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4.3.1 Sẗormer’s rule and Newmark methods . . . . . . . . . 93
4.3.2 Midpoint rule . . . . . . . . . . . . . . . . . . . . . . 100
4.3.3 Numerical example . . . . . . . . . . . . . . . . . . . 103

4.4 Energy conservation . . . . . . . . . . . . . . . . . . . . . . . . 105
4.4.1 Generalized variational principles . . . . . . . . . . . 106
4.4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . 110

4.5 Discrete Hamilton-Jacobi theory . . . . . . . . . . . . . . . . . 115
4.5.1 Discrete symplectic geometry . . . . . . . . . . . . . 116
4.5.2 Discrete canonical transformation . . . . . . . . . . . 118
4.5.3 Discrete generating functions . . . . . . . . . . . . . 119
4.5.4 Discrete Hamilton-Jacobi theory . . . . . . . . . . . . 122
4.5.5 Applications of the discrete Hamilton-Jacobi theory. . 125

V. COMPUTING THE GENERATING FUNCTIONS . . . . . . . . . . 127

5.1 Initial conditions for the generating functions . . . . . .. . . . . 128
5.2 The use of partial differential equation solvers . . . . . .. . . . 130
5.3 A new algorithm to compute the generating functions . . . .. . 132

5.3.1 Local solution of the Hamilton-Jacobi equation . . . . 132
5.3.2 An indirect approach . . . . . . . . . . . . . . . . . . 136
5.3.3 A comparison of the direct and indirect approach . . . 137

5.4 Convergence and existence of solutions . . . . . . . . . . . . . . 140
5.4.1 Theoretical considerations . . . . . . . . . . . . . . . 140
5.4.2 Practical considerations . . . . . . . . . . . . . . . . 142
5.4.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . 145

VI. THE NUMERICS OF OPTIMAL CONTROL PROBLEMS AND A
NOVEL METHOD TO SOLVE OPTIMAL CONTROL PROBLEMS 148

ix



6.1 Necessary and sufficient conditions for optimality . . . .. . . . 150
6.1.1 Problem Statement . . . . . . . . . . . . . . . . . . . 150
6.1.2 Maximum principle . . . . . . . . . . . . . . . . . . . 151

6.2 Discretization of optimal control problems . . . . . . . . . .. . 153
6.2.1 Solving the necessary conditions for optimality . . . .154
6.2.2 Discrete maximum principle . . . . . . . . . . . . . . 155
6.2.3 Discrete maximum principle v.s. discretization of the

Pontryagin maximum principle . . . . . . . . . . . . 159
6.2.4 The Heisenberg optimal control problem . . . . . . . 161
6.2.5 Energy conservation . . . . . . . . . . . . . . . . . . 164

6.3 Solving optimal control problems from the Hamilton-Jacobi theory 169
6.3.1 Linear quadratic terminal controller . . . . . . . . . . 171
6.3.2 Targeting problem . . . . . . . . . . . . . . . . . . . 174

VII. THE SEARCH FOR PERIODIC ORBITS . . . . . . . . . . . . . . . 180

7.1 Periodic orbits and generating functions . . . . . . . . . . . .. 181
7.2 Linear systems analysis . . . . . . . . . . . . . . . . . . . . . . 189
7.3 Nonlinear systems . . . . . . . . . . . . . . . . . . . . . . . . . 191

VIII. SPACECRAFT FORMATION DYNAMICS AND DESIGN . . . . . 200

8.1 Problem settings . . . . . . . . . . . . . . . . . . . . . . . . . . 204
8.2 Formation design . . . . . . . . . . . . . . . . . . . . . . . . . 207

8.2.1 Multi-task mission . . . . . . . . . . . . . . . . . . . 207
8.2.2 A different multi-task mission . . . . . . . . . . . . . 212
8.2.3 Stable trajectories . . . . . . . . . . . . . . . . . . . . 214
8.2.4 Stable configurations . . . . . . . . . . . . . . . . . . 223

IX. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS . . . . 227

9.1 Summary and contribution of the thesis . . . . . . . . . . . . . . 227
9.1.1 Theoretical aspects . . . . . . . . . . . . . . . . . . . 227
9.1.2 Numerics . . . . . . . . . . . . . . . . . . . . . . . . 229
9.1.3 Applications . . . . . . . . . . . . . . . . . . . . . . 231

9.2 Limitations and suggestions for further research . . . . .. . . . 233
9.2.1 On solving two-point boundary value problems . . . . 233
9.2.2 In optimal control theory . . . . . . . . . . . . . . . . 234
9.2.3 Variational integrators . . . . . . . . . . . . . . . . . 235

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249

x



LIST OF FIGURES

Figure

3.1 Determinant ofΦqq andΦqp . . . . . . . . . . . . . . . . . . . . . . . . 78

4.1 Exactness condition using3 different integrators . . . . . . . . . . . . . 105

4.2 Particle in a double well potential with initial conditions(q, p) = (1, 0.05) 126

4.3 Particle in the vector fieldf∗Xd
H with initial conditionsf0(1, 0.05). . . . 126

5.1 F2 computed using the method of lines . . . . . . . . . . . . . . . . . . 131

5.2 Number of variables in the indirect (dashed) and direct (solid) methods. 140

5.3 Contribution of the first four terms in the Taylor series of(1 − t)x . . . 144

5.4 (1 − t)x − ∑3
n=0

log(1−t)n

n!
xn . . . . . . . . . . . . . . . . . . . . . . . 144

5.5 Domain of use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.6 Difference between the true and the approximate dynamics . . . . . . . 146

5.7 Error in the normalized final position fort = 0.9 . . . . . . . . . . . . . 147

6.1 Optimal trajectory of the spacecraft . . . . . . . . . . . . . . . .. . . 176

6.2 Time history of the control laws . . . . . . . . . . . . . . . . . . . . .177

6.3 Optimal trajectories of the spacecraft for different transfer times. . . . . 178

6.4 Time history of the control laws . . . . . . . . . . . . . . . . . . . . .178

6.5 Optimal trajectories of the spacecraft as a function of the initial position. 179

6.6 Time history of the control laws . . . . . . . . . . . . . . . . . . . . .179

xi



7.1 Determinant of the matrix defined in Eq. (7.24) . . . . . . . . .. . . . 190

7.2 Plot of‖∂F1

∂q
(q = q0, q0, T ) + ∂F1

∂q0
(q = q0, q0, T )‖ whereq0 = (0.01, 0) . 192

7.3 Periodic orbits for the nonlinear motion about a Libration point . . . . . 193

7.4 Periodic orbits for the nonlinear motion about a Libration point . . . . . 194

7.5 Periodic orbit in the restricted three-body problem with periodT =
3.568576 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

7.6 Plot of‖∂F1

∂q
(q = q0, q0, T ) + ∂F1

∂q0
(q = q0, q0, T )‖ whereq0 = (0.03, 0.03) 196

7.7 Periodic orbits going through the point(1.23, 0.03) . . . . . . . . . . . 197

7.8 Periodic orbits of periodT = 3.62613 . . . . . . . . . . . . . . . . . . 198

7.9 Periodic orbits in the three-body problem . . . . . . . . . . . .. . . . 199

8.1 The multi-task mission and the search for stable configurations. . . . . . 204

8.2 Time history of the orbital elements over a one day period. . . . . . . . 206

8.3 Time history of the orbital elements over a one month period . . . . . . 206

8.4 Number of configurations as a function of the value of the cost function 209

8.5 Distance between the spacecraft as a function of time forthe best scenario 211

8.6 Distance between the spacecraft as a function of time . . .. . . . . . . 212

8.7 Fuel expenditure as a function ofθ for each configuration . . . . . . . . 214

8.8 Representation of the local geometry . . . . . . . . . . . . . . . . .. . 216

8.9 Boundary value problem . . . . . . . . . . . . . . . . . . . . . . . . . 216

8.10 Cost function as a function ofθ for tf = 10d19h13m . . . . . . . . . . 219

8.11 Trajectory associated with the minimumθ = 0.671503 rad,
tf = 10 d 19 h 13 m . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

8.12 Trajectory associated with the minimumθ = 2.4006615 rad,
tf = 10 d 19 h 13 min . . . . . . . . . . . . . . . . . . . . . . . . . . 221

xii



8.13 Cost function as a function ofθ for tf = 10 d 18 h 19 m . . . . . . . . 222

8.14 Trajectory associated with the minimumθ = 3.814575 rad,
tf = 10 d 18 h 19 min . . . . . . . . . . . . . . . . . . . . . . . . . . 222

8.15 Cost function as a function of the initial and final positions for severaltf 224

8.16 Trajectories of the four spacecraft fortf = 10 d 18 h 19 m . . . . . . . 225

8.17 Trajectories of the four spacecraft fortf = 10 d 19 h 13 m . . . . . . . 226

C.1 The Libration points in the Hill three-body problem . . . . .. . . . . . 246

xiii



LIST OF APPENDICES

Appendix

A. THE DYNAMICS OF RELATIVE MOTION . . . . . . . . . . . . . . . . 237

B. THE HAMILTON-JACOBI EQUATION AT HIGHER ORDERS . . . . . 240

C. THE HILL THREE-BODY PROBLEM . . . . . . . . . . . . . . . . . . . 244

C.1 The circular restricted three-body problem . . . . . . . . . . .. 245
C.2 The Hill three-body problem . . . . . . . . . . . . . . . . . . . 245

xiv



CHAPTER I

INTRODUCTION

1.1 Two-point boundary value problems

Thanks to Galileo and his telescope, we have been able to observe a wide range of

bodies, from comets to stars. These observations made the exploration of space easier

than the exploration of the Earth. For instance, ChristopherColumbus’ voyage to the

Orient would have been successful if he had known the actual location of the Orient. He

would have not mistaken it for the Americas. However, Galileo’s telescope cannot be used

to find the paths (orbits) that lead to the observed bodies. Wehad to wait two centuries for

Kepler’s and Newton’s works before being able to find these orbits. Kepler’s (1571-1630)

and Newton’s (1643-1727) discoveries allow us to understand gravitational laws and to

describe the motion of celestial bodies as solutions of ordinary differential equations. As

a result, the orbits that lead to celestial bodies can be found as solutions of the differential

equations that meet boundary conditions given by an initialposition (where we are) and a

final position (where we want to go). Lambert (1728-1777) formalized this problem and

transformed it into an algebraic equation whose solutions have inspired many papers in the

last centuries [24]. Despite this simplification, we usually leave the problem in its ordinary

differential equation formulation and search for the unspecified initial conditions that meet

the target.

