =Try - Xu(c(t), p(c(t), Q) (2.47)

the curvet — (c(t), p(c(t), Q)) is an integral curve oX 5, wherery, : T°Q —

Q is the cotangent bundle projection.
e For every curve:(t) in Q satisfying:
d(t) = Try - Xic(e(t), P, c(t)))

the curvet — (c(t), P(q,c(t))) is an integral curve ofX k.
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The idea of this theorem is rather simple. Lgbe fixed (the following also applies if
q is fixed instead), and define the mapq — 38—121 which associates a momentum to every
point on Q. Then, construct a curve: R — Q such thatc(t) verifies the differential

equation (2.47):

0
i- a—[;(q,ﬁ(Q))- (2.48)

Oncec is constructed, look at the curyéc(t)) = aa—f;l(c(t), Q). The theorem states that
is a generating function fof if and only if p(c(¢)) is the momentum associated within
other words F} is a generating function fof if and only if p(c(t)) verifies the differential

equation

or equivalently if and only if — (c(t), p(c(t))) verifies Hamilton’s equations.

Proof. SupposeF; is a generating function of. Let Q be fixed and consider a curve

c: R +— Q verifying Eq. (2.47), that is

o) = %—;j(c(tm(c(t)) ,

wherep(c(t)) = aa—?(c(t),Q). Since F is a generating functionj(c(¢)) is the gen-

eralized momentum associated witft). Therefore, we immediately obtain that—
(c(t), p(c(t))) is an integral of curve oK .

We apply the same reasoning for deriving the second condith ¢ fixed instead.
This conclude the proof aof. = 2..

Now suppose iter. is verified and let us show that, is a generating function of,

_om

ie.p= % andP = -9

are the momenta associated wjtand(@. But this is exactly

the meaning of the statements:
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The curvet — (c(t),p(c(t),Q)) is an integral curve ofXy and the curvet —

(c(t), P(q, c(t))) is an integral curve oK . O

Theorem 11.42. Let F; : Q@ x @ — R be a smooth function. Then the following two

conditions are equivalent:

1. F; is a generating function associated with

2. ForeveryH : R x T*Q — R, there is a functionk : R x T*Q — R such that

or, _oF

H(q, 8—q) = K(Q, 90 ) (2.50)

Proof. Assume that) is fixed and consider a curvét) in Q such that:
(t) =Trg - Xu(c(t), p(c(t))) - (2.51)

FromThm. I1.41/ — (c(t), p(c(t))) is anintegral curve ok ;. Let Xy = § 0 910

then,

a5 oOH _ oOH -
X (c@), 8—%dqi) _ (6—p<c<t>7p<c<t>>>, —8—q<c<t>,p<c<t>>> |

Applying T'7§ yields:

c(t) =115 Xnu(c(t), plc(t))) = %—ZI(C(t)vﬁ(C(t))) : (2.52)

Further, the statement - (c(t), p(c(t))) is an integral curve oK ;" is equivalent to

the following:

(e(t),p(c(t)) = X (c(t), p(c()))
(c’(t),g—i(C(t))dqz) = Xy (c(t),%(c(t))) :
Taking only the i** component of the second part:
0?8 , OH 0S
9q:0¢ (c(t) - (1) = e (C(t% 8—q(0(t))> )

a(;;qj (c(t)) - g_g <c(t),g—s(c(t))> = —gi <c(t),g—§(c(t))> : (2.53)
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On the other hand, deriving the left side of Eq. (2.50) yields

d 08 oH ,6 08 OH, 0S, 9°S
—H(q, =) = =—(q, == )i + =— (¢, o= (q)¢’ .
7 aq) o (4, aq)%"’ o, (4, aq)aqiaq] (9)q

Thei® componentg;, reads

~ 0. " oq’ " op; Y aq’  ogiag

(2.54)

Q;

Using Eq. (2.53), we conclude that Eq. (2.54) is identicakyo if and only if F} is

a generating function fof. In the same way we prove that the total time derivative of
the right hand side of Eq. (2.50) is zero if and onlyFif is a generating function of
f. ThereforeH (g, g—i) and K (Q, —%) differ at most by a constant that can be added to

K. U

The final result of this section is the Hamilton-Jacobi tle@or We have already de-

rived it from the variational point of view and we now presggatgeometric version.

Theorem 11.43 (Hamilton-Jacobi). Let F; : @ x @ — R be a generating function
associated with the canonical transformatign Then the following two conditions are

equivalent:

1. ftransforms the Hamiltonian systefi*Q, w, X ) into a new Hamiltonian system

(T*Q,wy, Xi) Which is in equilibrium, i.e. K = constant, Xx = 0.

2. F) satisfies the Hamilton-Jacobi equatiéh(g;, %—?) = FE whereF is a constant.

Proof. The proof is obvious using Thm. 11.42. Indeed fif verifies the Hamilton-Jacobi

equation, therf (Q, —%—8) = E and X, = 0. On the other hand, ik = constant Eq.

(2.50) simplifies to the Hamilton-Jacobi equation. O
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Remarkl.44. If H =T + V,i.e.,p; = ¢;, then,

T15 - Xu(qipi) = T15((00,0i)5 (G35 0i)) = (G5 ds) -

Thus, T75 Xy = identity. If we assume a givery, the first item in Thm. 11.41 reads:
“c(t) is a gradient line of,”, i.e., ¢(t) is orthogonal to level surfaces &f. As a result,
solutions to the Hamilton-Jacobi equation can be constduas follows: for a giverd,
F7 is such that locally the trajectories of the system are guial to its level surfaces
(for eachgq, ¢ is orthogonal to a level surface @f). This is the beginning of the anal-
ogy with geometric optics, we refer to Abraham and MarsdgnAtnold [5], Lanczos
[60], Chetaev [22] and references therein for more detaifgs ilemark is also crucial for
understanding the geometric construction of the Hamiltacebi theory based on the full
picture developed by Caratheodory and then Rund in [81] (seeBdiss [13] and Hestenes
[49]).

For non-autonomous Hamiltonian systems, we mentionedqusly that there were
two ways to handle the time: we could either consider it asreegdized coordinate or as
an additional parameter. In the first case, the dimensiomegbhase space becon2est 2
and the coordinates are no longer independent (the momesdaaoctiated with the time
coordinate is the opposite of the total energy of the systérahe applies the autonomous
Hamilton-Jacobi theory to th&n + 2 dimensional system then canonical transformations
are no longer generated by the classical generating furschiot by generalized canonical
transformations (see e.g. Greenwood [28] and StruckmatRaéedel [89]). On the other
hand, if one considers the time as an independent parartteteabove material does not
apply and we must derive the Hamilton-Jacobi theory in taengwork of contact geom-

etry. In particular, we must re-define canonical transfdioms and generating functions.
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2.2.4 From the extended phase space point of view

This section is also inspired by the excellent book “Foudatof Mechanics” written
by Abraham and Marsden [1] but the definition of canonicah¢farmations have been
modified to allow comparison with previous sections. Theétlasorems on the Hamilton-
Jacobi theory cannot be found in this book nor in the lite(although we believe that
they are well known).

Canonical transformation

Definition 11.45. Let(P;,w;) and (P,,wy) be symplectic manifolds an® x P;, ;) the
corresponding contact manifofd A smooth mapping : R x P; — R x P, is called a

canonical transformation if each of the following holds:
e (C1) f is a diffeomorphism,
e (C2) f preserves time, that i§*t = t,
e (C3) there is a functio; : R x P, — R such that
f*WKf =wr,
wherewa = wy + dKy Adt.
Moreover, ifw; = —db;, then (C3) is equivalent to

e (C4) there is al{; such thatf*0, — 0, is closed, wheré; = dt + 7*0; andfy, =

0y — Kydt.

In order to make analogies with the autonomous Hamiltoodiabheory, we need to

characterize the property of being canonical in a more famnay.

3; has been defined in Prop. 11.18
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Proposition 11.46. Let(P;,w;) and (P, w2) be symplectic manifolds aff@k x P;, @;) the
corresponding contact manifolds. A smooth mappfngR x P; — R x P, is called a

canonical transformation if each of the following holds:
e (C1) f is a diffeomorphism,
e (C2) f preserves time, that is"t = t,

e (C5)forallH : R x P; — R, thereisaK : R x P, — R such that

ffwkx =wpy .

(C5) states that canonical transformations must preseevedhtact two-form. This
condition is similar to the definition of time-independeahonical transformations, namely

f preserves the symplectic two-form.

Proof. Suppose (C3) holds and defike= f.H + K;. Then,
Fwk = f*(@+dK Adt)
= [T+ d(Ko f)Ad(tof)
= ffOy+d(Ko f)Adt (sincef preserves time)
— @y — ffdK; ANdt+d(K o f) Adt
= w +dH Ndt.

Conversely, choosé/ to be zero and lef{; = K. Then f*wx = wy reduces to

(C3). 0

Remarkll.47. Suppos€P,w, Xy) is an autonomous Hamiltonian system. From Prop.
11.18 we know that the extended phase space maybe be givaotitact structur¢R x

P, m*w). In that case(C5) reduces to f preserves the symplectic two-form”. In addition,
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if fistime-independent, thdid'2) is trivially verified. Thus, the above definition is equiv-
alent to Def. 11.35 for autonomous Hamiltonian systems ame-{independent canonical

transformations.

Proposition 11.48. Let f be a canonical transformation, thefipreserves the canonical
form of all time-dependent Hamiltonian systems, i.e., fofra: R x P; — R, there is a
K : R x P, — R such thatf, Xy = Xg.

Letr : R x P; — P; be the projection ofP andj; : P; — R x P;;x — (t,z), then

for everyt € R, f; : Py — Py;mo f o j, IS symplectic.

Proof. From Thm. 11.21,Xy is uniquely defined by, wy = 0 andig, dt = 1. Thus,
Uy WK = Up 5 fom = feig,wn = 0.

Moreover,i; ¢, dt = 1 sincef preserves time. By uniqueness, we conclude Hat=

The remainder of the proof follows from the following lemma. OJ

Lemma 11.49. f; is symplectic for eachif and only if there is a one-form onR x P;

such thatf*(w, + a A dt) = @.

Proof. If f*(@e + o A dt) = &y, then
fiwa) = (i f*m")ws
= jff*u?g
= Jiwr = j/ ff(andt)
= jimtwy — g ffan g frdt
= Wi,

sincej; f*dt = d(j; f*t) = d(j;t) = 0. Therefore,f; is symplectic for alk.
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Conversely, assumg is symplectic and lef = &, — f.&;1. Then,
T8 =7gi w2 — jrwr = ffws —w1 = 0.

Sinceg is a two-form onR x Py, it can be written ag = v+ a A dt, wherey is a two-form

which does not involvet. Fromj; f*3 = 0 andyj; f*3 = v we conclude thay = 0. [

Theorem 11.50 (Jacobi). Let f : R x P; — R x P, satisfy (C1) and (C2). Then, (C3) is
equivalent to
(C6) There is a functiork; : R x P, — R such that for allH : R x P, — R,

£ Xy = X, whereK = f,H + K.

Proof. We have already proven that'3) implies (C6) in Prop. 11.48. For the converse,

taking H = 0 leads tof.t = XKf. For an arbitrary{, we have,
Xy = f Xy + XKf = [:Xg + Xk, +1.
Further, we also have,
Xk =Xk +t=Xpn+ Xk, +1, and X = f.Xnu.

Combining these equations yields:
f Xy = f(Xyg—1) = f Xy — Xk,
= Xk — Xk, =Xpn. (2.55)
We defineH, = j; H and recall thaff,, = f, '* = j; f.7*. Then,
Xpr, = X(jiomof—1oj) H
= (jeomo o) Xy byEq. (2.55)
= Ji fom Xn,

== ft*XHt .
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Using Prop. 11.38, we conclude thgt is symplectic for allt and that there existsa

one-forma such thatf* (&, + o A dt) = @;. Hence,
U, Jr = g, @2+ (ig, @) Ndt —aNig, di. (2.56)
In addition, sinceX'Kf = f.t, we have:
iy, Jun = fuis@r = 0. (2.57)
Using Eg. 2.57 together Witi}szdt = 1 andf*t = t, Eq. 2.56 simplifies to:
o =ipws + (iga)dl,

that is, f.&01 = @2 + (if..02) A dt. Finally, we have

. . 0K
ipawr = ix, W1 = dK; — 8—tfdt’
which allows us to conclude thgtw;, = wg, or equivalently thaff is canonical. O

Generating functions  Let (Py,w;) and (P,,w2) be symplectic manifolds an@® x
P;,@;) the corresponding contact manifolds. Consider a canonmastormationf from
R x P; toR x P, and denote by the graph off and byr; : R x P; x P, — R x P; the
projection ontdR x P;. We definey, such thatf (s, z) = (s, gs(z)) and identify elements
of I'y, ((s,z), f(s,2)) € (R x Py) x (R x Py) with elements of R x P;) x P, of the

form ((s, x), gs(x)). The graph off is thus given by

Ly ={((s,2),95(x)) € (R x P1) x Po} .

We also define the inclusion map: I'y — R x P; x Ps.

4Using the previous lemma.
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Proposition I1.51. Let
Q= Tjw — MWk,
be a two form oR x P; x P, whereK; is defined as in (C3). Tha’rjﬁQ =0.

Moreover, ifw; andwy, are defined as in (C4), we have:
d(i3(710y — T30k,)) = 0.

Proof. The proof of this property is similar to the one in the time@pendent case. We
take((s,z), g(x)) € I'y and((s;,v;), (T'gs - v;)) € T(sw),92)] 'y @nd proceed to the com-

putation ofi7(:

772(s,2), 9(2))(((s1,01), (T'gs, - v1)), (52, 02), (Tgs, - va))) =

(‘;jl - f*wa)(S’ :L“)((Sl, Ul)? (32’ 02)) :

Thereforei ;) = 0.

The second part of the theorem requires only substitutions. O

From the Poinca@ lemma there exists locally a one-fofrsuch that? = —d©. Thus,

i+© is closed and there exists locally a functibrsuch that
itO = dF .

Definition 11.52. F' as defined above is called a generating function forF is locally

defined and is not unique.

Depending on the choice of the canonical one-fémF takes different expressions
and we can recover all” kinds of generating functions. However, we do not give de-
tails of the derivation of each of the generating functiosstg@roceeds exactly as in the
autonomous case. We now move on the Hamilton-Jacobi for-diependent canonical

transformations applied to non-autonomous Hamiltoniatesys.
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The Hamilton-Jacobi theory  Even though the following theorems may not be new,

we could not find them in the literature.

Proposition 11.53. Let f be a canonical transformation anél its associated generating

function, then

OF

FEp=—5p-

In addition, for a Hamiltoniand onR x Py,

~ ~ F
f+Xy = Xg, Wheref*K = H + aa—t

Proof. The definition ofF' reads:
dF = ;0
= 3710, — 730k,)
= ip(Fdt + 70, — Todt — Tom 0y — Ty K pdt)
= SE (70 — [0 — frEdt).
Therefore f*K; = %—f. The remainder of the proposition is just (C6) (cf. Jacolbiésorem

(Thm. 11.50)) m

The next two theorems focus on canonical transformaticetsthnsform the system to
equilibrium. They are the main results of this section: te bne is the Hamilton-Jacobi
theorem.

Let Q be the configuration space of the Hamiltonian system defiged &nd consider

a canonical transformatiofionR x 7*Q.

Definition 11.54. We say thatf transformsH to equilibrium if K = f.H + K; =

constant.
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Theorem I1.55. Let F : R x Q x Q@ — R be a smooth function. Defing(q,Q) =
%—g(t,q, Q) and Py(q, Q) = —g—g(t,q, Q). Then the following two conditions are equiva-

lent:
1. Fisthe generating function associated wjth

2. e Forevery curve(t) in Q satisfying:

c(t) =Ty - Xu,(c(t), pe(c(t), Q) ,

the curvet — (c(t),p(c(t),Q)) is an integral curve ofXy, wherery :

T*Q — Qs the cotangent bundle projection.
e For every curve:(t) in Q satisfying:

d(t) =T75 - Xk(c(t), Pilq, c(t))),

the curvet — (c(t), P,(q, c(t))) is an integral curve ofX .
Proof. The proof is the same as in the autonomous case, so we omit it. O

Theorem 11.56 (Hamilton-Jacobi). Let /' : R x Q x Q — R be a generating function
associated withf. Thenf transformsH to equilibrium if and only ifH (¢, §5) + GF =

constant.

Proof. If f transformsH to equilibrium, then from Thm. 11.50H + %—f = constant.
Suppose now thakt’ verifies the Hamilton-Jacobi equation, then again ThmOlaBows

us to conclude thak” = constant. O



CHAPTER Il

SOLVING TWO-POINT BOUNDARY VALUE
PROBLEMS

One of the most famous two-point boundary value problemstirodynamics is Lam-
bert’s problem, which consists of finding a trajectory in twe-body problem which goes
through two given points in a given time. Even though the twaaly problem is integrable,
no closed-form solution has been found to this problem soSatving Lambert’s prob-
lem still requires one to solve Kepler’'s equation, which hetivated many papers since
1650 (see e.g. Colwell [24]). As mentioned in the introductiorr,dayeneral Hamiltonian
dynamical system, a two-point boundary value problem igegsblising iterative methods
that require a “good” initial guess for convergence. Thougty systematic, these tech-
niques are not appropriate when several boundary valudgmnsbneed to be solved as
they require excessive computation and time. For examplarder to design a change of
configuration of a formation oV spacecraft)N! two-point boundary value problems need
to be solved [94]. ASV increases, the number of boundary value problems drartatica
grows.

The novel approach we propose in this dissertation addséissse limitations. Specif-
ically, it allows us to formally solve any kind of “symmettiewo-point boundary value

problems with no need for an initial guess and at the cost aiglesfunction evaluation

56
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once the generating functions are known (“symmetric” baumd/alue problems refer to
boundary value problems for which the same number of irgtrel final states are speci-
fied. In the following, we restrict ourselves to those pratdeand simply refer to them as
two-point boundary value problems).

Our method is based on the Hamilton-Jacobi theory (ChapterWle consider the
transformation that maps the state of a Hamiltonian systetima ¢ to its initial state.
Such a transformation is canonical and transforms themsy&gt@n equilibrium, i.e., to its
initial conditions which are constants of motion. As a reshle Hamilton-Jacobi theorem
tells us that there exist generating functions associatttiis transformation that verify
the Hamilton-Jacobi equation (Eq. (2.34)). These gemggdtinctions have distinctive
properties that we now study.

This chapter is organized as follows. We first establish t@onical nature of the
transformation that maps the state of a system to its irstade. Then we focus on the gen-
erating functions associated with this transformation. pdese that they solve two-point
boundary value problems and analyze their properties. ifggaly, for linear systems we
show that generating functions and state transition nedrace closely related. The state
transition matrix allows one to predict singularities oé thenerating functions whereas
the generating functions provide information on the stricedf the state transition matrix.
This relationship also allows us to recover and extend sa@selts on the perturbation
matrices developed by Battin in [10]. For nonlinear systegeserating functions may
also develop singularities (called caustics). Using thenggtric framework introduced in
Chapter Il together with the Legendre transformation, weppse a technique to study the
geometry of these caustics. We illustrate our method wighstiudy of the singularities
of the F} generating function in the Hill three-body problem. Mostpiontantly, we re-

late the existence of singularities to the presence of plalgolutions to boundary value
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problems. Finally, we introduce Hamilton’s principal fuion, a functionsimilar to the
generating functions that also solves two-point boundahye/problems. We highlight the
differences between Hamilton’s function and generatingcfions and justify our choice

of focusing on generating functions.

3.1 The phase flow transformation and its generating functions

In this section, we define the transformation that maps e sif a Hamiltonian sys-
tem to its initial state and prove that it is canonical. Webasmmarize the equations
verified by the generating functions associated with tlaisgformation.

Consider a Hamiltonian syste(®, H,w) and recallp,, the phase flow of the system:
d,:P —- P
(q07p0) = ((bi (q()vp()) = Q(QOaPOa t)7 qD?(qmpO) = p(QOaPOa t)) . (31)

®, induces a transformatioponP x R as follows:

¢ 1 (qo; pos t) = (P¢(qo, o), t) -

In other words g~ transforms the state of the system at titrieto its state at the initial
time while preserving the time. Let us now prove thaanda fortiori ¢!, are canonical

transformations.
Proposition Ill.1. The transformatior induced by the phase flow is canonical.

Proof. From the theory of differential equations is an isomorphism. Moreover, Prop.

11.22 states tha®, is symplectic. Thusp is canonical. O

¢~! maps the Hamiltonian system to equilibrium. Therefore adsociated generating

functions,F; g, , verify the Hamilton-Jacobi equation (Eq. (2.39)). In dgtati, they must

1Uniqueness of solutions of ordinary differential equasion
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also verify Eqns. (2.30)-(2.34), whet€, P) now denotes the initial statey, po):

8F]p K,
pr, = aq[p (quvpLﬂ quTvp()Rr ) t) )
8F] K
qu = - appfp <QIp7pfp7 qurvpokrvt) )
oF, Kk,
Pog, = — P - (q[p7pl_p7 qOKprKTat) )
o,
OFy, k,
qokr = 8p(1:kr (qlp7pjp7 qog, s pOf(T ) t) )
OF, k, OFp, Kk, OF, k,
0 = H(qf]m_ £ ) (96;1 7pfp7t)+T;-

opi,
Similarly, Eqns. (2.25), (2.35), (2.36) and (2.37) simpkfto:
_0R

b= aq (q7 q07t)7
0F;
= —L(q, qo. t
Do aqo <Q7 qo0, ) )
0F; 0F;
H(q,—,t — =0.
OF,
=2 t
b aq (Q7p07 )7
0F,
=2 t
qo0 apo ((LpO) )a
OF, oF,
Hig 22 5+ 22 .
OF;
q=— ap (I%%at),
0F;
- == t
Do aqo <p7 qo0, ) )
OF, OF,
A= pt)+ 57 =0.
0F}
=1 t
q 8]) (p7p07 )7
0F,
-1 t
4o ap() (p7p07 )7
H<(9F4 OFy _o.

ot -2
8}9 7p7 )+ 8t

(3.2)
(3.3)
(3.4)
(3.5)

(3.6)

(3.7)
(3.8)

(3.9)

(3.10)
(3.11)

(3.12)

(3.13)
(3.14)

(3.15)

(3.16)
(3.17)

(3.18)
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3.2 Properties of the generating functions

We now study the properties of the generating functionscatm with¢—!. First
we show that they solve any two-point boundary value probl€hen we focus on linear
and non-linear systems. Specifically, we relate the statesiion matrix to the generating
functions and extend some results on perturbation matgoesented by Battin in [10].
Most importantly, we study the singularities of the geneagafunctions and prove that

they correspond to multiple solutions to boundary valud@ms.

3.2.1 Solving a two-point boundary value problem

Consider two points in phase spaé&, = (qo, po) andX; = (g, p), and two partitions

of (1,---,n) into two non-intersecting partsiy, - - - ,i,) (ip41,-- - ,4,) @and(ky, - -+, k;)
(krs1,- -+, kn). A two-point boundary value problem is formulated as folsow
Given 2n coordinates(q;,, -, Gi,, Pipy1s "+ Pin) @NA (G0, .+ 1 G0y, Do, o7 5 o, )

find the remainin@n variables such that a particle starting’atreachesX; in 7" units of
time.

From the relationship defined by Eqné3.2), (3.3), (3.4) and (3.5), we see that the
generating functiorf'; x, solves this problem. This remark is of prime importance as it
provides us with a very general technique for solving any Haman boundary value

problems.

Example 1ll.2. Lambert’s problem is a particular case of a boundary valoblpm where
p = r = n. Though, given two positiongandq, and a transfer tim&’, the corresponding

momentum vectors are found from Eqns. (3.7) and (3.8):

R OF

7 - \Y, 7T7  — — 45 \4, 7T'
Pi= 5, (4,90, T) , po, 36101.((] 9, T)
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3.2.2 Linear systems theory

In this section we study the generating functions assatiatéh the flow of linear
Hamiltonian systems. Specifically, we reduce the Hamillanebi equation to a set of
four matrix ordinary differential equations. Then, we telthe state transition matrix and
generating functions. We show that properties of one mayeleickd from properties of
the other. The theory we present has implications in theystdidelative motion and in

optimal control theory (Chapter VI).

Hamilton-Jacobi equation

To study the relative motion of two patrticles, one often déinees the dynamics about
the trajectory (called the reference trajectory) of onehefparticles. Then one uses this
linear approximation to study the motion of the other péetrelative to the reference tra-
jectory (perturbed trajectory). Thus, the dynamics oftredamotion reduces at first order
to a time-dependent linear Hamiltonian system, i.e., aesystith a quadratic Hamiltonian

function without any linear terms (Appendix A, Eq. A.10):

ththT Hyy(t) Hyp(t)

5 X", (3.19)

HPQ(t) pr(t)
whereX" = (ﬁg) is the relative state vector.

Lemma lll.3. The generating functions associated with the phase flowfwamstion of

the system defined by E®.19)are quadratic without linear terms.

The proof of this lemma is trivial once we understand the bekween the generating
functions and the state transition matrix (see later in doticn).

From the above lemma, a general form faris:

FP(t) Fh(t
P, = %YT () Fia(t) Y. (3.20)

F3i(t)  F5(t)
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whereY = (27 ) and (1) is the relative state vector at the initial time. We point out

that both matrices defining* and F, are symmetric by definition. Then Eqg. (3.10) reads:

or,
0Aq

S GURORE

Substituting into Eq. (3.12) yields:

Ap =

S OO
ER ()" (1)
DT (Ha®) Hy0) (10 V|
0 FR07) \Hy(t) Hy()) \Fa() Fu)
Though the above equation has been derived uBingt is also valid forF; (replacing
Y = (A2) byY = (47)) sinceF; and F}; solve the same Hamilton-Jacobi equation
(Egns. (3.9) and (3.12)). Eq. (3.21) is equivalent to thetaihg four matrix equations:
Fyp(8) + Hog(t) + Hyp () Fyy (8) + 77 (8) Hpg (1) + FY;(0) Hy () Fyy (8) = 0,
Fys’(t) + Hop(t) Fi3 () + Fi;(0) Hy (1) Fys ™ (8) = 0, (3.22)
Eyi* () + Fyi” (t) Hyg(t) + By (8) Hpp () Fii () = 0,
Eyy () + Fof” () Hyp (1) i3 (1) = 0,
where we replace(ﬁg by Ff to signify that these equations are valid for bdthand
F,. We also recall thafl;> = F/3*". A similar set of equations can be derived for any
generating functiorf;, x,. However, in this section we only give the equations verified
by Fs and F}:
FY(8) + Hyp(t) — Hpg (D FY (1) = F3Y (8 Hyp (1) + By () Hyg () F (1) = 0,
i3 (t) = Hyg(t)Fy3'(8) + FYy' (8) Hyg () Fi3' (1) = 0, 3.2
Fyi' (1) = Fyy () Hop () + Fo (1) Hyg () FY' (8) = 0,

Fy3' (1) + Foi' (1) Hyg(8) Fy3' (1) = 0.
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The first equations of Egns. (3.22) and (3.23) are Riccatitapg The second and
third are non-homogeneous, time varying, linear equatimte the Riccati equations are
solved and are equivalent to each other (i.e., transformeath other under transpose).

The last are just a quadrature once the previous equatiersobed.

Initial conditions

Although F; and I, (or more generallyf; . and F;, g, for all » ands) verify the
same Hamilton-Jacobi partial differential equation, éhgenerating functions are differ-
ent. This difference is characterized by the boundary d¢mmdi. At the initial time, the
flow induces the identity transformation, thus the genegatunctions should also do so.

In other words, at the initial time,
Aq(to) = Aqo, Ap(te) = Apo -
In terms of generating functions this translatesfgtto:

OF: OF:
—2(AQO7 A1007%) = Apo, —2(AQO’ApOat0) = Aqp,

that is,
FAAq+ FoApy = Apy,  F5Aq+ FaApy = Aqgo,
or equivalently:

FY =F5 =0, F}=F; = Identity.

On the other handy; is ill-defined at the initial time. Indeed, at the initial tniEqns. (3.7)

and (3.8) read:

FlllAq + F112Aq0 = Apy, F211Aq + F212Aqo = Apo .
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These equations do not have any solutions. This was expstted at the initial time
(Agq, Aqp) are not independent variable&{ = Agy).

The same reasoning applies to &ll generating functions and in the same manner
we can prove that only;, and F3 have well-defined boundary conditions at the initial
time. They are the only two kinds of generating functiond tten generate the identity

transformation. We come back to this important issue in Girapt

Legendre transformation

We saw in Chapter Il that the Legendre transformation (EQ8(2 allows one to trans-
form one generating function into another. It plays a cémtie in the present research.
It is used to avoid singularities in the algorithm presente@hapter V. In addition, it
allows us to overcome some of the barriers to truly recondiglercontrol in optimal con-
trol theory (Section 6.3). As an introduction to this tecue, we detail in this section the
Legendre transformation for transformiig into F; for linear systems.

Recall the Legendre transformation:
Fi(Ag, Aqo, t) = F2(Ag, Apo, t) — (Apo, Ago) (3.24)

where Apy is to be viewed as a function ¢i\g, Aqy). Let us first findApo(Aq, Aqgp).

From Eg. (3.11) we have:

0F,
dApo

= F221AC] + F222Ap0 .

Agy =

Solving the above equation fdxp, yields:

Apo = F5 ™ (Agy — F2Aq)
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We now substituté\p, into Eq. (3.24) and obtaif’:

1 —1
Fi(Aq, Ago, t) = §AqTF121Aq + AqFl22F222 (Aqo — F221Aq)

1 -1 T o —T -1
+§F222 (Aqo - F221AQ) F222 F222F222 (AQO - F221AQ)

—AqOTFQQJ1 (Aqo — F221Aq)
1 F111 (t> F112(t>

=y Yi,
2 1 1
Fy (1) Fi(t)

whereY; = and

1 2 2 2 —1p2
F11 = F11_F12F22 F21>
1 2 2 —1
F12 = F12F22 )

1 2 —1 2
F21 = F22 F21>

L Fy = _F222_1-
Therefore, using the Legendre transformation we are ablmdoa closed-form expres-
sion of F; from knowledge off3, at the cost of one matrix inversion only. This result

generalizes to some extent to nonlinear systems as we sh®ection 3.2.3.

Perturbation matrices

Another approach for studying relative motion at linearesrcelies on the state tran-
sition matrix. This method is developed by Battin in the texik “An Introduction to the
Mathematics and Methods of Astrodynamics” [10] for the cafsa spacecraft moving in
a point mass gravity field. Leb be the state transition matrix which describes the relative

motion:
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o, P
whered = N Battin[10] defines the fundamental perturbation matricCes
(I)Pq (I)pp
andC as:
o = (I)pqq)qqila
= (I)ppcbqp_l'

That is, givenAp, = 0, CAg = Ap and givenAg, = 0, CAg = Ap. He shows that
for the relative motion of a spacecraft about a circularegry in a point mass gravity
field the perturbation matrices verify a Riccati equation areltherefore symmetric. Us-
ing the generating functions for the canonical transfoiomainduced by the phase flow,
we immediately recover these properties. We also generdlizgse results to any linear
Hamiltonian system.

Using the notations of Eq. (3.20), Egns. (3.10) and (3.14¢lre

OF,
0Aq

0F,
8 Ap()

= F3Aq+ FuAp.

Ap =

We solve for(Ag, Ap):
Agq = F221_1AQO - F221_1F222Ap0 )
—1 -1
Ap = FLF3 Aqo+ (Ffy — FLFS Fo)Ap,

and identify the right hand side with the state transitiorrira

(
_ 2 —1 2
g = —F5 Fs,

()

2 —1
(I)qq - F21 )
P = F122_F121F22171F2227
()

_ 2 2 —1
= InF5 .
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We conclude that

C=a,0, =F. (3.25)
In the same manner, but usiig, we can show that:
C= cbpp®;p1 =F. (3.26)

Thus, C andC' are symmetric by nature (a8);* is symmetric by definition) and they

verify the Riccati equation given in Eq. (3.22).
Singularities of generating functions and their relation o the state transition matrix

In Chapter Il we presented the Hamilton-Jacobi theory. Thelte we gave there were
local and did not concern the global behavior of the gensgédtinctions. We proved that
at least one of the generating functions is well-defined atyeinstant (Prop. 11.31). In
general, we can notice that each of them can become singutamae point, even for

simple systems. As an example let us look at the harmonidaisci

Example Ill.4. The Hamiltonian for the harmonic oscillator is given by:

1 2
H(q,p) = %pz + §q2 :

The F; generating function for the phase flow canonical transféionacan be found to

be:
1
Fi(q, qo,t) = 5V km csc(wt) (—2qq0 + (¢* + ¢3) cos(wt)) |

wherew = \/% One can readily verify thaf; is a solution of the Hamilton-Jacobi equa-
tion (Eq. (3.6)). Although it is well-defined most of the time@ 7" = mn/w, m € Z, F}

becomes singular in that the values of the coefficients ofithandq,’s increase without
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bound. To understand these singularities, recall the gésetution to the equations of

motion:
q(t) = qo cos(wt) + po/wsin(wt),
p(t) = —qow sin(wt) + pg cos(wt) .
Att =T, q(T) = qo, that isq and ¢, are not independent variables. Therefore the

generating functior¥} is undefined at this instant. We say that it is singulat at 7.

However, F; may be defined in the limit: at = T, ¢ = ¢, and thusF; behaves as

mgq(;_q‘;); ast — T. Finally, att = T, ¢ is equal tog, whatever valueg andp, take, i.e.,

singularities correspond to multiple solutions to the lany value problems.