1
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Problems such as the one Lambert considered are often referred to as two-point bound-

ary value problems. As the terminology indicates, the most common case of two-point

boundary value problems is where boundary conditions are supposed to be satisfied at two

points, usually the starting and ending values of the integration (as in the Lambert prob-

lem). In daily life, everyone from researchers to athletes are faced with such problems,

although they may not be formulated in such formal terms. Planning a car trip or a mis-

sion to Mars, taking a goal shot in soccer or aiming a missile,all of these are examples of

two-point boundary value problems where initial and final positions are specified and the

corresponding velocities need to be found.

There are crucial distinctions between initial value problems (problems for which the

initial position and velocity are known) and two-point boundary value problems. In the

former case we are given an “acceptable” solution at the start (initial value) and just march

along by numerical integration to its end (final value). In the latter case, the boundary

conditions do not determine a unique solution to start with.A random choice among

all solutions that satisfy these (incomplete) starting boundary conditions is almost certain

to not satisfy the boundary conditions at the other specifiedpoint(s). To illustrate this

difference, suppose one is at an intersection between two streets, so that one can choose

among four directions. In a typical initial value problem, astarting direction is given

and one just drives along the road, without knowledge beforehand of the final destination.

In contrast, if one is given a final destination instead of a starting direction, we obtain

a two-point boundary value problem. Solving this problem ismore difficult since one

needs,a priori, to try each road to find the one that reaches the required finaldestination.

Thus, for an arbitrary boundary value problem it is not surprising that iteration is required

in general to meld boundary conditions into a single global solution of the differential

equations. Many iterative techniques have been developed over the years, several in the
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field of optimal control, since the necessary conditions foroptimality can be formulated as

two-point boundary value problems. In the following we discuss two classes of numerical

methods for solving two point boundary value problems, bothbeing iterative.

The shooting method [79, 12] implements the same strategy asthe one used in the

above example. It consists of choosing values for all of the dependent variables at one

boundary. These values must be consistent with any boundaryconditions for that bound-

ary, but otherwise are initially guessed randomly. After integration of the differential equa-

tions, we in general find discrepancies between the desired boundary values at the other

boundary. Then, we adjust the initial guess to reduce these discrepancies and reiterate this

procedure again. The method provides a systematic approachto solving boundary value

problems, but suffers several inherent limitations. As summarized by Bryson and Ho ([19]

p 214),

The main difficulty with this method is getting started; i.e., finding a first

estimate of the unspecified conditions at one end that produces a solution rea-

sonably close to the specified conditions at the other end. The reason for

this peculiar difficulty is that the extremal solutions are often very sensitive to

small changes in the unspecified boundary conditions.

To get rid of the sensitivity to small changes in initial guesses, techniques such as the

multiple shooting method [58] were developed. They consistof breaking the time domain

into segments and solving a boundary value problem on each ofthese segments. In this

manner, nonlinear effects are limited over each segment, but on the other hand the size of

the problem is increased. However, the choice of the initialconditions still remains as the

main hurdle to successfully apply shooting methods to any kind of problem.

Relaxation methods [80] use a different approach. The differential equations are re-

placed by finite-difference equations on a mesh of points that covers the range of the inte-
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gration. A trial solution consists of values for the dependent variables at each mesh point,

not satisfying the desired finite-difference equations, nor necessarily even satisfying the

required boundary conditions. The iteration, now called relaxation, consists of adjusting

all the values on the mesh so as to bring them into successively closer agreement with the

finite-difference equations and simultaneously with the boundary conditions. In general,

relaxation works better than shooting when the boundary conditions are especially delicate

or subtle. However, if the solution is highly oscillatory then many grid points are required

for accurate representation. Also, the number and positionof the required mesh points

are not knowna priori and must be adjusted manually for each problem. In addition,if

solutions to the differential equations develop singularities, attempts to refine the mesh to

improve accuracy may fail.

In order to plan future space missions, over the years researchers have developed more

and more accurate “maps” of motion in space. In this respect,more sophisticated math-

ematical models have been developed, such as the three-bodyproblem, the four-body

problem, and their many variants whose names begin with “full”, “restricted”, “circular”,

“elliptic”, “planar”, etc... As these dynamical models have increased in accuracy, the asso-

ciated boundary value problems usually becomeharder to solve. This is especially true as

many of these problems can contain chaotic trajectories, whose extreme sensitivity makes

it difficult to find solutions. With the advent of computers, however, the two methods men-

tioned earlier are still able to solve most of the two-point boundary value problems. They

may require substantial time to find an appropriate initial guess and/or computer memory

to refine the mesh, but they often succeed.

However, proposed space missions continue to gain in complexity and, most likely,

many of tomorrow’s missions may involve several spacecraftin formation. These missions

require one to solve a large number of boundary value problems for which the boundary
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conditions may in turn depend on parameters. For instance, to reconfigure a formation of

N spacecraft, there areN ! possibilities in general, that is,N ! boundary value problems

need to be solved. AsN increases, the number of boundary value problems dramatically

grows. Similarly, suppose that we plan to reconfigure a spacecraft formation to achieve

an interferometry mission. We may require the spacecraft tobe equally spaced on a circle

perpendicular to the line of sight they should observe. In that case, the final positions are

specified in terms of the angle that indicates the position ofthe spacecraft on the circle. In

order to find the value of the angle that minimizes fuel expenditure, infinitely many bound-

ary value problems may need to be solved. As a result, the algorithms mentioned above

are no longer appropriate as they require excessive computation and time. The present

research has been motivated by the need for new methods to address such complex prob-

lems that arise in spacecraft formation design (we actuallysolve the above two spacecraft

formation design problems in Chapter VIII). Specifically, wedevelop a novel approach to

solve Hamiltonian boundary value problems based on the generating functions. Our ap-

proach outperforms traditional methods for spacecraft formation design and has a broader

impact leading to new results in optimal control theory and in the study of the phase space

structure of Hamiltonian systems.

1.2 Scope of the thesis

In this thesis, we present a very general theory to solve two-point boundary value prob-

lems for Hamiltonian systems. Our method relies on the Hamiltonian nature of the system

to naturally describe the nonlinear phase flow in terms of a boundary value problem. There

are very few works in the literature that take a similar pointof view. In linear systems the-

ory there exists a matrix, sometimes called the perturbation matrix, that describes the flow

as a boundary value problem. This matrix verifies a Riccati equation and can be com-
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puted from the state transition matrix. It is widely used in optimal control theory to solve

linear quadratic terminal controllers and regulators [19], in guidance and navigation, and

in astrodynamics to study the relative motion of two spacecraft [10]. For nonlinear sys-

tems, however, we could not find any such work save in the field of geometric integrators.

Methods based on generating functions [57, 21, 45] allow oneto derive symplectic inte-

grators as solutions to several boundary value problems . However, these boundary value

problems are restricted to those for which the initial and final states are almost identical

and the transfer time is small, as they are designed to generate single steps in long-time

integrations.

The method we have developed is based on Hamilton-Jacobi theory. Using generat-

ing functions found by solving the Hamilton-Jacobi equation, we can describe the phase

flow as a boundary value problem.Such an approach is very powerful as it allows one

to solve any Hamiltonian two-point boundary value problem using only simple function

evaluations; no iterations or initial guesses are required. In addition, this research has im-

plications in several other fields: 1) In optimal control theory, it allows one to develop an

explicit solution procedure that finds an analytical form for the nonlinear optimal feedback

control law for a general class of problems. Most importantly, this procedure overcomes

some of the barriers to truly reconfigurable control. 2) By posing the search for periodic

orbits as a two-point boundary value problem with constraints, we develop techniques to

find families of periodic orbits, and to exhibit the geometryof phase space about particular

solutions. A similar procedure allows us to find relative periodic orbits that are of particu-

lar interest when designing spacecraft formation trajectories. 3) In linear systems theory,

we recover and extend the results on perturbation matrices developed by R.H. Battin.

Our research is not confined to theoretical work, however. Toimplement our insight,

we develop a robust algorithm to compute a Taylor series expansion of the generating
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functions. We pay particular attention to the numerics, as our method is based on the

symplectic structure of the phase flow, a property that must be preserved during integra-

tion. In particular, we present a general framework that allows one to study discretiza-

tion of certain dynamical systems. This generalizes earlier work on discretization of La-

grangian and Hamiltonian systems on tangent bundles and cotangent bundles respectively

[67, 96, 71, 39, 40, 41, 87]. In addition, as noticed by Arnold[5, 6], generating functions

may develop singularities which prevent the integration from going forward in time. Us-

ing the Legendre transformation, we are able to avoid these singularities, and therefore

continue the integration. Furthermore, our algorithm applies to any Hamiltonian system

independent of the complexity of its vector field.

Finally, for optimal control problems, we develop a discrete maximum principle that

yields necessary conditions for optimality. These conditions are in agreement with the

usual conditions obtained from the Pontryagin maximum principle and define symplectic

algorithms that solve the optimal control problem.

1.3 Thesis organization

This thesis is organized into three main parts.

The first part includes Chapters II and III and deals with the theoretical aspects of the

present research. In Chapter II, we briefly review some features of Hamiltonian systems

and then focus on the Hamilton-Jacobi theory. Three points of view are adopted, as they

all provide a different perspective on the theory and offer aconvenient framework to work

with in the rest of this dissertation. On one hand, the variational point of view relates tra-

jectories of Hamiltonian systems to critical points of a certain function. On the other hand,

the two geometric points of view characterize trajectoriesas paths on the tangent bundle.

Although the two geometric approaches require advanced mathematical tools and is there-
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fore less accessible, it remains central to the understanding of the discrete Hamilton-Jacobi

theory developed in Chapter IV. We believe that the global picture we give in this chapter

is a unique exposition on the Hamilton-Jacobi theory in which different points of view are

considered. Chapter III is the backbone of this thesis. We first show that the generating

functions solve any two-point boundary value problem in phase space. The properties of

the generating functions are studied, with a special emphasis on multiple solutions, sym-

metries, singularities, and their relation to the state transition matrix.

The second part of the thesis focuses on the numerics of our approach and includes

Chapters IV and V, and part of Chapter VI. Since our novel approach to solve boundary

value problems relies on the symplectic structure of the phase flow, we must understand

how this property is preserved during integration. This motivated the work presented in

Chapter IV, although we go far beyond our initial objective. Specifically, we introduce a

general framework that allows us to study discretizations of Lagrangian and Hamiltonian

systems. In particular, we show how to obtain a large class ofdiscrete algorithms us-

ing the geometric approach. We give new insight into the Newmark model, for example,

and develop a discrete formulation of the Hamilton-Jacobi theory. Based on some results

given in Chapter IV on the numerics of Hamiltonian systems, analgorithm that solves the

Hamilton-Jacobi equation for generating functions is developed in Chapter V. This algo-

rithm converges locally in the spatial domain and globally in the time domain. Moreover,

using the Legendre transformation we are able to handle generating function singulari-

ties, and therefore are able to continue the integration. Then, we introduce an indirect

approach to compute generating functions based on the initial value problem. Accuracy,

convergence and properties of our algorithm are studied. Finally, the first part of Chap-

ter VI focuses on the numerics of optimal control problems. We extend the framework

introduced in Chapter IV to develop a discrete maximum principle that yields necessary
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conditions for optimality that define symplectic algorithms. We show that we are able to

recover most of the classical symplectic algorithms and illustrate its use with an example

of a sub-Riemannian optimal control problem.

In the third and last part of this dissertation (second part of Chapter VI and Chapters

VII and VIII) we analyze a variety of problems in several fields using the theory devel-

oped in the first part, together with the algorithm presentedin the second part. Section

6.3 concerns optimal control problems. We show that the generating function theory al-

lows one to develop an explicit solution procedure that findsan analytical form for the

nonlinear optimal feedback control law for a general class of problems. We illustrate this

procedure with an example of the targeting problem in the Hill three-body problem and

show that it overcomes some of the barriers to truly reconfigurable control. In Chapter

VII, we use generating functions to derive necessary and sufficient conditions for the ex-

istence of periodic orbits of a given period, or going through a given point in space. These

conditions reduce the search for periodic orbits to either solving a set of implicit equa-

tions, which can often be handled graphically, or to finding the roots of an equation of one

variable only. Specific examples of finding periodic orbits in the vicinity of other periodic

orbits and around the Libration points in the three-body problem are studied. Finally, in

Chapter VIII we study spacecraft formation flight. Specifically, we consider the design of

spacecraft formations in Earth orbit. For our analysis the effect of theJ2 andJ3 gravity

coefficients are taken into account and the reference trajectory is chosen to be an orbit with

high inclination (i = π/3) and eccentricity (e = 0.3). Two missions are considered. First,

given several tasks over a one month period, modeled as configurations at given times, we

find the optimal sequence of reconfigurations to achieve these tasks with minimum fuel

expenditure. Next, we find stable configurations such that the spacecraft stay close to each

other for an arbitrary, but finite, period of time. Both of these tasks are extremely difficult
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using conventional approaches, yet are simple to solve using the theory we developed in

this dissertation.



CHAPTER II

HAMILTONIAN SYSTEMS AND THE
HAMILTON-JACOBI THEORY

The dynamics of real world systems are often too complex to enable full analytical

studies and efficient numerical simulations. Thus such systems need to be efficiently mod-

eled. Models must not only provide an accurate picture of thereal system, but they must

also be tractable analytically and/or numerically. These requirements make modeling a

very challenging task. In many different fields such as chemistry, celestial mechanics and

plasma physics, Hamiltonian systems have been identified asa relevant class of models. In

particular, they are often a highly accurate approximationbecause non-dissipative forces

are dominant. Most importantly, they have a very rich structure and distinctive properties

[1, 5, 63, 66, 14] such as preservation of Poincaré invariants, variational principles, the

abundance of periodic and quasi periodic motions, the ubiquity of chaos, symmetry and

reduction and canonical transformation theory.

These features make the questions one asks about them, and the methods used to an-

swer these questions, fundamentally different from the case of general dynamical systems.

One of these features, the Hamilton-Jacobi theory, describes a class of coordinate trans-

formations, known as canonical transformations, that allows one to transform Hamilto-

nian systems into dynamically trivial ones while preserving their structure and properties.

11
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Hamilton (1805-1865)

Since Hamilton discovered their existence they have been widely

used to solve a variety of challenging problems, from integrating

non-trivial dynamical systems to deriving symplectic integrators.

In the present work, we propose a novel approach to solving two-

point boundary value problems based on these transformations.

For the sake of clarity it is important to first derive Hamilton-

Jacobi theory and study generating functions. In this chapter, we

adopt three different points of view; one is variational andtwo are geometric. We believe

that each of them provide a different perspective on the Hamilton-Jacobi theory and offer

a convenient framework to work with in the following chapters.

The variational point of view Even though the Lagrange and Hamilton equations were

historically not derived from variational principles (some of the history may be gleaned,

for example, from Marsden and Ratiu [66] p231 and Bloch et al. [14]), variational prin-

ciples play an important role in dynamical systems theory. They essentially state that

trajectories as defined by Newton’s laws correspond to critical points of a certain function,

or in other words, the actual path of a particle is the one thatminimizes a certain function.

Such a formulation allows one to make analogies with geometric optics (that light always

takes the shortest path) and optimal control theory (see e.g. Bloch and Crouch [15], Bloch

et al. [14], and Chapter VI) for instance. It also provides a coordinate-free formulation for

describing the dynamics. Most importantly, this approach introduces a “main” function

(the one that is minimized), knowledge of which is sufficientto recover the full dynamics

of the system. In the present research, our interest in the variational approach is three-

fold: 1) It naturally yields the Hamilton-Jacobi theory. 2)In Chapter IV, we introduce its

discretecounterpart to study and derive symplectic integrators. 3)It allows one to study
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optimal control problems (Chapter VI).

The geometric points of view In the Hamiltonian formalism, the dynamics of a par-

ticle is described in the phase space consisting of coordinates and associated momenta.

The phase space, together with a symplectic two-form (contact two-form) may be given

the structure of a symplectic manifold (contact manifold respectively). Therefore, in the

geometric approaches the key idea is no longer the existenceof a function that needs to be

minimized, but the symplectic and contact structures. For instance, we will show that the

flow conserves the symplectic (contact) two-form. These geometric approaches are central

in this dissertation because: 1) they allow one to study singularities in the Hamilton-Jacobi

theory (Section 3.2.3). 2) they provide a convenient framework for deriving adiscrete

Hamilton-Jacobi theory (Section 4.5).

This chapter is organized as follows: The first section introduces Hamiltonian systems

using the variational and the two geometric approaches discussed above. The second sec-

tion focuses on the Hamilton-Jacobi theory; all three points of view are presented. Sections

2.2.3 and 2.2.4 use advanced concepts of geometry to presentthe geometric approaches.

Hence, they may be less accessible than the section adoptingthe variational point of view

(Section 2.2.1). Although the geometric approaches together with the variational point

of view give a global and unique picture on the Hamilton-Jacobi theory, these last two

sections 2.2.3 and 2.2.4 may be skipped by those who are not interested in the geometric

aspects of this theory.

2.1 Hamiltonian systems

Several approaches may be adopted to study Hamiltonian systems. For the bulk of

this dissertation, however, we focus on only three, the variational and two geometric ap-
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proaches. The purpose of this section is to give the essential ideas on each of them, not to

review all of their features. We refer to [1, 5, 27, 28, 60, 63,66, 14, 82] for more details

on these topics.

In the following, x is a vector with componentsxi. We choose not to use the usual

notationx or ~x since we believe that there should not be any confusion. Also, we assume

Einstein summation convention, i.e.,xiyi =
∑

i xiyi.

Definition II.1 (Hamiltonian system). A system is called Hamiltonian if there exists a

smooth functionH(q, p, t) fromR
n×R

n×R to R such that its dynamics can be described

by equations of the form:










q̇i = ∂H
∂pi

,

ṗi = −∂H
∂qi

.

(2.1)

H is called the Hamiltonian function and Eqns.(2.1)are known as Hamilton’s equations.