The harmonic oscillator is a useful example. Since the floknm®vn analytically, we
are able to explicitly illustrate the relationship betweka generating functions and the
phase flowp. We can go a step further by noticing that both the state itransmatrix
and the generating functions generate the flow. Thereforgukarities of the generating
functions should be related to properties of the state itransnatrix:

OF,
0Ap

= F121Aq + F122Ap0 )

Ap =

but we also have

Ap = ®pq<b;1Aq + (@, — <1>pq<1>;q1q>qp)Ap0 .

q

Similarly, (3.27)

0F,
0Apo

= F221Aq + F222Ap0 )

Agy =

but we also have

Agy = (D;qlAq — <I>q_q1(I>qup0 . (3.28)
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A direct identification yields:

Fi = @,0.', (3.29)
Yy = @, — 0,0, 0, (3.30)
o= o), (3.31)
Fj = 0 10,. (3.32)

Thus, F; is singular when and only whep,, is not invertible. This relation between
singularities ofF; and invertibility of a sub-matrix of the state transition tnmareadily

generalizes to other kinds of generating functions. Inipaldr, we can show that
e [ is singular whenb,, is singular,
e [} is singular whenb,, is singular,
e Fjis singular whenp,,, is singular,
e Fjis singular whenp,, is singular.

To extend these results to other generating functions, we camsider other block decom-
positions of the state transition matrix. Everyx n block of the state transition matrix
is associated with a different generating function. Siteedeterminant of the state tran-
sition matrix is1, there exists at least one x n sub-matrix that must have a non-zero
determinant. The generating function associated withldlask is non-singular, and we

recover Prop. 11.31 for linear systems.

3.2.3 Nonlinear systems theory

We have proved the local existence of generating functioisraentioned that they

may not be globally defined. Using linear systems theory veeadso able to predict



70

where the singularities are and to interpret their meanggaltiple solutions to the two-
point boundary value problem. In this section we generahese results to singularities
of nonlinear systems.

The following proposition relates singularities of the geating functions to the in-

vertibility of sub-matrices of the Jacobi matrix of the caieal transformation.

Proposition 111.5. The generating functiott;, x, for the canonical transformation is

singular at timet if and only if

det (a@) =0, (3.33)
azj ieljeJ

wherel = {i € I,}U{n +i,i € I,}, J = {j € K,}U{n +j.j € K,} andz = (g0, po)

is the state vector at the initial time.

Proof. For the sake of clarity, let us prove this property far In that case/ = [1,n] and

J = [n + 1,2n]. First we remark that

(52)...~ (o)
0z; icl,jed Opo, )

Thus, from the inversion theorem,dtt (%
J

) = 0, there is no open set in which
el jed
we can solvey, as a function of; andgj.

On the other hand, suppose tliatis non singular. Then, from Eq. (3.8), we have:

oF,

= —— .34
Po 8q0 (Qaq07t)7 (33 )

that is, we can expregs as a function of ¢, ¢o). This is in contradiction with the result

obtained form the local inversion theorem. Therefdfeis singular. O

Example 111.6. From the above proposition, we conclude that fhgenerating function

associated with the phase flow of the harmonic oscillatonigusar if and only if:

det (a@-) =0. (3.35)
0z iel jed




71

In this example,/ = 1, J = 2 and¢ = (qpcos(wt) + po/w sin(wt), —qow sin(wt) +
po cos(wt)). ThereforeF is singular if and only ikin(wt) = 0, i.e.,t = 27 /w + 2kw. We

recover previous results obtained by direct computatioh; of

Prop. 1.5 generalizes to nonlinear systems the relatetwben singularities and non-
uniqueness of the solutions to boundary value problemsdadd;, x, is singular if and
only if z; — ¢;(t, z) is not an isomorphism. By definition of the flow; — ¢;(¢, 2)
is surjective. Thus it is not injective, that is, singulexdt arise when there exist multiple
solutions to the boundary value problem.

To study the singularities of nonlinear systems, we needttoduce the concept of
Lagrangian submanifolds. The theory of Lagrangian subfolaisi goes far beyond the re-
sults we present in this section: “Some believe that the &ragjan submanifold approach
will give deeper insight into quantum theories than doesRbiesson algebra approach.
In any case, it gives deeper insight into classical meclsaad classical field theories”
(Abraham and Marsden [1]). We refer to Abraham and MarsdgnMarsden [66] and

Weinstein [95] and references given therein for furtheoiinfation on these subjects.

Lagrangian submanifolds

Consider an arbitrary generating functiéi . Then the graph of F';, , defines a
2n-dimensional submanifold called a canonical relation [@B§he 4n-dimensional sym-
plectic spacéP, x Py, Q2 = mjwy —miws2). On the other hand, since the variables p,) do
not appear in the Hamilton-Jacobi equation (Eq. (3.6)), vag oonsider them as parame-
ters. In that case the graph @f;,, p;,) — dF1, k. defines am-dimensional submanifold
of the symplectic spacgP;, w;) called a Lagrangian submanifold [95]. The study of sin-
gularities can be achieved using either canonical relafibhor Lagrangian submanifolds

[5, 66].
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Theorem I11.7. The generating functiof’, r, is singular if and only if the local projec-
tion of the canonical relatiorC defined by the graph aff;, x, onto(qr,,py , quT,pORT)

is not a local diffeomorphism.

Definition 111.8. The projection of a singular poin}, r, onto (g1, pr,, doy,  Po ) iS

called a caustic.
If one works with Lagrangian submanifolds then the previteorem becomes:

Theorem I11.9. The generating functiénF;, , is singular if the local projection of the
Lagrangian submanifold defined by the grapi@f, p; ) — dF7}, k, onto(qs,, pr,) is not

a local diffeomorphism.

These theorems are the geometric formulation of Prop.. lIf.5he projection of the
canonical relation defined by the graphddf;, x, onto(qs,, pr, , quT,pom) is not a local
diffeomorphism, then there exists multiple solutions ® pihoblem of findind ¢y, po, ¢, p)
knowing(q,, pr, o, Pog, ). From the local inversion theorem, this is equivalent tqoPro
[1.5.

In the light of these theorems, we can give a geometricatpné¢ation to Thm. 11.31
on the existence of generating functions. Given a canongation £ (or a Lagrangian
submanifold) defined by a canonical transformation, thergt®a2n-dimensional (om-
dimensional) submanifold1 of P; x P, (or ;) such that the local projection @f onto

M is alocal diffeomorphism.

Study of caustics

To study caustics two approaches, at least, are possiblendey on the problem.

A good understanding of the physics may provide informatiery easily. For instance,

2We consider here that the generating function is a functfom@riables only, and has parameters.
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consider the two-body problem in dimensidnand the problem of going from a poirt

to a pointB, symmetric with respect to the central body, in a certaisdapf time,T". For
certain values of’, the trajectory that linksl to B is an ellipse whose perigee and apogee
are A and B. Therefore, there are two solutions to this problem dependpon which
way the particle is going. In terms of generating functions, deduce thaf; is non-
singular (there is a unique solution once the final momentugivien) butF; is singular
(existence of two solutions).

Another method for studying caustics consists of using avknnon-singular gener-
ating function to define the Lagrangian submanifgléind then study its projection. A
very illustrative example is given by Ehlers and Newman [25ing the Hamilton-Jacobi
equation they treat the evolution of an ensemble of freeghastwhose initial momentum
distribution isp = ﬁ They identify a timet; at which F} is singular. Then, using a
closed-form expression @, they find the equations defining the Lagrangian submanifold
att;. Its projection can be studied and they eventually find thatdaustic is two folds.
Nevertheless, such an analysis is not always possible asos™ to the Hamilton-Jacobi
equation are usually found numerically, not analyticaliythe remainder of this section,
we focus on systems with polynomial generating functionmectically, we show that, in
this case, the generating functions can be computed nualigrand we develop a method
for studying their caustics.

Suppose we are interested in the relative motion of a panitiose coordinates are
(¢, p) with respect to another one on a known reference trajecttwgse coordinates are
(¢°, %), both moving in an Hamiltonian field. If both particles staydse” to each other,

we can expandy, p) as a Taylor series about the reference trajectory. The digsasfithe
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relative motion is described by the Hamiltonian functigh (Appendix A, Eq. (A.13)):

H(X" =) >

1 OPH
il! s 2277,' aqil [P aq:{Laplln+1 e 8p;£12”

(%, p°, )X XD (3.36)

For sake of clarity,(Agq, Ap) and (Aqo, Apy) are replaced byg, p) and (qo, po) in the

. 7] . : . ,
following, so thatX” = is the relative state vector. Using the algorithm we present

p
in Chapter V we are able to find an approximation of the genwgdtinctionF;, x, as

a polynomial of orderV in its spatial variables with time-dependent coefficier@ce

Fy, k, is known, we find the other generating functions from the Inelge transformation
(Eq. (2.28)), at the cost of a series inversion. If a genegatiinction is singular, the
inversion does not have a unique solution and the numberloficos characterizes the

caustic. To illustrate this method, let us consider theofeihg example.

Example 111.10 (Motion about the Libration point L, in the Hill three-body problem).
Consider a spacecraft moving about and staying close to tivation pointZ, in the nor-
malized Hill three-body problem (See Appendix C for a dggoyn of the Hill three-body
problem). Its relative motion with respect I is described by the Hamiltonian function
H" (Eq. (3.36), or equivalently Eq. (C.11)) and approximatedreler N by truncation of
terms of order greater thaN in the Taylor series definingl”. The flow associated with
the truncation ofif" defines a canonical transformation. Using the algorithrseaméed in

Chapter V, the associated generating functigrcan be approximated by a Taylor series
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expansion of ordeN:

F5(qu, Gy, Do, o, t) = L (DG + [12(0)aeqy + fis()aupo, + [ia(t)qupo,
+ [5G + fas()aypo, (t) + f3,()aypo,

+ [R5, + F(O)po.po, + [y, + (4w, 4ys Do, Do, 1) 5

where(q, p, qo, po) are relative position and momenta of the spacecraft withaetsto L,
at t andty, the initial time, and- is a polynomial of degreéV in its spatial variables
with time dependent coefficients and without any quadratims. At7T = 1.6822, F is

singular butF; is not. Eqns. (3.10) and (3.11) reads:
Pe = 22 (T) gz + [15(T)qy + f15(T)po, + f14(T)po, + D17 (qs; @y, Do, Po,, T) 5 (3.37)

Py = [1a(T) s +2f55(T)qy + f35(T)po, + f34(T)po, + D214z, 4y, Po,» po,, T) , (3.38)
qo, = f123 (T)qﬁl? + f223(T>Qy + 2f323 (T)poz + f324(T)p0y + D3r(qw> Qy s Po, p0y7 T) ) (339)
do, = f124(T)CIx + f224(T)Qy + f§4 (T)po, + 2ff4 (T)poy + Dyr(Ga, 4y, Po, Poy s T), (3.40)

whereD;r represents the derivative ofvith respect to its'" variable. Egns. (3.37)-(3.40)
define a canonical relatiof. By assumptiornt; is singular, therefore the projection 6f
onto(q, qo) is not a local diffeomorphism and there exists a caustic.

Let us now study this caustic. Eqns. (3.37)-(3.40) providmdg, as a function of
(¢, po), but to characterize the caustic we need to study the profeof the Lagrangian
manifold orf (¢, qo). Hence, we must expregsandp, as a function ofq, ¢y). F; being
singular, there are multiple solutions to the problem ofifigdh andp, as a function of
(¢,90), and one valuable piece of information is the numbef such solutions. To find
p andp, as a function of ¢, qo) we first invert Egns. (3.39) and (3.40) to expressas a

function of (¢, o). Then we substitute this relation into Eqns. (3.37) andq)3.3he first

3SinceF; is a function of(q, qo).
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step requires a series inversion that can be carried oug tisentechnique developed by

Moulton in “Differential equations” [72]. Let us rewrite BBg. (3.39) and (3.40):
2f323(T)p01 + f324(T)p0y = do, — f123 (T)QJE - f223 (T)Qy - D3r(qx7 dy; Po,.» Poy T) ) (341)

Fss(Tpo, +2f5(T)po, = g0, = [is(T) e = F51(T)ay — Dar (4 4y Do 1o, T) - (3.42)

The determinant of the coefficients of the linear terms onleftehand side is zero (oth-
erwise there is a unique solution to the series inversion)ebeh of the coefficients is
non-zero, that is, we can solve fpg, as a function of(p,,, qo,, qo,) Using Eq. (3.41).

Then we substitute this solution into Eq. (3.42) and we obaai equation of the form

R(p()yv q0,> QOU) =0 ) (343)

that contains no terms im,, alone of the first degree. In additioR, contains a non-zero
term of the formnpj , wherea is a real number. In this case, Weierstrass proved that there

exist two solutionsp; andp; , to Eq. (3.43).

In the same way, we can study the singularityF@fat the initial time. Att = 0, F5
generates the identity transformation, heri¢g0) = f2,(0) = f4(0) = f%,(0) = 0. This
time there is no non-zero first minor, and we find that therstsxnfinitely many solutions

to the series inversion. Another way to see this is to use dyehdre transformation:

Fi(q,q0,t) = F>(q,po,t) — qopo

As t tends toward), (¢, p) goes to(qo, po) and F, converges toward the identity transfor-
mationlil% Fy(q,po,t) = qpo ——7 dobo- Therefore, ag goes to0, F; also goes td), i.e.,
the projection ofZ onto(q, o) reduces to a point.

The use of series inversion to quantify the number of sahstim the boundary value

problem is a very efficient technique for systems with polyiad generating functions.
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From the series inversion theory we know that the uniqueoé#ise inversion is deter-
mined by the linear terms whereas the number of solutionadifiy) depends on proper-
ties of nonlinear terms (we illustrated this property in dtve example). In addition, this
technique allows us to study the projection of the canomigation at the cost of a single
matrix inversion only.

In the case where generating functions are (or can be appated by a) polynomial,
we can recover the phase flow (or its approximation) as a paofyal too. For instance,

from

0F,

= — t
Do aqo <q7 qo, ) )

we can findg(qo, po) at the cost of a series inversion. Thellyo, po) together withp =
%(q, o, t) define the flow (or its polynomial approximation). This prdaee is described
in greater detail in Section 5.3.2. We want to point out thay @ series inversion (i.e.,
a matrix inversion and a few substitutions) is necessaryrémsforming the flow into the
generating functions and vice versa. On the other hand,rgeémg functions are well-
defined if and only if the transformation from the flow to thengeating function has a
unique solution (Prop. IIl.5). From series inversion theaeve conclude that generating

functions are well-defined if and only if the inversion of tiveear approximation of the

flow has a unique solution. Therefore, we have the followirapprty:

Proposition 11.11. Singularities ofpolynomial generating functions correspond to de-
generacy of sub-matrices of the state transition matrixrashie linear case. In other

words, using our previous notation,
e [ is singular whenlet(®,,) = 0,

e [ is singular whenlet(®,,) = 0,
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e Fjis singular whenlet(®,,) = 0,
e [} is singular whendet(®,,) = 0.

Using other block decompositions of the state transitionrixahese results can be ex-

tended to the generating functidn g, .

Example 111.12 (Singularities of the generating functions n the Hill three-body prob-
lem). To illustrate Prop. 111.11, let us determine the singulastof F; and F; in the
normalized Hill three-body problem linearized abaduyt

The state transition matrix for this problem satisfies (sppekdix C):

-8 0 0 -1

) 0O 41 0

d(t) = o(t),  ¢(0) = Identity.
0O 1 1 O
-1 0 0 1

We use theMathematica® built in function DSolve to compute a symbolic expres-
sion of the state transition matrix. We plot in Fig. 3.1 theedminant of®,, and

d,, as a function of time. As noticed beforg is singular at the initial time and at

10 10
7.5 7.5
5 5
2.5 2.5
t t
1 2 3 4 5 1 2 3 4 5
-2.5 -2.5
-5 -5
-7.5 -7.5
-10 -10
(a) Determinant ofb,, (b) Determinant ofp,,

Figure 3.1: Determinant ob,, and®,,

t = {1.6821,3.1938,4.710} and F; is singular at = {0.809, 2.3443, 3.86}. The singular-
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ity att = 1.6821 was studied above. In addition, one can show teat®,,) = det(®,,),

i.e., Fy(q,po,t) and F3(p, qo, —t) have the same singularities.

In the above example, we predicted the singularities ohthrdineargenerating func-
tions F}, F; and F3. In particular, we noticed that, and F; have the same singularities.
This property is specific to this problem. It is the conseqeeonf two results. First, the
determinant of the sub-matrices of the state transitionimebrresponding td, and F3
are invariant under the transformation— —¢. The second result can be formulated as

follows:

Proposition 111.13. Consider an autonomous Hamiltonian system. Then the gengrat
functionsl; ., (t) and Fk, 1, (—t) associated with the phase flow transformation develop
singularities at the same instant. For instancey &= n andr = 0, we obtain the fact that

F, and F; have the same singularities.

Proof. Autonomous Hamiltonian systems are reversible, theretoegwo following bound-

ary value problems are equivalent:
e Going from(qOKr,pORr) to (qz,, pz,) in T" units of time.
e Going from(qolp,pofp) to (gk,,pg,) in =1 units of time.

As aresult, if one of these problems has multiple solutibesather one also has. In other
words, if F; k. (t) is singular,F, ; (—t) also is. In addition, the caustic for these two

generating functions are the same. O]

3.3 Hamilton’s principal function

Though generating functions are used in the present rés@asolve boundary value

problems, they were introduced by Jacobi, and mostly useckedfter, as fundamental
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functions which can solve the equations of motion by simplerntiations and elimi-
nations, without integration (Section 2.2.2). Nevertes)at was Hamilton who first hit
upon the idea of finding such a fundamental function. He firgt@d its existence in geo-
metrical optics (i.e., for time-independent Hamiltonigstems) in1834 and called it the
characteristic function [46]. One year later he published@nd essay [47] on systems of
attracting and repelling points in which he showed that tliduion of dynamical systems

is characterized by a single function called Hamilton's)pipal function:

The former Essay contained a general method for reducingpelinost im-
portant problems of dynamics to the study of one charat¢iefisction, one
central or radical relation. It was remarked at the closbaf Essay, that many
eliminations required by this method in its first conceptiomght be avoided
by a general transformation, introducing the time expliaito a part S of
the whole characteristic function V ; and it is now proposedix the atten-
tion chiefly on this part S, and to call it the Principal Fuoati (William R.
Hamilton, in the introductory remarks of “Second essay oreadsal Method

in Dynamics” [47]).

Although Hamilton’s principal function has been introddde derive solutions to the
equations of motion, it may also be used to solve boundanyevafoblems as well. As
far as we know, no one has ever noticed this fact before. Torexan the next section we
introduce Hamilton’s principal function and prove thatohses two-point boundary value

problems. Then we discuss how it compares to the generatirgjions.
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3.3.1 Existence of the Hamilton principal function

Similarly to the generating functions, Hamilton’s prinaigunction may be derived

using the calculus of variations. Consider the extendedmaatitegral:

A= / (pqd + pit')dr | (3.44)

70
under the auxiliary conditio (q, ¢, p, p;) = 0, whereq’ = dq/dr, p, is the momentum
associated with the generalized coordinatasd K = p; + H.

Define a line elemehtlo for the extended configuration spaget) by
do = Ldt = Lt'dr .

Then, we can connect two poinfg, to) and(q;, t;) of the extended configuration space

by a shortest linee and measure its length from:

A:/dJ:/Lt’dT.
v 5

The distance we obtain is a function of the coordinates oétitepoints and, by definition,
is given by the Hamilton principal functio (qq, to, q1, t1).

From the calculus of variations (see e.g. Lanczos [60]) wankthat the variation of
the actionA can be expressed as a function of the boundary terms if wetharymits of

the integral:

0A = p10qi + i, 0t1 — Podqo — Pr,Oto -

On the other hand, we have:

ow ow ow ow
0A = oW (qo, t t1) = —90 — 0ty + —96 — it
(90, to, q1,t1) o qo + Ot o+ o0 ¢+ ot 1,

4The geometry established by this line element is not Riemaar{60]
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that is:
ow
Po = —a—q()(<107t0,CI1,751)7 (3.45)
ow
= t t 3.46
D1 ) (QO; 0, 4q15 1)7 ( )
and
ow ow
_8—t0(q07t07q17t1>+H(q07_a—q07t0) = 07 (347)
ow ow
a—tl(%,toyﬂhah)+H(Q1ya—q1;t1) = 0, (3.48)

where K has been replaced hy + H. As with generating functions of the first kind,
Hamilton’s principal function solves boundary value perbk of Lambert’s type through
Eqgns. (3.45) and (3.46). To find’, however, we need to solve a system of two partial

differential equations (Eqns. (3.47) and (3.48)).

3.3.2 Hamilton’s principal function and generating functions

In this section we highlight the main differences betweenegating functions asso-
ciated with the phase flow and Hamilton’s principal functidfor sake of simplicity we

CompareFI <Q7 qo, t) andW(Q7 t? qo, tO)

Calculus of variations  Even if both functions are derived from the calculus of varia
tions, there are fundamental differences between themefivedgenerating functions the
time ¢ is considered as an independent variable in the variatiomatiple. In contrast,
we increase the dimensionality of the system by adding the tito the generalized co-
ordinates to derive Hamilton’s principal function. As a sequence, generating functions
generate a transformation between two points in the phassespe., they act without
passage of time. On the other hand, Hamilton’s principatfion generates a transfor-

mation between two points in the extended phase spacebeé®veen two points in the
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phase space with different times. This difference may beefteas follows: Generating
functions allow us to characterize the phase flow given amlrime, ¢, (i.e., to char-
acterize all trajectories whose initial conditions arecsfped att,), whereas Hamilton’s
principal function does not impose any constraint on thgahtiime. The counterpart be-
ing that Hamilton’s principal function must satisfy two pat differential equations (Eq.
(3.47) definesV as a function of, and Eq. (3.48) defindd” as a function of,) whereas
generating functions satisfy only one.

Moreover, to derive the generating functions fixed endgoameé imposed, that is, we
impose the trajectory in both sets of variables to verify phi@ciple of least action. On
the other hand, the variation used to derive Hamilton’sgypial function involves moving
endpoints and an energy constraint. This difference maxgteegreted as follows: Hamil-
ton’s principal function generates a transformation whitdps a point of a given energy
surface to another point on the same energy surface and aefioed for points that do
not lie on this surface. As a consequence of the energy eonistwe have [60]:

| *W
0q00q

|=0. (3.49)

As noticed by Lanczos [60], “this is a characteristic praypef the 1V -function which has
no equivalent in Jacobi’s theory”. On the other hand, gdimegdunctions map any point
of the phase space into another one, the only constrainfassed through the variational
principle (or equivalently by the definition of canonicamisformation): we impose the
trajectory in both sets of coordinates to be Hamiltoniarmwiamiltonian functiong? and

K respectively.

Fixed initial time  In the derivation of Hamilton’s principal functiaoft, may be chosen
to be zero, that is, the initial time is imposed. Then Hamik@rincipal function loses its

dependence with respect#p Eq. (3.47) is trivially verified and Eqg. (3.49) does not hold
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anymore, meaning th&t’ and F;, become equivalent.

Finally, in [47] Hamilton also derives another principahfiionQ (po, to, p1, t1) Which
compares tdV as F, compares taF;. The derivation being the same we will not go
through it.

To conclude, Hamilton’s principal function appears to beegeneral than the gener-
ating functions for the canonical transformation inducgdhe phase flow. On the other
hand, the initial and final times are usually specified whdmisg two-point boundary
problems and therefore, any of these functions will idextiycsolve the problem. How-
ever, to find Hamilton’s principal function we need to solwetpartial differential equa-
tions with a constraint whereas only one needs to be solvitithe generating functions.
For these reasons, generating functions are more appipoiaaddressing the problem

of solving two-point boundary value problems.



CHAPTER IV

DISCRETE VARIATIONAL PRINCIPLES AND
HAMILTON-JACOBI THEORY

In the last two chapters the Hamilton-Jacobi theory as welaanew approach for
solving two-point boundary value problems were introducéddhis approach relies on
knowledge of the generating functions. In general thesetioms are not known analyti-
cally, and so they need to be computed numerically. The m@rpbthe next two chapters
is to understand the numerics of Hamiltonian systems andldge\a robust algorithm to
compute the generating functions. Such an algorithm neeaddress several challenges:
1) the initial conditions for integration are specified imbts of functions with parameters,
2) generating functions may develop singularities thavgmethe integration from going
further.

In this chapter, we explore the numerics of Hamiltonianesyst. In Chapter V, we de-

velop an algorithm for computing the generating functiamssf certain class of problems.

The numerics of Hamiltonian systems Hamiltonian systems have a very rich structure
and distinctive properties that we can take advantage ofinstance, we have seen (Chap-
ter 1) that the energy and the symplectic two-form were irasa along the flow. Most
importantly, the invariance of the symplectic two-form egvrise to the Hamilton-Jacobi

theory which is the backbone of the approach we developed ap@€hlll. Therefore,

85
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when simulating Hamiltonian systems we must make sure theast the symplectic two-
form is conserved. The aim of the work presented in this @raptfirst to address this
issue, but as we will see our results go far beyond our obgcti

Standard methods (called numerical integrators) for satmg motion usually take an
initial condition and move objects in the direction spedfi®y the differential equations.
These methods do not directly satisfy the physical conservéaws associated with the
system. An alternative approach to integration, the thebrgeometric integrators [68,
20], has been developed over the last two decades. Thegeaittes strictly obey some
of these physical laws, and take their name from the law threggsve. For instance,
the class of energy-momentum integrators conserves eaaygnomenta associated with
ignorable coordinates. Another class of geometric integsas the class of symplectic
integrators which preserves the symplectic structures Hsit class is of particular interest
when studying Hamiltonian and Lagrangian systems sinceyhw®lectic structure plays
a crucial role in these systems (see e.g. Chapter I, Bloch. ef1dl], Arnold [5] and
Abraham and Marsden [1]). The work done by Wisdom [97, 98]t@vtbody problem
perfectly illustrates the benefits of such integrators.

At first, symplectic integrators were derived mostly as actags of Runge-Kutta al-
gorithms for which the Runge-Kutta coefficients satisfy $ii@celationships [84]. Such
a methodology, though very systematic, does not providehrphgsical insight and may
be limited when we require several laws to be conserved. rtle¢hods were developed
in the 90’s, among which we may cite the use of generating functiongHe canonical
transformation induced by the phase flow [21, 26, 45] and #eeai discrete variational
principles. This last method “gives a comprehensive andiathview on much of the
literature on both discrete mechanics as well as integratiethods” (Marsden and West

[67]). Several discrete variational principles can be fbumthe literature: Discrete modi-
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fied Hamilton’s principles were introduced by Shibberu [8AH Wu [99] whereas Moser
and Veselov [71] and then Marsden, West and Wendlandt [6]/d&&loped a fruitful
approach based on a discrete Hamilton’s principle. Alsinapaurkar, Pekarsky and West
[54] developed a variational principle on the cotangentdbeitbased on generating func-
tion theory.

In the present research, we focus on the discrete varidtpwmeiples introduced by
Guo, Li and Wu [39, 40, 41] because the theory they have dpediprovides both a dis-
crete modified Hamilton’s principle (DMHP) and a discretentilton’s principle (DHP)
that are equivalent. We modify and generalize both vamafigrinciples they introduce
by changing the time discretization so that a suitable apa®f the continuous boundary
conditions may be enforced. These boundary conditions rai@at for the analysis of
optimal control problems (Section 6.2) and play a fundamadewte in dynamics. Our ap-
proach not only allows us to obtain a large class of discig@#hms but it also gives new
geometric insight into the Newmark model [73]. Most impattg, using our improved
version of the discrete variational principles introdutgdGuo et al., we develop a dis-
crete Hamilton-Jacobi theory that yields new results ongguotic integrators. Finally, we
derive some properties of symplectic integrators that apgime importance for building
a robust algorithm to compute the generating functions (@&map).

In the first part of this chapter (Sections 4.1, 4.2 and 4.8)pvesent a discrete Hamil-
ton’s principle on the tangent bundle and a discrete modHianhilton’s principle on the
cotangent bundle (Section 4.1), we discuss the differemdts other works on varia-
tional integrators (Section 4.2) and show that we are abtedover classical symplectic
schemes (Section 4.3). The second part (Sections 4.4 ang 4é&voted to issues related
to energy conservation and energy error. We first show thabbgidering time as a gen-

eralized coordinate we can ensure energy conservatioti¢ggec4). Then we introduce
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the framework for discrete symplectic geometry and theomodif discrete canonical trans-
formations. We obtain a discrete Hamilton-Jacobi theoat #llows us to show that the
energy error in the symplectic integration of a dynamicatemn is invariant under discrete
canonical transformations (Section 4.5).

In each part, we illustrate some of the ideas with simulatidn particular we show
in the first part that symplectic methods allow one to recérergenerating function from
the phase flow while standard numerical integrators faiabse they do not enforce the
necessary exactness condition. In the second part we Idbk &nergy error in the inte-
gration of the equations of motion of a particle in a doubldl wetential using a set of

coordinates and their transform under a discrete symplewp.

4.1 Discrete principles of critical action: DMHP and DHP

In this section, we develop a modified version of both vawiai principles introduced

by Guo, Li and Wu [39, 40, 41] and present the geometry astsatigith them.

4.1.1 Discrete geometry

Consider a discretization of the timénto n instantsT = {(t)rej1,) }- Heret, 1 —ty,
may not be equal te, — t,_, but for sake of simplicity we assume in the following that
try1 — ty = 7, Yk € [1,n]. The configuration space 8, is then-dimensional manifold
M, and M = | J M, is the configuration space dh. Define a discrete time derivative
operatorA? on 7. Note thatA? may not verify the usual Leibnitz law but a modified one.

For instance, if we choos&? to be the forward difference operator &1 :

1 _
Alg(t) = ~(gltx +7) = q(te)) = TH—L = Mgy,

thenA? verifies:

AT(f()g(t)) = ALF(t) - g(t) + f(t+7) - Afg(t). (4.1)
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4.1.2 Discrete Hamilton’s principle

Our modified version of the discrete Hamilton’s principleided by Guo, Li and Wu
[39] is the discrete time counterpart of Hamilton’s prideifor Lagrangian systems (Thm.
11.5). Consider a discrete curve of poiritg ) <[, and a discrete Lagrangidn (q¢f, AZqy)

whereA? is a discrete time derivative operator ayfds a function of(qy, g 1)-

Definition IV.1 (Discrete Hamilton’s principle). Trajectories of the discrete Lagrangian

systeml,; going from(ty, qo) to (¢, ¢, ) correspond to critical points of the discrete action

n—1

St = ZLd(quAi%)T, (4.2)

k=0

in the class of discrete curvésg{), whose ends ar&, o) and(t,,, ¢,). In other words, if
we require that the variations of the discrete actigh be zero for any choice @, and

dqo = dq, = 0, then we obtain the discrete Euler-Lagrange equations.

RemarklV.2. If we do not impose, ., — t, = tx — t,_1, then the discrete action would

be defined as:

n—1

Si =Y La(gl, Atqe) (e — ta) | (4.3)
k=0

but the discrete Hamilton’s principle would be stated inghee mannér

To proceed to the derivation of the equations of motion, wedrie specify the deriva-
tive operator,A?. As we will explain below, its definition depends on the schewe
consider. We should also mention that our variational gpiecdiffers from Guo, Li and
Wu'’s since we consider that the action has only finitely mamyns and we impose fixed
end points. Such a formulation is more in agreement withinanus time variational prin-
ciples and preserves the fundamental role played by boyiedaditions. For a discussion

on this topic, we refer to Lanczos [60] Sectith

1In this formulation, the,’s are known, so there are no additional variables.
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4.1.3 Discrete modified Hamilton’s principle

As in the continuous case, there exists a discrete varaltpimciple on the cotangent

bundle that is equivalent to the above discrete Hamiltoniscgple (Thm. I1.6).

Definition IV.3. Let L, be a discrete Lagrangian dfiM and define the discrete Legendre
transform (or discrete fiber derivativ&)L : T M — T* M which maps the discrete state

spacel’ M to T* M by

(g1, Algl) — (ai,pi), (4.4)

where

¢ OLa(ql, Alg)
e = AN )

T

(4.5)

If the discrete fiber derivative is a local isomorphishy, is called regular and if it is a

global isomorphism we say that; is hyperregular.

If L4 is hyperregular, we define the corresponding discrete Hanmn function on

T*M by
Ha(ql,pf) = o, Algl) — Lalqfl, Algl) (4.6)

whereA?q¢ is defined implicitly as a function af;¢, p¢) through Eq. (4.5). LefZ be the

T

discrete action summation:

n—1

Si =" ((pf. Algl) — Ha(af.pi)) 7. (4.7)

k=0

wherer is to be replaced b, — t;, if t1 — ¢ # ti, — t,_1. Then the discrete principle

of least action may be stated as follows:

Definition IV.4 (Discrete modified Hamilton’s principle). Trajectories of the discrete

Hamiltonian systent/, going from(ty, o) to (¢,, ¢,,) correspond to critical points of the
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discrete actionS# in the class of discrete curveg, p{) whose ends arét,, ¢o) and

(tm Qn)-

Again, for deriving the equations of motion we need to spetti€ discrete derivative
operatorA? and its associated Leibnitz law. It will generally dependmighe scheme we

consider as we will see through examples later.
4.2 Comparison with other classical variational principle

At this point it is of interest to compare discrete variaabprinciples introduced in
this chapter and other classical discrete variationalcgylas. As we mentioned above,
the discrete variational principles we develop are inspig the work of Guo, Li and Wu
[39] and we explained above the key difference between ouwk and this earlier work.
We now point out the main differences of the work discusseé agth that of Marsden
and West, based on the variational principle introduced lmsd&d and Veselov. In the
following, DVPI refers to the discrete variational prin@pleveloped by Moser, Veselov,
Marsden, Wendlandt et al. whereas DVPII denotes the deseagiational principles de-
veloped by Guo and this work.

The first main difference lies in the geometry of both vaadaél principles. Whereas
the discrete Lagrangian is a functional hx Q where@ is the configuration space in
DVPI, it is a functional onl’@) in DVPII. As a consequence, DVPII has a form more like
that of the continuous case but has a major drawback: we lbasgecify the derivative
operator and the Leibnitz law it verifies in order to derive tiscrete Euler-Lagrange
equation. Such a law allows us to perform the discrete copatteof the integration by
parts and depends on the scheme we consider. On the othertharduler-Lagrange
equation obtained by DVPI is scheme independent and ondibisrteat these equations

ensure satisfaction of physical laws such as Noethersémedor any numerical scheme
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which can be derived from them.