RemarkII.2. Consider a dynamical system with Lagrangian functionL(q, q̇, t) where

q = (q1, · · · , qn) are generalized coordinates. IfL is hyperregular, i.e.,∂L
∂q̇

is a global

isomorphism, then the system is also Hamiltonian and the Hamiltonian function isH =

〈p, q̇〉 − L(q, q̇, t), where〈, 〉 is the standard dot product,〈p, q̇〉 = pT q. We say thatH is

the Legendre transform ofL.

Proof. The dynamics of a Lagrangian system is given by the Euler-Lagrange equations:

d

dt

(

∂L

∂q̇i

)

− ∂L

∂qi

= 0 . (2.2)

If L is hyperregular we can uniquely define the associated momenta p = (p1, · · · , pn)

from the Legendre transformation:

pi =
∂L

∂q̇i

(q, q̇, t) . (2.3)
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Let H(q, p, t) = 〈p, q̇〉 − L(q, q̇, t). Then the system of Euler-Lagrange’s equation (Eq.

(2.2)) is equivalent to the system of Hamilton’s equations (Eqns. (2.1)).

RemarkII.3. The Legendre transformation transforms functions on a vector space into

functions on the dual space. It has a geometric interpretation that we will make use of in

the following. In fact, the Legendre transformation can be formulated as an optimization

problem. For sake of simplicity, we consider a one degree of freedom dynamical system

whose Lagrangian functionL(q, q̇) verifiesdet
(

∂2L
∂q̇2

)

> 0. We can construct the Legendre

transformation in the following way (Arnold [5]). We draw the graph ofL as a function

of q̇ assumingq fixed. Letp be a given number and defineH(q, p) = langlep, q̇(p)〉 −

L(q, q̇(p)), whereq̇(p) is to be specified. ThenH is the Legendre transform ofL if and

only if q̇(p) is chosen so that H has a maximum with respect toq̇ at q̇(p), i.e., ∂H
∂q̇

= 0 or

equivalently,p = ∂L
∂q̇

.

RemarkII.4. Hamiltonian systems may not be mechanical systems. For instance in opti-

mal control theory, necessary conditions for optimality yield a Hamiltonian system under

sufficient smoothness conditions (Section 6.1). Such a system does not have any physical

significance and may not be Lagrangian. For instance, in Chapter 5 we derive neces-

sary conditions for optimality for a sub-Riemannian optimalcontrol problem and show

that they yield a degenerate Hamiltonian function. In such cases, we cannot define the

Lagrangian from the Hamiltonian function. We need to use theLagrange multipliers to

perform a well-defined Legendre transform (Bloch et al. [14]).

2.1.1 Variational principles and Hamiltonian dynamics

The key element in the variational approach for studying dynamical systems is the

existence of some functions whose extrema correspond to actual trajectories of particles.

There are many such functions, each of them defining a different variational principle. The
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most famous ones may be the Hamilton principle, the modified Hamilton’s principle and

the principal of critical action, but many other variational principles exist and we refer to

Arnold [5], Greenwood [28], Bloch et al. [14] and references therein for a more com-

plete presentation. In this section, we focus on only two variational principles, Hamilton’s

principle and the modified Hamilton’s principle. As noticedby Greenwood [28], “the vari-

ational principle of most importance in dynamics is Hamilton’s principle which was first

announced in1834”. Hamilton’s principle is a variational principle on the tangent bundle,

very powerful for studying Lagrangian systems. However, since Hamiltonian systems lie

on the co-tangent bundle, it does not apply directly to thesesystems. Therefore it needs

to be modified. The modified version is called the modified Hamilton’s principle, it is the

counterpart of the Hamilton principle on the co-tangent bundle.

Consider a configuration manifoldQ and a Lagrangian functionL on the extended

configuration spaceTQ× R.

Theorem II.5 (Hamilton’s principle). Critical points of
∫ t1

t0
Ldt in the class of curves

γ : R → Q whose ends areq = q0 at t = t0 and q = q1 at t = t1, correspond to

trajectories of the Lagrangian system whose ends areq0 at t0 andq1 at t1.

Proof. We use the calculus of variations to search for the critical points of
∫ t1

t0
Ldt:

δ

∫ t1

t0

L(q, q̇, t)dt =

∫ t1

t0

(

∂L

∂qi

δqi +
∂L

∂q̇i

δq̇i

)

dt

=

∫ t1

t0

(

∂L

∂qi

− d

dt

∂L

∂q̇i

)

δqidt +

[

∂L

∂q̇i

δqi

]t1

t0

,

where the Einstein summation convention is used. Since the variations at the end points

vanish, we obtain the Euler-Lagrange equations:

∂L

∂qi

− d

dt

∂L

∂q̇i

= 0 .
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Consider now a Hamiltonian functionH on the extended phase spaceT ∗Q× R.

Theorem II.6 (Modified Hamilton’s principle). Critical points of
∫ t1

t0
(〈p, q̇〉 − H)dt in

the class of pathsγ : R → T ∗Q whose ends lie in the n-dimensional subspacesq = q0 at

t = t0 andq = q1 at t = t1 correspond to trajectories of the Hamiltonian system whose

ends areq0 at t0 andq1 at t1.

Proof. We proceed to the computation of the variation.

δ

∫

γ

(〈p, q̇〉 − H)dt =

∫

γ

(

q̇iδpi + piδq̇i −
∂H

∂qi

δqi −
∂H

∂pi

δpi

)

dt

= [piδqi]
t1
t0

+

∫

γ

[(

q̇i −
∂H

∂pi

)

δpi −
(

ṗi +
∂H

∂qi

)

δqi

]

dt .

Therefore, since the variation vanishes at the end points, the integral curves of Hamilton’s

equations are the only critical points.

The Hamilton principle allows for variations of the path on an-dimensional mani-

fold whereas the modified Hamilton principle varies curves on a 2n-dimensional mani-

fold. Thus, Hamilton’s principle is a particular case of themodified Hamilton’s principle

with the peculiarity that both principles are equivalent for dynamical systems with non-

degenerate Lagrangians. Indeed, for these systemsH is defined as the Legendre transform

of L, that is, q̇ andp are such thatH is maximized with respect tȯq for everyp (see

Remark II.3). As a consequence, along extrema we have:

∫

(〈p, q̇〉 − H)dt =

∫

Ldt ,

which proves the equivalence of both principles for non-degenerate Lagrangian systems.

RemarkII.7. The conditions for a curveγ to be an extremal of a functional does not depend

on the choice of coordinate system. Therefore, these variational principles are coordinate

invariant.
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2.1.2 Symplectic and contact geometries

The variational approach allows one to characterize the flowof a dynamical system

as an extremum of a functional. In contrast, the flow is characterized as a path on the

tangent bundle of the configuration manifold in the geometric approaches. In addition,

the notion of Hamiltonian systems is generalized to vector fields on symplectic (contact)

manifolds. This section is inspired by Abraham and Marsden [1] and is intended to in-

troduce the geometric framework necessary to present the Hamilton-Jacobi theory. We do

not intend to provide a complete view on this topic and refer to Abraham and Marsden [1]

and references therein for further analysis.

Phase space approach (symplectic geometry)

In this paragraph, we present the Hamiltonian formalism forautonomous systems us-

ing symplectic geometry. In particular, we introduce the notion of vector fields and show

that the phase space can be given the structure of a symplectic manifold.

Definition II.8. A symplectic form on a manifoldP is a non-degenerate, closed, two-form

ω onP.

A symplectic manifold(P , ω) is a manifold together with a symplectic formω onP.

A canonical one-form onP, θ, is defined such thatω = −dθ. By the Poincaŕe lemma

[1], θ is well-defined, at least locally.

The charts guaranteed by Darboux’s theorem (see e.g. [1, 66,14]) are called symplec-

tic charts and the component functionsqi, pi are called canonical coordinates.

In a symplectic chart,

ω =
n

∑

i=1

dqi ∧ dpi , (2.4)

θ =
n

∑

i=1

pidqi . (2.5)
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RemarkII.9. θ as defined by Eq. (2.5) is not unique. In a symplectic chart, the following

expressions are also valid:θ = −∑n
i=1 qidpi, or more generally

θ = −
n−k
∑

i=1

qidpi +
n

∑

i=n−k

qidpi , ∀k ≤ n . (2.6)

Definition II.10. Let (P , ω) be a symplectic manifold andH : P → R a smooth function.

The vector fieldXH defined by

iXH
ω = dH , (2.7)

is called a Hamiltonian vector field.

(P, ω,XH) is called a Hamiltonian system.

Proposition II.11. Given a configuration spaceQ, and a hyperregular LagrangianL

onQ, we naturally construct a Hamiltonian system as(T ∗Q, ω,XH), whereT ∗Q is the

cotangent bundle ofQ, ω is defined by Eq.(2.4)andH is the Legendre transform ofL.

Proposition II.12. Locally, using the canonical coordinates, a Hamiltonian system on a

symplectic manifold reads:

XH = J · dH , or equivalently,q̇i =
∂H

∂pi

, ṗi = −∂H

∂qi

, (2.8)

whereJ =







0 I

−I 0






.

Proof. The definition of the Hamiltonian vector field (Eq. (2.7)) is expressed in local

coordinates as:

iXH
(
∑

i

dqi ∧ dpi) =
∑

i

∂H

∂qi

dqi +
∑

i

∂H

∂pi

dpi . (2.9)

Let XH be :

XH =
∑

i

q̇i
∂

∂qi

+
∑

i

ṗi
∂

∂pi

.



20

Then,

iXH
(
∑

i

dqi ∧ dpi) =
∑

i

(iXH
dqi) ∧ dpi −

∑

i

dqi ∧ (iXH
dpi)

=
∑

i

q̇idpi − ṗidqi .