The next important difference between the two discreteatianal principles lies in
the role of the Legendre transformation in defining a digckamiltonian function from
the discrete Lagrangian. In DVPI, one defines a discrete hahgetransform for comput-
ing the momenta from the discrete Lagrangian function, s® may study the discrete
dynamics on botl® x Q and7* Q. However, it does not seem possible to define a discrete
Hamiltonian function from the discrete Lagrangian and tigva DMHP. Given a Hamil-
tonian system, to derive discrete equations of motion uBYg! one needs to first find
a continuous Lagrangian function by performing a Legendgnesform on the continuous
Hamiltonian function, then apply DVPI and finally use thecdéte Legendre transform to
study the dynamics oh*Q (see e.g. Marsden and West [67] pa@8). While this point
may not be of importance when dealing with dynamical systénsscrucial if one wants
to discretize an optimal control problem, where the cormusiHamiltonian function does
not have any physical meaning and the Legendre transfamatay not be well-defined
(See Section 6.2). In contrast, DVPII naturally defines ardie Legendre transform and
a DMHP.

As mentioned in the introduction, previous researchers hiready introduced DMHPs
on the cotangent bundle, but, as far as we know, no one hatogedean approach that
allows one to equivalently consider both the Hamiltoniad aagrangian approaches in
discrete settings (i.e., a DMHP and a DHP that are equivdtanhon-degenerate La-
grangian systems). In addition, the DMHPs that can be fonriad literature do not allow
one to recover most of the classical schemes. For instahdeZhe&u’'s DMHP [87] focuses
on the midpoint scheme and Wu [99] developed a different DMbtReach scheme.

Let us now look at some classical schemes and see how theyecderived from

DVPII.
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4.3 Examples

4.3.1 Sbrmer’s rule and Newmark methods

Stormer’s scheme is a symplectic algorithm that was first @erifor molecular dy-
namics problems. It can be viewed as a Runge-Kutta-Rgstmethod induced by the
leap-frog partitioned Runge-Kutta method [84]. The derorabf the Sbrmer rule as a
variational integrator came later and can be found in [99, @60, Li and Wu [41] recov-
ered this algorithm using their discrete variational pipfes. In the next subsection, we
briefly go through the derivation and add to their work theoe#y Verlet [90] and New-
mark methods [67]. In particular, we will show how the consgion of the Lagrangian

and symplectic two-forms is built into DVPII.

From the Lagrangian point of view

We first letq! = ¢, and define the discrete Lagrangianhy(q?, Adqy) = L(q, Alqy)
and the discrete derivative operator as the forward diffeee\? = A.. A, satisfies the
modified Leibnitz law (Eq. (4.1)). Discrete equations of maptare obtained from discrete

Hamilton’s principle (Def. (IV.1)):
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n—1

0S; = 7Y 0La(qk, Argy)
k=0
n—1

= 7Y (D1La(gk, Arar), 5qi) + (DaLa(qr, Arqi), 62, qi)
k=0
n—1

= TZ<D1Ld(Qk7ATQk) — ArDoLa(qr—1, Arqr—1), 0k)
k=1
+AT<D2Ld(Qk—17 AT(]k—l)a 5Qk>

+7(D1La(q0, Arq0)dq0) + 7(D2La(q0, Arqo), 0A7q0)

n—1
= TZ<D1Ld(Qk7 Aragr) — ArDoLa(qr—1, Arqr—1), 0q) —
=1
—(D2L4(q0, Arqo), 0q0) + 7(D1La(q0, Arqo), 0q0)

+<D2Ld<Qn—1a A‘rqn—l)a 5qn> 5 (48)

where the commutativity of and A, and the modified Leibnitz law defined by Eq. (4.1)
have been used.
Discrete Euler-Lagrange equations follow by requiring Yheations of the action to

be zero for any choice @y, k € [1,n — 1] anddqy = dg,, = 0:

D1 La(qr, Arqr) — ArDoLg(qr—1, Arqe—1) = 0. (4.9)
Suppose.(q, ¢) = 3¢Mq — V(q), then Eq. (4.9) yields 8tmer’s rule:

Qo1 = 2qr — Q1 + B2MH(=VV (qr)) - (4.10)

Consider the one-forfn

oL — 3Ld(Qk—1 ) Aﬂk-ﬂ
k 0A;q;_,

dqp, .

2Einstein’s summation convention is assumed
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and define the Lagrangian two-ford on 7, M:

wf = dbf

PLa(qr—r D) iy P Lalgior, A
_ d(QIf 1) qk 1)dq;€/\in+ d(Qk ! il 1)dA7— k/\qu

aqlicflaATqifl aAqu 18Aqu 1

Lemma IV.5. The algorithm defined by &mer’s rule preserves the Lagrangian two-

form, wf.

Proof. Consider a discrete trajectoty; ), that verifies Eq. (4.10). Then we have:

n—1
OLa(qr, Arqr) OLa(qr—1, Arqr—1) -
- § ! ~A i
dsk =r > ( g T N dgy,

A OLa(qk—1, Arqr—1)
. 0A-q;,

dq,§> . (4.11)
Since they,’s verify Eq. (4.10), and? = 0, Eq. (4.11) yields:

d(A.0F) =0, thatis, wi, = wp . (4.12)
We conclude that{ is preserved along the discrete trajectory O

As we mentioned earlier, because DVPII acts on the tangerdléut provides results
very similar to the continuous case as attested by the fortheot.agrangian two-form.
This is to be compared with the Lagrangian two-form arismthie continuous case:

)
L=~ d¢* Ndg’
o0 " N T Beiag

dg* A dg’ .

Note that conservation of the Lagrangian two-form is a cqneace of using the Leib-
nitz law, and therefore does not depend on the definitionetltbcrete Lagrangian. In the
remainder of this section we use different discrete Lagean@unctions, but the same
Leibnitz law. Thus Lemma IV.5 still applies.

More generally, we can derive@tner’s rule using

La(qr, Arqr) = AL(qr, Arqr) + (1 — ) L(qr + TArqr, Arqr)
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for any )\ in R. A particular case of interest js= % which yields a symmetric version of
Stormer’s rule also called the velocity Verlet method [90].r Hus value of\, we define

the associated discrete momenta using the Legendre tranéiq. (4.5)):

Pre1 = P
= D2Ld(qk’7Aqu’)

1
= MA.q, — §TVV(% + Arqr) . (4.13)
that is:
_1 1
Qo1 = Qe +TM " (Prg1 + §TVV(QI<:+1)) : (4.14)

Moreover, from Eq. (4.9) we obtain:

—VV(CJk) - VV(QkH)
5 .

Pr+1 =Dk +7T (4.15)

Egns. (4.14) and (4.15) define the velocity Verlet algorithm
We now focus on the Newmark algorithm which is usually wntfer the system

L = %QTMQ — V(q) as a map given by¥qx, i) — (qr+1,Gr+1) Satisfying the implicit

relations:
-2
Qet1 = Gk + TGk + 5[(1 —2B3)ay + 2Ba41] (4.16)
Ge1 = @i+ 71— 7)ar + yag], (4.17)
o = MH-VV(g), (4.18)

where the parameters € [0,1] and3 € [0,3]. Fory = 1 and anyg the Newmark

algorithm can be generated from DVPII as a particular cageeoStrmer rule where!

and L, are chosen as follows:

qt = qp — Briay,
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and
d addy _ LT g g
La(qi ATq) = 5% Mqi; —V(g)
with V7, the modified potential, satisfyingV (¢f) = VV (q:). Since the derivative opera-

tor is the same as above, the discrete Hamilton’s princiglely Strmer’s equation where

q is replaced by, that is:

Gy = 241 — qi + TP M (=VV () - (4.19)
Eq. (4.19) simplifies to

Qi1 — 20k + Qe1 = 72 (Baggz + (1 — 2B)ars1 + Bag_1) .

This last equation corresponds to the Newmark algorithniheicase; = % LemmalV.5

guarantees that the Lagrangian two-form

wy = d(DyLa(ql, Algl)dgt, )

T

is preserved along the discrete trajectory.

From the Hamiltonian point of view

The Strmer, velocity Verlet, and Newmark algorithms can also beved using a
phase space approach, i.e., the DMHP (Def. 1V.4). FarrBér's rule, the Legendre

transform yields:
Pr+1 = MAqy . (4.20)
The discrete Hamiltonian function is defined from Eq. (4.6):

1 _
Hi(qr, pr+1) = éprM "o + Vi),
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and discrete equations of motion are obtained from the DR(HRS. IV.4). We skip a

few steps in the evaluation of the variationsjf to finally find:

1

05 =9 (TZQ%H, Arqi) — Hd(QkaPk—H))
k=0

n—1

= TZ(Aqu — D2 Hi(qk, Pr+1): 0pr+1) — (Arpk + DiHa(qr, Prt1), 0k)
k=0

+ (P> 0Gn) — (Po,9qo) -

If we impose the variations of the actid#}’ to be zero for any(dqy, dps.1) anddgy =

dq, = 0, we obtain:

Aqu = DPk+1, (4 21)

Ampy = =VV(g).

Elimination of thep,’s yields Strmer’s rule.
To recover the velocity Verlet scheme from the Hamiltoniampof view, one needs

to solve forA g, as a function of gy, pr+1) in EQ. (4.13). Suppose this has been done and

thatAqu = f(qk,pkﬂ), then
Ha(qrs prir) = (Orr1s £ (o Pryr)) — Lalae, f (s i) - (4.22)
Taking the variation of the actiofi’’ yields the following discrete Hamilton’s equations:

Arqr = DoHy(qr, pri1) (4.23)

Arpy = —D1Ha(qk, pry) - (4.24)

On the other hand, Eq. (4.22) provides the following relasglups:

Dy Hy(qr, pr+1) = (D1 f(qr, Pk+1)s Prev1 — DaLa(qe, f(qr, Drt1)))

— D1 Lq(qr, f(qr, pe+1)), (4.25)

3¢ = g andp{ = py1
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Dy Hy(qr, prs1) = A% + (Do f (@i, Pisr)s Prr1r — DoLa(q, f(qr, prs1))) - (4.26)

Combining Eqns. (4.23) and (4.24) together with Eqns. (4a2&) (4.26) yields the Ve-
locity Verlet algorithm (Eqns. (4.14) and (4.15)).

We now prove that the scheme we obtained is symplectic. AlsarLagrangian case,
the proof differs from the usual one that consists in conmmuip, 1 A dqx.1, In that it

relies on fundamental properties of DVPII and on the use @Libnitz law.
Lemma IV.6. The algorithm defined by Eqns. (4.23)-(4.24) is symplectic.

Proof. We have:

n—1
de = d(T pk+17 TQk> Hd(q/capkﬂ))’
=0

n—1

= 7 Arqr — DoHa(qr, Prt1)s dprs1) — (Arpe + D1Ha(qr, prs1), dgr)
k:O

Hence, sincéq, pi.) verifies Eqns. (4.23)-(4.24) anfl = 0, we obtain:
A (dpr N dgy) =
The symplectic two-formlp, A dq; is preserved along the trajectory. O

Finally, we can also derive the Newmark methods from the Htaman point of view.

The Legendre transform yields:

oL (q Afqy) _
d d\4k> T k

The Newmark algorithm is again a particular case of ther8ér rule wherégy., pr.1) is
replaced by(¢?, pt):
Adgl = 1, (4.27)

Alpy = =VV(g)- (4.28)



100

Defining g, from p, as
i =MDl + Sa
allows us to recover the Newmark scheme-+o& % (Egns. (4.16) and (4.17)). From the

above lemma, we obtain that the symplectic two-fatpd A dgf is preserved along the

trajectory.

4.3.2 Midpoint rule

The midpoint rule has been extensively studied and a comptatly of its properties
can be found in the literature. It is a particular case of thedgeuKutta algorithm, but can
also be derived as a variational integrator (see for ingt§®@, 87, 67]). The derivation of
this scheme has been done by Guo, Li and Wu [41] for the Hammtopoint of view. In
the next section we present the Lagrangian point of view had tecall the Guo, Li and
Wu main results, the goal of this section being to illustitsie use of DVPII with other

discretization and discrete derivative operator.

From the Lagrangian point of view

Given a Lagrangiati.(q, ¢), define the discrete Lagrangian by:

La(qyl, Alql) = L(qy, Alqf)

T T

whereq! = w andA? = R;/» — R_; /> where the operataR; is the translation by

7. One can readily verify thah?q{ = A, ¢, and thatA? verifies the usual Leibnitz law:

Ad(flgh = ALFE- gl + - Al (4.29)

wheref;, = f(t;) andg, = g(tx) are functions of time and = M
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Applying the discrete Hamilton’s principle yields:
n—1

05y = TZ5Ld (i, AYqr)

n—1

= TZ DiLa(qil, A1), 64;t) + (D2 La(ai, Afqi), 0A%q) . (4.30)
k=0

From the Legendre transform (Eq. (4.5)), we define the aggtimomentum:

DPk+1 + Dk

9 = D2Ld(Qk7ATQk) (4.31)

Then, Eq. (4.30) becomes:

n—1
0S5 = 7Y (DiLalql, Alqy),dqf) + (pf, 6A%qH)
k=0
n—1
= 7Y (DiLa(q, Alqf) — Ap{ 608) + (pu. 0an) — (po. dao) -
k=0

If we require the variations of the action to be zero for angicé of §¢¢, k € [1,n — 1],

anddqy = g, = 0, we obtain the discrete Euler-Lagrange equations for thapaint

scheme:
Pk+1 — Pk
T A
= DlLd(Qka A’qu)
_ DlLd(Qk—H + %7 Qr+1 — Qk> 7 (4.32)
2 h
Dk+1+Pe 4
T2 B

= DQLd<qk7 AT%)

_ DQLd(Qk+12+ Qk’ Qk+1h_ Qk) ‘ (4.33)

Lemma IV.7. The midpoint scheme (Eqgngt.32)and (4.33) defines a symplectic algo-

rithm.



102

Proof. The proof proceeds as for thed@ner rule:

n—1

dSy = 7> (DiLa(qf, Algy), dayl) + (pf, dALq))
n—1

= 7Y (DiLalq, Alqi) — Alpi, dgtl) + ALpY, dafl) -
k=0

Sinced? = 0 and(qy, p) verifies Egns. (4.32)-(4.33), we obtain:
Ad(dpi Ndgil) = 0.

A straightforward computation shows that!(dpé A dq?) = A (dpy A dqy), i.e., the

symplectic two-formw,, = dpi. A dqy is preserved along the trajectory. O

From the Hamiltonian point of view

Let Hy(qd, pd) = H(q?,p¢) or equivalently defing?, from L, via Eq. (4.6) and let

(qf, pf) = (LLte PetlZPe) Then the DMHP (Def. IV.4) yields:

dk+1 — 4k
- = Alp}

= D2Hd(qg7pi)

_ a_H(QkJrl + Q. Pri1 +pk)

4.34
Op 2 ’ 2 @39
Pk+1h— Pk _ Afpz
= _DIHd(qgap(If)
H
_ _3_(qk+1+Qk pk+1+Pk). (4.35)

0q 2 ’ 2

Lemma IV.8. The midpoint scheme defines a symplectic algorithm.

Proof. The proof is straightforward. We comput8Si assuming(q, pi.) verifies the

above equations of motion. O

To conclude, we have illustrated the use of the discreteatranal principles (Def.

IV.1) and (Def. 1V.4) and derived discrete equations of motiOne can readily verify that
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both variational principles yield the same discrete equigti as in the continuous case.
Other schemes can be recovered in the same way, and we doavoi/knif all classical
symplectic algorithms can be derived from DVPII. For insanwe have been able to
recover the conditions for the partitioned Runge-Kutta atgm to be symplectic from
the Lagrangian point of view but so far it is not clear to us hbean be done using the

Hamiltonian approach (Def. IV.4).

4.3.3 Numerical example

Symplectic integrators are usually used as numericaliaters that preserve the quali-
tative behavior of dynamical systems and are especiallyaldé for long time simulations.
However, these are not the only uses of symplectic integgato this section, we present
an aspect of symplectic integrators that we have not seergubout in the literature: we
show that they allow one to recover the generating functionthe phase flow canonical
transformation, whereas numerical integrators do noth exer a short period of time.
This remark is of prime importance for deriving a robust aildpon to solve the Hamilton-
Jacobi equation (see Chapter V).

Let us first recall Eqns. (3.7) and (3.8) for the generating function:

OF, oF,
o= . 4.36

Eq. (4.36) defines a relationship between the phase flow &wgr#dient of the generating

function. Specifically, if the flow is defined by:

¢ : (o, pot) — ((q(t), p(t),t) = (2 (g0, po), ¥ (90, 10)) T) ,

then, from the local inverse function theorerthere exist two functions; and S, such

4) 09 i i
| 552 | # 0 since we assume thaj exists
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that:

po = 514, q,t), (4.37)

p = (g0, 51(¢ q,t)) = S2(¢, qo, 1) - (4.38)
From Eq. (4.36), we conclude th&t and S, are the gradient of and therefore should
verify®:

P _ 08 95, PF

90000 — a—q(q,%,t) = =

(4.39)

These exactness conditions arise from the symplectic mafuthe flow. Therefore, only
numerical algorithms that preserve the symplectic twoaf¢that is symplectic integrators)
yield numerical results that agree with Eq. (4.39). Classiganerical integrators fail to

provide numerical simulations in agreement with Eq: (4.39)

Example IV.9 (Harmonic Oscillator). The Hamiltonian function for the harmonic oscil-

lator is quadratic:

1 k
H(q,p) = %pQ + 5612 -

It is a linear system so the phase flow is also linear:

®1(qo,po) = a11(t)qo + ai2(t)po
Ds(qo, po) = a21(t)qo + aza(t)po.

Substituting these expressions into Hamilton’s equat{@ris and balancing terms of the

same order yield:

(

an(t) = axn(t)/m,
aia(t) = ag(t)/m,
dgl(t) = kafll(t) )

agg(t) = k&lg(t).

(4.40)

\

5Since their exists an open set on which the generating fumstire smooth, Schwartz’s theorem yields
%S _ _9%s
0q00q ~— 9q9qo *
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Figure 4.1: Exactness condition usiBglifferent integrators

In Fig. 4.1, we plotA = &1(

q,qo,t) — aqo % (g, q0,t) over the time intervalo, 100]
using the symplectic midpoint scheme with fixed time stepyrapectic Gauss implicit
Runge-Kutta algorithm of orde¥with fixed time step and a non-symplectic Runge-Kutta
integrator of ordeR to integrate Eqns. (4.40). We remark that only symplectiegrators
allow us to recover the generating functions because theteess condition is exactly

verified. We point out that even over a short time span, nwakintegrators fail to satisfy

the exactness condition.

4.4 Energy conservation

Symplectic integrators do not conserve energy and in gemehace bounded energy
error. There are several works that analyze the energy, @rearefer to Hairer and Lubich
[44] and Hairer, Lubich and Wanner [45] and references thei@ more details. The
end of this chapter is devoted to the study of the consenvatie@nergy. In this section,

we enhance DVPII so that energy conservation is imposed. Bgidering the time as
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a coordinate and by adding an independent parame@YPIl yields symplectic energy
conserving algorithms. For certain problems, such algoré may provide better perfor-
mancé, but the contrary may also happen [43, 88]. The method welalgve this section

is variational and allows us to recover Shibberu’s algoni{B7] for Hamiltonian systems
and is equivalent to the Kane, Marsden and Ortiz [56] metlood_agrangian systems.
Then, in the next section, we develop a discrete Hamilt@o{diatheory that defines a

class of coordinate transformations that leaves the eregrgy invariant.

4.4.1 Generalized variational principles

Generalized Hamilton’s principle

Let us first recall Hamilton’s principle for dynamical syste for which time is consid-
ered as a generalized coordinate. Such a formulation isdilpiused in relativity where
the time coordinate is equivalent to the space coordinates.

Consider a Lagrangiah(q, ¢) and define th@arametricLagrangian

/

7 q
L(q7 ta qla t/) = t/L(q> ?7 t) )

where’ = % andr is an independent parameter that parameterizes the tgjeutd the

time. Then the generalized Hamilton’s principle reads:

Definition IV.10. Critical points of [;” L(q, %, t)dr in the class of curveg(r), (7)) with
endpoints(7o, qo, to) and(7y, gr, ts) correspond to trajectories of the Lagrangian systems

going from(go, to) 0 (g, 7).

The generalized Hamilton’s principle yields the followiset of equations:

9L _ dJL _
ot dr ot ’
oL _ d oL _
0q dr 8¢ :

5To quantify the performance of an algorithm, not only we lakts accuracy but we also evaluate
its ability to predict the qualitative behavior of the syste In that sense, symplectic-energy conserving
algorithms may not predict qualitative behavior bettet #yamplectic algorithms.
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Replacing the parametric Lagrangian by the Lagrangian afyetem simplifies the above

equations to:

oL d d (0L
— - — — === 4.41
! ot dr dr (8q' t’> ’ ( )
oL d JOL
ety | 4.42
t Oq dr 04 0 ( )

Thesen + 1 equations should be compared to thequations obtained when the trajectory

is parameterized by the time:
9 _ 49 ), (4.43)

Sincel =¢'4
T

=7, we conclude that the space components of the generalidediEagrange

equations (Eq. (4.42)) are a multiple byof the original Euler-Lagrange equation (Eq.
(4.43)). Also, their time component (Eq. (4.41)) is a lineambination of the components
of Eq. (4.43) (the sum of each component multiplied;By All » + 1 generalized Euler-
Lagrange equations are thus consistent with the originahtons but there is no unique
solution because they are satisfied by any parameterizafitoget a unique solution, it is
necessary to add to the generalized Hamilton’s principladaiitional condition fixing the
parameterization. As we see in the next section, in dissedtengs we no longer have this
freedom. The discrete counterpart of Eq. (4.41) correspém@n energy constraint that

fully specifies the time parameterization, i.e., the tingpst

Generalized discrete Hamilton’s principle (GDHM)

In contrast with the variational principles introducedhe first part of this chapter, we
do not set the time step, i.e., we let the time act as a variapkedding an independent
parameterr; such thatt, = ¢(7;) andr.,1 — 7+ = 7, 7 being a constantz, is now a

coordinate that plays the same rolegas), is the extended configuration spagee, ),
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M =M andT = {(7)rep,n }- Define the modified discrete Lagrangias

_ Adqd
d 4d Ad,d Adyd dyd d 27% 44
La(qi, ty, A7ay, ATty) = ATty La(qy, Adtd7tk)7
Tk

where L, is the discrete Lagrangian previously defined. In additeinge we are inter-
ested in conservation of energy, we only consider systeatatk time independent (Prop.

11.24). As a consequencé, does not depend on time a%% = 0.
k

Definition IV.11 (Generalized Discrete Hamilton’s Principle (GDHP)). Critical points

of the discrete action
n—1
Si =Y Lalqf, 1, Adgi, AT,
k=0

in the class of discrete curvegy,t4), with endpoints(r, to, ¢o) and (7, t,,q,) corre-

spond to discrete trajectories of the Lagrangian systemgériom ¢y, ¢o) t0 (¢, ¢»)-

Again, to proceed to the derivation of the equations of moti@ need to specify the

derivative operatoA?.

Generalized discrete modified Hamilton’s principle

Definition IV.12. Let L, be a discrete Lagrangian dfiM and define the discrete Legen-
dre transform (or discrete fiber derivativ@)L : T — T* M which maps the discrete

extended phase spageM to 7* M by
(qgv tz: quk? Aﬁti) = (qgv tz7pz7 eg) )

where

pd _ 8[_’d<qlccl7 tz? Aﬁqga Afti)
g RIND ’

T

dALtd

aid(qg’ tz7 Adqg7 Aftz)

ef = (4.44)

The Legendre transform as defined by Eqns. (4.44) is equiviai¢he previous definition

(Eq. (4.5)). Indeed,

L d Mgl
OLalqf tf, Adog, Ate) _ OLalal 55) Ny
8Adqg = 3Adqg = DQLd(qk, At qk,’) ’
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whereA? = Aﬁid represents the discrete derivative with respect to time.
Tk

If the discrete fiber derivative is a local isomorphishy, is called regular and if it is
a global isomorphism we say thay, is hyperregular. If..; is hyperregular, we define the

corresponding discrete Hamiltonian function’Bhm by

E (Qk7 tZ7pka ek) <pk7 ATQIC> Ld(Qk? ATQIC) (445)

whereAdq, is defined implicitly as a function af;¢, p¢) through Eq. (4.44)H, is related

to the previously defined Hamiltonian function by the follog relationship:
Hy(q, i) = ATt Ha(g, pfy) -

In addition, we havee? = —H,(q¢, p}), that is, the momentum associated with the time
is the opposite of the Hamiltonian.

Let SZ be the discrete action summation:

Sé_[ = TZ pkaATQk Hd(QI(j?pi)

- Tz P A + (e, A,

Before stating the generalized discrete modified Hamiltpnisciple, we need to re-
mark that all the coordinates are not independent sincénth@nomicconstrainte? =
—H(q{, p¢) holds. There are two ways to handle this situation: one cherieplace:{
by —H (¢¢, p¢) in the action and then take the variations or one can use hggnaultipli-
ers to append the constrairit+ H (¢, p¢) = 0 to the integral. Therefore we can give two

equivalent formulations of the GDMHP:

Definition 1V.13 (Generalized discrete modified Hamilton’s principle). Critical

points of the discrete action

i
L

Sg[ =T <pk7 Aqu‘> <eza Ait@
0

b
Il
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in the class of discrete curveg?, ¢, pé, e¢) with endpoints(ry, to, qo) and (7., tn, Gn),
subject to the constraint! + H,(q¢, p?) = 0, correspond to trajectories of the discrete

Hamiltonian system going frof,, qo) to (¢, ¢,)-

Definition 1V.14 (Generalized discrete modified Hamilton’s principle). Critical

points of the discrete action
n—1
Si =7 (ph, Algl) — Ha(qy, pp) At
k=0

in the class of discrete curves, ¢, p{) with endpoints(7y, to, qo) and (7,,, t,, ¢,) cOI-

respond to trajectories of the discrete Hamiltonian systgimg from (g, qo) to (¢, gn)-

RemarklV.15. To prove that these two formulations of the generalizedrdtecmodified
Hamilton’s principle are equivalent, we only need to remtdu&t the constraint is holo-

nomic. We refer to Bloch et al. [14] for more details.

To derive the equations of motion we need to specify the eisalerivative operator,

A4, and its associated Leibnitz law.

4.4.2 Examples

Stormer type of algorithm

Lagrangian approach  Consider a Lagrangian functidi(q, ¢) and define the discrete

Lagrangian map trivially by ,(qx, A-qx) = L(qx, A-qx). Discrete equations of motion
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are obtained from the generalized discrete Hamilton’sgipie:

n—1

58k = TZ(S.Zd(Qk,tkyATQkyATtk)
k=0

n—1
A;

= Y 6(AtiLala, rZ’;))

k=0

n—1
= 7Y (6Aqx)LE + Acti (D1 L}, 6q)

k=0

A0 A,
+A7tk<D2L§7 ar - g 5ATtk’> )

At (A2

where L% = Ly(q, 2:3:). Using the Leibnitz law (Eq. (4.1)) and the fixed end point

constraint, we obtain:

n—1
0§ =13 —Acerdty + (Atp DLl — A, Do L by (4.46)
k=1
where
51—3]5 Arqr Arqr, Arqy
= =L — (Do L .
€k+1 AL, d(Qk, Artk) < 2 d(Qk, ATtk>7ATtk

Finally we obtain the modified Euler-Lagrange equations ddyirey the variations to

Zero.

€1 —ex = 0,

(4.47)

Aty Dy La(gr, 37%) — Ar Do La(gr—1, 3721) = 0.
Lemma IV.16. The algorithm defined by Eqns. (4.47) preserves the Lagaarigio-form

and the energy.

Proof. The first equation of the algorithm proves energy consesmatiio show that the

Lagrangian two-form is preserved, we compdif& along a discrete trajectory:

n—1

D Lk*l
st = r Z AL (LENdty) + A (Do LEdgy) — Ar(ﬁ:lﬁqu—ldtk)
k=1 T
n—1
= 7Y Ar(exdty + Dy Ll dg)
k=1

n—1
= 7Y Ab, (4.48)
k=1
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whereff = epdty, + DQL’;‘lqu. Sinced? = 0, we obtain that the symplectic two-forms

wE = dbL is preserved along the trajectory. O

The proof of this lemma only involves the modified Leibnitevland does not depend
on the definition of the discrete Lagrangian function. As assmuence, it also applies to

the modified velocity Verlet and Newmark algorithms.

Hamiltonian approach  Let the Lagrangian function b&(q,¢) = %qTMq - V(q)-

Then

= LAqr ,  Drgy
Lo = Aty [ =278 2o 4.4

and the associated momenta are:

_ Arqy
Pr+1 = Aty
. 1 Argg Arqy
Cg+1 — TOAA, M—ATtk — V(qk) .

The discrete Hamiltonian function is then:

_ 1
H; = Artk(ipfﬂM_lpkH + Vi(gw)) = ArteHa(qr, Prtr) - (4.50)

One can readily verify thall;(qx, pr+1) = —€xr1-
Let us now derive the modified discrete equations of motioafplying the GDMHP

(Thm. (IV.14)). We skip a few steps in the evaluation of theiattons of S to finally

find:
n—1 ~
0S5 = 76 (prer, Arqr) — Halge, pre)
k=0
n—1
=T Z(Ar% — Aty Do Ha(qr, Prv1)s OPk+1)
k=0

n—1

—(Arp + Aty Dy Ha(gi, prn), 0qk) +7 Y Areydty.
k=1
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The variations ofdqy., dpy+1, 6tx) being independent, we obtain:

(

Aqu - ATtkpk+17

ATek = 0.
\
Lemma IV.17. The algorithm defined by Eqgns. (4.51) preserves the synmpteai-form

and the energy.

Proof. The proof proceeds as the previous ones: we compfiffealong a discrete trajec-

tory. We skip the details of the computation:

[y

n—

de =T A7<pk, d(]k;> + detk .
0

B
Il

Define0f = (py, dqi) + erdt;, andwi’ = df¥. Sinced? = 0, we obtain that\,wi =

0. U

RemarkiV.18. The one-forn’ corresponds to the contaicform ¢ encountered in con-
tinuous time dynamics (Thm. 11.21). Indeed, if one remerslibate, = —H;(qx—1, Pk)»

then we have:
0 = pdg— Hdt,
0F = prdge — Ha(qr_1, pr)dty .
Midpoint discretization
In the same manner, we can apply the modified variationatimimto other discretiza-
tions. For the midpoint scheme we haye= %+ and the modified Leibnitz rule is

defined by Eq. (4.29). Let us define the generalized momenta:

De+1 +Pk 4 OL4

9 = Di :ma
ceriter g _ _OLa
2 oA
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Then applying the modified discrete Hamilton’s principleetD(1V.14)) yields (after a few
simplifications):
n—1
08 =71 (AMD LY — Alpf, oq)) — Adegot,, (4.52)
k=0

whereL* = L,(q?, Ag—‘jg) The variationgdq?, 5t¢) being independent, we obtain:

— triq —1 -
Pet1 — Pk _ Ukl leL (Qk+1 +qr Qrr1 — Gk
T T 2 tk+1 - tk
€k+1 = €k,
Dk+1 + Dk let1 — tk Qk+1+ Qe Qr+1 — Gk
2 T 2 tk+1 — tk
€x+1 1 €k _ (Qk—H + qr Qk+1 — Gk
2 A
_l’_ —_ —
—<D2Ld<Qk+1 G 9r+1 — 9k Dk+1 Qk> . (4.53)

2 Tt =t b — by
Lemma IV.19. The algorithm defined by Eqgns. (4.53) preserves the Lagasngio-form

as well as the energy.
Proof. We omit the proof since it proceeds as before. O

Now define the discrete Hamiltonian functidfy(qf, pf) = H(LtLte PeeliPe) gng

the modified Hamiltonian functiofl; = A%td H,(q¢, p¢). Then applying the generalized

discrete modified Hamilton’s principle yields:

(

%ﬂ;% — tk+}r*tk DQHd<Qk+12+Qk 7 pk+12+Pk) :
Pk+1T—Pk _ tk+17—tk DlHd(qu;_qka pk+12+Pk) : (4 54)
err1—er = 0,
\ 6k+12+€k — —H (Qk+1+Qk 7 pk+12+Pk)

Lemma IV.20. The algorithm defined by Eqgns. (4.54) preserves the sympteai-form

as well as the energy.

Proof. We omit the proof since it proceeds as before. O
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The algorithm defined by Egns. (4.54) is the same as the oredaped by Shibberu
[87]. Shibberu’s approach is a particular case of the firsntdation of the generalized
discrete modified Hamilton’s principle (Def. (IV.13) ) fdneé midpoint rule but he used a
different discrete variational principle from DVPII.

One other work on symplectic energy preserving algorithertbat of Kane, Marsden
and Ortiz [56]. They developed a generalized discrete metliflamilton’s principle that
is based on DVPI. Their approach is different from ours: thaesume a different time step
at each iteration, and then take the variation of the dis@etion without varying the time
step (i.e., in am-dimensional space). As a consequence they only obtaifuations for
then + 1 variables(q, hy) whereh,, is the time step at th&'" step. They then add an
energy constraint to obtai+ 1 equations. Their definition of the energy is similar to ours
and therefore both methods provide the same algorithm. Menthere are fundamental
differences between the two methods. First, our methodlisvariational. Second, all the
differences between DVPI and DVPII that we emphasize at éggnning of this chapter

still remain because their work is based on DVPI whereasbased on DVPII.
4.5 Discrete Hamilton-Jacobi theory

So far we have developed two variational principles thatlaaliscrete counterparts of
Hamilton’s principle on the tangent bundle and on the catabhgundle. Through several
examples we have observed that both variational princigtesequivalent and that they
allow us to recover classical variational symplectic iméégrs. We have also shown that
they can be modified so that energy conservation is assurduisisection, we concentrate
on discrete Hamilton-Jacobi theory. We define discrete mi@abtransformations (DCT),
discrete generating functions (DGF) and derive a discretailion-Jacobi equation that

allows us to show that the energy error for a certain classloémme is invariant under
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discrete canonical transformations.

4.5.1 Discrete symplectic geometry

We consider again a discretization of the titneto n instants7” = {(tx)xep1,n } but we

restrict to the case wherd,, is an-dimensional vector space. We still defing = | J M.

Definition 1V.21. A discrete symplectic forma on M is one such that at;, w = wf,
wherew{ is a non-degenerate, closed, two-formiff = M, U My, ;.

A discrete canonical one-forthon M is such that aty, 6 = 6, andw{ = —db{.

A discrete symplectic vector spac#1, w) is a vector spaceV = | J M, together with a

discrete symplectic two form om.

Using a symplectic chart, a discrete symplectic form\dat¢, can be written as:
wi = dgi A dpg,

and the canonical one-form &%= pddq.

In the remainder of this section we consider the geometiycested with the midpoint
scheme, thatis, we defing = (¢f, pf) asz{ = 1 and use the modified Leibnitz law
defined by Eq. (4.29). However, the content of this sectiontmapplied to any scheme
as long as one can define a discrete Hamiltonian vector fietd fhe discrete Hamiltonian
function and the discrete symplectic two-form (see Def51.5n particular, it is clear that
the theory herein can be adapted to systems for which thenaictiegral involves a term
of the form H,(z¢), wherez{ is a linear combination of;, andz;,, but it is not clear if
it can be adapted to the@®@mer rule for instancezff = (gx, pr+1) cannot be written as a
linear combination ot andz; so the next definition does not apply). We do not know
how to modify this approach so that a discrete Hamiltoniactarefield can be defined

from the Hamiltonian functiorf ;(gx, pr+1) corresponding to the 8tmer scheme).
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Definition 1V.22. Let(M,w) be a discrete symplectic vector space, @ahd: M — R a
smooth function. Define the discrete vector fi&l§ such that at;, X% = X¢, whereX¢

is of the form

0 a0
ATQka d+A apz7

and verifies:
ixgwi = dHy . (4.55)

The discrete vector field ¢, is called the discrete Hamiltonian vector field.

(M,w, X¢) is called a discrete Hamiltonian system.

Proposition 1V.23. Using the canonical coordinates, a Hamiltonian vector fisldf the

form:

0 I
X% =J-dH;, where J = . (4.56)

-1 0

Proof. Eq. (4.55) is expressed in local coordinates as:

ixs (dgil A dpll) = DyHa(qi, pi)dail + DaHa(gl, pi)dpi (4.57)
Let X¢ be:

X Aquad+ATpkad7
then

ixg (dai Ndpf) = (ixg dai)dp — daj; A (ixq dpf)

= Afgidpy — Alpiday

Identifying this last equation with Eq. (4.57) leads to E4,56). O
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45.2 Discrete canonical transformation

We now define the class of discrete canonical transformsitidine definition given
here is restricted to linear with respect to the phase spatables, time-dependent maps.
We believe a larger class of transformations may be coreidiérone works with dis-
cretization of the spacetime [65]. LeM;,w;) and(M5, ws) be discrete symplectic vec-
tor spaces angt be the set of mapg : 7 x M; — 7 x M, that are linear with respect
to the phase space variables. Consider a fhapF such thatvt, € 7, f(tx, ) = fx(*)

where f;, is the following linear map:
IE M{i,k - M2d,k
2 = (qu,pr) = Zp = (Qr, Pr) = Axzi + By

Sincef is linear, we have:

fulef) = Ul + filzken) (4.58)

fe(Afz)) = Al (4.59)

Definition 1V.24. A linear, time-dependent mgpis called a discrete canonical transfor-
mation (DCT) (or a discrete symplectic map) if and onlyifu; = wy, or equivalently,

Vk € [1,n], fiws, = wi;.

Proposition IV.25. If f is a DCT thenA, is invertible for allk € [1,n].

Proof. Suppose there existskasuch that4, is not invertible. Then
3zf € MY}, 3v € TaM{) | Tf-01=0.

Sincef is symplecticVv, € ngMld,k | va # 0, w{ ) (v1,02) = w§ (T frr-v1, T fi - v2). The
right hand side is zero but the left hand side is not. This iergradiction and therefore

Ay 1s invertible. O
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Lemma IV.26. Let f be a discrete canonical transformation. Thgriwg, = w{, can be
written in the matrix formA4, JAL = J. In addition, f preserves the form of the discrete

Hamilton’s equations.

Proof. The statementl,JA] = J is just the matrix statement ¢}."w§ , = w{,. Let us
prove thatf preserves the form of the discrete Hamilton’s equationginBehe function
Ky such thatf*K,; = H,.

On one hand, using Eqg. (4.59) we have:
Sr(ze41) — fi(zi)

T

_ d. d

Alzd =

On the other hand:
JVHy () = JV(Kgo0 fi(z])
= JATVK, ().
SinceA, JAL = J, we obtainA?Z¢ = JV K 4(z) O
This last result can be summarized as follows:

Proposition IV.27. Let X¢ be a discrete Hamiltonian vector field with Hamiltonian func-
tion H, and f a discrete symplectic map. The¢nX¢, is a discrete Hamiltonian vector

field with Hamiltonian functiory, H,.

4.5.3 Discrete generating functions

Proposition IV.28. Let (M, w;) and (M., w>) be two discrete symplectic vector spaces,

™ M1 x My — M, the projection ontoM; and define
Q = mjw — Tws .

Then,
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1. Qis a discrete symplectic form olt; x M,

2. amapf : M; — M, is a discrete symplectic map if and only/jt2 = 0, where

iy : 'y = My x My is the inclusion map antl; is the graph off.

Proof. We recall that at;, Q = Qf whereQ) = m*w{, — m*w§ . To prove thaf2is a
discrete symplectic form, we need to prove thitis a symplectic form onMﬁk X M;{k
forall k € [1,n].

dQﬁ = d(ﬂwik—@kwg,k)
= ﬁdwf’k — W;‘dwgk
=0,
sincewgfk is closed and commutes with the pull back operator.
Now letz = (2, 25,) € M, x Mg, andv = (v1,v2) € Toa(M{) x Mgy) ~

Tz;{kal,k X ng,kMgk such that
Vw = (wy,ws) € ng(Mf{k x Mg, Q(v,w) =0

and let us prove thatis zero. We have
Qv,w) = Wiy (m ()T -0, Ty - w) — Wi (ma(2)) Ty - v, Ty - w)
= wil,k(ztli,k)(vlv wy) — wg,k(zg,k)(v% wy) . (4.60)
The right hand side of Eq. (4.60) is zero foralif and only if both terms are zero, that is,

wik(zik)(vlawl) =0, W(zj,k(zgk)(“%wﬂ =0.

Sincew;fk is non-degenerate; = v, = 0. Thus,Q¢ is closed and non-degenerate for all

k, i.e,Q a discrete symplectic two-form.
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We now prove the second statement of the proposition. Wenftste thatf, induces

a diffeomorphism of\/{/, to ', , so we can write

Tia fo(egy = {(Uvak -v)|v € ngMfl,k} :
Then,
P (01, Thi - 11), (02, T fie - v2)) = Wi (01, 09) = wf o (T fie - 01, Tfic - 02)
= (wf = fi'ws ) (vr,v2) .
Hence,f;, is symplectic if and only if*Q¢ = 0, i.e., f is a discrete symplectic map if and

only if 7*Q = 0. OJ

Using the Poincd lemma, we may writ€¢ = —d0¢ and the previous proposition
says thaﬁ}k@ﬁ is closed if and only iff is a discrete symplectic map. Using again the
Poincaé lemma, we conclude that ff is a discrete symplectic map then there exists a

functionS : T'y — R such that}© = dS, i.e.,Vk € [1,n], 7} ©f = dS},

Definition 1V.29. Such a functiord' is called a discrete generating function for the discrete

symplectic magf. S is locally defined and depends on the choic®of

e Letff, = pidgi andg, = PLdQy, then

5 0F = (m oig) pidgy — (ma0ip,) PldQY,
oS 0S
ds = a—q(q}f, Q) dgs + %(qﬁ,Qﬁ)in,
that is,
oS oS
vl = 5ot Q). B =~ 5o Q).

S as defined corresponds to a discrete generating functidredirst kind.
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o Letd], = pildgi anddy, = —Q}dP{, then

07,00 = (m oip) phdgy + (m20ip, ) QdPy,
98 oS
ds = a—q(qﬁ, Pydgy + @@g, PHdaPe,
that is,
oS a8

S as defined corresponds to a discrete generating functidreafecond kind.

In the same way, one can defifié generating functions as in the continuous case. Note
that sincef is linear with respect to its spatial variables (Def. IV.24)s also linear with
respect to its spatial variables. At S = Sk, whereS,(-) = Tx(-) + Uy is an affine map,

T, is a2n x 2n matrix andlU; is a2n x 1 matrix.

4.5.4 Discrete Hamilton-Jacobi theory

In this section we use the notions introduced previousheietbp a discrete Hamilton-
Jacobi theory. Lef be a discrete symplectic maM;fk =T Qg{k and S be an associated

discrete generating function such titat S¢ att,, whereSy(-) = Ti.(-) + U,
Theorem IV.30. Define
pilal, Q) = DiSi(ag, Q1) . B(ail, QF) = —DaSi(a, Q) -
Then the following two conditions are equivalent:
1. S'is a discrete generating function associated wfith
2. e Foreverycurvgc ), in Q; = |J 9, satisfying:

d d d(.d ~d
Alc, = TW*Q(IikXH(ck,pk) ,
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the curvek — (c{, p¢) is a discrete integral curve ak'¢,, wherery, is the

cotangent bundle projection onto the configuration space.
e For every curve(cy); in Qy = |J Qo Satisfying:
Aot = Trgy Xi(ch, B,

the curvek — (c?, PY) is a discrete integral curve ak¢., wherer* , is the

d
Ak

cotangent bundle projection onto the configuration space.

Proof. SupposesS is a discrete generating function, 18f be fixed and consider a curve
(ck ) Vverifying

Al = Ty ().
In other wordsg,, verifies:

Alel = DoH (el )
SinceS is a generating functiom is the momentum associated withand verifies:

Alpi = —DiH(cl, B}

These last two equations are exactly a restatemenit ef: (c{, 5{) is a discrete integral
curve of X%. To derive the second item we proceed in the same mannehibuirhe ¢f
is fixed.

Now we suppose. and we show tha$ is a discrete generating function f¢r The
statements — (cf, p¢) is a discrete integral curve of¢, andk — (¢, PY) is a discrete
integral curve ofX ¢ are equivalent to saying thaf and P¢ are the momenta associated

with the generalized coordinates, and therefdres a generating function fof. O

Theorem 1V.31. We consider again a time-dependent functi®nvhich is linear with

respect to the spatial variables. Then the following two stesiets are equivalent:
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1. S'is a discrete generating function associated wfith

2. For everyH there is a functionk” such that
H(qf, D1S(qi, Q1) = K(Qf, D2S(qi!, Q1)) -

Proof. SupposeS is a discrete generating function. Then from the previoe®tbdm,
for every curve(c;, Cy) in Q; x O, satisfyingAdcd = Tw;?_kxg(cg,ﬁg) andA4C? =
Tw*Qg’kX;l((C;j, P, the curves: — (¢, 5¢) andk — (C¢, PY) are discrete integral curves
of X¢ and X ¢ respectively. Then, using the symplectic identity (see Algraham and

Marsden [1] pagé&82) that holds for any functioiy:
wik(T(DlS o ﬂ*glik) Cv,w) = wik(v, w—T(DyS o T*Q(li k) “w)
we obtain:

wil,k(T(Dls © W*Qlli,) : X?I(CthSk’)aw) =

wi o (X§(ck, DiSk), w) — dHy(ck, D1Sk) - TD1S(ck, DiSk) - w, (4.61)

Wi r(T(=D2S 0 mge )+ Xig(Cr, =D2Sy), w) =
w‘ik(Xf((Ck, _DQSk), w) — de(Ck, —DgSk) . T — DgS(Ck, —DgSk) W .
(4.62)
In addition, sincey{ = D,S(c¢,Cd) andPd = — D, S(c}, C),

Afpy = TDiS(¢), CY)Afel =T (DS o Tod ) X (e, D1Sk)

T

AIP! = T(-DsSompy ) Xi(Cr, —DaSy).
f being a discrete canonical mapf;(Adpf) = AP? so the left hand side of Eq. (4.62)

T

is the image under f of the left hand side of Eq. (4.62). UsirapP(IV.27), we conclude
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that:

Tfk . de(Ck, DlSk) . TD15(6k7 DlSk) = —de(Ck7 _DQSk-) . TDQS(Ck;, —Dgsk) s

which is equivalent to the discrete Hamilton-Jacobi equmati

The proof thaR. implies 1. follows from these arguments. OJ

4.5.5 Applications of the discrete Hamilton-Jacobi theory

The goal of this section is to highlight the benefit of havirdjscrete Hamilton-Jacobi
theory. First, we have proved the invariance of the disdratmilton’s equations under a
certain class of coordinate transformations. Second, we Baown in Thm. V.31 that
changing coordinates using a discrete symplectic map datesnprove the performance
of the algorithm in terms of energy conservation. As a consage we have the following

lemma:
Lemma IV.32. The midpoint scheme preserves the energy for linear systems

Proof. The discrete phase flow for linear systems is piecewiseiliceatinuous and the
map (qx, pr) — (qr+1,Pr+1) IS Symplectic (the midpoint scheme is a symplectic algo-
rithm). Therefore, the discrete phase flow is a discrete $gtip map that mapé/ into

a constantk that can be chosen to lie(the discrete flow map&g, pr) into (qo, po))-
Integration of the Hamiltonian system defined Ryis trivial since the system is in equi-
librium and it obviously preserves the energy. As a consecglethe integration of the

Hamiltonian system defined by also preserves the energy (Thm. 1V.31). O

Finally, we illustrate the use of the above material with alm@ar example. We study
the energy error in the integration of the equations of nmotiba particle in a double well

potential using different sets of canonical coordinates.
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Example 1V.33. Consider a particle in a double well potential, i.E.= %p2 + %(q4 —q%).
As shown in Fig. (4.2), the midpoint scheme does not prestiiwenergy. The follow-

ing time-dependent discrete canonical transformatioedah step the transformation is a

_ _ cos(kf) —sin(k0)
different expressiony, = Az, + B, whereA, = andB, =0,
sin(kf)  cos(kf)

rotates the system by = karccos0.99 at thek” step. In Fig. (4.3) we plot the same
trajectory in the new system of coordinates. As predictethbydiscrete Hamilton-Jacobi
theory, the energy error is exactly the same. In other wdla#senergy error is invariant

under discrete canonical maps.
p
0.4
0.0012
0.2
q0.0011
0.5 t
X 1 0 0 40 50
0.0009

(a) Trajectory in they — p plane (b) Energy error for constant time step midpoint
scheme as a function of time.

Figure 4.2: Particle in a double well potential with init@dnditions(q, p) = (1, 0.05)

L[

(a) Trajectory in they — p plane (b) Energy error for constant time step midpoint
scheme as a function of time.

Figure 4.3: Particle in the vector fieJtd X ¢, with initial conditions fy(1,0.05).



CHAPTER V

COMPUTING THE GENERATING FUNCTIONS

The Hamilton-Jacobi equation (Eqg. (2.39)) was first encenatt by Hamilton [46]
in geometric optics as a partial differential equation tiiet characteristic function had
to satisfy. A year later, he introduced Hamilton’s prindifanction [47] for studying
dynamical systems and found that this also satisfies the lktammlacobi equation. Since

then, this equation has been regularly encountered in miffieyedt fields.

¢ In gquantum mechanics the phase of the wave function verifeScthodinger equa-
tion which is a Hamilton-Jacobi equation for Hamiltoniarstgms of the form

H=T+V.

¢ In optimal control the Hamilton-Jacobi equation arisesrfrine sufficiency condi-

tions for optimality and is called the Hamilton-Jacobi-Bedin equation.

¢ In the present research, the generating functions for thegHow transformation

verify the Hamilton-Jacobi equation.

Early on, researchers proved the existence of solutionsetddamilton-Jacobi equation
(Lions [61] and Aubin [8]). Meanwhile, analytical methodene developed to solve this
partial differential equation. Many of them can be foundaxtbooks (see e.g. Greenwood

[28], Goldstein [27] and Arnold [4]). Since then, during tlast two decades, numerical

127
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techniques have been explored either based on geometrls-gymplectic) integrators
or on properties of a particular system [64, 70, 17]. Howenene of these methods and
algorithms allows us to solve the Hamilton-Jacobi equat@arthe generating functions
because of three main difficulties: 1) The boundary conaitifor integration are specified
in terms of functions with parameters. 2) Generating fuumgimay develop singularities
that prevent the integration from going forward (some atpors have been developed
to compute multiple solutions, see e.g. Benamou [11] anderbées therein). 3) We
want to apply our theory to non-trivial systems and so amadymethods fail due to the
complexity of the system. The purpose of this chapter is teld@ a robust algorithm that
addresses these challenges. Specifically, the algorithpre@gent approximates solutions
to the Hamilton-Jacobi equation locally in space and glyghal time. It allows one to
use a variety of boundary conditions and can avoid singidarin the functions during
the integration. Most important, our algorithm is indepemidof the complexity of the

dynamical system.

5.1 Initial conditions for the generating functions

To compute the generating functions, one needs boundargitmms to solve the
Hamilton-Jacobi partial differential equation. At thetial time, the flow induces the iden-
tity transformation, and thus the generating functionsutthalso do so. In other words, at

the initial time,

q(to) = qo, p(to) = po. (5.1)

that is, (¢(to), po) and (p(to), qo) are the only sets of independent variables that contain
n initial conditions andn components of the state vector at the initial time. As a con-
sequence, all the generating functions sAyend I3 are singular at the initial time (we

already saw this result for linear generating functionsent®n 3.2.2).
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Example V.1. Let us look, for example, at the generating function of thet fkind,
Fi(q,q0,t). At the initial time, g is equal tog, whatever values the associated momenta
p andp, take. Therefore, there are multiple solutions to the bopndalue problem that
consists of going from, to ¢ = ¢, in 0 units of time. From Prop. 111.5, we conclude that

F; is singular.

We now focus on the boundary conditions for thieand F3 generating functions. At

the initial time we must have:

Do = 83_%(61:@0,170,750)7 Go = _88_%(19:170"10»%)7
do = g_f;j(q:qovpoato)v Po = _g—ﬁ(pZPO’q07to>.

Due to the non-commutativity of the derivative operator #reloperator that assigns the
valuet, att, solutions to these equations are not unique. As a reseltydlndary con-
ditions verified byF, and F; are not uniquely defined as well. For instance, they may be

chosen to be:

Fy(q,po.t) = (¢, p0) » F5(p,q0,t) = —(D, qo) , (5.2)

or

1
t—to

1
F2(q’p0’ t) — —e(t_t0)<Q7pO> , F3(p’ qO’ t) — e(t_t0)<p7q0> , (5_3)

ot —to

where(, ) is the inner product. One can readily verify that Eqns. (&rg) (5.3) generate
the identity transformation (5.1) at the initial tinhe= ;.

The singularity at the initial time of all but two generatifumctions is a major issue: it

prevents us from initializing the integration, i.e., fromh\sng the Hamilton-Jacobi equa-

tion. In Section 5.3.1 we present a technique to circumvastgdgroblem, namely we are

able to specify boundary value conditions for all genegafimctions at a later time.
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5.2 The use of partial differential equation solvers

In the previous section, we saw thatpriori, only F» and F3 may be found because
the other generating functions have singular boundaryitond at the initial time. In this
section, we use standard partial differential equationesslto compute thé, generating
function. In particular, we show that they impose draststnietions on the boundary value
problem solved bys.

The Hamilton-Jacobi equation verified by reads:

0F;,

ﬁ(qvp(% t) + H(q7

oF,

8(] (Q7p07t)7t) = 07 FQ(qJP()?O) - <q7p0> .

In this partial differential equatiop, does not appear explicitly. Therefore it may be

viewed as a parameter, in which case the Hamilton-Jacolaitesusimplifies to:

or,

2 g.0) + Hlg, 22 (q,1).1) = 0, Fa(a.0) = {g. ). 54)

dq

wherep, is a parameter that specifies the initial conditions. Classiamerical partial
differential equation solvers do not accept symbolic bamaonditions and so we need
to specifypy. Oncep, is set to a valuey, we can solve the Hamilton-Jacobi equation on
the intervallg,in, ¢mas| X [to, t7] @S long as no singularities are encountered. The resulting
function corresponds to the generating functiéiq, po = «,t). Sincepy = a, Fy only
solves two-point boundary value problems that consistsoaigyto ¢ in ¢ units of time

with a given initial momentunp, = «. We loose the freedom to choogge

Example V.2 (Weakly perturbed pendulum). To illustrate the use of classical partial
differential equation solvers, let us compute for a weakly perturbed pendulum. The

Hamiltonian for this system is given by:

1 0.01

H(q,p) = 5172 + qu —cos(q) ,



0 t

Figure 5.1:F, computed using the method of lines

and the Hamilton-Jacobi equation reads:

or,

1 [ OF. 0.01
ot (Q7t) + 3 (—2(Q7t>) + —q2 - COS(C]) = 07 F2(Q7 0) = (4Po,

2\ 0Oq 2

wherep, is chosen to bé.1. Using the built-inM athematica® function N DSolve® we
solve the Hamilton-Jacobi faF, over the intervalq,t) € [—1,1] x [0,17.215]. In Fig.
V.2 we plot this solution. In order to solve a boundary valuebtem that consists of
going tog € [—1,1] in ¢t € [0,17.215] units of time with initial momentunp, = 2.1, we
approximate%%(q,t) at the point(q,¢). We point out that at = 17.215, F, becomes
singular and the integration stops. Therefore, we canneesmny problems involving

transfer times that are larger than215.

Through the weakly perturbed pendulum, we illustrated #sdriction imposed by
partial differential equation solvers on boundary valuebpems. We showed that the
initial state must be partially knowa priori. Moreover, the integration of the Hamilton-
Jacobi equation stops as soon as a singularity is encodnteiest importantly, only two

types of boundary value problems can be solved becausetaWbgenerating functions

1N DSolve uses the method of lines. It consists of discretizing alldng variable so that at every node,
the partial differential equation reduces to an ordinaffed@ntial equation.
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are singular at the initial time. These issues are impodars and must be overcome in
order to take full advantage of the theory we introduced ingB#rall. In the remainder
of this chapter, we present a new algorithm that addressedifficulty. Specifically, our
algorithm can approximate locally in the spatial domain kimg of generating functions

over an arbitrary large time interval while avoiding sirgyities.

5.3 A new algorithm to compute the generating functions

In this section we introduce an algorithm that computes gmagmation to the gen-
erating functions locally in the spatial domain and glopailthe time domain. By locally
in the spatial domain, we mean that we are able to computedahergting functions in a
domain in which the Hamiltonian function may be expressea @mvergent Taylor series

in theg's andp’s.
5.3.1 Local solution of the Hamilton-Jacobi equation

We consider the general case of Hamiltonian systems whoseltdaian function/
can be written as a power series in its spatial variables tvite-dependent coefficients.
This case obviously includes systems with polynomial Hamibns such as the harmonic
oscillator, and the double well potential. It also includggstems describing the relative
motion of two particles moving in a Hamiltonian vector fielseé Appendix A for an
expression of the Hamiltonian) and more generally, the omatif a particle in the vicinity
of an equilibrium or of a known trajectory. Recall the Hammltdacobi equation (EQ.
(3.6)):

OF & , OF, i, ,pr,t) + OF k.
opr, dqr, ot

H(gs,,— —0. (5.5)
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SinceH is a Taylor series in its spatial variables, we look for a 8oftuof the same form,

that is, we assume that generating functions are Tayloesas well:

00 q
1 T 7 i2n
Fr, ok, (y,1) = Z Z T 5,;-1,...,1-% By - yom (5.6)

Pees /Z/ !
q=2 i1, ign=0 | n
i1+ Fi2n=q

wherey = (q1,,, 1, qOKT,pORr). We substitute this expression into Eq. (5.5). The resmiltin

equation is an ordinary differential equation that has dtlewing structure:

P(y, f75 0, f0 4 (8) =0, (5.7)

where P is a series iny with time-dependent coefficients. An explicit expressidnfo
up to order3 is given in Appendix B. Eqg. (5.7) holds for all if and only if all the
coefficients ofP are zero. In this manner, we transform the ordinary diffeatequation
(Eqg. (5.7)) into a set of ordinary differential equationsosh solutions are the coefficients
of the generating functiofy, g, .

Now it remains to specify initial conditions for the integom. We have seen before
that only F; andF; can generate the identity transformation, the other géingriunctions
being singular. Let us look more closely &t and F;, and especially at the coefficiehts

v o (to) @ndf2, . (to). Atthe initial ime we have:
Do = P
OF,

oq '

qa = Qo
or,
8290'

2\We change our notation for conveniengé:stands forf™ 9, i.e., represents the coefficients of the Taylor
series ofF,. We do the same for all four kinds of generating functiétis F», F3 and Fy.
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Within the radius of convergence, the Taylor series defitingggenerating functions (Eg.
(5.6)) converge normally, therefore, we can invert the saion and the derivative oper-

ator. We obtain:

) 1 ifg=2i =ipyn = 17il¢{k,k+n} = O,V(/{Z, l) S [1,%] X [1, 2n],
fq,il,.--,ign(to) =

0 otherwise.

Similarly, we obtain forFsj:

5 -1 ifqg=2,i = Ut = 17il7${k,k+n} = O,V(k,l) S [1,%] X [1, 2n],
o (o) =
q,%1, 5020

0 otherwise.

These initial conditions allow one to integrate two genagafunctions among thé”,
but what about the other ones? This issue on singular iciadlitions is similar to the one
on singularity avoidance during the integration. In thetrsection we propose a technique
to handle these problems based on the Legendre transform&iiit before going further,
one remark needs to be made. After we proceed with the iritegraone must always
verify that the series converge and that they describe thedynamicin some open
set. If these two conditions are verified we can identify teeagating functions with their

Taylor series within the radius of convergence.

Singularity avoidance

We have seen that most of the generating functions are singtithe initial time.
Moreover solutions to the Hamilton-Jacobi equations oftevelop caustics (Chapter Ill).
These two issues prevent numerical integration, and thieofjtfais section is to introduce

a technique to overcome this difficulty.

3Remember that even if a function@& and has a converging Taylor series, it may not equal its Taylo
series. As an example talféz) = exp (1/22) if x # 0, f(0) = 0, itis C> and its Taylor series at = 0 is
0, and therefore converges. Howevgiis not identically zero.
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We first need to recall the Legendre transformation, whidbwed one to derive one
generating function from another (Eg. (2.28)). Suppbsés known, then we can find}

from:

Fl(Qa QO7t) - FQ(q:pO; t) - <QO7p0> ) (58)

wherep, is viewed as a function ofq, ¢o). Obviously, the difficulty in proceeding with
a Legendre transformation lies in finding as a function of(q, o). To find such an

expression we use Eq. (3.11):

0F;,

qo = 8_po(q’p0’t)’ (5.9)

and then solve fopy(q, qo)-

For the class of problems we considés, is a Taylor series. Therefore we need to
perform a series inversion to eventually findas a Taylor series @f;, q,). Series inversion
is a classical problem and we can use the method developedoojtdvi [72] (see also
Chapter Ill). We first suppose that there exists a series expaofp, as a function of
g andqo, then insert this expression into Eqg. (5.9) and balancegearithe same order.
We obtain a set of linear equations, whose solution is fourtdeacost ofn x n matrix
inversion (an example of series inversion can be found inEL0).

Let us return to the problem of singularity avoidance. Spvierwere able to integrate
generating functions of the second and third kinds sincg bave well-defined initial
conditions. If we want to find;, then we perform a Legendre transformatiomat 0 to
find the value off} at this instant from the value df,. This value can in turn be used to
initialize the integration of the Hamilton-Jacobi equatior F;.

Now supposés is singular at,, let us see how we can take advantage of the Legendre

transformation to integratg, for ¢ > t,.
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Prop. 11.31 tells us that at least one of the generating fanstis non-singular at;.
Without loss of generality, suppodg is non-singular at,. At t; < t, we carry out a
Legendre transformation to find, from Fy, then we integratd’, over [t;,t3 > t,] and
carry out another Legendre transformation to recdvent t35. Once the value of; is
found atts, the integration of the Hamilton-Jacobi equation can beinagad.

We have described an algorithm for solving the Hamiltorebaequation and devel-
oped techniques to continue the integration despite sangjels. In the next section, we
introduce an indirect approach to compute the generatingtiions based on the initial
value problem. This approach naturally avoids singuksitiut requires more computa-

tions (Section 5.3.3).

5.3.2 Anindirect approach

By definition, generating functions implicitly define the carcal transformation they
are associated with. Hence, we may compute the generatgtjdas from the canonical
transformation, that is, compute the generating functionthe phase flow transformation
from knowledge of the phase flow. In this section, we developlgorithm based on these
remarks.

Recall Hamilton’s equations of motion for relative motion:

1 = JVH"(q,p,t). (5.10)

p
Suppose thai(qo, po, t) andp(qo, po,t) can be expressed as series in the initial conditions
(g0, po) With time dependent coefficients, truncate the series terd¥cand substitute these
into Eg. (5.10). Hamilton’s equations reduce to an ordirtaffrential equation of a form
that is polynomial inqo, po). As before, we balance terms of the same order and transform

Hamilton’s equations into a set of ordinary differentiabatjons whose variables are the
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time dependent coefficients definipgndp as series ofy andpy. Usingq(qo, po, to) = qo
andp(qo, po, to) = po as initial conditions for the integration, we are able to poe an
approximation of orderV of the phase flow. Once the flow is known, we recover the

generating functions by performing a series inversion.

Example V.3. Supposé; is needed. From = ¢(qo, po, t) We carry out a series inversion

to eventually findpy = po(q, qo,t). Thenpy = po(q, qo,t) together withp = p(qo, po, t)

defines the gradient af;:

or;
a—q(q,qo,t) = p
= p(qo,po(q; o, 1)) (5.11)
oF;
-1 ) = —
8(]0 ((L qo, ) Po
= —po(q, qost), (5.12)

We recoverr; from its gradient by performing two quadratures over thegzpoimial terms.
We point out that the inversion has multiple solutions if anty if F} is singular at. In ad-
dition, if one uses traditional numerical integrators tegrate the phase flow, Eqns. (5.11)
and (5.12) are not integrable due to numerical round(@ﬂ% + —%{f“t)).
Using symplectic algorithms to compute the approximatesphidow, we preserve the
Hamiltonian structure of the flow. Therefore we are assunatiEqgns. (5.11) and (5.12)

are integrable. This issue was discussed and illustrat8eation 4.3.3.

5.3.3 A comparison of the direct and indirect approach

We have introduced two algorithms that compute the gemeyditinctions associated
with the phase flow. In this section we highlight the advaesagnd drawbacks of each
method. In addition, we show that by combining them we obgarbust and powerful

algorithm.
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Method specifications

The direct approach  The direct approach provides us with a closed form approxi-
mation of the generating functions over a given time inteM@wever, there are inherent
difficulties as generating functions may develop singtiesiwhich prevent the integration
from going further in time. The technique we developed todsgthis problem results in
additional computations. It requires us to first identifg thmes at which generating func-
tions become singular, and then to find a non-singular géngriunction at each of these
times. Over a long time simulation, this method reachesantgd as many singularities

may need to be avoided.

The indirect approach ~ The main advantage of the indirect method is that it never en-
counters singularities, as the flow is always non-sing@ar.the other hand, this method
requires us to solve many more equations than the direcbappi(see below). Such trade
offs between dimensionality and singularities are wellwndo engineers. For instance,
to describe the attitude of a rigid body, one may use Eulaiagles or quaternions. Eu-
lerian angles allow one to describe the attitude with ghboordinates, but may become
singular. In contrast, the quaternions are never singuiihéve an additional component.
Furthermore, a major drawback of the indirect approachasititomputes an expression
for the generating functions at a given time only, the time/aich the series inversion is
performed. Finally, as mentioned earlier, we need to usegatic integrators to run the
indirect approach. Therefore, we believe (but have notgmaet) that the solution found
is symplectic. This is very valuable, especially if we wamffind the generating func-
tions over a large time span on which classical integratitdd preserve the geometric

properties of the system.
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The curse of dimensionality In this paragraph, we point out a difficulty inherent to
both methods, namely the “curse of dimensionality”. As wieesthe generating functions
to higher and higher orders, the number of variables groamdtically. This problem is
the limiting factor for computation: typically on&= H z Linux computer withlG RAM,
we have trouble solving the generating functions to ofdand up for a6-dimensional
Hamiltonian system.

Computation of the generating functions using the direct@ggh requires us to find
all the coefficients of &n-dimensional series with no linear terms. At ordér a 2n-
dimensional Taylor series hdg terms, where

2n—1+N (2n — 1+ N)!

M: = —
| — 1!
N N!(2n —1)!

In the indirect approach we express thedimensional state vector as Taylor series with
respect to thén initial conditions. Therefore, we need to compute the coieffits of2n
2n-dimensional Taylor series.

To summarize, an approximation of ord®rof the generating functions is found by

solving:

=z

(2n—1
. " + ) ordlnary differential equations using the direct apprgach

1+ N
e 2n Z N|—+1)) ordinary differential equations using the indirect appida

In Fig. 5.3.3, the solid line and dotted line indicate the bens of equations that needs

to be solved with the direct and indirect methods fér@imensional Hamiltonian system.

4The summation goes frorh to N — 1 because the indirect approach computes the gradient of the
generating functions.
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Figure 5.2: Number of variables in the indirect (dashed)@inetct (solid) methods.

A combined algorithm

In practice, to solve boundary value problems over a lon@ tpan it is most conve-
nient to combine both methods. Typically, we first solve thigal value problem (indirect
method) up to a time of interest, say. Then we solve the Hamilton-Jacobi equation
(direct approach) about, with initial conditions equal to the values of the genergti

functions att; found using the indirect approach.

5.4 Convergence and existence of solutions

We now study the convergence properties of our algorithnpahticular, we provide a
criterion to evaluate the domain in which the approximatborder N of the generating

functions is valid. An example to illustrate this criterimngiven.