Identifying this last equation with Eq. (2.9) leads to Eq. (2.8).

Extended phase space approach (contact geometry)

Non-autonomous Hamiltonian systems have an extra variable, the time, as compared

to autonomous systems. As a result, the phase space becomes2n + 1-dimensional and

the above material does not apply (symplectic manifolds areof even dimension). There

are two ways to handle this difference: one may either consider the time as a generalized

coordinate and associate with it a generalized momentum, orconsider the time as an addi-

tional parameter. When the time plays the role of a generalized coordinate, the system is

parametrized by an additional independent parameterτ . Obviously, the Hamiltonian func-

tion is not a function ofτ . Therefore, the2n-dimensional non-autonomous Hamiltonian

system is transformed into a2n + 2-dimensional autonomous Hamiltonian system that

can be studied using symplectic geometry. An alternative tothis approach, the extended

phase space approach, consists in giving the extended phasespace(q, p, t) the structure of

a contact manifold.

Definition II.13. A contact formω on a manifoldM is a closed two-form, with maximal

rank.

A contact manifold is a pair(M, ω) consisting of an odd-dimensional manifoldM

and a contact formω onM

An exact contact manifold(M, θ) consists of a(2n+1)-dimensional manifoldM and

a one-formθ onM such thatθ ∧ (dθ)n is a volume onM
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The next theorem is the equivalent of the Darboux theorem (see e.g. [1, 66, 14]) in

symplectic geometry. It gives the canonical form ofω andθ.

Theorem II.14. Let (M, ω) be a contact manifold. For eachx ∈ M there is a chart

(U, φ) at x with φ(u) = (q1(u), · · · , qn(u), p1(u), · · · , pn(u), w(u)) such that

ω|U = dqi ∧ dpi . (2.10)

Similarly, if (M, θ) is an exact contact manifold, there is a chart(Ũ , φ̃) at x such that

θ|U = dt + pidqi . (2.11)

Before going into more details of the dynamics on a contact manifold, we introduce

the characteristic bundle. It is used to characterize contact forms, and therefore contact

manifolds.

Definition II.15. Letω be a two-form onM. Define

Rω =
{

v = (x, v1) ∈ TM|vb = 0
}

,

wherevb is a one-form such thatvb(w) = ω(x)(v1, w).

Rω is called the characteristic bundle ofω.

A characteristic vector field is a vector fieldX such thatiXω = 0, that is,X(x) ∈

Rω , ∀x ∈ M.

Proposition II.16. The characteristic bundleRω of a contact formω has one-dimensional

fibers, and so is sometimes called the characteristic line bundle.

Moreover, ifω is closed and its characteristic line bundle is one-dimensional, thenω

is a contact form.
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Proof. Let (M, ω) be a contact manifold of dimension(2n + 1). Thenω has rank2n

and for everyx ∈ M, there is a one-dimensional vector spaceV ⊂ TxM such that,

∀v ∈ V , ∀w ∈ TxM , ω(x)(v, w) = 0, i.e. Rω has one-dimensional fibers.

The second part is proved as follows. Sinceω is closed, we only need to prove that

it is maximal rank. But sinceRω has one-dimensional fibers,ω is of rank2n, that is, of

maximal rank.

Proposition II.17. Let θ be a nowhere zero one-form on a(2n + 1)-manifoldM and let

Rθ = {v = (x, v1) ∈ TM|θ(x)(v1) = 0} be its characteristic bundle. Then(M, θ) is an

exact contact manifold if and only ifdθ is non-degenerate on the fibers ofRθ.

Proof. Rθ is 2n-dimensional, sodθ is non-degenerate onRθ if and only if (dθ)n 6= 0. By

definition of∧ andRθ, this is so if and only ifθ ∧ (dθ)n 6= 0.

In the above we have introduced the contact structure and learned to characterize it

using the characteristic bundle. We now prove that this concept generalizes the symplectic

structure to non-autonomous Hamiltonian systems. Specifically, we show that the sym-

plectic structure of the phase space of autonomous systems can be extended to a contact

structure. Next, we focus on non-autonomous systems. We define the notion of (time-

dependent) vector fields and give the extended phase space a contact structure.

Proposition II.18. Let (P , ω) be a symplectic manifold,π : R × P → P the projection

onP andω̃ = π∗ω. Then(R × P, ω̃) is a contact manifold.

The characteristic line bundle of̃ω is generated by the vector fieldt on R × P given

by:

t(s, z) = ((s, 1), (z, 0)) ∈ T(s,z)(R × P) ∼ TsR × TzP
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If ω = dθ andθ̃ = dt+π∗θ, wheret : R×P → R is the projection onR, thenω̃ = dθ̃

and(R × P, θ̃) is an exact contact manifold.

Proof. Clearly,dω̃ = π∗dω = 0, soω̃ is closed. To show that̃ω is maximal rank, it suffices

to show that the fibers of its characteristic bundle is one-dimensional (Prop. II.16). Let

((s, z), v1) ∈ Rω̃, then for allv2 ∈ T(s,z)(R × P),

ω̃(s, z)(v1, v2) = 0 ,

that is:

ω(z)(Tπ∗v1, Tπ∗v2) = 0 , ∀v2 .

Sinceω is non-degenerate, we conclude thatTπ∗v1 = 0, i.e.,

Rω̃ = {((s, z), (v, 0))|v ∈ R}

has a one-dimensional fiber.

To prove that(R×P, θ̃) is an exact contact manifold, we need to show thatθ̃∧(dθ̃)n 6=

0, that is,dt is non-zero on the characteristic line bundle ofω̃. But, we have just proved

that the fibers of the characteristic line bundle are of dimension 1 and are generated by

(1, 0) ∈ TsR × TzP at any point(s, z) ∈ R ×P. Furthermore,dt(s)(1, 0) = 1. Thus,θ̃ is

non-zero on the fiber ofRω̃ and(R × P, θ̃) is an exact contact manifold.

Similarly to the autonomous case, non-autonomous Hamiltonian systems are charac-

terized by their vector fields. In this case, however, they are defined on contact manifolds.

Definition II.19. Let (P , ω) be a symplectic manifold andH : R × P → R. For each

t defineHt : P → R; z 7→ H(t, z), XH : R × P → TP ; (t, z) 7→ XHt(z) and the

suspensioñXH : R × P → T (R × P) ≃ TR × TP ; (t, z) 7→ ((t, 1), XH(t, z)).

With t as defined in Prop. II.18,̃XH = t + XH .
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Hence, the time-dependent vector fieldXHt is obtained by freezingt and constructing

the usual Hamiltonian vector field. Such a definition yields classical Hamilton’s equations

of motion:

Proposition II.20. Let (U, φ) be a symplectic chart ofP with

φ(u) = (q1(u), · · · , qn(u), p1(u), · · · , pn(u)) ,

and(R × U, t × φ) a chart ofR × P , wheret is the projection ontoR defined previously.

Thenc : I → R × U ; t 7→ (t, b(t)) is an integral curve ofX̃H , or equivalently,b : I → U

is an integral curve ofXH , if and only if:

d
dt

[qi(b(t))] = ∂H
∂pi

(t, b(t)) ,

d
dt

[pi(b(t))] = −∂H
∂qi

(t, b(t)) .

We now bring together the concept of contact manifold and thedefinition of time-

dependent vector fields to give theextendedphase space a contact structure.

Theorem II.21. (Cartan) Let(P , ω) be a symplectic manifold andH : R × P → R. Let

ω̃ = π∗ω as defined above and

ωH = ω̃ + dH ∧ dt , (2.12)

Then,

1. (R × P, ωH) is a contact manifold,

2. X̃H generates the line bundle ofωH ; X̃H is the unique vector field satisfying

iX̃H
ωH = 0 and iX̃H

dt = 1 .

3. if ω = dθ andθH = π∗θ + Hdt, thenωH = dθH .
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Proof. 1. dωH = dω̃ + d(dH ∧ dt) = 0, soωH is closed. Further,ωH coincides withω̃

on vectors of the form((s, 0), (z, v)) ∈ TsR × TzP on whichω̃ is non-degenerate as we

saw before (Prop. (II.18) states that((s, 0), (z, v)) is not inRω̃). Thus,ωH is closed and

of maximal rank and(R × P, ωH) is a contact manifold.

2. For all vector fieldY onR × P,

iX̃H
ω̃(Y ) = ω̃(X̃H , Y )

= ω(Tπ · X̃H , Tπ · Y )

= ω(XH , Tπ · Y ) . (2.13)

Thus,

iX̃H
ωH = iX̃H

ω̃ + (iX̃H
dH)dt − dH(iX̃H

dt)

= ω(XH , Tπ · Y ) +
∂H

∂t
(Tt · Y ) − dH · Y

= 0 (2.14)

sinceiX̃H
dH = dH(t) = ∂H

∂t
and iX̃H

dt = it+XH
dt = dt(t) = 1. The characteristic

bundle being one dimensional,̃XH is unique.

3. First, we can readily verify thatωH = dθH . Moreover,

θH(X̃H) = (π∗θ)(XH + t) + Hdt(XH + t)

= θ(XH) + H . (2.15)

Thus,θH does not vanish on the characteristic bundle ofωH . We conclude that(R×P, θH)

is an exact contact manifold.

2.1.3 Properties of Hamiltonian systems

We briefly introduced Hamiltonian systems using three different points of view. These

approaches provide us with different perspectives on the dynamics of Hamiltonian systems
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and offer a convenient framework to work with in the following. But before going further

we need to recall a few properties of Hamiltonian systems. Again, we restrict ourselves to

those properties that are of interest for the present research.

Properties of autonomous Hamiltonian systems

Autonomous Hamiltonian systems have distinctive properties. Most of them are not of

prime interest for the following and so we do not mention them. However, there are some,

such as the conservation of energy and the invariance of the symplectic two-form along

the flow, we need to pay particular attention to.

• The conservation of energy constrains the motion of a particle to lie on an energy sur-

face. This property is important for the understanding of the dynamics of a Hamil-

tonian system. Therefore, the energy may need to be preserved when proceeding to

numerical simulations (see Chapter IV for more details on this topic).

• The invariance of the symplectic two-form along the flow is the most important fea-

ture of Hamiltonian systems. It implies volume conservation and additional stability

properties, for instance. Most importantly, it allows one to embed the phase space

in a symplectic manifold.

Let Φt be the phase flow of the Hamiltonian system(P , ω,XH)

Φt : P → P

(q0, p0) 7→ (Φ1
t (q0, p0) = q(q0, p0, t), Φ

2
t (q0, p0) = p(q0, p0, t)) (2.16)

Proposition II.22. Φt preserves the symplectic structure, i.e.,(Φt)
∗ω = ω

Proof. From the Lie derivative theorem (Bloch et al. [14] page87) andiXH
ω = dH, we

obtain:

d

dt
Φt

∗ω = Φt
∗LXω = Φt

∗(iXH
d + diXH

)ω = 0 .
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Corollary II.23. Each of the forms(ω)2, (ω)3, · · · is an integral invariant ofΦt. If the

dimension ofP is 2n, then the conservation ofωn is equivalent to volume conservation in

the phase space.

Proposition II.24 (Energy conservation). H ◦ Φt = H, i.e., the energy is conserved

along trajectories.

The proof is straightforward using the definition of the vector fieldXH .

Properties of non-autonomous Hamiltonian systems

The geometry of the phase space of non-autonomous Hamiltonian systems is different

from that of autonomous systems. As a result, non-autonomous systems do not have the

same properties. In particular, the energy is not preservedalong trajectories (LX̃H
H 6= 0)

and the contact two-form is an invariant of the time-dependent flow of X̃H .

Proposition II.25 (Non energy conservation).The energy of non-autonomous Hamilto-

nian systems is not conserved along the flow, i.e.,LX̃H
H = ∂H

∂t
6= 0

Proof. SinceX̃H = t + XH , LX̃H
H = dH(t + XH) = dH(t) = ∂H

∂t
.

Proposition II.26. The contact two-formsωH , ω2
H , · · · are invariant forms ofX̃H .

Proof. SinceωH is closed and̃XH is a characteristic vector field ofωH , we haveLX̃H
ωH =

iX̃H
dωH + diX̃H

ωH = 0. LX̃H
being a derivation, we directly obtain thatLX̃H

ωk
H = 0 as

well.

Proposition II.27. dt ∧ ωn
H = dt ∧ ω̃n is an invariant volume element for̃XH .

Proof. SinceLX̃H
dt = d(dt · X̃H) = d(1) = 0, we have:

LX̃H
(dt ∧ ωn

H) = (LX̃H
dt) ∧ ωn

H = 0 .
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2.2 Local Hamilton-Jacobi theory

We now move on to the derivation of the Hamilton-Jacobi theory. The Hamilton-Jacobi

theory describes a class of coordinate transformations, called canonical transformations,

that allow one to transform Hamiltonian systems. In the previous section, we introduced

the Hamiltonian formalism from three different points of view. Depending on the ap-

proach we took, the formalism we used was very different. Forinstance, in the variational

approach the symplectic two-form does not have any significance and in the geometric ap-

proach, trajectories are not critical points of any functions. However, all these approaches

are equivalent. The same will hold for the Hamilton-Jacobi theory: canonical transforma-

tions have different definitions depending on the adopted point of view, yet they are all

equivalent.

• In the variational approach, we saw that the key idea is the existence of a function

whose critical points are trajectories of the system. As a consequence, canonical

transformations are defined with respect to this concept. Specifically, a coordinate

transformation is canonical if it preserves this relationship between critical points

and trajectories.

• In the symplectic geometry approach, the symplectic two-form is the main object.

Therefore, in this context canonical transformations are defined as coordinate trans-

formations that preserve the symplectic two-form.

• Finally, the extended phase space approach relies on the contact structure, that is, on

the contact two-form. Thus, canonical transformations arethose that preserve the

contact two-form.
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Although the variational and symplectic geometry approaches can be found in many text-

books, the contact geometry point of view does not seem to be easily accessible, except

partially in Abraham and Marsden [1]. We believe that the global picture we give in this

chapter is a unique exposition on the Hamilton-Jacobi theory, in which the different points

of view are confronted.

2.2.1 The variational approach

Definition II.28. Let H define a Hamiltonian system. Thenf : P × R → P × R is a

canonical transformation from(q, p, t) to (Q,P, t) if and only if:

(1)- f is a diffeomorphism,

(2)- f preserves the time, i.e., there exists a functiongt such thatf(x, t) = (gt(x), t),

(3)- Critical points of
∫ t1

t0

(

〈P, Q̇〉 − K(Q,P, t)
)

dt correspond to trajectories of the

Hamiltonian system, whereK(Q,P, t) is the Hamiltonian function expressed in the new

set of coordinates.

Consider a canonical transformation between two sets of coordinates in the phase space

f : (q, p, t) 7→ (Q,P, t) and letH(q, p, t) andK(Q,P, t) be the Hamiltonian functions of

the same system expressed in different sets of coordinates.From Def. II.28, trajectories

correspond to critical points of
∫ t1

t0

(

〈P, Q̇〉 − K(Q,P, t)
)

dt. Therefore, they are integral

of:










Q̇i = ∂K
∂Pi

,

Ṗi = − ∂K
∂Qi

,

(2.17)

i.e.,f preserves the canonical form of Hamilton’s equations.

Conversely, suppose thatf is a coordinate transformation that preserves the canonical

form of Hamilton’s equations and leaves the time invariant.Let K(Q,P, t) be the Hamil-

tonian in the new set of coordinates, then from the modified Hamilton’s principle (Thm.
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II.6), critical points of
∫ t1

t0

(

〈P, Q̇〉 − K(Q,P, t)
)

dt

correspond to trajectories of the system. Thus,f is a canonical map. These last two

remarks are summarized in the following lemma:

Lemma II.29. The third item in Def. II.28 is equivalent to:

(4)- f preserves the canonical form of Hamilton’s equations and the new Hamiltonian

function isK(Q,P, t).

RemarkII.30. The definition we give is different from the one given in many textbooks.

Often the third item reduces to:

(5)- f preserves the canonical form of Hamilton’s equations.

The example given by Arnold in “Mathematical Methods of Classical Mechanics” [5],

p 241 sheds light on the difference on these two definitions. For instance, consider the

transformationf : (q, p, t) 7→ (Q = q, P = 2p, t) and the harmonic oscillator with

Hamiltonian functionH(q, p) = 1
2
p2 + 1

2
q2. The equations of motion for this system are:

q̇ = p , ṗ = −q . (2.18)

In the new set of coordinates, these equations transform into:

Q̇ =
p

2
, Ṗ = −2Q . (2.19)

DefineK(Q,P ) = 1
4
P 2 + Q2. Then Eqns. (2.19) may be written as:

Q̇ =
∂K

∂P
, Ṗ = −∂K

∂Q
, (2.20)

that is, Eqns. (2.19) may be written as Hamilton’s equations. As a result,f preserves

the canonical form of Hamilton’s equations. However, according to Def. II.28,f is

not a canonical transformation because the Hamiltonian of the new system should be

K(Q,P ) = 1
8
P 2 + 1

2
Q2.
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We consider again a canonical transformationf and a Hamiltonian system defined by

H. Along trajectories, we have by definition:

δ

∫ t1

t0

(

n
∑

i=1

piq̇i − H(q, p, t)

)

dt = 0 , (2.21)

δ

∫ t1

t0

(

n
∑

i=1

PiQ̇i − K(Q,P, t)

)

dt = 0 . (2.22)

From Eqns. (2.21) - (2.22), we conclude that the integrands of the two integrals differ at

most by a total time derivative of an arbitrary functionF :

n
∑

i=1

pidqi − Hdt =
n

∑

j=1

PjdQj − Kdt + dF (2.23)

Such a function is called a generating function for the canonical transformationf . It

is, a priori, a function of both the old and the new variables and time. Thetwo sets of

coordinates being connected by the2n equations, namely,f(q, p, t) = (Q,P, t), F can

be reduced to a function of2n + 1 variables among the4n + 1. Thus, we can define4n

generating functions that haven variables inP1 andn in P2. Among these are the four

kinds defined by Goldstein [27]:

F1(q1, · · · , qn, Q1, · · · , Qn, t) , F2(q1, · · · , qn, P1, · · · , Pn, t) ,

F3(p1, · · · , pn, Q1, · · · , Qn, t) , F4(p1, · · · , pn, P1, · · · , Pn, t) .

Let us first consider the generating functionF1(q,Q, t). The total time derivative ofF1

reads:

dF1(q,Q, t) =
n

∑

i=1

∂F1

∂qi

dqi +
n

∑

j=1

∂F1

∂Qi

dQi +
∂F1

∂t
dt .

Hence Eq. (2.23) yields:

n
∑

i=1

(pi −
∂F1

∂qi

)dqi − Hdt =
n

∑

j=1

(Pj +
∂F1

∂Qj

)dQj − Kdt +
∂F1

∂t
dt . (2.24)
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Assume that(q,Q, t) is a set of independent variables. Then Eq. (2.24) is equivalent to:

pi =
∂F1

∂qi

(q,Q, t) , Pi = −∂F1

∂Qi

(q,Q, t) , K(Q,−∂F1

∂Q
, t) = H(q,

∂F1

∂q
, t)+

∂F1

∂t
. (2.25)

Eqns. (2.25) characterizeF1. If (q,Q) is not a set of independent variables, we say thatF1

is singular (see Chapter III for more details on singularities).