5.4.1 Theoretical considerations

Recall the general form of a generating function (Eq. (5.6)):

1 .

o] q
_ _ D,T %1 72
Fry i (G0 D1 Qs Po ) = D Y o (B0 s
— —~ ., - Lon:
q=0 i1, ,izn=0
i1+ Fizn=q
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Definition V.4 (Radius of convergence).The radius of convergence of the multi-variable

series definind; x, att is the real numberz; such that:

o] q

1 r
Vn, 0 <n< Ry, Z Z 3 iy i () | 1

...
=0 \ i1,iga=0 (U
i1+ Fi2n=q
converges absolutely and
o q 1
p,T q 1
V>R, ) > i wir i (1) | m* diverges.

q=0 \ i1, ,i2n=0
11+ Fi2n=q

The following proposition whose proof can be found in mamgtlieoks concerns the
normal convergence of the series. Earlier, we used thistfesdinding the initial condi-

tions to integrate the Hamilton-Jacobi equation.

Proposition V.5. Let R, be the radius of convergence of the multi-variable seriéshe

F k. at the timet. Then for ally < R, the series converges normally {y € R*" :

lyll < n} att.

The radius of convergence is not appropriate for studyimgsef functions as it is a
function of time. To remove the time dependency, we definaltteain of convergence,

a domainD in R x R?" in which the series converge uniformly.

Definition V.6 (Domain of convergence).The domain of convergend2 is a region in
R x R?*" in which the series

00 q
1 . .
- pvj” . t 11 v 12n
§ : § i 1. .. 7:277,' q,zl,--~,12n( )yl Yon

q=0 i1, igg=0 ' ‘
i1+ Fign=q

converges uniformly.

In contrast with the radius of convergence, the domain o¥emgence is not uniquely

defined. The spatial domain depends on the time interval aedwersa. For instance,
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>, t"y" converges ifand only ify < 1. D = {[0,2] x [0, 0.5]} andD = {[0,0.5] x [0, 2]}
are two well-defined domains of convergence.

In Def. V.6, the uniform convergence of the series is of primportance. It allows
one to bound the error between the true series and its tioncétdeed, by definition we

have:

Ye> 0, dN >0, V(t,y) € D,

N q
FIP,K,,.(QIWPI’W QOKMPOKT ) t)_z Z 7' 5;27 Jion (t)yil e y;%mn <E€.

11! dgy!
q=0 i1, jign=0 1 n
i1+ Fign=q

(5.13)
In other words, given a domain of convergence and a precggats, there exists a positive
integerN such that the truncated Taylor series of ordeapproximates the true function

within € in the domain.

5.4.2 Practical considerations

In practice, for most of the problems we are interested inameonly able to compute
finitely many terms in the series. As a result, it is impossitl estimate a domain of
convergence. Worst, we cannot theoretically guarantytti@igenerating functions can
be expressed as Taylor series. In fact, we have seen eadiegven if the Taylor series
of Iy, k, converges on some open set did, is smooth, therf; x, may not be equal
to its Taylor series. One can readily verify that the funetfgz) = exp(1/2?) if  # 0,
f(0) = 0 is smooth and has a converging Taylor serie8. atlowever, f is not equal to
its Taylor series. In the following we make two realistic@sptions in order to develop a
practical tool for estimating a domain of convergence.

We first assume that the flow may be expressed as a Taylor gesesne open set.

This is a very common assumption when studying dynamicdesys For example, we
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make this hypothesis when we approximate the flow by the statsition matrix at linear
order. We noticed in the indirect approach that the genggdtinctions may be computed
from the flow at the cost of a series inversion. From the sa@nsersion theory (see e.g.
Moulton [72]), we conclude that the generating functions also be expressed as Taylor
series (when they are not singular). Thus, for almost etjghere exists a non-zero radius
of convergence. In addition, the concept of domain of caymece is well-defined.

The second assumption we make is also reasonable. We adsanhibere exists a
domain in which the first order terms of the series definffagx, are dominant. In other
words, we assume that there exists a domain in which therloreler is the largest, fol-
lowed by the second order, third order etc... This is agaierg ¢ommon assumption
for dynamical systems. When approximating the flow with tlagestransition matrix, we
implicitly assume that the linear term is dominant. Howeuethe present case, there is
a subtlety due to the presence of singularities. We obsbatdltis assumption no longer
holds as we get closer to a singularity. Let us look at an ekatapillustrate this phe-

nomenon.

Example V.7. The Taylor series in: of f(x,t) = (1 —t)* fort € (0,1) is

log(1 —¢)™
n! '

NE

a,x" , wherea,, =

Il
o

T

Its radius of convergence B, = oo for all ¢ € (0,1) and it is singular at = 1. In
figure 5.3, we plot the first four terms of the series as a fonctif = for different times.
Clearly, ag gets closer td, the first order terms are less and less dominant. Equivglent
the z-interval in which the first order terms are dominant shriaks goes tol. In figure
5.4, we plot(1 — t)* — Y22 e%n One can readily verify that given a prescribed

error margin, the domain in which the ordeapproximateg’ within this margin shrinks

ast gets closer td. This is a very common behavior that motivates the need fava n
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criterion.

Suppose that the fourth order approximationfois to be used for solving a given
problem where the time evolves frointo 0.6. We know that such an approximation is
relevant if the firsts order terms are dominant, i®.,> a; > ay > as. From figure
5.3, we infer that this condition is satisfied if and onlyj|if|| < 1. We call the domain

D, = {[0,1],[0,0.6]} the domain of use.

, 0.2 , w6 [
// /"6rder 1
’ 3 Order2// 3
2 2 7 2
1[-Order 0 1[-Order 0 . ; Order 0
 Ordert—_ Order? // ////Oéer 3 /&'der 3
— 1 2 - 1 2 3 1 5 X 1 2 3 7 5 X
@)t =02 (b) £ = 0.6 © =08

Figure 5.3: Contribution of the first four terms in the Tayleries of(1 — ¢)*
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1 1
0.3
0.8 0.8
0.2 0.6 0.6
0.4 0.4
0.1
0.2 0.2
X X X
T2 3 4 5 6 7 T 2 3 1 1 2
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Figure 5.4: (1 — t)* — 23 log(1—1)" \n

n=0 n!

Let us formalize the concept dbmain of use

Definition V.8 (Domain of use). The domain of us®, is a domain inR x R*" in which

1 1
E DT i1 12n,
| g q;i1,0 5i2n (t)yl Yo
. — . U1 Lon
i1, ,i2n =0
i+ tHign=q q

is a decreasing sequence.
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This definition is very conservative but very easy to workhwiEor a given problem,
we identify a time interval (or a spatial domain) in which wanw to use the generating
functions. Then we compute the spatial domain (or the tirtewal) in which our solution
is valid. Once we have identified the domain of use, one casysabrk with the solution

within this domain. Let us illustrate the use of the above vath an example.

5.4.3 Examples

We consider the following fictional space mission: A formatbf spacecraft is flying
about the Libration point., in the nondimensionalized Hill three-body problem (Ap-
pendix C) and we wish to usé for solving position to position boundary value problems
in order to reconfigure the formation. The mission specificat restrict the spacecraft to
stay within0.05 units of length fromZ, (i.e., 107,500 km in the Earth-Sun system).

We expand the Hamiltonian describing the Hill three-bodylbem about the equilib-
rium point L, and use the algorithm described previously to sdiyeip to order5 in the
time interval(0, 3.5). We encounter a number of singularities fératt = 0, t = 1.68,
andt = 3.19 (these were predicted in Section 3.2.3). In Fig. 5.5, we flletmaximum
value of||y|| so that the first five terms are in decreasing ordéfe notice that as we get
closer to the singularity, the maximum value|jaf]| goes ta0. To find the domain of use,
we only need to intersect this plot witly|| = 0.05 and check that we are within the radius

of convergence,. From Fig. 5.5, we infer that the domain of use is

D = {(y,t) € [-0.05,0.05]>", (0.01,1.32) U (1.84,3.12) U (3.12,3.5)}.  (5.14)

Errorin the approximation  We can verifya posteriorithat the Taylor series expansion

found for the generating functiof; approximates the true dynamics. To do so, we set

5Some terms may change sign and therefore may be very smahaticase we ignore these terms so
that the decreasing condition can be satisfied (For instiinice order2 term goes td), it will be smaller
than any other terms and therefore must be ignored).
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q(T) = ¢, andqo, and findp(T") = p; andp, from Eqgns. (3.7)-(3.8). Then we integrate
the trajectory whose initial condition {go, po) to find (¢(T"),p(T)) = (g2, p2). The error
in the approximation is defined as the norm@f — ¢1, p» — p1). In Fig. 5.6 we plot this
error forgy, = 0 and¢, that takes values on the circle centered.atof radius0.05 for
different values ot. We observe that the truncated series provide a good appation

of the true dynamics.

0. 05,
0.04 |
0.03 |

0.02 Domain of use \ Domain of use

0.01 \/
‘C
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X
_0.0000&O.% 0.090020.0000% '%%10’6 7
~0.000 "0

X

5.10°¢ 0.00001

-410°°¢
-0.00002 -6
-6-10
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Figure 5.6: Difference between the true and the approxihatamics

We also point out that since the series is converging and tgnitude of each order
decreases in the domain of use, the accuracy must alwaysaseif an additional order
is taken into account. In Fig. 5.7, we observe that the ondersolution provides a poor

approximation to the initial momentum because the errogearup to4.5 - 102 units
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of length (i.e., 9615 km in the Earth-Sun system). Order three and four give order of
magnitude improvements, the error is less than- 10~* units of length 480 km) for
order three and less tharb - 10~° units of length {7 km) for order four, over two orders

of magnitude better than the order two solution.
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Figure 5.7: Error in the normalized final position fo= 0.9



CHAPTER VI

THE NUMERICS OF OPTIMAL CONTROL
PROBLEMS AND A NOVEL METHOD TO SOLVE
OPTIMAL CONTROL PROBLEMS

For a general optimal control problem, necessary condition optimality may be
derived from the Pontryagin maximum principle. These cbos often take the form
of a two-point boundary value problem and are thereforedadilfito solve in general.
There has been much work on solving this type of problem, sanadytical and others
numerical. We will not attempt to survey this literature myasystematic fashion as the
literature is simply too large, but we can confidently say thanerical techniques almost
always require (there are a few exceptions such as methatsdhsists of solving the
Hamilton-Jacobi-Bellman equation) integration of somedt all of the ordinary differ-
ential equations given by the Pontryagin maximum principteperform this integration,
one uses numerical integrators that take an initial comliéind move objects in the direc-
tion specified by the differential equations. As discusse@hapter 1V, these methods do
not exactly satisfy all the physical conservation laws asged with the system. An alter-
native approach to integration, the theory of geometriegrdators (Chapter IV), has been
developed. However, integration of the necessary comditicsing geometric integrators

is usually not possible because they are often coupled withimear equations that would

148
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need to be discretized in such a manner that the algorithipskiee properties. For in-
stance, under some smoothness conditions, the Pontryagimuam principle yields the

following conditions:

&t = DyH(x,p,u), (6.1)
p = _DlH(mapv u) ) (62)
0 = D3H(z,p,u). (6.3)

To solve this set of equations, one needs to simultaneoakig the ordinary differential
equations (Eqgns. (6.1) and (6.2)) as well as the (nonlirezaration (Eq. (6.3)). In Section
6.2, we extend the discrete geometric framework introduce@hapter 1V to overcome
this difficulty. Specifically, we are able to state a discre@ximum principle that yields
discrete necessary conditions for optimality. Most imanotly, these conditions are in
agreement with the ones obtained from the Pontryagin maxirmtinciple and define
symplectic algorithms. The approach adopted here allovestomecover as a particular
case earlier works on symplectic integrators in optimalticdrsuch as [16] and to adapt
most of the classical symplectic integrators used in dyonami

Furthermore, if Eq. (6.3) can be solved for the optimal fesdtcontrol law, then the
boundary value problem defined by the necessary conditammspitimality (Eqns. (6.1)-
(6.3)) reduces to Blamiltonianboundary value problem. In Section 6.3, we show that our
approach for solving two-point boundary value problemedtly applies. In particular,
using the generating functions, we obtain an estimate ohttial adjoint variables without
an initial guess and therefore solve the optimal controbfgnm. Most important, our
approach overcomes some of the barriers to truly reconfigi@ntrol. Specifically, at
the cost of algebraic manipulations, we can solve optimatrobproblems with different

boundary conditions as long as the cost function and therdigsaare unchanged.
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In the first section of this chapter, we review the maximumgple and derive neces-
sary conditions for optimality. Then, we introduce a disemaximum principle and show
with a few examples how it yields necessary conditions tkeéihé symplectic algorithms.
Finally, we apply the theory developed in Chapter Ill to sabygimal control problems
for which the optimal feedback control law may be expressealfanction of the state and
the adjoint variables. To illustrate this approach, we yr®the linear quadratic controller

problem and then a targeting problem using the Hill thredylmbynamics.

6.1 Necessary and sufficient conditions for optimality

6.1.1 Problem Statement

LetJ = f(ff g(x,u)dt be a performance index (also called a cost function) anddens

the following optimal control problem:

ty
min/ g(x,u)dt, (6.4)

to

subject to the dynamics

T = f(x,u), (6.5)

and tor; initial andr final constraints:

$i(x(to), t0) =0, op(x(ty),ty) =0, (6.6)
where f andg are functions fronR" x R™ to R of classC?, ¢, : (R)" x R — R" and
67 (R)" xR — RS
RemarkVI.1. Although this optimal control problem is written using thadrange for-

mulation, the following readily applies to the Bolza or theydaformulations.

tr
min K (x(ty)) +/ L(x,u,t)dt Bolza formulation (6.7)

to

min K (x(tf)) Mayer formulation (6.8)

u
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RemarkVI.2. The boundary conditions defined by Eq. (6.6) are in a very igéherm.
They include hard constraint problems (HCP), as well as sofsitaint problems (SCP).
For HCP, the initial and terminal boundary conditions aré¢/fspecified, i.e.y; =r; =n

whereas; = n andr; = 0 for SCP.

6.1.2 Maximum principle

To solve the optimal control problem defined by Eqgns. (6 8.5Xand (6.6), we apply

the Pontryagin principle.

Theorem V1.3 (Maximum principle). Solutions to the optimal control problem defined
by Eqgns.(6.4), (6.5) and (6.6) correspond to critical points of the cost functionin the
class of curves = (x(t),u(t)) € I wherel is the set of curves satisfying Eqns. (6.5) and

(6.6).

Proof. To find critical points of the functional under the non-holonomic constraints de-
fined by Eqgns. (6.5) and (6.6), we must impose the constraimtthe velocity vectors
of the class of allowable curves (details on non-holononaigational principle may be
gleaned in Bloch and Crouch [15] and Bloch, Bailleul, Crouch anddélen [14] for in-
stance). Therefore, before taking the variations of the ftostion ./, we must append
the constraints using the Lagrange multipliers. The newetfan, J,, is often called the

augmented cost function:

J, = /f g(x,u) — (p, & — fx,uw)dt + (N, di(x(to), t0)) + (Ap, @p(x(ts), tf))

to
ty

= H(x,p,u) — (p, &)dt + (i, ¢i(z(to), to)) + (Ar, dp(x(ty), tr))

to

where thep’s, the \;’s and the),’s are Lagrange multipliers andl (z,p, v) = g(x,u) +

(p, f(z,u)). Taking variations of the augmented cost function assurfikegl initial and
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final times yields:

51y = & (/ttf H(z,p,u) — (p, m’)dt) 800, bz (o), o)
+5</\j‘>¢f($(tf)vtf)>
_ /t Y Dy (2, po) — i, 69) + (DuH (, pyt) +  6)
(Do (2.p), 5 + {—plt;) + DTN, b)
+ (p(t;) + D1y Ni, 0;) .

We now let the variations of, be zero to obtain necessary conditions for optimality:

T = DQH(xap7 U), (69)
p = _DIH(xapv U), (610)
0 = D3H<x7p7 ’U), (611)

as well as transversality conditions:

p(t:) = —Digy(x(to), to)" Ni, p(ty) = Didy(x(ty), ts)" Ay (6.12)
Egns. (6.9)-(6.12) define the necessary conditions foradity. O

Egns. (6.9) and (6.10) ar& ordinary differential equations coupled with (non-
linear) equations defined by Eq. (6.11). To solve these emmsatve need®n boundary
conditions. On one hand; initial andr final conditions are given in the problem state-
ment. On the other hand, the transversality conditionglyiehitial andr final conditions
but introduce-; unknowns); andr; unknows)\ ;. Thus, we obtai2n boundary conditions
as well as; + r; equations that allows us to solve fox;, A;). As a result, the necessary

conditions obtained by the maximum principle define a wekqd problem.

RemarkVI.4. This formulation of the necessary conditions differs frdrma bne given by

Pontryagin [78] but the main point of the Pontryagin prineis that it yields necessary
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conditions for optimality under far less severe regulactyditions. The above formu-
lation is based on the equivalence between the Pontryaginiple and the calculus of
variations in the case where the control region is an opeim sefinite dimensional vector
space (see [78] chapter V for more details). Itis therefqrevalent to classical variational

formulations given in Bloch et al. [14, 15] and Gregory and [28] for instance.

The necessary conditions are of the same form as Hamiltgnat®ns but are coupled
with a nonlinear equation (Eqg. (6.11)). We have seen preWdhat Hamiltonian systems,
i.e., Hamilton’s equations, can be integrated using syatiglentegrators. However, if
Hamilton’s equations are coupled with algebraic nonlirezgarations the theory no longer
applies. What is the correct discretization of the algebegigation? In the next section,
we develop a discrete maximum principle that tackles thablem and provides a unified

view on solving optimal control problems using symplectitegrators.

6.2 Discretization of optimal control problems

We propose two methods to discretize the necessary comslifay optimality. The
first, most intuitive one, has several inherent drawbacks we point out. The second
method requires the use of a discrete maximum principle weapresent. It is more
general and we show, with a few examples, that it yields resggsconditions that de-
fine symplectic algorithms. Furthermore, this second aggitaan be enhanced to yield
symplectic-energy conserving algorithms. Finally we pralat the discrete necessary
conditions are in agreement with the necessary conditibtaireed from the Pontryagin
maximum principle. We illustrate this equivalence with aample from sub-Riemannian

optimal control problems.
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6.2.1 Solving the necessary conditions for optimality

The first method we propose to discretize the necessary ttemsliassumes that we
can find the optimal feedback control law as a function of tfeeand thep's. More
precisely, suppose Eq. (6.11) allows one to solveufas a function of z, p) and define

the Hamiltonian function

H(z,p) = H(z,p,u(z,p)). (6.13)

Then the necessary conditions (6.9) and (6.10) simplify to:

& = DeH(x,p), (6.14)

p = —DiH(x,p). (6.15)

Equations (6.14) and (6.15) are of the same form as the Ham@ljuations. Therefore, the
system defined by/ is Hamiltonian, and is better simulated using sympleciioeathms
(see Chap. 1V). We point out that this Hamiltonian system haglmysical meaning
in general and may even not be Lagrangian. For example, we ktter that// is not
hyperregular for sub-Riemannian optimal control problems a result, the Legendre
transform is ill-defined and we cannot define a Lagrangiawtfan associated with the
Hamiltonian 4. This fact has many consequences, for instance DVPI (DVEIRVYPII
are defined in Section 4.2) cannot be used to discretize ystdnss whereas one could use
DVPII (DVPI acts on the tangent bundle only whereas DVPIItnasformulations, one on
the tangent bundle for Lagrangian systems and one the gettabundle for Hamiltonian

systems (Def. IV.4)).

Example V1.5 (Midpoint scheme). To integrate the necessary conditions using the mid-

point scheme, we apply the modified discrete Hamilton’s gipile (Def. 1V.4) to the
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Hamiltonian system defined by using the midpoint Leibnitz law (Eq. (4.29)). We ob-

tain:
D T8 p, (S Tk P TPy (6.16)
h 2 2
w _ _D1g<<$k+1+xk,pk+l2+pk>. (6.17)

Lemma IV.7 guarantees the symplectic nature of this imigdilgjorithm.

6.2.2 Discrete maximum principle

If the feedback control law cannot be solved from Eq. (6.8#9n the above method to
discretize the necessary conditions no longer appliehisrsection we address this issue.
Specifically, we introduce a discrete maximum principle gdbows us to derive discrete
necessary conditions for optimality that are in agreemettit the one obtained from the

maximum principle.

Problem statement

We assume the same geometric framework than in Chapter IVjsthave consider
a discretization of the time into n instants7 = {(tx)kepin)}. k1 — tx May not be
equal tot;, — t;_, in general but for sake of simplicity, we assume in the follayvthat
tiy1 — tr = 7, Vk € [1,n]. At tx, x4 lies in then-dimensional vector spack, = R",
uy lies in U, = R™ and we setM = | J M, andi/ = |JU,. OnT, we define a discrete
time derivative operatoA?. A? may not verify the usual Leibnitz law but a modified one.
We denote byr¢ andu¢ two points inM andi/ respectively. Later we give an explicit
definition of these points but so far we only need to know tifatan be expressed as a
function of z;, andx;,; (andu¢ can be expressed as a functionugfandu;, ;).

In discrete settings, the cost function is

n—1

J = ng(xz, ud)T,

k=0
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and the optimal control problem (6.4) is formulated as:

n—1
min Y ga(f, uf)7, (6.18)

Y k=0

subject to the dynamics
Adaf = falxf,uf), (6.19)
and tor; + r; boundary conditions:

gbi(xo,to) = 0, ¢f($n,tn) = 0, (620)

wheref, andg, are functions fronR™ x R™ to R of classC" that correspond to discretiza-
tion of the continuous time functiorsandg, ¢; : (R)" x R — R™ and¢; : (R)" xR —

R"f
Discrete maximum principle

To obtain necessary conditions for optimality, we defineftilewing discrete maxi-

mum principle, the discrete counterpart of the Pontryagaximum principle:

Definition V1.6 (Discrete maximum principle). Solutions to the discrete optimal control
problem correspond to critical points of the cost functibim the class of discrete curves
v € I', wherel is the set of all discrete curves;,, u;)icp,» that verify Eqns. (6.19) and

(6.20).

RemarkVI1.7. The above definition is the discrete counterpart of Thm. MitBompares
to previous works on discrete optimal control theory thaees the Pontryagin maximum
principle to discrete systems such as Jordan and Polak §5bfian. VI.3 compares to the
Pontryagin maximum principle. In other words, in contraghwlordan and Polak [55],
we restrict the class of discrete optimal control problemghsit we can derive necessary

conditions that define symplectic algorithms.
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As in the continuous case, to find critical points.btinder the non-holonomic con-
straints defined by Eqgns. (6.19) and (6.20), we must appendahstraints to’ using the

Lagrange multipliers. The resulting function is called gugmented cost function:

Jo = Z(Qd(ﬂfg,ui) - <pZ7 Aixi - fd(fi, ug»)T + <)‘07 ¢0> + <)‘n7 ¢n> (621)

3
- o

= (Ha(af, i uf) — (o, Aai))T + (No, d0) + (Any 00 (6.22)

=0

ol

where thep,’s, the \;’s and the),’s are Lagrange multipliers anéf;(z¢, p¢, ud) =
ga(zd, ud) + (p¢, fa(z¢,ud)). To apply the discrete maximum principle, one needs to
specify the discrete derivative operator as well as theesgions ofr¢, u¢ andp{ as a

function of (xyy1, xx), (ugr1, ugx) aNd(px11, pr) respectively.

Examples

Stormer's rule  If we chooseA? to be the forward differencd, andx{ = z, pi =
pri1, Ul = uy, then we recover the discrete maximum principle develope@lbgh,

Crouch, Marsden and Ratiu [16].

n—1

8, = 5(Z(Hduz,pz,u@—<pf£,Aixz>>T>+6<A0,¢>o>+6<An,¢n>
k=0

—1

= Y (DoHy(wg, pryr, un) — Ar, Oppia)

=0
+ (D1 Ha(xk, i, wk) + Arp, 0x)T + (D3 Hy(xg, pett, uk), Oug)T

3

+ <¢07 5>\O> + <¢n7 5)\n> + <_pn + Dl(bg)\nu 5$n> + <p0 + D1¢5A07 6x0> )

where the modified Leibnitz law (Eq. (4.1)) has been used. Wgose that the variation

of the augmented cost function be zero to obtain the diseretessary conditions for



158

optimality and the transversality conditions:

Az = DyHg(wk, Py, ur) , (6.23)

Arpy = —DiHa(xy, prir, uk) (6.24)

0 = DyHa(xy, pri1,ur), (6.25)

po = —Di¢o(wo,t0)" Mo, Pn = D1bn (20, )" N (6.26)

The algorithm defined by Eqgns. (6.23), (6.24) and (6.25) iswadent to the one derived
by Bloch, Crouch, Marsden and Ratiu [16] for the symmetric rigaadly. Our approach
generalizes the discrete varaitional principle develapdd6]. We now prove the sym-

plectic nature of the above algorithm.
Lemma VI.8. The algorithm defined by Eqgns. (6.23), (6.24) and (6.25)ng@gctic.

Proof. Define the cost functiod, as:

i
L

Jo = (Hd($k>pk+1a Uk) - <Pk+1, A7$k>)7-
0

e
Il

J, is the augmented cost function from which we have removethdlidary conditions.
Boundary conditions yield transversality conditions, tisatonditions on the initial and
final states of the system. Hence these terms are irrelavém study of the advance map
(zh, DR, ur) — (Tra1, Pt Uks1)- As in discrete dynamics, we considét/,, assuming

(xx, pr, ui) verifies the above necessary conditions and we obtain:

1
dJ, = A pg, dx)T .

=0

3

ol

Fromd? = 0, we conclude:

n—1

0= Z A d{p, dx)T, thatis,Vk € [0,n — 1], dpg1 A dxgr1 = dpp A dxy, .
k=0
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The symplectic nature of the algorithm is obtained direfibyn the variational prin-

ciple - there is no need to computg;, A dx anddpy. 1 A dxy .

Midpoint scheme  Midpoint discretization may also be obtained by choosing

x +x
d __ Vk+1 k d
U= —FH -+ D=

Prk+1 TP g Ukl T Ug
2 ’ '

2 T T
andA? = R, — R_.,». One can readily verify that the discrete maximum principle

yields the following necessary conditions for optimalitydetransversality conditions:

Alafl = DyHa(af, pf, uf) (6.27)

Alpl = —DiHy(xf,pf ud), (6.28)

0 = DsHa(af,pf,uf), (6.29)

po = D1¢o(wo,t0)" o, Pr = —D1¢n (T, tn) A . (6.30)

Lemma VI1.9. The algorithm defined by Eqns. (6.27), (6.28) and (6.29)nspgctic.

Proof. We omit the proof since it proceeds as before. OJ

6.2.3 Discrete maximum principle v.s. discretization of tle Pontryagin maximum
principle
So far we have considered two methods for obtaining a syrtiplelgorithm that in-
tegrates the necessary conditions for optimality. The firethod, which applies only
to a certain class of problems, consists of discretizingneessary conditions obtained
from the Pontryagin maximum principle once the control hesrbexpressed as a function
of (z,p). The second method consists of using the discrete maxinrumigple. In this

section, we show that under certain assumptions both meth@dequivalent, that is, we
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prove the commutative diagram (6.31).

min, fOT g(x,u)dt min, 31— ga(af, uf)

&= f(z,u) Al = falaf, ug)
l(PMP) l(DMP) (6.31)

H(l’,p, U’) (DM HP) Hd(xgapgvuz)
—

H{(z,p) Hy(xf, pf)

where H is defined by (Eq. (6.13)), DMHP stands for the discrete medifilamilton’s
principle, PMP stands for the Pontryagin maximum pringiglad DMP stands for the
discrete maximum principle.

We recall the required assumptions to prove the equivalehtdee diagram. We as-
sume that Eq. (6.11) can be solved faas a function ofz, p) and that the initial and final
statesr(t;) = =y andx(ty) = z; are given. In addition, we imposg = g andf; = f.

To discretize the Hamiltonian system defined By we use the discrete modified
Hamilton’s principle:

n—1
o=y = (St ate) - Akt 632)
k=0
for any variations ofz¢, p¢) anddz, = dx, = 0. One can readily check that Eq. (6.32)

can also be written in an equivalent form as:
n—1
0= = (St att) - et st ).
k=0

for any variations of ¢, p{, u¢) anddzy = dx,, = 0 wherew is now considered as an
independent variable. In addition sinde= f; andg = ¢4, H = Hy, and we conclude
that the discrete modified Hamilton’s principle as formethaind the discrete maximum

principle are equivalent.
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6.2.4 The Heisenberg optimal control problem

The Heisenberg problem (Brockett [18], Bloch et al. [14]) refeo under actuated
optimal control problems which are controllable. For ims&, consider a particle that
has two actuators in ther, y)-plane and with velocity in the direction defined by =
y&—xy. This system is controllable, however, to reach a pint 0, 0, 0) from the origin
(0,0,0) requires a non-trivial control vector. In the following, w&udy the Heisenberg
problem to illustrate the approaches we have developedealier this problem the cost

function is given by:

ty
J = min /(u,u>dt,
) e

u=(u1,u2

subject to
T = u,
y = v,
Z = uy-—ouzr,

and to the boundary conditions:

(x(t0>>y(t0)7 Z<t0)) - (Ov 0, 0) ’ (x<tf)v y(tf)7 Z(tf)) = (CL > 0,0, O) .
DefineH as
H(q,p,u) = %(WO +(p,4),

whereq = (z,y, z) andp = (p,, py, p-). The Pontryagin maximum principle yields:

0OH

) OH
OH

0 = %(q,p,u). (6.35)
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with boundary conditions

($(t0),y(t0),z(t0)) = (070’ 0)7 (x(tf)vy(tf)vz(tf)) = (CL > 07070)'

Note this is a hard constraint problem, therefore the trarsslity conditions are of no use;
They yield2n equations but introducg: new variableg\;, ). Eq. (6.35) allows us to

solve foru as a function ofq, p):

Uy = Pz + D2y, Uy = Py — P2 .

Hence, Egns. (6.33)-(6.34) become:

. OH

q = a—p(q,p) ; (6.36)
. OH

p = —a—q(%p) ; (6.37)

where

H(q,p) = H(q,p,ulq,p))

1
= _§(pi + p;) — P2PzY + DyD=T . (638)

Egns. (6.36) and (6.37) are of the same form as the Hamiltoatems. Therefore, the
necessary conditions for optimality yield a Hamiltoniastgyn with Hamiltonian function
H. We now prove that] is degenerate at the origin, and so is the Legendre transform

The Hessian off is:

-1 0 -y

OH
(a<q,p>>: oot
-y x 0

Thus, det (%) = 22 + 42, i.e., the determinant of the Hessian Bfis singular at

(0,0). As a result, it is nota priori, possible to define a Lagrangian function associated
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with the Hamiltonian/ using the Legendre transfotmTherefore, the discrete modified
Hamilton’s principles (DMHP) must be used to discretize £q(6.36) and (6.37). One
cannot use a discrete Hamilton’s principles (DHP) for instabecause the system is not
Lagrangian. This point is of importance. It motivates thea® introduce the variational
principles presented in Chapter IV, as previous works oratianal principles focused on
systems with non-degenerate Lagrangian functions.

To discretize the necessary conditions, we choose the ggoassociated with the

Strmer rule and use the DMHP (Def. 1V.4) to eventually find tb#diwing symplectic

algorithm:
Arqr = DoH(qy,prs) (6.39)
Arpy = —DiH(qr, pr+1) - (6.40)

Let us now discretize the Heisenberg problem using the skapproach, based on the

use of the discrete maximum principle. We first discretizegtoblem statement:

1 n—1

min - Z(uk,uk>,

up=(u1,k,u2 k)

k=0
subject to

ATka = Uik,

ATyk' = Uk,

Arzi = ULpYe — U2 pTk -

Define the discrete augmented cost functign

n—1

Jo = Z Hd(‘]kapk+17uk> - <pk+17 AT%> )
k=1

1Using Lagrange multipliers one can define a Legendre tramsémd find a Lagrangian function asso-
ciated with the system. We refer to Bloch [14] for a preséotedf this technique that involves variational
principles with constraints.
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whereH ;(qi, Prt1, i) = (Uk, Uk) + (Pet1s Qr)s Uk = (U1,k7uz,k) andg, = (xx, yg, 2;). TO

find discrete necessary conditions for optimality we setwgations of.J, to zero, and

we obtain:
Arqgr = DoHa(qr, i1, ug) (6.41)
Arpe = —D1Ha(qr, Prs1, k) (6.42)
0 = DsHa(qx, pr+1,ur) - (6.43)

Eq. (6.41) allows us to find, as a function of g, pr+1):

Utk = Prkt1 T Pek+1Yk s U2k = Pyk+1 — Dz k+1Tk - (6.44)
We then substitute these expressions into Eqns. (6.442X6.

Arqe = DyHy(q, prsr) | (6.45)

Arpr = —DiHa(qe, prs1) (6.46)

where Hy(qy, pr+1) = Ha(qr, Drr1, ur(qr, pes1)). By virtue of the commutative diagram,

Egns. (6.45) and (6.46) define the same symplectic algorhiigns. (6.36) and (6.37).

In this example, we chose a trivial discretization of theayics and of the cost func-
tion; f = f, andg = g4. Other algorithms may be obtained using non-trivial diszee
tions. In that case the equivalence principle may not holdtie algorithm we obtain
will still be symplectic. Finally, as in discrete dynamit¢le discrete maximum principle
may be modified in order to yield symplectic-energy consepélgorithms. We detail the

procedure in the next section.

6.2.5 Energy conservation

We have seen that the discrete maximum principle (Def. \AIBws one to derive

necessary conditions that define symplectic algorithmsdJdifferent definitions for the
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derivative operator and for the variables], p¢, u¢), one is able to adapt classical sym-
plectic algorithms to optimal control problems. In genehaise algorithms are not energy
preserving, and we now show how the discrete maximum piciy be modified so

that the discrete necessary conditions yield symplectergy preserving algorithms.