Now let us consider more general forms of generating functions. Let (i1, · · · , ip)

(ip+1, · · · , in) and(k1, · · · , kr)(kr+1, · · · , kn) be two partitions of the set{1, · · · , n} into

two non-intersecting parts such thati1 < · · · < ip, ip+1 < · · · < in, k1 < · · · < kr

andkr+1 < · · · < kn. In addition, we defineIp = (i1, · · · , ip), Īp = (ip+1, · · · , in),

Kr = (k1, · · · , kr) andK̄r = (kr+1, · · · , kn). If

(qIp , pĪp
, QKr , PK̄r

) = (qi1 , · · · , qip , pip+1
, · · · , pin , Qk1

, · · · , Qkr , Pkr+1
, · · · , Pkn)

are independent variables, then we can define the generatingfunction

FIp,Kr(qIp , pĪp
, QKr , PK̄r

, t) .

ExpandingdFIp,Kr yields:

dFIp,Kr =

p
∑

a=1

∂FIp,Kr

∂qia

dqia +
n

∑

a=p+1

∂FIp,Kr

∂pia

dpia +
r

∑

a=1

∂FIp,Kr

∂Qka

dQka

+
n

∑

a=r+1

∂FIp,Kr

∂Pka

dPka +
∂FIp,Kr

∂t
dt , (2.26)

and rewriting Eq. (2.23) as a function of the linearly independent variables leads to:

p
∑

a=1

piadqia−
n

∑

a=p+1

qiadpia−Hdt =
r

∑

a=1

PkadQka−
n

∑

a=r+1

QkadPka−Kdt+dFIp,Kr , (2.27)

where

FIp,Kr = F1 +
n

∑

a=r+1

QkaPka −
n

∑

a=p+1

qiapia . (2.28)
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Eq. (2.28) is often referred to as theLegendre transformation, it allows one to transform

one generating function into another.

We then substitute Eq. (2.26) into Eq. (2.27):

r
∑

a=1

(Pka +
∂FIp,Kr

∂Qka

)dQka +
n

∑

a=r+1

(
∂FIp,Kr

∂Pka

− Qka)dPka − Kdt +
∂FIp,Kr

∂t
dt

=

p
∑

a=1

(pia −
∂FIp,Kr

∂qia

)dqia −
n

∑

a=p+1

(qia +
∂FIp,Kr

∂pia

)dpia − Hdt , (2.29)

and obtain the set of equations that characterizesFIp,Kr :

pIp =
∂FIp,Kr

∂qIp

(qIp , pĪp
, QKr , PK̄r

, t) , (2.30)

qĪp
= −∂FIp,Kr

∂pĪp

(qIp , pĪp
, QKr , PK̄r

, t) , (2.31)

PKr = −∂FIp,Kr

∂QKr

(qIp , pĪp
, QKr , PK̄r

, t) , (2.32)

QK̄r
=

∂FIp,Kr

∂PK̄r

(qIp , pĪp
, QKr , PK̄r

, t) , (2.33)

K(QKr ,
∂FIp,Kr

∂PK̄r

,−∂FIp,Kr

∂QKr

, PK̄r
, t) =

H(qIp ,−
∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t) +

∂FIp,Kr

∂t
. (2.34)

For the case where the partitions are(1, · · · , n)() and()(1, · · · , n) (i.e., p = n and

r = 0), we recover the generating functionF2, which verifies the following equations:

pi =
∂F2

∂qi

(q, P, t) , Qi =
∂F2

∂Pi

(q, P, t) , K(
∂F2

∂P
, P, t) = H(q,

∂F2

∂q
, t)+

∂F2

∂t
. (2.35)

The casep = 0 andr = n corresponds to a generating function of the third kind,F3:

qi = −∂F3

∂pi

(p,Q, t) , Pi = −∂F3

∂Qi

(p,Q, t) , K(Q,−∂F3

∂Q
, t) = H(−∂F3

∂p
, p, t)+

∂F3

∂t
.

(2.36)

Finally, if p = 0 andr = 0, we obtainF4:

qi = −∂F4

∂pi

(p, P, t) , Qi =
∂F4

∂Pi

(p, P, t) , K(−∂F4

∂P
, P, t) = H(

∂F4

∂p
, p, t)+

∂F4

∂t
. (2.37)
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For a generating function to be well-defined, we need to make the assumption that its

variables are linearly independent. In ChapterIII we see that this hypothesis is often not

satisfied. The following property grants us that at least oneof the generating function is

well-defined at every instant.

Proposition II.31. Let f : P1 × P2 be a canonical transformation. Using the above

notation, there exist at least two partitionsIp andKr such that(qIp , pĪp
, QKr , PK̄r

, t) are

linearly independent.

Proof. Suppose we cannot find suchIp andKr. Then, we could generate the canonical

transformation using less than2n variables. Using the local inversion theorem, we con-

clude that this is in contradiction withf being a diffeomorphism (Def. II.35).

In the class of canonical transformations, changes of coordinates that transform the

system to equilibrium (K = constant) are of particular interest: they transform the system

into a trivial one. For these particular transformations, Eq. (2.34) simplifies into the

Hamilton-Jacobi equation.

Theorem II.32 (Hamilton-Jacobi). Let f be a canonical transformation and letFIp,Kr

be the associated generating function. Then,f transforms the Hamiltonian to equilibrium

if and only ifFIp,Kr verifies the Hamilton-Jacobi equation:

∂FIp,Kr

∂t
+ H(qIp ,−

∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t) = constant . (2.38)

Proof. On one hand, iff transforms the system to equilibrium thenK = constant and

Eq. (2.34) simplifies into Eq. (2.38). On the other hand, iff is a canonical transformation

andFIp,Kr verifies the Hamilton-Jacobi equation, thenK = constant, i.e., the system is

transformed to equilibrium.
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RemarkII.33. Generating functions are not unique. BothFIp,Kr andFIp,Kr + constant

verify the Hamilton-Jacobi equation and Eqns. (2.30)-(2.33). Therefore, Eq. (2.38) may

be equivalently written as:

∂FIp,Kr

∂t
+ H(qIp ,−

∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t) = 0 . (2.39)

In the literature, Eq. (2.39) is often called the Hamilton-Jacobi equation and Eq. (2.38) is

not given any name. Starting in Chapter III, we follow this convention and the Hamilton-

Jacobi equation will always refer to Eq. (2.39) except as otherwise mentioned.

Thm. II.32 is the backbone of the theory we present in this dissertation. It relates

solutions of the Hamilton-Jacobi partial differential equation to canonical transformations

that map Hamiltonian dynamical systems into trivial ones. There are many such mappings,

all of them satisfy the Hamilton-Jacobi equation but with different boundary conditions.

2.2.2 The generating function for integrating the equationsof motion

The Hamilton-Jacobi theory has found many applications over the years. It was first

used to integrate the equations of motion of integrable Hamiltonian systems. Branching

from this, a variety of applications were developed. For instance, it was used to derive

symplectic integrators [57, 21, 45] and prove the existenceof the action-angle variables

[5]. In this section, through a non-trivial example, we present the use of the Hamilton-

Jacobi theory for integrating the equations of motion. Thisexample, taken from Classical

Dynamics [28], will help us to highlight fundamental differences between the classical

approach and the method we develop in this dissertation.

Example II.34 (The two-body problem). The two-dimensional two-body problem con-

sists of a particle of unit mass attracted by an inverse-square gravitational force to a fixed
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point. The dynamics of the particle is described by the Hamiltonian function:

H(r, θ, pr, pθ) =
1

2

(

p2
r +

p2
θ

r2

)

− µ

r
,

where(r, θ) are polar coordinates centered at the fixed point. SinceH is time-independent,

H is conserved along the trajectory (Prop. II.24). In addition, θ does not appear inH and

therefore its conjugate momentumpθ has a constant value. Now consider the generating

function of the second kind associated with the extended phase flow canonical transfor-

mation1: F2(r, θ, t, pr0
, pθ0

, pt). From Eqns. (3.10)-(3.11) and the fact thatpθ andH are

constants of motion, we can writeF2 in the following form [28]:

F2(r, θ, t, pr0
, pθ0

, pt) = ptt + pθθ + W (r,−H, pθ) .

Then the Hamilton-Jacobi equation (3.12) reads:

1

2

(

∂W

∂r

)2

+
p2

θ

2r2
− µ

r
+ H = 0 .

Integration of the Hamilton-Jacobi equation yields:

F2(r, θ, t, pr0
, pθ0

,−H) =

∫ r

r0

√

−2H + 2
µ

r
− p2

θ

r2
dr ,

wherer0 is the value ofr at the initial timet0 = 0. Now recall Eq. (3.11):

t0 = −∂F2

∂H

= t −
∫ r

r0

dr
√

−2H + 2µ
r
− p2

θ

r2

,

θ0 = − ∂F2

∂pθdr

=

∫ r

r0

pθ

r
√

−2Hr2 + 2µr − p2
θ

.

Integration of this last equation provides the equation of motion:

r =
p2

θ/µ

1 + e cos(θ)
, where e =

√

1 + 2Hp2
θ/µ

2 .

1In the extended phase space, the time plays the role of a generalized coordinates with associated mo-
mentumpt = −H.
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Thus, the Hamilton-Jacobi theory allows us to find the equations of motion for the two-

body problem. The methodology used is very general since we just need to find a canonical

map that transforms the system into an easily integrable one. The search for such a map

remains difficult and this aspect limits the use of the Hamilton-Jacobi theory in practice.