Generalized discrete maximum principle

In contrast with the discrete maximum principle (Def. V|].4} allow the time step to
vary, the time now plays the same role as the state vecaémd we introduce an indepen-
dent parameter;, such that, = (), xx = z(7) and7x1 — 7 = 7. The configuration
spaceM; is nowR” x R and7 = {(Tk)ke[l,n]}. One must pay attention to the definition

of the cost function sincg, . ; — ¢, no longer equals the constant

n—1 n—1
J = ng(:vi, ul) (L1 — tr) = ng(:cz, U Aty . (6.47)
k=0 k=0

In the same manner, the dynamics of the system becaixfes (row the derivative oper-
ator with respect to- whereas the dynamics is given as function of the discreteatise
of = with respect to time):

d.d
Alxs

dyd
Add

= fd(:v‘;i, u}i) ;
or equivalently
Alxy = ATty falai,up) (6.48)
The boundary conditions are left unchanged:
oo(zo,t0) =0, dp(xn,t,) =0. (6.49)
The generalized discrete maximum principle reads as fatlow

Definition VI.10 (Generalized discrete maximum principle) Solutions to the discrete

optimal control problem defined by Eqn$.47), (6.48)and (6.49)correspond to critical
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points of the cost functiod in the class of discrete curvesc T, wherel is the set of

all curves(xy, ug, ti)rep,n that verify Eqns. (6.48), (6.49), = t; andt, = t; (i.e., fixed

initial and final times).

Again we need to define the augmented cost function to applgdhstraints:
n—1

Ja = T ng(miv ui)AitZ - <Pi7 A%ZI - Aﬁtzfd<xZ’ UZ» + <)‘0> ¢0> + <)‘n7 ¢n>
k=0
n—1

= TZAitsz(xZ7pia ui) - <pi7 A£$i> + <)‘07 ¢0> + <)‘n7 ¢n> ) (650)
k=0
where thep,’s, the \¢’s and the),’s are Lagrange multipliers antf;(z¢, p¢, ud) =
ga(xf, ufd) + (pi, fa(x, uf)).

Example: the Strmer rule
We only go through the derivation of @mer type of algorithm. One can derive other
symplectic-energy conserving algorithms using the samhodelogy. For the Sirmer

rule, A¢ is the forward difference operatar! = zy, p{ = pry1 anduf = w;. Variations

of the augmented Lagrangian read:

1
5Ja = (Z A tkHd xkﬁpk?uk) <plli7Aix§cl>)T> + 5<)‘07¢0> + 5<>\n7¢n>
k=

3
,_.

= (ArtpDoHg(g, pest, uk) — Arg, ODgs1)T
0

(At Dy Hy(xg, prsts u) + Arpy, 6x)T + (Artp DsHy(xg, prga, uk), Oug) T

n—1

>
Il

— Y A Hy(wpoy, pro uk—1)6tT + Hy( @1, Po, tn—1)0t, — Ha(o, p1, t0)dto
k=1

+ (—pn + qubz;)\m dzn) + (po + Dl%T)\o, 8x0) + (00, 0Ao) + (P, 0A,) (6.51)
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Since the variations of the augmented cost function museb@for anyit,, dx;, dpr and

oty = 0t, = 0, we obtain the discrete necessary conditions for optignalit

Arrvy = ArtpDoHa(wg, pri1, u) (6.52)
Arpr = —ArtDyHa(Tk, pryrs uk) (6.53)
0 = DsHa(g, prs1s uk) , (6.54)
0 = ArHy(xp—1, Pk Ur-1) (6.55)

as well as transversality conditions:

po = —Digo(z0,t0)" No, (6.56)

Pn = Didn(an, tn) A (6.57)

Lete, = —Hy(x,_1, pr, ur—1) define the energy af, and

Or = (pr, dxy) — Ha(xp—1, Dry w—1 ) dt
be the contact one-form.

Theorem VI.11. The algorithm defined by Eqns. (6.52), (6.53), (6.54) ans)6defines

a symplectic-energy conserving algorithm, i.,; = e andwy1 = wi, Wherew, = dby.

Proof. Eq. (6.55) is equivalent te,,; = e, So the algorithm is energy conserving. Let
us prove that the symplectic two-form is also preserved.i\ge define the augmented

cost function/,:

n

1

Jo =Y (ArteHa(@k, Prs1, uk) — (Prgr, Arp))T . (6.58)

=
Il
o

J, is the augmented cost function to which we have withdrawrbthendary conditions.

Consider a discrete trajectofyy, px, ux, 1) that satisfies Eqns. (6.52), (6.53), (6.54) and
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(6.55) and let us compute the one-foui, :

n—1

Al = dY (ActiHa(we, pr, te) = (rir, D)7
k=0
n—1

= > (ActyDyHy(wy, ity ur) — Arip, dppa)T
=0
+ (Arte D1 Hg(2g, prs1, uk) + Arpr, dog) T + (At DsHy(zk, Pry, uk), dug) T

— Ar(erty) + Arerty, — A (py, dog) T, (6.59)

where the modified Leibnitz law (Eq. (4.1)) has been used.ce&Sigy, py, ug, ty) IS a

solution to the necessary conditions, Eq. (6.59) reduces to

—_

n—

dja = — AT<<pk7 d.f(fk) + €ktk>7—,
0

and fromd? = 0, we conclude

i

n—1
Z Ard({pr, dvg) — Ha(xx—1, pr, ur—1)tk)7 =0,
k=0
that is,Vk € [0,n — 1], df41 = dby. O

In this section we have developed a new approach to solvenaptiontrol problem.
Using discrete geometry we have been able to develop a utifgeaty to solve optimal
control problems using symplectic integrators. We haveduced a discrete maximum
principle that yields discrete necessary conditions fdineglity. These conditions are
in agreement with the ones derived from the Pontryagin maminprinciple and define
symplectic algorithms. We have also shown that the diseret@mum principle can be
enhanced to yield symplectic-energy conserving algosthNow, we focus on a specific
class of optimal control problem, those for which the optiomntrol law can be expressed
as a function of the state and co-state, i.e., using Eq. 6ulhay be solved as a function
of = andp. For this class of problems we saw earlier that the necessargitions for
optimality yield aHamiltoniantwo-point boundary value problem. In the next section, we

show how it can be solved using the theory presented in ChHpter
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6.3 Solving optimal control problems from the Hamilton-Jacobi the-
ory

We saw earlier that if the feedback control law can be found &sction of(z, p)
then the necessary conditions for optimality define a Hamién system (Egns. (6.14)
and (6.15)). Together with the transversality conditidhg, necessary conditions reduce
to a two-point boundary value problem that can be solvedgutsia theory we developed
in Chapter Ill. In this section, we expose this novel appraackolving optimal control
problems.

In the following, we make three assumptions.
1. The cost functiory is smooth.

2. One can solve for as a function of z, p) using Eq. (6.11), that is, we can define a

new Hamiltonian functiond (x, p,t) = H(z, p, i(x, p,t),1t).
3. One can eliminate thig’s and\,’s in Eq. (6.12), so that Eq. (6.12) becomes
pe(ty) =pyp. . Ve € (ri+1,n), pi(to) = po, , Vk € (ry +1,n), (6.60)
and one can transform Eg. (6.6) into:

(i) =x0,, K€ (1---1;), xp(ty) =ap, ke (l---rp). (6.61)

Under these assumptions, solutions to the optimal contoddlpm correspond to solutions

(x, p) of the following conditions:

b= G, (6.62)

. 0H
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with boundary conditions

zr(to) = mo, Yhke(l,---,1),

pr(to) = po, Vke(ri+1,---,n), (6.64)
xp(ty) = x5 Ve (l,---,rf),

pe(ty) = pp, Vee(ry+1,---,n).

These equations define a two-point boundary value probleemcélithey are usually
difficult to solve because they generally require an esenaditthe initial (or final) state,
which usually has no physical interpretation (we illustththis point earlier in this chap-
ter with the Heisenberg optimal control problem). Howewerating the system defined
by these equations as a Hamiltonian system allows us to dpgltheory we developed
in Chapter lll. Definel,, = {1,---,r}, K,, = {1,---,r;} and recall the generating

function Ffv-iva-f that verifies Eqns. (2.30), (2.31), (2.32) and (2.33):

aF[ K
Ti) Tf
= ——F @ y = L ; 7 at ) 6.65
Pos, By, iy Pl o Por 0 ) (6.65)
8FITV,KT
'TOjri = apo_ (fo'rf ’pff(rf ; xOITi 7p0jri ; tf) ) (666)
Iy,
aF[ K
o T‘i? T.f
prTf — W(xf}(rf ’pffﬂ-f y x()[ri 7p0j7,i ’ tf) ) (667)
aF[ K
rifirg
_ = v/ ) L ty). 6.68
k., o, Ty Pl PO PO ) (6.68)

These equations solve the above two-point boundary valhigdem and thus the nec-

essary conditions for optimality.

Example VI.12 (Hard and soft constraint problems). Hard constraint problems [76]
have their initial and terminal conditions entirely spesifby the problem statement, i.e.,

xo andx; are known {; = n = ry). Thus, theF; generating function solves the necessary
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conditions for HCP:

0F,

= t 6.69

Dy aqf (va'r(b f)? ( )
oF'

po= —5 (w0t (6.70)
do

On the other hand, soft constraint problems for which thiginstate is fully determined,
are solved usings. In fact, the transversality conditions provide us with Then,z; and
po can be found from Eqgns. (3.13) and (3.14):

0F;

= —— t 6.71
Ty apf (pf’x(h f)v ( )
OF3

Using the Legendre transformation (Eq. (2.28)), we cansfam generating func-
tions into each otherAs a consequence, if the dynamics and the cost function memai
unchanged (i.e., the Hamiltonian is the same), we are ablelweshe optimal control
problem for any boundary conditions at the cost of algebra@nipulations This fact
is of importance because as different boundary conditioespplied to the system, the
nature of the optimal feedback control laws change. Thisfissddamental difficulty, and
implies that the optimal control law for a given dynamicastgm must be re-solved as the
boundary conditions and targets for the system change. @uoach directly tackles this

issue, and allows us to overcome some of the barriers toreglynfigurable control.

6.3.1 Linear quadratic terminal controller

Only rarely it is feasible to find thexplicit feedback control laws for nonlinear sys-
tems. However, if an extremal path is known, it is usuallysgole to approximate the
optimal control law in its neighborhood. For instance, aéér order this consists of solv-
ing an optimal control problem with quadratic performangteda for time-varying linear

systems. This class of problems has been widely studied dathded solution procedure
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is known. For that reason, it is of interest to first analyze lihear quadratic terminal
controller as an introduction to our approach. This problems been studied by Guibout
and Scheeres [37] and Park and Scheeres [75].

Consider a linear dynamical system:
#(t) = A)z(t) + B(t)u(t),
and a quadratic cost functioh

1 I
J = Sulty) Qrulty) + 5/ #"Qx +u" Ru,
to

subject tor; initial andr; terminal conditions of the form:

z(to) = 2o, , Yh € [1,13],  wx(ty) =xp, , VE € [1,14],

where@);, Q and R are symmetric positive definite matrices. We define the Lragjean L
asL = 27 Qx + u’ Ru and the Hamiltonian functio®/ as:
H(z,p,u) =p'a+ L(z,u).
From Eq. (6.11), we obtain
u=—-R'BTp.
Substitutingu in Eqns. (6.9) and (6.10) implies:
H(z,p) = H(z,p,—R'B'p—- R'N"'z)

T
x Q AT x

N —

A A —BR'BT A
Then the necessary conditions for optimality yi2ldordinary differential equations:
& = Az — BR'BTp, (6.73)

p o= —(ATp+Qu), (6.74)
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as well a®2n boundary conditions. To showcase our method, we consigemnit follow-

ing particular cases.

e HCP:r; = r; = n, i.e., the initial and final positions are specified. In thase the

transversality conditions are void since we already knaat.th
x(to) = xo, and z(ty) = zy. (6.75)

The necessary conditions can also be solved usind-rom Eqgns. (3.7) and (3.8),

we directly findp, andp;:

_  OF
p = _($f7x07tf>7
or (6.76)
Po = g—i(ﬂﬁf,fﬁo,tf)~

e SCP: Another case that is often treated (see e.g. Bryson [ti¥Park and Scheeres
[76]), is the soft constraint problem, where only the iniggate is given. In that

case, the transversality conditions yield:
Jl(to) = o,

p(ty) = Qpa(ty).

Eqns. (6.73), (6.74) and (6.77) define a linear Hamiltoniao-point boundary

(6.77)

value problem. However, it is not defined as usual boundalyevaroblems since
the final conditions are expressed as constraints on the atak co-state. This is
due to the explicit dependence in the final state of the costtion. If @, = 0,
the necessary conditions for optimality reduce to a classiamiltonian two-point
boundary value problem and we recover the results found irME&22. The gener-
ating function can also solve the soft constraint probleronFLemma 111.3,F} can

be written in the following form:

Fli(t) Fl(t
F = %YT 1 () Fip(t) Y. (6.78)

Fau(t)  Fp(t)
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whereY = (z,z0)T. Then, using Eqgns. (3.7) and (3.8), we obtain:

(

p = F111 (t)a: + F112(t>x0 )

po = —Fy(t)r — Fyy(t)w,
| Pro= @y
Solving forp, yields:

po=— [Fn(t)(Qr — Fiy () Fiy(t)] -

This method readily applies to other kinds of boundary comas. Thus, using the gen-
erating functions, we are able to solve the necessary ¢ongdlifor the linear quadratic
terminal controller. This is not surprising since theresexnethods to solve this prob-
lem based on the state transition matrix, and we showed thig gansition matrix and

generating functions are closely related.

6.3.2 Targeting problem

To illustrate the use of the generating functions to solvdinear optimal control prob-
lems we now consider a targeting problem in the two-dimaeradiblill three-body problem
(Appendix C). We consider a spacecraft away from the Librgpioint L., and want to find
the control sequence that moves the spacecraft at theleguiti point L, while minimiz-
ing the fuel consumption. Specifically, this optimal cohprmblem formulates as follows:

1 rt=ty

We want to minimize the cost function = (u2 + u)dt subject to the con-

2 Ji=0
straints
(
xry = I3,
IIQ = X4,
(6.79)
1:3 = 2$4—@21;6W+3$1+Ux,
. o o _ T2
[ T4 = 223 (22 +22)3/2 + Uy,
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and the boundary conditions:
X(t=0)= X, X(t=t;) =X, = (37%,0,0,0), (6.80)

whereX = (1, xq, 3, 24) = (x,y, &, y). Define the Hamiltonian:

X1

H(X,P,U) = p1xs + pats + p3 (2x4 - W

+ 31’1 + uz)

X2

1 1
+ P4 (—2953 - BE + uy) + Zul + -ul

(22 + 23 2°F 2V
whereP = (p1,p2,p3,ps) andU = (uy,u,). Then, fromg—fU{ = 0, we find the optimal

control feedback law:
Uy = —P3, Uy = —P4-

Substitutingl’ = (u,, u,) into H yields:

_ T
H(X,P) = piz1 + paxo + p3 (2I4 - W + 3z, —p3>

) 1 2 1 2
+ P4 <—2$3 - W — p4> + e + oPa- (6.81)
We deduce the necessary conditions for optimality:
: H
: H
P = —g—X , (6.83)
X(t=0)= Xy, X(t=t;)=(373,0,0,0).

This is a Hamiltonian two-point boundary value problem tivatcan solve using the the-
ory developed in Chapter Ill once the generating functiomskawown. To compute the
generating functions, we can use the algorithm developé&thepter V by noticing that
the solution to the optimal control problem that consistgoing from L, to L, in ¢;

units of time is the trivial trajector)X = X, andU = (0,0) for all ¢. This trajectory
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can be taken to be the reference trajectory in the algorittmthe following we use an
approximation of ordet of F.

In Fig. 6.1, we plot the optimal trajectory that starts’t = (10, 700, 10, 700) km
and reache$, in t; = 145 days. The dotted line corresponds to the solution foundgusin
a linear approximation of the dynamics whereas the solie inthe solution computed
with an order4 approximation of the dynamics. We immediately notice tihat linear
approximation fails to predict a relevant approximatiorited control since the trajectory
does not reach the Libration point (nor its vicinity). On thther hand,F; provides an
excellent approximation of the control since the spaceégsadf3 km away fromL, att;.
Fig. 6.2 shows the associated control sequence. The doteedrid solid line correspond
to the control history computed from the linear model andftheth order approximated

system.

0.002AY

0.01 unit of length «—— 21,500 km

Figure 6.1: Optimal trajectory of the spacecraft

Furthermore, it should be clear that once thegenerating function is known, we can
instantaneouslgolve this hard constraint problem for any boundary coad#iand any
final times. In Fig. 6.3 we illustrate this key point by platithe trajectories for different
final times. Ast; increases, the trajectory tends to wrap around the Librgunt so that

the spacecraft takes advantage of the geometry of the lobrpbint (Appendix C). On
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0.02AY

uA
0.01 0 1 N 5 2 275
t 0.005 N
5 N
\
-0.01 -0.01 \
\
-0.02 -0.015 \
-0.03 \
(a) Time history ofu,, (b) Time history ofu,

1 unitoftime «— 58 days,
1073 unit of control «—— 1.36 - 10 2m.s 2

Figure 6.2: Time history of the control laws

the other hand, if the transfer time is small, the trajeciserglmost a straight line and it
completely ignores the dynamics. In Fig. 6.4, the assatiedatrol laws are represented.
As expected, the longer the transfer time is, the smallenthgnitude of the control is.
We emphasize that we only need to evaluate the gradiehi @ivhich is a polynomial
of order3) seven times and integrate Eqns. (6.82) and (6.82) sevess timobtain the
seven curves in Fig. 6.3. Similarly, in Fig. 6.5, at the cdssinteen evaluations of the
gradient of F;, we are able to represent the optimal trajectories of spaftestarting at
Xo = (rcos(#),rsin(f)) wherer = 10,700 km andf = k7 /8, and ending aL, in 145
days. In Fig. 6.6 the corresponding optimal control lawsrapeesented.

Finally, if different types of boundary conditions are inged (for instance, the ter-
minal state is free) then we need to perform a Legendre wamsto find the generating
function that solves this new boundary value problem. Waltebat for these types of

problems, the Legendre transform is found at the costrokan matrix inversion.
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0.004r

0.002f

/03 0.004 0.005

0.01 unit of length «— 21, 500 km

Figure 6.3: Optimal trajectories of the spacecraft foretdint transfer times.

0. 1.5 > 25 31t @

-0.04

-0.06
(a) Time history ofu, (b) Time history ofu,,

1 unit of time «+— 58 days,
103 unit of control «—— 1.36 - 10~ 2m.s~2

Figure 6.4: Time history of the control laws
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0.01 unit of length «— 21,500 km

Figure 6.5: Optimal trajectories of the spacecraft as atfanof the initial position.

(a) Time history ofu, (b) Time history ofu,,

1 unitof time +«— 58 days,
103 unit of control «—— 1.36- 10~ 2m.s~2

Figure 6.6: Time history of the control laws



CHAPTER VII

THE SEARCH FOR PERIODIC ORBITS

Periodic orbits have been widely studied over the last egrdand are still a topic of
great interest. Poincarf77] already realized their importance for understandiregdy-
namics of non-integrable Hamiltonian systems when he @edithat they are “the only
opening through which we can try to penetrate the stronghdittleed, he conjectured
that periodic orbits are dense on typical energy surfachsugh the Poincérconjecture
is not true for every system (e.g., for a product of harmosiclator with incommensu-
rate frequencies), many systems have the property predigtd>oincag. MacKay [63]
provides conditions under which the Poineaonjecture holds.

Many techniques, that we will not attempt to survey in anytaystic fashion, have
been developed to find periodic orbits. For instance, in és¢ricted three-body problem
one may use perturbation methods (see e.gndt [48]). Such a method allows one to
find families of periodic orbits very efficiently once a membéthe family is known, but
does not provide a systematic procedure to find a periodic @rbither a given period or
going through a given point. By using the theory we developé&chapter 11l we can solve
such a problem. Specifically, we are able to reduce the séargeriodic orbits to either
finding the solution to a set of implicit equations, which azten be done graphically,

or to finding the roots of an equation of one variable only. Mogportantly, the novel

180
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approach we develop applies to any Hamiltonian system aséfibre is very general. We
illustrate its use with two non-trivial examples of findingrpdic orbits in the vicinity of

other periodic orbits and around the Libration points inttivee-body problem.

7.1 Periodic orbits and generating functions

The aim of this section is to transform the search for pecadlbits into a two-point
boundary value problem that can be handled with the theorgldped in Chapter Il1.
Periodic orbits in &n-dimensional Hamiltonian dynamical system are charazdri

by the following equations:

d(T) = q, (7.1)

p(T) = po, (7.2)

whereT is the period of the orbit(qy, po) are the initial conditions at timg, = 0 and

(q(t), p(t)) verifies Hamilton’s equations:

. OH . OH
qg= a—p(q,p, t), p= —a—q(qm, t). (7.3)

In the most general case, the search for periodic orbitsstsred solving then equa-
tions (7.1) and (7.2) for then + 1 unknowns(q, po, T'). Simple methods that solve this
problem take a set of initial conditiongo, po), and integrate Hamilton’s equations. If
there exists a timé= T such that Egns. (7.1) and (7.2) are verified, then a periathit o
is found. Else, other initial conditions need to be guessethe approach we propose in
this chapter, instead of looking at the initial conditiomsldhe period as the only variables
of the problem, we suppose that the periadnpitial conditions as well as components
of the state vector at tim€ are unknowns. Then the search for periodic orbits reduces to

solving the2n equations (7.1) - (7.2) for theQe + 1 unknowns.
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Example VII.1. If (¢(T), g0, T') are taken to be then 4+ 1 unknowns, then the search for
periodic orbits consists of solving ti# equations (7.1)-(7.2) fotq(T), g0, T'). Let us
now find all periodic orbits of a given period. In other wordsijs given and we need to
find (¢(7"), qo) such thay(T") = g, andp(T") = p(0). This is a two-point boundary value
problem with constraints that can be solved with the gemegdtinction ;. Combining

Eqgns. (3.7)-(3.8) and Eqgns. (7.1)-(7.2) yields:

p(T) = 25(q,q0,7), oT) = q,
(T) 92 (¢ 90, T) (T) 0 7.4)
po = —54q,90,7), pT) = p,
thatis:
0F; oF;
—(g= T — (g = TY=0 7.5
9 (g = 9o, G0, )+8q0(q 90,90, T) 7 (7.5)
OF:
P =D = a—ql(q =q0,q,T). (7.6)

Hence, the search for all periodic orbits of a given periagdiced to solving equations
(7.5) forn variables, they’s, and then evaluate equations (7.6) to compute the corre-
sponding momenta&n equations still need to be solved, but newf them are decoupled.
Most importantly, oncé; is known, no additional integration is required. In additios-
ing the algorithm we developed in Chapter V, solutions of Ef§5) correspond to roots
of polynomials and are therefore easily computed.

Similarly, by taking(p(T), po, T') @s unknowns we can use thg generating function

to derive necessary and sufficient conditions. In that caseltain:

OF, OF, OF,
a_;(p :p0ap0aT)+W£(p :p0ap0aT) = 07 q=4q = _a_p4<p :p0ap0aT> . (77)

However, there is a difference between these two approathsesg F; we solve the
necessary and sufficient conditions defined by Eq. (7.5)erctnfiguration spacey is

the unknown) whereak, yields an equation whose variables are in the momentum space
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Although this difference does not have any importance if searches for all periodic
orbits of a given period, it is crucial if some constraints anposed on the domain in the
phase space in which we search for periodic orbits. Formestaf one wants to find all
periodic orbits of period” crossing an axis defined by all but one componenj, dfeing
non-zero, then one should solve Eq. (7.5) for the only nan-zemponent ofy,. If one
usesF} instead, then one needs to solve Eqg. (7.7) forrittamponents of,, and then
check afterwards which solutions satisfy the constraint.

Finally, we point out that other choices of unknowns mayd/i@lore complex neces-
sary and sufficient conditions. Suppose we consider(tiidt), po, T') are unknowns, then

F, must be used. We have:

_ OF = qo,
p(T) = dq (Q7PO>T)7 q(T> q (78)

o = 52(¢p0,T), pT) = po.

These equations cannot be decoupled. As a result, we mustBokoupled equations

for ¢(T") andpy to find periodic orbits:

_ R,

b= 2T T), o) = 52

= a—m(Q(T%po,T)- (7.9)

Through this example we have discussed a novel applicafitimecHamilton-Jacobi
theory to find periodic orbits. By considering the periadnitial conditions and» com-
ponents of the state vectorAtas unknowns, we reduced the search for periodic orbits to
solving two-point boundary value problems with constrairi/sing the generating func-
tions, these boundary value problems simplify into a setemiessary and sufficient con-
ditions that characterize periodic solutions. Furtheemare proved that there are choices
of unknowns that give simpler sets of conditions. Most int@otly, once the generating
functions are known, solutions of these necessary and isufficonditions are computed

using algebraic manipulations only, no integration is reggl In particular, using the
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algorithm developed in Chapter V, solutions of the necesaad, sufficient conditions
correspond to roots of polynomials and are therefore e&milyd.

We now generalize our approach and study its properties. dtieen in the above ex-
ample that there are choices of unknowns that give simpterd@ecessary and sufficient
conditions. For instance, the use(QtT), o, T') and(p(7T'), po, T') allowed us to derivén
necessary and sufficient conditions for periodicity, ameigch n were decoupled. On
the other hand, the use ¢§(7'), po, T') yielded2n coupledequations, the reason being
that we were unable to simplify tii equations (3.10) and (3.11). In the general case, an

arbitrary generating functiofi;, g, verifies:

pr, = 82’5,? (41,11, Gox,  Doge » T) ,
a, = —aﬁﬁ,:j" (41, Pi,» ok, Pog, » T) » 7.10)
Pog, = —85,;;’;? (41, 11, Gox, > Pog,» T
Q. = a;,fﬁ; (91, DL, Gorc, » Po. - T) -

Assumingq(T) = qo andp(T) = po, these equations can be decoupled if and only if
LN K, #0.1f dim (I, K,) = m, thenm equations can be decoupled. The case where
m = n is optimal as it yields: coupled equations and decoupled equations. In the
following, we restrict ourselves to the case whete= n, i.e., I, = K,, and thus only
consider unknowns of the for;,, py , Qo+ Po;, T).

Let (i1,---,4p) (¢ps1,--- ,i,) be a partition of the sefl,--- .n) into two non-
intersecting parts such thagt < --- < iy, i,+1 < -+ < i, and define, = (i, -+ ,3,).
Let us solve the problem that consists of findi(rqu,pfp,qolp,pojp,T) such that Eqgns.
(7.1)-(7.2) are satisfied. This is a two-point boundary gghwoblem with an unknown
transfer timel’, and constraints defined by Eqns. (7.1)-(7.2). Solutigns= q0,,:P1, =
Poy, qolp,pofp,T) of this problem are, by definition, periodic orbits of periédthat go

through the point whose coordinates are partially giver(da)é,pofp) at the initial time
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t = 0 and att = T'. For instance, ih = n, we recover the above example in which we
find all the periodic orbits of period going though the poinj, att = 0 andt = 7.
To find the set of solutiong;;, = do,, DI, = pofp,qolp,pofp,T) satisfying Eqns. (7.1)-

(7.2) we use the generating functiéh ;. Recall the equations satisfied by, ; :

OFr, 1
pIP = 8(;;171)(quvpfpaqolpapijuT) ’
6FI I
q[_p = - apl; p(Q[p7pI_p7q0[p7p0fp7T) 9
oF;, (7.11)
Ty, T ~
pofp = - 8(1;7[:) <q1p7p1p7 QO1p7p0jp7T) )
OFr, 1
qofp = 8p§1, E (QIp7pfp7 QOIP ; pij ; T) .
p

Combining Eq. (7.11) together with Eqns. (7.1)-(7.2) yidhis2n following equations:

0Fy 1
aqz;p p.(q]p = 4o, P, = pofp,qolp,pofp,T)
OF; 1
apl;, - (qlp = qOIZ,?pI_p = pijaqOII)?pOfp’T) - O, (712)
P
oF, 1,
aqolp (QIP = QOz,,apr = PofpaQUfpapofp,T)
OF |
+ ap;)? p (q]p - qOIppjp :7p01‘p7q0[p7p0[—p,T) = 0’ (713)
Ip
OF, 1
- a = (qlp = q01p7pfp = pOfp?QO]papol-p)T) — pOIp ) (714)
qoy,
a-FI N}
= (qu - q01p7pfp - pOf 7q01p7p0j 7T) — qu . (715)
ap()fp p p P

These2n equations are composedmotoupled equations (Eqns. (7.12) and (7.13)) and
decoupled equations (Eqns. (7.14) and (7.15)). Theirisolsitq,, po, T') fully determine
periodic orbits. In addition, if we use the algorithm pre®ehin Chapter V to approxi-
mate the generating functions as polynomials, then th@gierorbits are solutions dfn
polynomial equations.

However, these equations cannot be solved as they are lecitene aren + 1 un-

knowns,(qo, po, T'), and only2n equations. Thus, in general, one needs to take at least one
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variable as a known parameter. In the above example, weeatbtidset the period’, but
other choices could have been possible. In this chapterpaegsfon two choices which

are of particular interest in astrodynamics.

1. Searching in the time domairSuppose we are looking at all periodic orbits go-
ing through a point in the configuration space that corredpdn the position of
a spacecraft. The positiop is fixed but the associated momenta and the period
are unknowns. This problem requires us to sdluesquations fom + 1 variables
only. Now the problem is over-determined. In the following whow that it can
be reduced to solving a single equation for the pefigdollowed by n function
evaluations to find the othervariables. As a result the only variable that is not triv-
ially found is the period’. This motivates our choice to call this class of problem

“Searching in the time domain”.

2. Searching in phase spac&he second type of problem we consider corresponds to
the one we discussed in the example Ex. VII.1. We set the ¢pamal look at all
periodic orbits of that period in the phase space. This spords to a search for

periodic orbits in thgohase space

Searching in thetime domain

We assume knowledge efcomponents of a point in the phase space,(sa,y, pofp),
and search for all periodic orbits going through that poiRecall the conditions (Eqgns.
(7.12) and (7.13)) derived using,, ;. Since the coordinate(qolp,pofp) are known, these

equations are functions of the perigdnly:

8F]p’]p
TIP(QIP = Qijapfp = pOfPJQOIPJPOfp7T)
aFijp

apf (QIP = q01p7pfp = pOfp7QO]p7p0fp7T) = 07
P
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8F]p I
aqOIp (QIP - q01p7pfp = pijaQOIPap()jpaT>
8F] I
%(QIP = q0[ppfp :7p0fp7q0]p7p0jp7T) =0.
0r,

P

Solutions of these equatioris, correspond to the periods of periodic orbits that go thhoug
(qolp,poip). Instead of solving the equations fon variable we may combine them in the

following way:

oF; 1 aF] I OF; 1 oF; 1
P> p polp , prip 2o dpp p 7.16
H ( aQIp apjp (a) 8q01p (a) apolp > H ( )

wherea = (q1, = qo, . P71, = po,—p;Qo,,,,pofp,T) and|||| is a norm. This equation can be
easily solved numerically or even graphically. Finallyre¢ocover the: remaining unknown

coordinates, we only need to evaluate thequations (7.14) and (7.15):

8F1p,1p

- 8110 (QIp = q01p7pf_p = pij7q01p7p0jp7T) = pO]p ) (7 17)
OF, .
8pI§ - (qlp q01p7p1_p = pijv QO1p7p0jp7T> = qup .

Example VII.2. Suppose = n, so thatF;, ; = Fi. Then Eq. (7.16) simplifies to:

0F;

F;
”—( QO7QO7T)+—1(C]:Q07Q0aT>H =0. (718)

dqo

Eq. (7.18) is a single equation of one variable that can besdajraphically. To find the

corresponding momentum, we can use Eq. (7.6):

OF
p(T) =po = a—ql(q = qo,q0, 1), (7.19)

To conclude, using the Hamilton-Jacobi theory we are ablehtracterize periodic
orbits going through a point in the phase space partiallgifipd by n of its 2n coordi-
nates. Solutions to the obtained equations are easily fonnd the generating functions
are known. Indeed, it suffices to solve an equation of onakibito find the periods of the

orbits, 7. Then then remaining coordinates are found at the cost &inction evaluations.
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Searching in phase space

We now search for all periodic orbits of a given peribdThis problem is well-posed
since we now haven equations an@n unknowns. A priori, there are no imposed choices
for generating functions to solve this problem. Any genagatunction of the formry, ;.
may be used equivalently. Indeed, Eqns. (7.12)-(7.14) éefirequations ofn variables,

n of the equations being decoupled. The difference betweeditons derived using
different generating functions is mainly the space on wiiar. coupled equations need
to be solved. For instancé; yields conditions whose variables lie in the configuration
space whereak, yields conditions whose variables lie in the momentum spic®main
constraints are imposed then some particular choice ofrgeéng function may be more
appropriate. For instance, if one looks for periodic orbitthe vicinity of an equilibrium
point, one should use thie generating function.

To conclude, the approach we propose has many advantagesuahio other meth-
ods developed in the literature. First, there is no needtegmate the equations of motion
once the generating functions are known. Only a system ofoast mequations (where
2n is the dimension of the phase space) need to be solved. Seserib not need any
initial guess to initialize our algorithm. Finally, and masportantly, our approach is very
general and applies to any Hamiltonian system, indeperafetstcomplexity.

Let us now illustrate the theory developed above with soraegtes. First we analyze
the necessary and sufficient conditions obtained for lisgastems, and then look at some
more sophisticated problems such as periodic orbits in théhirfee-body problem and in

the restricted three-body problem.
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7.2 Linear systems analysis

In this section we focus on finding periodic orbits of linegstems using the generat-
ing functions. In particular, we simplify the set of equasq7.12)-(7.14) that characterize
periodic orbits. For sake of simplicity, and without losgyeherality, we only focus on the
F1 generating function, the content of this section can rgdukl transported to the other
generating functions.

Consider a linear Hamiltonian system with quadratic Hamilda function:

H(q,p,t):%XT Hgq(t) Heyp(2) X, (7.20)

HPQ(t> pr(t)

. q : :
whereH,, = H,, H,, andH,, are symmetric an&” = . If one studies the relative
p
. . Aq : ,
motion of two particles, thei = X" = as previously defined.
Ap

For linear systems, the generating functionis also quadratic in its spatial variables

without any linear term (Lemma 111.3), i.e,

1 FL(t) FL(t
R(Y,t) = =Y7T ult) Filt) Y, (7.21)
2

Fn(t) Fy(t)

. 4q
whereF, = FL”", Fl, and F}, are symmetric and = . Then, Eqns. (7.12)-(7.15)
do
transform into:

FL(T)+ FL(T)+ FL(T)+ FL(T)] ¢ = 0,

[ (T) + Fy (T) + Fip(T) + Foo(T)] qo (7.22)
[F51(T) + Fop(T)] a0 = Do

Eq. (7.22) defines twa-dimensional matrix equations that are functionof+ 1

variables. As we mentioned before, we need to take at leastvanable as a known

parameter.
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Example VII.3 (Periodic orbits about the Libration point L, in the Hill three-body
problem). Let us find all the periodic orbits going through a given pajntusing the
linearized equations of the dynamics about the Libratiomtpb, in the normalized Hill
three-body problem (Appendix C).

We first need to solve the coupled equations for the time period:
[F111(T) + F211(T) + F112<T) + F212(T>] g =0. (7.23)

From linear algebra theory, a necessary condition for thiggon to have a solution (as-

sumingq, # 0) is that:
det [F}\(T) + F5y (T) + F5(T) + Fp(T)] = 0. (7.24)

Fig. 7.1 represents this determinant. We notice that theistseone time at which the

100f
‘ >
0 1.5 2 2.5 301
-100}
-200}

Figure 7.1: Determinant of the matrix defined in Eq. (7.24)

determinant vanishes. Using Newton iteration we find thediitishes a&t7" = 3.0330191
and that the rank of the matri!, (7)) + Fy, (T)+ Fi5(T)+ ), (T) at thisT is 0. Therefore,

any pointg, in the configuration space belongs to a periodic orbit ofquefli. These

IHigher accuracy may be obtained using a smaller time step wbleing for F;
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results are in agreement with known results on periodic®ddout the Libration points
in the linearized system. Using linear systems theory, we firat the true period of

oscillatory motion abouL is 3.0330193236451116.

7.3 Nonlinear systems

In this section, we illustrate the power of the proposed wetio find periodic orbits
of nonlinear systems. We address two non-trivial examgiest, we study periodic orbits
about the Libration poinL, in the normalized Hill three-body problem. Then, we search
for periodic orbits in the vicinity of a periodic orbit in thrmalized restricted three-body

problem.

Study of periodic orbits about L,

In order to apply our method to finding periodic orbits we neecdompute the generat-
ing functions. Using the algorithm presented in Chapter V reeable to find a polynomial
approximation of the generating functidf up to orders, that is, we use an approxima-
tion of order5 for the dynamics. For the present study, such an approométisufficient

since we found in Section 5.4.3 that the domain of use is }5.14
D = {0.05, (0.01,1.32) U (1.84,3.12) U (3.12,3.5)} .

Within the domain of use, we observed that the errar.is 10~° (about77 km for the
Earth-Sun system).

We consider the following two problems:

1. Searching in the time domaifind all periodic orbits going throughy = (0.01,0).

To solve such a problem, we use Eq. (7.16):

8F1 aFl

—(qg = T+ —(g= ) =0. 7.25
H aq (q 4o, 90, )+ aqo (q q0, 90, )H ( )
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In Fig. 7.2 we plot the left-hand side of Eq. (7.25) as a funtof the normalized
time. We observe that the norm vanishes only at 7" = 3.03353. Therefore,

0.1A
0.08¢

0.067

0.04¢

0.02¢

0.5 1 1.5 2 2.5 3t

Figure 7.2: Plot Oﬂaa_f;l(q = qo, o, T) + g_ﬁ(q = qo, q07T)|| Wherer = (001’ O)

there exists only one periodic orbit going throughand its period ig" (there may
be additional periodic orbits of periofl > 3.2, but we cannot see them in this
figure). Again, these results are in agreement with knowaltesn periodic orbits
aboutZ,. One can show that any point in the vicinity 6§ belongs to a periodic
orbit. The periods of these orbits increase as their dis&fromL, increase. In the
limit, as the distance between periodic orbits dndjoes to zero, the period goes to

T = Tlinear = 3.0330193236451116.

2. Searching in position spaceAnother problem is to find all periodic orbits of a
given periodl’ = 3.0345. To solve this problem we use Eq. (7.12) which defines
two equations with two unknowns that can be solved graplyicit Fig. 7.3, we
plot the solutions to each of these two equations and thearsapose them to
find their intersection. The intersection corresponds totems of Eq. (7.12), that

is, to the set of points that belongs to periodic orbits ofiquefl’. We observe
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that the intersection is composed of a circle and two poiritesg coordinates are
(¢x,qy) = (—0.0603795,40.187281). The circle is obviously a periodic orbit but
the two points are not equilibrium points, and rather cqoesl to out-of-plane

periodic orbits.

0.4 y 0.4, y
0.2 0.2
R x 1IN x
-0.1 -0.05 / 0.05 0.1 -0.1 -0.05 k 0.05 0.1
~0.2 -0.2
-0.4 -0.4
(a) Plot of the solution to the first equatidin) Plot of the solution to the second equa-
defined by Eqg. (7.12) tion defined by Eq. (7.12)
0.457
0.2}

™~ x
j 0.05 0.1

(c) Superposition of the two sets of solutions

Figure 7.3: Periodic orbits for the nonlinear motion aboutlaation point

By plotting the intersection for different periods we generate a map of a family

2We point out that these points do not lie in the domain of uskaaa only consequences of our approx-
imation of the dynamics.
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of periodic orbits around the Libration point. In Fig. 7.4 vepresent the solutions
to Eq. (7.12) fort = 3.033 + 0.0005n, n € {1---10}. Fort = 3.033 (which is

less than the period of periodic orbits in the linearizedeays, the intersection only
contains the origin, which is why there are oflyeriodic orbits shown around the
origin. We note that at larger values of + 2 the curves do not overlay precisely,

indicating that higher order terms are needed.

(a) Plot of the solution to the first equé) Plot of the solution to the second equa-
tion defined by Eq. (7.12) far = 3.033 + tion defined by Eq. (7.12) far= 3.033 +
0.0005n n € {1---10} 0.0005n n e {1---10}

(c) Superposition of the two sets of so-
lutions fort = 3.033 + 0.0005n n €
{1---10}

Figure 7.4: Periodic orbits for the nonlinear motion abouttaation point
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Periodic orbits in the vicinity of a given periodic orbit in t he restricted three-body
problem

We consider the normalized circular restricted three-qudyplem (Appendix C) with
= 3.0359 - 1079 (this value ofu corresponds to the Earth-Sun mass ratio). The peri-
odic orbit of period7T™* = 3.568576 going through the point1.2,0) is chosen to be the
reference trajectory. It is represented in Fig. 7.5. In #astion, we search for periodic
orbits in the vicinity of the reference trajectory. To sotis problem, we use a polyno-
mial approximation of the generating functions of ordezomputed using the algorithm

developed in Chapter V. We emphasize the following two proiste

Y

Figure 7.5: Periodic orbit in the restricted three-bodypean with periodl” = 3.568576

1. Searching in the time domaiiven a point in relative position spa¢e.23,0.03),

find the periods of all periodic orbits going through thismgoiln Fig. 7.6 we plot
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the left hand side of Eq. (7.18). We notice the existence ofperiodic orbits with
respective period¥’ and 27 whereT = 3.62613. In Fig. 7.7, we generate the

350
30t
25}
20}
15}

10¢
5

| | t
2 4 6 g

Figure 7.6: Plot Oﬂaa—l;l(q = qo,qo,T") + %(q = qo, o, T')|| wheregy, = (0.03,0.03)

obtained periodic orbit going throudh.23,0.03). Note that the approximation of
the generating function provides an accurate picture ofrtteemotion since the the

periodic orbit repeats itself perfectly. In Fig. 7.7, thdibrepeats itsel80 times.

2. Searching in position spacé&et us now recover the previous periodic orbit from its
period. In this case, we s&t= 3.62613 and we use Eq. (7.12). Eq. (7.12) defines
two equations with two variables. In Fig. 7.8 we have plottesiset of solutions to
each of these equations and their superposition. The @uos of the two sets of
solutions represent the set of solutions to Eq. (7.12) aad &c of circle. We verify
using Eqns. (7.5) that the intersection corresponds to iagierorbit (we exactly

recover the periodic orbit represented in Fig. 7.6).

We note that our method does not recover the entire periodit; because the entire
orbit does not lie in the domain of convergence. Indeed, veeilshhave found an

almost circular trajectory close to the nominal one, thabigadius larger tham.2.



Figure 7.7: Periodic orbits going through the pgin3, 0.03)

To describe such an orbit we must be able to predict relatotsoms that are as large
as2.4. Nonetheless, the set of intersections we find is enouglctves the whole

trajectory using Eq. (3.8) and Hamilton’s equations.

Finally, we can let the time vary and obtain a family of per@adrbits. In Fig. 7.9

we setl’ = 3.58 + 0.01k, k € [0,7]

To conclude, we have presented a novel approach for findingdpe orbits. The
method we propose allows us to search for periodic orbitshasp space or in the time
domain without requiring any initial guess or knowledge gdaaiodic orbit that belongs
to the family. This is a major advantage compared to tragigtionethods. Most important,
we reduce the search for periodic orbits to solving a noalisystem of equations. Once

the generating functions are known, no integration is meguto find periodic orbits of
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(a) Set of solutions to the first equation db) Set of solutions to the first equation de-

fined by Eq. (7.12)

fined by Eq. (7.12)

0.45Y

-0.1

-0.05

-0.2

-0.4
(c) Set of solutions to Eq. (7.12)

Figure 7.8: Periodic orbits of perid = 3.62613

different periods and/or going through different pointdhe phase space. This is a fun-

damental property of the generating functions that we ve# again in the next chapters;

once the generating functions are known, any two-point dannvalue problem can be

solved at the cost of a single function evaluation. Finallg,mention that searching in the

time domain may not be as accurate as searching in phaseitpaeaises the algorithm

we developed in Chapter V. Indeed, generating functions gessesed as polynomials

with respect to their spatial coordinates with time-degancoefficients. These coeffi-

cients are solutions of ordinary differential equationd are therefore known at certain
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-0.1 -0.05 .05 0.1-0.1 -0.05 .05 0.1

<0.4

(a) Plot of the solution to the first equéd) Plot of the solution to the second equa-
tion defined by Eq. (7.12) fdI' = 3.58 + tion defined by Eq. (7.12) fof' = 3.58 +
0.01k, k€ {0,7} 0.01k, k €{0,7}

JANY

-0.1 .05 0.1

0.4
(c) Superposition of the two sets of solutions o=
3.58 + 0.01k, k € {0,7}

Figure 7.9: Periodic orbits in the three-body problem

times (the nodes) only. As a result, solutions to Eq. (7.16%tbe computed using an

interpolation of the coefficients between the nodes.



CHAPTER VIII

SPACECRAFT FORMATION DYNAMICS AND
DESIGN

Several missions and mission statements have identifiedatoyn flying as a means
for reducing cost and adding flexibility to space-based @og. However, such missions
raise a number of technical challenges as they require aecdynamic models of the
relative motion and control techniques to achieve fornmetexonfiguration and formation
maintenance. There is a large literature on spacecraftaibom flight that we will not
attempt to survey in a systematic manner. On the one hand welfticles that focus
on analytical studies of the relative motion, and on the okizend there are a large class
of articles that develop numerical algorithms that solvec#c reconfiguration and for-
mation keeping problems. Theoretical studies require aaycal model for the relative
motion that is accurate and tractable. For that reason thiee€sy-Wilshire (CW) equa-
tions, Hill's equations or Gauss variational equationsehaften been used as a starting
point. Using the CW equations, Hope and Trask [50] study hoyge formation flying
about the Earth, Vadali, Vaddi and Alfriend [92] look at melic relative motion about
the Earth, Gurfin and Kasdin[42], and Scheeres, Hsiao ank[8%j focus on formation
keeping, Howell and Marchand[51], and Vadali, Bae and Affti¢91] analyze relative

motion in the vicinity of the libration points and Vaddi, Aiénd and Vadali [93] study the

200
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reconfiguration problem using impulsive thrusts. Howefa@ra large class of orbits these
approximations do not hold.%, effects as well as non-circular reference trajectory sthoul
be taken into account for low Earth orbits and an ellipticitoidr the primary should be
considered to study the dynamics at the Libration pointsa Assult, past researchers have
modified the CW equations in order to take thegravity coefficient into consideration.
These improved equations have been widely used; AlfrieadSaaub [2] study periodic
relative motion and Lovell, Horneman, Tollefson and Trage$62] analyze formation re-
configuration with impulsive thrusts. The non-impulsiveust problem is usually solved
using optimal control theory (although there are some etmes, for instance F.Y. Hsiao
and D.J. Scheeres[52] and I. Hussein, D.J. Scheeres andl&ndHfs3]), and if the dy-
namical model is tractable then analytical solutions far filedback control law may be
found (see Mishne [69]). These analytical approaches atioe/to perform qualitative
analysis and provide insight into the dynamics of the redatnotion, however they cannot
be used for actual mission design (except [3]). Indeed, laee inherent drawbacks: they
neglect higher order terms in the dynamics and their dombiralkidity in phase space
is very restricted and difficult to quantify. In addition, theds based on the state tran-
sition matrix tend to be valid only over short time spans. @& other hand, numerical
algorithms have been developed to design spacecraft fmmsaising the true dynamics.
Koon, Marsden, Masdemont and Murray [59] use Routh redud¢taeduce the dimen-
sionality of the system and then develop an algorithm basedeuse of the Poincamap

to find pseudo-periodic relative motion in the gravitatidingld of the Earth (including the
Jo gravity coefficient only), Xu and Fitz-Coy[100] and AvanziBiamonti and Minisci[9]
study formation maintenance as a solution to an optimalrobptoblem that they solve
using a genetic algorithm and a multi-objective optimiaatalgorithm respectively. Even

though these methods use the exact dynamics and therefoteecased to solve a spe-
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cific reconfiguration or formation maintenance problemytfad (except [59]) to provide
insight into the dynamics. In addition, as noticed by Wand Biadaegh [94], formation
reconfiguration design is a combinatorial problem. As altéke algorithms mentioned
above are not appropriate for reconfiguration design asrdopyire excessive computation
(to reconfigure a formation aV spacecraft, there arg! possibilities in general).

The method we expose in this chapter, based on the theoriogexdsan Chapter 111 and
on the algorithm presented in Chapter V, directly tacklesehesues and should be viewed
as a semi-analytic approach, since it consists of a numeligarithm whose output is a
polynomial approximation of the dynamics. As a consequeweeare able to use a very
accurate dynamic model and to obtain tractable expresdeswsibing the relative motion.
A fundamental difference with previous studies is that wecdiée the relative motion,
i.e., the phase space in the vicinity of a reference trajgcts two-point boundary value
problems whereas it is usually described as an initial vafoblem. Such a description of
the phase space is very natural and convenient, For instaageconfiguration problem
and the search for periodic formations can be naturally fdated as two-point boundary
value problems.

In this chapter, to showcase the strength of our method, we ¢tlaosen to study two

challenging mission designs.

1. We first consider a spacecraft formation about an oblatn Ehe ./, and.J; gravity
coefficients are taken into account) that must achiem@ssions over a one month
period. For each mission the formation must be in a given gardtionC; that
has been specified beforehand, and we wish to minimize thelb¥eel expendi-
ture. The configuration§; are specified as relative positions of the spacecraft with
respect to a specified reference trajectory (Fig. 8.1(ale d;'s may be fully de-

fined or have one degree of freedom. In our example we requirspacecraft to
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be equally spaced on a circle centered on the referencettvpjeat several epochs

over the time period. The design of such a mission has sesfeaienges:

¢ the dynamics are non-trivial and non-integrable,

¢ the reference trajectory has high eccentricity, high mation and is not peri-

odic,
e missions are planned a month in advance,

e in our specific example discussed hetespacecraft must achievemissions,

if one assumes that th& are fully defined there arg 962, 624 ways of satis-

fying the missions,

e the(; may be defined by holonomic constraints and have an additiegaee

of freedom.

2. Next we consider the design of stable formations, thairdeployment of a forma-
tion and the redesign of an already deployed formation. Bt problems, given
a reference trajectory we wish to place the spacecraft wigtaity and ensure that
they remain “close” to each other over an extended perioohedf {(see Fig. 8.1(b)).

This design is also very challenging because:

¢ the dynamics and the reference trajectory are non-trigsbgfore),

e trajectories must not collide (except at the initial timettoe deployment prob-

lem),

¢ high accuracy in the initial conditions is required for letegm integration.
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/(M,T)-stable trajectories ‘7.:

T

Non (M,T)-stable trajec%‘/n RSN
: | L N
L N ) : , ) B —‘v’v I \\

Reference trajectory

(a) At eacht;, spacecraft must be ifb) Stable and non-stable trajectories
the configuratiorC;.

Figure 8.1: The multi-task mission and the search for statdigurations.

8.1 Problem settings

The motion of a satellite under the influence of the Earth rfeatley an oblate sphere
(J> and J3 gravity coefficients are taken into account) in the fixed dowate system
(x,y, z) whose origin is the Earth center of mass is described by thenimg Hamil-

tonian:

1
H = §(p§+pf, +p2)

1 R2 2
B e 3 > —1]J
Va2 +y? + 22 2r3(z2 + y? 4+ 22) \ 2?4+ y? + 22

R? 23
— 379 D) 5 5 — 3z Jg 5
2r3(x? + 2+ 22)2 \ a2 +y? + 22
where

GM = 398600.4405 km3s=2, R = 6378.137 km, ©.1)

Jo = 1.082626675 - 1073 Jy = 2.532436 - 107°
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and all the variables are normalized (s the radius of the trajectory at the initial time):

r — ITo, y — Yro, £ = ZTo

P Lo GM Lo JGM Lo GM
M’ Dz Pz ro Dy Dy ro e D ro
(8.2)

In the following, we consider a reference trajectory whotsesis designated by
(¢°, p°) and study the relative motion of spacecraft with respedt fbHe reference trajec-
tory is chosen to be highly eccentric and inclined, but ameothoice could have been

considered. At the initial time its state is:

P =r,, qu()/{:m, © =0Fkm,
0 _ -1 0 _ GMr, -1 .0 _ GMry -1
pe=0kms™", p, = T (ratry) cos(a) kms™, p)) = o sin(a) kms™!,
a = Zrad, rp = 7,000 km, rqe = 13,000 km .

(8.3)

Without theJ; and.J; gravity coefficients the reference trajectory would be diptet
orbit with eccentricitye = 0.3, inclinationi = /3 rad, argument of perigee = 0,
longitude of the ascending node = 0, semi-minor axis,, = 7,000 km, semi-major

axisr, = 13,000 km and of periodt, = 27 2%(”1;”)3 sec =~ 2 hours 45 min. The

P

Earth oblateness perturbation causes (see Chobotov [2&doe details) secular drifts
in the eccentricity (due td5s), in the argument of perigee (due #g and.J;) and in the

longitude of the ascending node (due.tpand.J;). In addition, all the orbit elements
are subject to short and long period oscillations. In Fig2 &d 8.3, we plot the orbit
elements for this trajectory as a function of time during g @out10 revolutions about
the Earth) and over a month period. The symplectic implicihg+Kutta integrator built

in Mathematica® is used for integration of Hamilton’s equations.
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Figure 8.2: Time history of the orbital elements over a ongpkiod
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Figure 8.3: Time history of the orbital elements over a onath@eriod
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8.2 Formation design

We introduced a dynamical model and defined a referencectoaye In the previous
chapters we presented an algorithm whose outputs are tleeagieg functions associated
with the phase flow describing the relative motion. In additiwe explained how these
generating functions may be used to solve two-point boyndalue problems. We now
combine all the above and use it to design spacecraft foormatiWe first use the “com-
bined” algorithm to find the generating functidh up to order4, that is we need to solve
498 ordinary differential equations in the indirect methodritproceed a series inversion
and solve th€03 ordinary differential equations given by the direct meti®ek appendix
for computational times). Once the generating functioreskarown, we can solve any
position to position boundary value problem with only siXypmmial evaluations (Egs.

(3.7) and (3.8)).
8.2.1 Multi-task mission

We consider four imaging satellites flying in formation abthe reference trajectory.
We want to plan spacecraft maneuvers over the next monthikgatat they must ob-
serve the Earth, i.e., must be in a given configuratipmat the following instants (chosen

arbitrarily for our study:

to=0, t1 = 5 days 22 hours, ty =10 days 20 hours,
(8.4)

t3 = 16 days 2 hours, ty= 21 days 14 hours, t5 = 26 days 20 hours.

Define the local horizontal by the unit vectd¥s, é;) such thag, is alongr® x +° and
é, is alongé, x r°, then at every;, the configuratiorC; is defined by the four following

relative positions (or slots):

¢ =700mé;, ¢*=-T00mé;, ¢=700méy, ¢*=-700mé,. (8.5)
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Note that att;, ¢' is in front of the reference state (in the local horizontalna),¢? is
behind,¢* is on the left and;* is on the right (see Fig. 8.1(a)). At eat¢h there must
be one spacecraft per slot and we want to determine the segjoéreconfigurations that
minimizes the total fuel expenditure (other cost functisansh as equal fuel consumption
for each spacecraft may be considered as well). For the fissiom, there aré! config-
urations (number of permutation of the et 2,3, 4}), for the second mission, for each
of the previousi! configurations, there are agath configurations, that is a total af?
possibilities. Thus fob missions there aré!® = 7,962, 624 possible configurations.

In this paper, we focus on impulsive controls, but the metiveddevelop can equiv-
alently apply to continuous thrust problems. Indeed, cwus thrust problems are usu-
ally solved using optimal control theory and reduce to a $etegessary conditions that
are formulated as a Hamiltonian two-point boundary valwdbjam. This boundary value
problem can in turn be solved using the method we presentsipéper [86]. Let us now
design the above mission. We assume impulsive controlstmaist of impulsive thrusts
applied att;co 5. For each of the four spacecraft, we need to compute theitehita; so
that the spacecraft moves to its position specifiet] atunder gravitational forces only.
As a result, we must solve - 4! = 120 position to position boundary value problems
(given two positions at; andt; . ;, we need to compute the associated velocity). Using the
generating functions, this problem can be handled at thieatamly 120 function evalu-
ations. Then, we need to compute the cost function (sum ofidine of all the required
impulses, assuming zero relative velocities at the inétrad final times) for all the permu-
tations (there ar&, 962, 624 combinations) to find the sequence that minimizes the cost
function. Fig. 8.4 represents the number of configuratisresfanction of the values of the
cost function. We notice that most of the configurations meqat least three times more

fuel than the best configuration, and less th&nyield values of the cost function that are
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less than twice the value associated with the best configarathe cost function for the
optimal sequence of reconfigurationg)ig0644 km - s~ whereas it i9.0396 km - st

in the least optimal design. In the optimal case, the foucepaft have the following

positions:
Spacecraﬁl: (t()? ql)' (tla q2)! (t27 q2)! (t37 q2)! (t47 q2)7 <t57 q2)
Spacecraf2:  (to,¢*), (ti,q"), (te,q'), (t3.4'), (ta,q'"), (ts5,4").
SpacecrafB: (t()v q3), (tla q4)1 <t27 q4) <t37 q4)’ (t47 qg)’ (t57 q4)
Spacecraﬂl: (t()? q4)| (tla q3)’ (t27 q3) <t37 q3)’ (t47 q4)' <t57 q3)
whereas the worst scenario corresponds to:
Spacecraﬁl: (t()v ql)' (tla ql)) <t27 q2)! <t37 q2)! (t47 q1)7 (t57 qQ)
Spacecrafﬂ: (t07 q2)| (tla q2)’ (t27 q3)1 (t37 q4)1 (t47 q4)| <t57 q3)
SpacecrafB: (t07 q3), (tla q3)’ (tQa ql) (t37 q3)1 (t47 q3), <t5a q4)
Spacecraﬁl: (t()v q4)| (tla q4)) <t27 q4) <t37 ql)’ (t47 q2)' (t57 ql)

*10°

A 4,452,719
40+
30F
1,979,581
20¢
1,027,384
107t
502,940
/s
6.44 15.09 22.64 30.18 37.73

Figure 8.4: Number of configurations as a function of the @alfithe cost function

We may verify,a posteriorj if the solutions found meet the mission goals, i.e., if

the order4 approximation of the dynamics is sufficient to simulate theetdynamics.



210

Explicitly comparing the analytical solution with numaalty integrated results shows that

the spacecraft are at the desired positions at eyerigh a maximum error of .5-10~% km.

Considerations on collision management

Our algorithm does not consider the risk of collision in tlesign. However, it pro-
vides a simple way to check afterwards if there is collisiBecall the indirect method. It
is based on the initial value problem and essentially ctssissolving Hamilton’s equa-
tions for an approximation of the flow. Once such a solutiofoisnd, we can generate
any trajectory at the cost of a function evaluation, themoisieed to integrate Hamilton’s
equations again. Checking for collisions is again a combnmtproblem and therefore
our approach is particularly adapted to this. As an exangtlag verify if the design we
proposed for the multi-task mission yields collisions. lgufie 8.5 we plot the distance
between each of the spacecraft. We remark that spacéaafi2, 1 and3, 2 and3, and
3 and4 may collide (relative distance less thap) m). A detail of the figure shows that
spacecraf8 and4 collide whereas the other spacecraft have a relative distianger than
40 meters.

It can be proven that for this specific mission, there is ndagiethat prevents the
relative motion of the spacecraft to be less thaa m. In the best scenario, the smallest
relative distance between the spacecraft is abdut, and is achieved i, 360 different
designs. Among thesg 360 possibilities, we represent in Fig. 8.6 the time history of
the relative distance between the spacecraft for the dekmmnachieves minimum fuel
expenditure (the total fuel expendituresis % larger than in the best case). This scenario

corresponds to:

Spacecraﬂl (t[)? ql)a (tla q2)1 (t27 q3)1 <t37 q3)1 (t47 q4)7 <t57 q3)

Spacecrafﬂ: (t()? q2)| (tla q3)! <t27 q4)! <t37 q4)! (t47 q3)l (t57 q4)
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Figure 8.5: Distance between the spacecraft as a functibmeffor the best scenario

Spacecrafg: (t07 q3), (tla q4)’ (tQa ql) (tda CZQ), (t47 ql)a <t57 q2)

Spacecraﬁl: (t()v q4)| (tla ql)! <t27 q2) <t37 ql)’ (t47 q2)' (t57 ql)

For times at which the spacecraft are close to each other, ayeuse some local control
laws to perform small maneuvers for ensuring approprigtarstion.

Another option consists of changing the configurationg ab that there exists a se-
guence of reconfigurations such that the relative distaetwed®en the spacecraft stay larger
than100 m. This can easily be done using our approach sificis already known. Solv-
ing a new design would only requii€0 evaluations of the gradient a@f;.

In the above example we take advantage of our algorithm tomerthe required de-
sign, that is, we are able to plan missions involving sevgpatecraft over a month using
non-trivial dynamics while minimizing a given cost funatio Such a design is possible
because we focus directly on specifying the problem as asefiboundary value prob-

lems. Solution of this problem using a more traditional aggh to solving boundary
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Figure 8.6: Distance between the spacecraft as a functiomef

value problems would have required direct integration efeéfuations of motion for each
of the 720 boundary value problems.

However, we have not taken full advantage of our algorithmma®the above example
does not provide insight on the dynamics. We now consideffereint mission to remedy

this and show how our algorithm may be used for analyticalistu

8.2.2 A different multi-task mission

For simplicity, we assume that the spacecraft must achialyeane task, that is we
constrain the geometry of the formationtgtandt;. However, instead of imposing abso-
lute relative positions, we only require the spacecrafteaequally spaced on a circle of
a given radius in the local horizontal planetat Such a constraint is more realistic, es-
pecially for imaging satellites as rotations of the formaatabout the local vertical should
not influence performance. In this problem, combinatorias ®mooth functional analysis
are mixed together. Indeed, the positions of the four slodsgaven by a variablé (0

indicates the position of the first slot, the other slots a&anined from the constraint
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that they should be equally spaced). Then, we need to soleendinatorial problem as
in the previous case. To find tifethat minimizes the cost function, we use the polyno-
mial approximation of the generating functions providedoby algorithm to express the
cost function as a one dimensional polynomiabinVariations of the cost function are
determined analytically by computing the derivative of tost function.

We choose the initial position to be as in the previous exarapd require the space-
craft to be equally spaced &t on a circle of radiug00 meters in the local horizontal
plane. In addition, we assume zero relative velocities atitiitial and final times and
again choose the cost function to be the sum of the norm ofafeined impulses. As
before,(é, é2) span the local horizontal plane and we definas the angle between the
relative position vector angl. Sincef is allowed to vary fron to 2 (i.e., slotl describes
the whole circle ag goes from0 to 2x), we may consider that spacecrafalways goes
from slot1 to slot1. As a consequence, there &tdree configurations. In Fig. 8.7, we
plot the values of the cost function as a functiorddbr each of the configurations. The
best design is the one for whi¢h= 3.118 rad, spacecrafi goes from slotl to slot1,
spacecraf? from 2 to 3, spacecraf8 from 3 to 2 and spacecratft from 4 to 4.

If several missions need to be planned, then a new variabi¢r@esluced for each and
a multi-variable polynomial must be studied. As a resulima of the cost function are
found by evaluating as many derivatives as there are mission

Through this example, we have gained insight on the dynabyiesing the analytical
approximation of the generating function and were able teesthe fuel optimal recon-
figuration problem. The method we use is very general and eaapblied to solve any

reconfiguration problem given that the constraints on thrgigarations are holonomic.
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(d) Spacecraft goes from (e) Spacecraft goes from () Spacecraft goes from
slots(1,2,3,4)to (1,3,4,2) slots(1,2,3,4)t0(1,4,2,3) slots(1,2,3,4) to (1,4,3,2)

Figure 8.7: Fuel expenditure as a functiorddbr each configuration

8.2.3 Stable trajectories

Now we focus on another crucial, but difficult, design issoresipacecraft formations.
We search for configurations, called stable configuratisnsh that spacecraft stay close

to the reference trajectory over a long time span.
Definitions

Let us first define the notion of stable formation more prdgiséet 7" be a given

instant and\/ a real number.

Definition VIII.1 (Stable relative trajectory). A relative trajectory between two space-

craft is (M, T')-stable if and only if their relative distance never excegfiever the time
span|0, 7.

Definition VII1.2 (Stable formation). A formation of spacecraft i&)/, T')-stable if and
only if all the spacecraft hav@\/, T')-stable relative trajectories with respect to the refer-

ence trajectory.
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Periodic formations are instances of stable formationsy #re(M, co)-stable. We
also point out that our definition recovers the notion of Lyagv stability: Lyapunov sta-
ble relative trajectories arg\/, co)-stable relative trajectories. In this paper, we focus on
(M, T)-stable formations witl{" large but finite, the approach we present is not appro-
priate to find(M, oo)-stable configurations. However, when the reference t@jgds
periodic Guibout and Scheeres[33] developed a technigsedoan generating functions

and Hamilton-Jacobi theory to find periodic configurations.

Stable trajectories as solutions to two-point boundary vale problems

In order to use the theory we have presented above, we forerthia search for stable
trajectories as two-point boundary value problems.

Define the local vertical plane as the two-dimensional vespace perpendicular to
the velocity vector of the reference trajectory. In otherd# the local vertical is spanned
by (f1, f2) wheref; and f, are two unit vectors along x +° andv® x f, respectively. In
the local vertical plane, we use polar coordinates;- r°, 9), 6 being the angle between
f1 and the local relative position vector— 0. We denote by; the circle of radius-
centered on the reference trajectory that lies in the loeglcal plane at. A position on
this circle is fully determined by (see Fig. 8.8). Then, given an instant> ¢, and a
distancer; > 0, the circleC,/ is defined.

Before searching for stable configurations, we first intredacew methodology to
find (M, T)-stable relative trajectories for a single spacecraft attmureference trajectory
defined above. Consider the following two-point boundaryigaroblem:

Find all trajectories going from the initial position of tepacecraft to any point aff ff:T
in 7" units of time where ; < M (Fig. 8.9).

Solutions to this boundary value problem have the followpngperties:
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Figure 8.8: Representation of the local geometry

Figure 8.9: Boundary value problem
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1. they contain{ M, T')-stable relative trajectories.

2. they contain relative trajectories that are bf, 7)-stable, i.e., trajectories that go
far from the reference trajectory in the time inter¢@lt; = 7°) but come back close
to the reference trajectory af. We point out that many of these trajectories are

ignored by our algorithm since it uses a local approximatibtne dynamics.

On the other hand, we know that stable trajectories must kiawiar orbit elements as
compared to the reference trajectory. Therefore, to disnate between the solutions
to the two-point boundary value problem we can use orbit elgs) especially since we
know, a priori, that the longitude of the ascending node and the argumedrafee have

secular drifts. This leads us to define a cost functicas:
1 1 1 1
J = ZHAWWH + ZHAwtf - Au)toH + ZHAQI‘]«H + Z“AQtf - AQto” ) (86)

where||Aw;, || corresponds to the relative argument of perigeé;at.e, the difference
at ¢, between the argument of perigee of the spacecraft trajeetod the argument of
perigee of the reference trajectoliydw;, — Awy, || characterizes the change in the relative
argument of perigee between and¢,; and the other terms are similar and involve the
longitude of the ascending node instead.

Let us now consider the following boundary value problenmdrall trajectories going
from the initial position of the spacecraft to any point@{rjﬁ inty — o units of time that
minimize J.

From the above discussion, we conclude that solutions sdothuindary value problem

characterize stable relative trajectories.

Methodology

We showed in the previous section that the search for stadglectories reduces to

solving a two-point boundary value problem while minimgia given cost function. In
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this section, we solve this problem using generating fomsti
First we notice thaf} solves the boundary value problem that consists of going fro

an initial positiong, to a positiory in ¢; units of time. Indeed, from Eqgns. (3.7) and (3.8)

we have:
o0F;
= - t 8.7
Do 8q0(qf’qo’ f)> ( )
or
Py = 6—(;(%%,%)- (8.8)

Then we assume thay describe<’,/, that is,q; = r; cos(s) fi + rysin(0y) f where
6, ranges fron? to 27. SinceF is approximated by a polynomial iy, o) with time-
dependent coefficients, Eqns. (8.7) and (8.8) allow us toessp, andp, as polynomials
in 6 with time-dependent coefficients. Finally, with knowledwev,(6;), pf(f¢), ¢ and
qr(05), we can expresd as a function off; and easily find its minimg6;, - - -, 67}.
Stable trajectories are then those that travel figrto ¢y = r cos(@j;)fl + 7y sin(@jc)fz,

i € [1,7] in ty units of time.
Example

Let us illustrate this procedure by searching for stablge¢taries for a spacecraft
whose initial position relative to the reference trajegtait the initial time isqy, =
(495, —428.6,247.5) m in the inertial frame or equivalently, = 700 cos(m/4)f1 +
7OOSin(7r/4)f2 m. We use an ordert approximation of the dynamicst; =
10 d 19 h 13 min andr; = 700 m. Then, using a symbolic manipulator, we ex-
pressJ as a function of; and plot its values in Fig. 8.10. It has two local minima at
01 = 0.671503 rad andfy, = 2.4006615 rad that correspond to stable trajectories. The
relative motions associated with these two trajectoriesrapresented in Fig. 8.11 and
8.12 over time spans smaller and larger thar\We notice the excellent behavior of these

trajectories, they remain stable over a time interval latigen the one initially considered.



219

We also point out that one of the trajectories (figure 8.11) jst,)-stable whereas the

other one (figure 8.12) i&r, t)-stable.

Val ues of the cost functions
at t = 259 h 13 mn

0. 0003
0. 0002

0. 0001

6 (rad)

1 2 3 4 5 6

Figure 8.10: Cost function as a functiontfor t; = 10d19h13m

Before going further, let us discuss the role played pyWe transformed the search
for stable trajectories into a boundary value problem oviema span defined by, that
we apparently chose arbitrarily. By varying we notice that minima of the cost function
correspond to different stable trajectories. In Fig. 8.18 plot the cost function as a
function of 6 fort =ty — 1 h 6 min = 10 d 18 h 19 min. In contrast to the previous
case, the cost function has only one minimunt at 3.814575 rad. In Fig. 8.14 we
represent the trajectory that corresponds to this minimtis stable but different from the
previous ones (Fig. 8.11 and 8.12). This result was expeatdanakes our approach even
more valuable. Indeed, since we reduced the search foedtaptctories to a boundary
value problem, we completely ignore the behavior of the spiaadt at intermediary times
t € [0,¢], we only take into account the states of the spacecraft anitie time and at
tr. As aresult, short term oscillations play a major role atérahe locus of the minima
of J. Thus, by varying ; we are potentially able to find infinitely many stable tragetts
going throughy, at the initial time. This aspect allows us to design a deplerynproblem,

for instance, where several spacecraft are at the samedogtthe initial time and we
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Figure 8.11: Trajectory associated with the minimum
0 = 0.671503 rad, t; = 10 d 19 h 13 min
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Figure 8.12: Trajectory associated with the minimum
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want to place them on stable trajectories that do not collide

Val ues of the cost functions
at t =258 h 19 mn
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Figure 8.13: Cost function as a functionéfor t; = 10 d 18 h 19 m
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Figure 8.14: Trajectory associated with the minimum
0 = 3.814575 rad, ty = 10 d 18 h 19 min

Furthermore, larger or smaller valuestgfcould have been chosen, however we must
be aware that if; is too small, short term oscillations may be as large as fifteadhid in that
case the cost function does not discriminate well; its mandha not necessarily correspond
to stable trajectories. On the other handt ifis very large, the minima correspond to
(M, T)-stable relative trajectories withi increasing as; increases.

Finally, in the above example we selected trajectoriesdbatspond to minima of
and lett, vary to find several stable trajectories. However, trajgesothat correspond to
values of/ close to the minimum may be stable trajectories as well. Nargt,, say from

T toT?, we notice that the trajectory corresponding to the mininefichat 7" is different
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from the one corresponding to the minimumJoat 7. Although the trajectory associated
to 7! does not correspond to a minimum.6fat7?, it is stable and therefore corresponds
to a small value of/ at7?. As a result, we are able to identify regions in which theee ar
no stable trajectories that go through an initial posigjgand through the circle of radius
ry att;. For example, all stable trajectories that go throggk= (495, —428.6,247.5) m
andq; = 700 cos(f;) f, + 700sin(f;) f, m att; are roughly localized on the arc defined
by 6; € [0, 7] whent; = 10 d 19 h 13 min (Fig. 8.10) and by; € [2,5] rad when

t; =10 d 18 h 19 min (Fig. 8.13).

8.2.4 Stable configurations

In this section, we generalize the approach introducedeabowrder to design stable
configurations. Without loss of generality, and for sakeiofi@icity, we assume that the
formation is onC;? at the initial time so that the positions of the spacecraftdatermined
by the angl&,, the angle betweefy and the local relative position vector. As a result, the
initial position may be regarded as a functiordgf Thus, Eqns. (8.7) and (8.8) provide a
polynomial approximation of, andp; in the variablegé,, 6;) (instead ofd; only) with
time-dependent coefficients. The procedure to find stabjediories is the same as before
but now we have an additional variablg, In Fig. 8.15 we represent the values of the
cost function as a function df; andé, for different times. We notice that if two out
of the three variable®y, 6y, t;) are given, there exists a value of the third variable that
minimizes the cost function. In other words, whatetfeand¢; are, there exists a stable
trajectory that goes through the initial position at théiahtime and reache(éfjf in ¢, units
of time. Moreover, ift; varies, minima of the cost function correspond to differstable

trajectories due to short term oscillations.
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Figure 8.15: Cost function as a function of the initial and lfasitions for several,

Example

We consider a formation of four spacecraft equally spaced @rcle of radius00 m
about the reference trajectory that lies in the local varptane at the initial time. Space-
craft k has its initial position defined by, = 7/4 + kx /2, k € [0, 3]. Stable trajectories
may be found by minimizing the cost function with respecttd~or every choice of;
there is a solution to the minimization problem (see Fig.58.1As a result, we are able
to find infinitely many stable trajectories for each spackcrim Fig. 8.16 we plot the
trajectories of the four spacecraft that are found by carsdt; = 10 d 18 » 19 m and
in Fig. 8.17,t; = 10 d 19 h 13 m. The two solutions have very different properties; Even
though the positions at the final timg are constrained to be a0 m from the reference
trajectory in the local vertical plane, the relative distanmay be large at intermediary
times. For instance the solution found fgr= 10 d 18 h 19 m yields a formation that
is as large as km. Such trajectories cannot be found using linear approxanstof the

relative motion.
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CHAPTER IX

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

9.1 Summary and contribution of the thesis

Starting from the observation that new methods are needaddess complex prob-
lems arising in spacecraft formation design and control haee developed a novel ap-
proach for solving Hamiltonian two-point boundary valuelgems. The theoretical as-
pects of our approach make contributions to several fielusd sight on the properties
of two-point boundary value problems and have found newlt®stlihe numerics of our
approach is also very rich, and our study of it has led us testigate and make contri-
butions to the field of variational integrators. Finally, m@sented several applications of
our method. In particular, it allows us to develop innovasolution procedures to address

difficult problems arising in a wide range of fields.

9.1.1 Theoretical aspects

The method we develop in this thesis is based on the Hamildaobi theory. We have
observed that the generating functions associated witlpliase flow readily solve any
Hamiltonian two-point boundary value problem. This obséion, that we believe no one
has made before, has many consequences that we now reAlbatee all, it provides a

very general methodology for solving boundary value protdéor Hamiltonian systems.
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Whereas traditional methods solve boundary value probldraatan initial guess only,
our approach gives a “full picture”. In particular, traditial methods completely ignore
the number of solutions to the boundary value problem. Opragzh, however, indicates
the presence of multiple solutions as singularities of gainey functions. In turn, we
proved and illustrated that these singularities can beedduahd the number of solutions
may be determined.

In linear systems theory, it is well-known that perturbatimatrices solve boundary
value problems. These matrices have distinctive proetiiat are studied in the litera-
ture. Using generating functions we have recovered andd&tesome of these properties.
Most importantly, we have proved that they correspond tdficoents of the generating
functions. As a result, our approach naturally containsthieery of perturbation matri-
ces. The relation between perturbation matrices and geémgrainctions may also be
investigated using the state transition matrix. In thipees, we have shown that the state
transition matrix and generating functions are closelpteel. One of the main conse-
guences of this allows us to predict singularities of theagating functions using the state
transition matrix. This result broadens to nonlinear gystavith polynomial Hamiltonian
function.

In nonlinear systems theory, there is no equivalent of tiugdeation matrices. Thus,
the approach we have proposed is the first to define functimasiely the generating
functions, that describe the phase flow as two-point boyne&ue problems. Obviously,
no results as general as the ones derived for linear systamdengleaned in this case.
However, for polynomial generating functions we have d&théd that singularities of the
generating functions may still be predicted from the stedadition matrix. As a result,
the existence of multiple solutions to two-point boundaalue problems is fully predicted

by the linear dynamics. The number of solutions, howevepedds on the nonlinear
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dynamics.

9.1.2 Numerics

To demonstrate the efficiency of our novel approach, we hemggsed a robust algo-
rithm to compute the generating functions. By combining techniques (called direct
and indirect), our algorithm allows one to approximate teaayating functions locally in

space and globally in time. We now briefly review its main euderistics:

¢ It handles initial conditions specified in terms of funcsonith parameters.

It applies to any Hamiltonian system, independent of its glemity.

It avoids or bypasses singularities.

We believe (but have not proven yet) that the indirect metirederves the symplec-

tic two-form if one uses a symplectic integrator. If a bourydealue problem with
long transfer time needs to be solved, this property is vatyable as long-term

behaviors of nonlinear systems are better simulated by Batipalgorithms.

The software is freely available upon request, from Danatlegres and myself.

The necessity of using a symplectic algorithm in the indigggproach has led us to in-
vestigate geometric integrators. The research we haveigaiia that direction went far
beyond our objectives and contributed to advances in thekdiebariational integrators.
Specifically, we have presented a general framework to stiigbrete systems. We
have introduced variational principles on the tangent astdrggent bundles that are the
discrete counterpart of the known principles of critical@e for Lagrangian and Hamilto-
nian dynamical systems. Our formulation has several inqpodifferences with previous
works. One of its main advantages is its ability to work witittbLagrangian and Hamil-

tonian systems. Most of the work in the literature focusedh@nlLagrangian point of
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view, and defines a discrete Legendre transformation to imagangent bundle to the
co-tangent bundle. In this manner, Hamiltonian systemisatealso Lagrangian may be
studied. However, this approach fails if the Hamiltoniasteyn is not Lagrangian. As
illustrated in Chapter 1V, this particular case is often andered, especially in optimal
control theory. Furthermore, we have shown that our apprae#iows us to recover most
of the classical symplectic algorithms. By increasing theafisionality of the configu-

ration space, it can also yield symplectic-energy consgreilgorithms. When time is a
generalized coordinate, the dynamical system is subjeahtenergy constraint, and we
are able to adapt our variational principles to take suchretcaint into account. In the

same manner, our approach may be modified to derive symphldgbirithms to integrate

non-autonomous dynamical systems with (non-holonomin¥taints.

In addition, we have given a discrete symplectic structariaé discrete phase space.
For the first time, we have been able to extend the notionsropictic two-form, canon-
ical transformation and generating function to discrettirggs. Once all these notions
were introduced, we were able to develop a discrete Hamiltmobi theory. This theory
allows us to estimate the energy error in the integrationgudifferent set of coordinates
related by discrete canonical transformations.

Finally, we have extended the above framework to optimatrobproblems and de-
veloped a unified theory to solve optimal control problemsgisymplectic integrators.
Specifically, we have introduced a discrete maximum priedipat yields discrete neces-
sary conditions for optimality. These conditions are inesggnent with the ones derived

from the Pontryagin maximum principle and define sympleictiegrators.
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9.1.3 Applications

The approach we have presented to solve two-point boundédug yproblems applies
to any Hamiltonian system. It is therefore not surprisirgg ihhas implications in several
fields. In particular, it allows us to develop new solutiogedures to study the phase
space structure, solve optimal control problems and despgoecraft formations. These

methods are all based on two important aspects of the presssdrch:

1. Once the generating functions are known, we can solve \aaypbint boundary
value problem at the cost of a single function evaluationinial guesses or itera-

tions are required.

2. Using the algorithm we developed in Chapter V, we obtairoaer-form solution

to two-point boundary value problems.

Spacecraft formation dynamics and design The first motivation for the present re-
search was to address complex problems arising in spattmragtion flight. We believe
that the method we propose meets our expectations and iebgectDespite a complex
dynamical model and an arbitrary reference trajectory, ave@Hteen able to obtain a semi-
analytic description of the nonlinear relative phase flowa@ations to two-point boundary
value problems. This representation allowed us to desigrettremely difficult missions
with little effort. Our approach, however, is not limitedtteese two missions and we recall

its main features:

e The dynamical environment may be as complex as one wantgnilgeconstraint
being that the dynamical system must be Hamiltonian. Intaddithe complexity

of the dynamical system does not seriously impact the coatipattime.

e The reference trajectory may be arbitrary.
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e The time span we consider may be very large, the larger ieigothger the ordinary
differential equations obtained with the indirect algamit should be integrated. The
main advantage of describing the phase flow as two-pointdenyrvalue problems
is that the time period we consider does not influence theracglof the results.
This aspect is of major importance, especially as this is akwess of traditional

approaches based on the initial value problem.

e Our approach also allows one to deal with low-thrust spadecin this case, the
reconfiguration problem can be formulated as an optimalrobptoblem whose
necessary conditions for optimality are a Hamiltonian et boundary value
problem. For these problems, the dynamical environmentmafiyppe Hamiltonian
since the necessary conditions for optimality yield a H&onilan system. However,
it should be emphasized that the dimensionality is doubdedbse of the adjoint

variables).

e There are no limitation on the complexity of the formatioetry in the reconfig-
uration problem as long as the geometry can be describectwiitstraints org, p)

only.

e From the semi-analytic expression of the generating fonsti several problems
may be addressed. We have seen how to solve the reconfigupatiblem and the
deployment problem, we have also been able to find stablegeoafions. One can

readily apply Chapter VIl to find periodic configurations.

Phase space structure By posing the search for periodic orbits as a two-point bounda
value problem with constraints, we have reduced the seargbefiodic orbits to solving

a few nonlinear equations. Through several examples, we slawwn that our method
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recovers known periodic orbits and thus, captures the neati dynamics. Compared
to traditional methods, the technique we propose does oireinitial guesses and/or

iterations. It characterizes periodic orbits as solutioinsonlinear algebraic equations.

Optimal control theory Finally, we have proved that the method we developed for
solving two-point boundary value problems has major ingilans in optimal control the-
ory. Not only does it allow one to solve the necessary comdktifor optimality, but it also
overcomes batrriers to truly reconfigurable control. Ushaglitional techniques, the op-
timal control law needs to be re-calculated as the boundamgitions and targets for the
system change. Using the generating functions we have sti@tif the boundary con-
ditions change in values, the resulting optimal control teay be found instantaneously.
Further, if the nature of the boundary conditions changen the need to perform a Leg-
endre transformation (i.e., a series of algebraic manijouig) to compute the new control
law. These properties are specific to our approach and céenfound in any other non-

linear methods.

9.2 Limitations and suggestions for further research

We now discuss the limitations of the present research aopoge some ideas for

future research.

9.2.1 On solving two-point boundary value problems

Computing the generating functions remains the main huadéaitcessfully applying
our work to any problem. The algorithm we present appliesdlgrnpmial Hamiltonian
systems only. This is a severe restriction as it preventons $olving the Hamilton-Jacobi
equation for both non-polynomial Hamiltonian functionsowa large spatial domain (we

are restricted to study relative motion only) and non-ati@htamiltonian functions. This
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latter case arises in optimal control problems involvingtool constraints or non-analytic
cost functions, for instance.

In addition, some systems may be singular over a finite tina@.spor instance, in the
three-dimensional two-body problem, transfers with the tadius vectors anti paralleled
to each other have multiple solutions for all transfer timEsus, we expeck; to be singu-
lar at all times in this geometry. Similarly, the Heisenbepgmal control problem yields a
singularF} generating function. For such problems, certain classesampoint boundary
value problems can never be solved as the correspondingageigefunctions are always
singular. This topic is still to be explored. To remove thegsilarities, one might need to
consider generating functions with fewer variables (kegmnly the independent ones),

but subject to some constraints involving the missing \Ees

9.2.2 In optimal control theory

A major implication of our work is in the field of optimal coolr Using the generating
functions, we can solve the Pontryagin necessary condifmroptimality for a large class
of optimal control problems. However, if the cost functiemiot analytic, or if there exist
control constraints, then the method we present must beedltd-or instance, for time-
optimal control problems, since we know that the controliieex at its upper or lower
bound, we can solve the Hamilton-Jacobi equation for bosle€and then find the times
at which the control shifts.

Furthermore, we previously pointed out that the Hamiltanebi equation reduces to
a set of matrix ordinary differential equations, one of theesmng a Riccati equation. We
believe that the connection between the Hamilton-Jacamaton and the Riccati equation
is deeper. Its understanding could yield insights into im&ar control theory. Sakamoto

[83] started to analyze this link. In particular, he geneed properties of the Riccati



235

equation to the Hamilton-Jacobi equation.

Finally, it should not surprise one that generating funwi@nd cost functions are
related, as they both verify similar equations and solveofitenal control problem. Park
and Scheeres [76] have started to investigate this commmectihey proved that “the cost
function is related to a special kind of generating functiamd that the optimal feedback
control problem can be considered as part of a more compseleefield of canonical

transformations for Hamiltonian systems” (Park and Saobeer [76]).

9.2.3 \Variational integrators

We have presented a general framework for studying theedigation of certain dy-
namical systems. We believe that this framework may be dei@gto spacetime discretiza-
tion. This would open the doors to variational principlesraulti-symplectic algorithms.
Such algorithms would allow one to develop efficient nunadriechniques for simulating
the motion of rigid bodies and complex interconnected sgsidor instance.

In addition, the discrete maximum principle we have devetbpields discrete neces-
sary conditions for optimality under some smoothness ¢mmdi. Pontryagin’s maximum
principle applies under far less severe regularity coodsi Its discrete counterpart has
been studied by Jordan and Polak [55] for instance. Howéverpbtained discrete nec-
essary conditions for optimality do not define a sympleclgoathm. It is not clear yet
how one can remove the smoothness conditions in discrdtegsetwhile preserving the

geometric features of the necessary conditions.
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APPENDIX A

THE DYNAMICS OF RELATIVE MOTION

In this appendix, we show that the dynamics of the relativéionoof two particles in a
Hamiltonian vector field is Hamiltonian.
Consider a Hamiltonian system with Hamiltonian functidiig, p, t). Let (¢0, p9) and

(¢}, p}) be two points in phase space such that:
Q(l) = qg + Aqp, (A1)
Py = Do+ Apo, (A.2)

where(Aqo, Apo) is small enough to guaranty the convergence of the Tayloesar Eq.

(A.8). We denote byq’, p*) the trajectory with initial conditiongg;, pi), i.e.,

¢' = q(q,po, 1), " = p(a5, P56, 1) (A.3)

¢° = q(qd, p5,t), ° = p(qd, p5, 1) . (A.4)

Aq
and we defineX" = the relative state vector by:
Ap

Xt =Xx04 X", (A.5)

4 q' _ .
where X* = . For convenience we shall cdl{®, p°) the reference trajectory and

i

p
(¢',p') the displaced trajectory .
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Both trajectories verify the Hamilton equations of motion:

— JVH', (A.6)
0 I oH
whereJ = andVH' = o1 (¢*,p',t). Using our previous notation,
-1 0 o
P

Eqg. (A.6) reads, fof = 1:
X0+ Xh = JVH'. (A.7)

We expand the right hand side of Eq. (A.7) about the nomiregé¢tory X°, assuming

(Agq, Ap) small enough for convergence of the series:

TH (" p", ) A + dqdp(q ,0°,t)Ap

VH(q17p17t) = VH(qoapO7t)+ ' (A8)
gqu(q 0, 1) (g%, 0%, ) Ap
Substituting this into Eq. (A.7) yields
¢°,p° ) Aq + ¢°,p°, t)Ap
X4 XM= JVH +J (010 aqap( ) oo (A9)
SH (", 0", ) Aq + TH(¢°, p°, 1) Ap
Using equation (A.6), Eq. (A.9) simplifies to:
. ¢°, 1% t)Aq + ¢°,p°,t)Ap
Xh =1y ) 8q‘9”( ) (A.10)

SH(q°,p°,t) AL(q°,p°, 1) Ap
Therefore, the dynamics describing the relative motiormaf particles in a Hamil-
tonian vector field is Hamiltonian if and only if there exists Hamiltonian functior”

such that Eq. (A.10) can be written as Hamilton’s equatitwes.

2
5 (0%, t) 550" t)

2
Gaop(@°: 0", 1) G (10, )

1
H" X" t) = §Xh Xty (A.11)

We can check that:

Xh = JVH"(X"t). (A.12)
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Without ignoring higher order terms, the expansion of tigdtrhand side of Eq. (A.7)

yields:

HMXM ) =

00 p
1 OPH i ion
E g ) T i : int1 io (q()?pO?t)X{L ' ce Xgn ’ :
7/1."'Z2n.aq11 aq%napl ...8pnn

P=2 i1, ign=0
i+ tign=p

(A.13)
Thus, the dynamics of a particle relative to a known trajgcte® Hamiltonian with a
Hamiltonian functionH" (X" t) = H"(Aq, Ap,t). The coefficients of the Taylor series

1 9tiH

rﬂw(qo,po, t) are time varying quantities and are easily evaluated foiHampiltonian

once the reference trajectory is known.
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APPENDIX B

THE HAMILTON-JACOBI EQUATION AT HIGHER
ORDERS

In this appendix, we give an explicit expressionfoas defined by Eq. (5.7). This gener-

alizes the approach developed in Section 3.2.2 for linestesys to nonlinear systems.
We assume an-dimensional Hamiltonian system with polynomial Hamilmfunc-

tion and polynomial generating functions. We have seen irp@hnd/ that the Hamilton-

Jacobi partial differential equation reduces to an ordinifferential equation of the form
Py, f27 o (), 27, (8) =0. (B.1)

In the following we use tensor notation in order to derive gplieit expression ofP. In

tensor notation, a Taylor series expansion writes as:
fla,t) = 2O+ f1(6) -2+ (f2)-2)-Z+ (1) -0)-7) - T+---.  (B.2)
Applying this formula toH (¥, t) and F, = F(y,t) yields:

H(Z) = hij(t)viz; + hije(t)zizjoe+ -, (B.3)
F(y) = [ijOvy; + fijrx®)yiviye + - (B.4)

where we assume the summation convention. Let us now express(Aq, Ap) as a

function ofy = (Agq, Apy) (we drop the time dependence in the notation, i.e., we shall
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write h, ; instead ofh; ;(¢)). Foralla <nandj =n+a

Lo = Ya, (BS)
oF
= far¥k T foa¥e + far Vet + fea Vet + fepasn + -, (B.7)

wheren is the dimension of the configuration space. The Hamilt@mslaequation be-

comes:
Figuivs + Frgwvivsye + -+ + higaia; + hijpvajag + - =0. (B.8)

Replacingz by 7 in Eg. (B.8) using Eq. (B.7), and keeping only terms of ordes les

than 3 yields:

0= fiji¥ + fij kiU + hasaths + PapYatole

+ (hants + Pnsva) Yo (foxUx + feobe + foraeyi + froxUeti + frioUryn)
+ hotantb(far¥h + frale + farkiVsti + frax¥eyi + friaYeli)

(fomYm + fmpYm + JompYm¥p + Fobm¥YmYp + FrnpsYm¥p)

+ (hntape + henrap + Poenta)YYe(fa ke + frali)

+ (hntantbe T Pntbenta + hentvanss)Ye(farUr + frayi) (foav + from)

+ hn+a,n+b,n+c(fa,kyk + fk,ayk)(fb,lyl + fl,bgl)(fc,mym + fm,cym> . (Bg)

Eq. (B.9) is the expression &f up to ordem as defined by Eq. (5.7). Itis a polynomial
equation in they; variables with time dependent coefficients and holds ifyeeefficient
is zero. We notice that the equations of oréléthe one obtained by setting the coefficients

of y;y; to zero) are the same as the ones found previously in Secok J'he equations
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of order 3 reads:
Fiinvitive + (Aijx + Bijk + Cijr )ik + (Daii + B i) Yaiy;
+ GopiYa¥o¥i + hapcYalpye = 0, (B.10)
where
Aije = Pnsansbnre(fai + fia) (fog + Fi) (fer + fre)
Bijk = boyanto(fai + fia) fojn + firs + feps)s
Cijk = Poyans(foi + fip)(fajr + fika + frag)
Dyij = (hantbnte T hnteants + Pntontea) (foi + fin)(fej + fic),
Eaij = (hamsb + Pngva) (foig + fivi + figs)
Gapi = (hapnte + hontea + Pnteap)(fei + fie)- (B.11)
We deduce the coefficients 9fy;yx:
o Coefficients ofy},
Aiii+Biii+Ciii+Diii+ Eiii+ fzzz +Giii+hiii=0. (B.12)
e Coefficients ofy. ,
Aigi+ Biii+ Coii+ fiii =0, (B.13)
e Coefficients ofy2,y;<,
(A+B+C+D+E+ f+G+h)ruijy=0. (B.14)
wherer (i, j, k) represents all the distinct permutationgofj, k), that is
Arigryg = Aijirg + Aikgi + Ariga + Argag + Ajrig + Ajiga

but

Artiigyg = Aiiga + Aijig + Ajiag -
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Coefficients ofyZ ,y;-n

(A+B+C+ flriy + (D + E)irigy + Giay = 0. (B.15)

Coefficients ofy;<,,yj<n¥r<n:

(A+B+C+D+E+f+G+h)mk 0. (B.16)

Coefficients ofy;<,yj<n¥r>n

(A+B+C+ f)rgm +(D+ E)srpy + (D+ E)j gy + Grgijye = 0. (B.17)

Coefficients ofy2.,,y;<n

(A+B+CH+ f)rgijy+ (E+ D) =0. (B.18)

Coefficients ofy2.,,y;-n

Coefficients ofy;<,yj>n¥r>n

(A+B+C+f) k) T (D + E)irir =0. (B.20)

Coefficients ofy;~,yj>nVk>n

(A+B+C+ f)rajm =0. (B.21)

Egns. (B.12)-(B.21) allow us to solve fdr, (and F; since they both verify the same
Hamilton-Jacobi equation, only the initial conditions rugidifferent). The process of
deriving equations for the generating functions can beicoad to arbitrarily high order

using a symbolic manipulation program.
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APPENDIX C

THE HILL THREE-BODY PROBLEM

The three-body problem describes the motion of three posdsniparticles under their
mutual gravitational interactions. This is a classicalgbean that covers a large range of
situations in astrodynamics. An instance of such situatisnthe motion of the Moon
about the Earth under the influence of the Sun. However, tloisl@m does not have a
general solution and thus we usually consider simplifiechtdations justified by physical
reasoning. In this dissertation we consider three simplifinis that yield two different

models:

1. The circular restricted three-body problem: If one ofttivee bodies has negligible
mass compared to the other two bodies (for instance a sdtcecder the influence
of the Sun and the Earth), it is rather obvious that its gatiaihal attraction has
very little effect on the motion of the other bodies. Igngrthe mass of this smaller
body yields the restricted three-body problem. If in adulitone of the two massive
bodies is in a circular orbit about the other one, then weinbkee circular restricted

three-body problem [7].

2. The Hill three-body problem: The Hill three-body problean naturally be derived

from the circular restricted three-body problem by assgnilmat one of the two
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massive bodies has larger mass than the other one (the Syacmihto the Earth

for instance).

C.1 The circular restricted three-body problem

We consider the planar motion of a massless body (a spatémrafstance) under
the influence of two massive bodies in circular orbit abowheather. In the coordinate
system centered at the center of mass of the two massivedab@i¢lamiltonian function

describing the dynamics of the massless body is:

H (g, qy: Pz, 0y) =

1 1—p P
5 (P2 +Py) + ety — 4y — — - —. (C.1)
\/(qx+/~t) +4q5 \/(Qx_l_’_u) +aq;
wherey = % M, and M, are the mass of the two bodies witlh, > M,, ¢, = z,

¢y = v, p. = ©—y andp, = y+z. In the above formulation we use normalized quantities,
distances are normalized with respect to the two massiveedoelative distance and the
time scale is such that the orbit period of one massive bodly respect to the other one

is 2. Then Hamilton’s equations of motion read:

e

Qx = Pzt qy
&y = Py~
! ! (C.2)
. — _ _ gzt _ x—l-l—u
be = Py~ (1= W @aiigy? ~ et arm
; - _ _ _ dy _ Y
[ by = —Pa—(1—p) (@t a7~ Hi@e—Thn )"

There are five equilibrium points for this system, calledltfi@ation points.

C.2 The Hill three-body problem

If one body has a larger mass than the other one, we can expaaduations of motion

aboutu = 0. Then, shifting the coordinate system so that its centdrdabdy with mass
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My << M, yields Hill’'s formulation of the three-body problem. Thedétonian for this

system reads:

1 1 1
H = ~(p* + p? . — Qo) — ———— + —(g? — 24 C.3
(a,9) = 5% +py) + (4P — dapy) \/erz(qy ) (C.3)

and the equations of motion become:

¢

Qx = px_l'an

q = Dy — 4z,
Y Y (C.4)

Dz = py+QQx_(q%+qu’

. py = Pz~ qy— (‘154‘(%)3/2 .
Among the5 equilibrium points identified in the circular three-bodyopltem, only two

survive in the planar Hill formulation. Their coordinateg a

Li(— (%) . ,0) and Ly( (%) v ,0).

Using linear systems theory, one can prove that the Libnédt@ve a stable, an unstable

and two center manifolds (Fig. C.1).

y
Stable manifold
Center manifold /
r.... E
R
M, LT M, 3%'1{%': X
B \
Unstable
manifold

Figure C.1: The Libration points in the Hill three-body prei

To study the relative motion of a spacecraft abbutwe use Eq. (A.13) to compute
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H", the Hamiltonian function describing the relative motigmamics.

Hh _ %X}'{* qu<t) qu<t> Xh 4. :

Hyq(t)  Hpp(1)

Agq,
q—4qo A
whereX;, = = (AZZ>1 (40, p0) = ((%)1/3
P —Do
the equilibrium pointZ, and,

1

W=

3q0z qoy
(45, +45,)°"?

L _ 34, o
Hg(t) = (@.+a5,)% (a8, +43,)°"?
__Bdordoy__
(a2, +d2,)5"
0 -1
Hyt) = |
1 0
0 1
HPQ(t) - ,
10
pr(t)
0 1

H" = (Aqx Ag, Ap, Apy>

N[ —

(45, +45,)

(45, +45,)

Aq

xT

Aq

Y

Ap

T

Ap

)

(C.5)

)1/ *) refers to the state at

(C.6)

(C.7)

(C.8)

(C.9)

(C.10)
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At higher order, we find:

N =

(Aqx Ag, Ap, Apy)

-1 0 0 1 Ap

37/3 3 /3
+ 34/3Aq§ — TAquqz — 35/3Aq;L + 38/3Aq2Aq§ — ?Aqg -+ (C.11)

We point out that/” is time-independent.
Finally, we give in the following table the values of the n@lmed variables for the

Earth-Sun system.

Normalized units Earth-Sun system

0.01 unit of length «—— 21,500 km

1 unit of time «—— b8 days 2 hours

1 unit of velocity  «— 428 m/s

1 unit of acceleration «—  1.38-107° m/s?
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ABSTRACT

THE HAMILTON-JACOBI THEORY FOR SOLVING TWO-POINT BOUNDARY
VALUE PROBLEMS: THEORY AND NUMERICS WITH APPLICATION TO
SPACECRAFT FORMATION FLIGHT, OPTIMAL CONTROL AND THE STUDY OF

PHASE SPACE STRUCTURE

by
Vincent M. Guibout

Co-Chairs: Daniel J. Scheeres and Anthony M. Bloch

This dissertation has been motivated by the need for newadstto address complex
problems that arise in spacecraft formation design. Asectliresult of this motivation,
a general methodology for solving two-point boundary vagboeblems for Hamiltonian
systems has been found. Using the Hamilton-Jacobi theagrijunction with the canon-
ical transformation induced by the phase flow, it is shown ¢j@merating functions solve
two-point boundary value problems. Traditional techngfor addressing these problems
are iterative and require an initial guess. The method pteddn this dissertation solves
boundary value problems at the cost of a single functionuatedn, although it requires
knowledge of at least one generating function. Propertighi® method are presented.

Specifically, we show that it includes perturbation theand generalizes it to nonlinear



systems. Most importantly, it predicts the existence oftipl@ solutions and allows one
to recover all of these solutions.

To demonstrate the efficiency of this approach, an algorfibmtomputing the gen-
erating functions is proposed and its convergence pragseatie studied. As the method
developed in this work is based on the Hamiltonian structiréhe problem, particu-
lar attention must be paid to the numerics of the algorithro. a@idress this, a general
framework for studying the discretization of certain dyneahsystems is developed. This
framework generalizes earlier work on discretization oflaangian and Hamiltonian sys-
tems on tangent and cotangent bundles respectively. Ini@aadt provides new insights
into some symplectic integrators and leads to a new disklateilton-Jacobi theory. Most
importantly, it allows one to discretize optimal controbpfems. In particular, a discrete
maximum principle is presented.

This dissertation also investigates applications of ttmpsed method to solve two-
point boundary value problems. In particular, new techegjtor designing spacecraft
formation flight, reconfiguring a formation, and searching $table configurations in a
general dynamical environment are presented. In additt@present work allows one
to reduce the search for periodic orbits with specified pkriar locations to solving a set
of nonlinear equations. Finally, a novel approach for s@woptimal control problems is

derived and applied.