Instead, in the present research we focus on a single transformation, the one induced by the

phase flow that maps the system to its initial state. Under this transformation, the system

is in equilibrium and every point in phase space can be considered to be an equilibrium

point. In general, we cannot compute this transformation (if we were able to find this

transformation, it would mean that we could integrate the equations of motion) and so

we focus on the generating functions that generate this transformation. In particular, we

prove that they solve two-point boundary value problems (Chapter III) and we develop an

algorithm for approximating them (Chapter V).

We now derive the Hamilton-Jacobi equation from geometric points of view. Both ap-

proaches for autonomous and non-autonomous dynamical systems are presented. The out-

line is inspired from the text “Foundations of Mechanics” [1] but the definition of canon-

ical transformations was modified to allow for comparison with the variational approach.

Section 2.2.3 deals with autonomous Hamiltonian systems (symplectic geometry) whereas

Section 2.2.4 is focused on non-autonomous systems (contact geometry). Again, these two

sections use advanced concepts of geometry and are therefore less accessible. Those who

are not interested in the geometry of the Hamilton-Jacobi theory may skip the end of this

chapter. Results in the next two sections are not used in the following, however similar

reasoning is developed to derive the discrete Hamilton-Jacobi theory (Section 4.5).
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2.2.3 From the phase space point of view

We first define the concept of canonical transformations on symplectic manifolds.

Then we introduce the generating functions and finally derive the Hamilton-Jacobi equa-

tion.

Canonical transformations

Definition II.35. Let (P1, ω1) and (P2, ω2) be symplectic manifolds. AC∞-mappingf :

P1 → P2 is called symplectic or canonical if and only iff ∗ω2 = ω1.

We now prove that this definition is equivalent to Def. II.28.First we show that it

implies thatf is a diffeomorphism, and then prove the other two items of Def. II.28.

Proposition II.36. If f is symplectic thenf is a diffeomorphism.

Proof. Supposef is not a diffeomorphism, i.e., there existsx ∈ P1 such that

∃v1 ∈ TxP1 | Tf · v1 = 0 .

Sincef is symplectic, we have:

∀v2 ∈ TxP1 | v2 6= 0 , ω1(x)(v1, v2) = ω2(f(x))(Tf · v1, T f · v2) .

The right hand side is zero but the left hand side is not. This is a contradiction and therefore

f is a diffeomorphism.

Lemma II.37. Let(P1, ω1) and(P2, ω2) be symplectic manifolds andf a canonical trans-

formation,f : P1 → P2; (q, p) 7→ (Q,P ). Then,f ∗ω2 = ω1 can be written in matrix

form asF T JF = J whereF is locally defined byF k
i := ∂fk

∂xi
andJ is the local matrix

representation of the symplectic two-form using canonical coordinates:J =







0 1

−1 0






.
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Proof. Using local canonical coordinates the symplectic forms read (Darboux’s theorem):

ω1 =
∑

i

dqi ∧ dpi , ω2 =
∑

i

dQi ∧ dPi .

In addition,f being symplectic is equivalent tof ∗ω2 = ω1, that is,

∀x = (q1, · · · , qn, p1, · · · , pn) ∈ P1 , ∀v1, v2 ∈ TxP1 ,

ω2(f(x))(Tf · v1, T f · v2) = ω1(x)(v1, v2) .

This last equation reads asF T JF = J in matrix form.

Let (P1, ω1, XH) define a Hamiltonian system,(P2, ω2) define a symplectic manifold

andf be a canonical transformation,f : P1 → P2; (q, p) 7→ (Q,P ).

By definition,XH is an Hamiltonian vector field if and only ifiXH
ω1 = dH. Define

XK = f∗XH and let us show thatXK is a Hamiltonian vector field.

iXH
ω1 = dH ,

if∗XK
f ∗ω2 = dH ,

f ∗(iXK
ω2) = dH ,

iXK
ω2 = f∗dH . (2.40)

Hence,XK is a Hamiltonian vector field for the Hamiltonian functionf∗H, that is, for the

Hamiltonian functionH expressed as a function of the new variables.

We summarize this last result in the following proposition.

Proposition II.38. Let XH be an Hamiltonian vector field with Hamiltonian functionH.

Then,f being a canonical transformation is equivalent tof∗XH being an Hamiltonian

vector field with Hamiltonian functionf∗H.

Prop. II.36 together with Prop. II.38 show the equivalence between Def. II.35 and

Def. II.28.
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Generating functions We now introduce the concept of generating functions. Most of

the results in this section are taken from Abraham and Marsden, “Foundations of Mechan-

ics” [1].

Proposition II.39. Let (P1, ω1) and(P2, ω2) be symplectic manifolds,πi : P1 ×P2 → Pi

the projection ontoPi, i = 1, 2 and

Ω = π∗
1ω1 − π∗

2ω2 . (2.41)

Then:

1. Ω is a symplectic form onP1 × P2;

2. a mapf : P1 → P2 is symplectic if and only ifi∗fΩ = 0, whereif : Γf → P1 × P2

is the inclusion map andΓf is the graph off .

Proof. We need to verify thatΩ is closed and non-degenerate. Sinceωi is closed andd

commutes with the pull-back, we have:

dΩ = d(π∗
1ω1 − π∗

2ω2) ,

= π∗
1dω1 − π∗

2dω2 ,

= 0 ,

Thus,Ω is closed.

Let us choosex = (x1, x2) ∈ P1×P2 andv = (v1, v2) ∈ Tx(P1×P2) ∼ Tx1
P1×Tx2

P2

such that

∀w = (w1, w2) ∈ Tx(P1 × P2) , Ω(p)(v, w) = 0 .

Let us show thatv is zero.

Ω(x)(v, w) = ω1(π1(x))(Tπ1 · v, Tπ1 · w) − ω2(π2(x))(Tπ2 · v, Tπ2 · w)

= ω1(x1)(v1, w1) − ω2(x2)(v2, w2) . (2.42)



41

Eq. (2.42) is zero for all(w1, w2) if and only if each of the terms are zero, that is,

ω1(x1)(v1, w1) = 0 , ∀w1 and ω2(x2)(v2, w2) = 0 , ∀w2 .

Sinceωi is non-degenerate, we conclude thatv1 = v2 = 0. ThusΩ is closed and non-

degenerate, i.e.,Ω is a symplectic form.

We now prove the second statement.f induces a diffeomorphism ofP1 on Γf so we

can write

T(x,f(x))Γf = {(v, Tf · v)|v ∈ TxP1} .

Therefore,

(i∗fΩ)(x, f(x))((v1, T f · v1),(v2, T f · v2))

= ω1(x)(v1, v2) − ω2(f(x))(Tf · v1, T f · v2)

= (ω1 − f ∗ω2)(x)(v1, v2) .

We conclude thatf is symplectic if and only ifi∗fΩ = 0.

Ω being closed, the Poincaré lemma guaranties the existence of a one-formΘ such that

locallyΩ = −dΘ. Now we assume thatf is symplectic. Then, we havedi∗fΘ = i∗fdΘ = 0,

i.e., i∗fΘ is closed. Using again the Poincaré lemma, we show that there exists locally a

functionF : Γf → R such thati∗fΘ = dF .

Definition II.40. Such a functionF is called a generating function for the symplectic map

f. In addition, F is locally defined and is not unique (sinceΘ is not unique, Eq.(2.6)).

If (q1, · · · , qn, p1, · · · , pn) are coordinates onP1 and (Q1, · · · , Qn, P1, · · · , Pn) are

coordinates onP2, thenΓf can be given a chart in several ways. For instance,F may

appear as a function of(qi, Qi) or of (qi, Pi), and so forth depending of the choice ofΘ.

• Let2 θ1 = pidqi andθ2 = PidQi,

2The Einstein convention for indices is used.
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theni∗fΘ = i∗fπ
∗
1θ1 − i∗fπ

∗
2θ2 = (π1 ◦ if )

∗pidqi − (π2 ◦ if )
∗PidQi. SupposeF is a

function of(q1, · · · , qn, Q1, · · · , Qn). Then from

dF =
∂F

∂qi

dqi +
∂F

∂Qi

dQi and i∗fΘ = dF ,

we conclude that:

pi =
∂F

∂qi

and Pi = − ∂F

∂Qi

. (2.43)

We recover the generating function of the first kindF1(q1, · · · , qn, Q1, · · · , Qn).

• Let θ1 = pidqi andθ2 = −QidPi,

theni∗fΘ = i∗fπ
∗
1θ1 − i∗fπ

∗
2θ2 = (π1 ◦ if )

∗pidqi + (π2 ◦ if )
∗QidPi. SupposeF is a

function of(qi, Pi), then usingi∗fΘ = dF we conclude that:

pi =
∂F

∂qi

and Qi =
∂F

∂Pi

. (2.44)

We recover the generating of the second kindF2(q1, · · · , qn, P1, · · · , Pn).

• Different choices ofΘ yield different generating functions. In the same manner, we

can recover the4n generating functions introduced previously (Section 2.2.1).

The Hamilton-Jacobi theory The theorems we give in this section are not taken from

“Foundations of Mechanics” [1] and, as far as we know, cannotbe found in the literature

(although we believe that they are well-known). LetQ be the configuration space of an

autonomous Hamiltonian system and consider a canonical transformationf : T ∗Q →

T ∗Q; (q, p) 7→ (Q,P ). Without loss of generality, we focus on the generating functions

of the first kind,F1, associated withf . Sincef is time-independent, the energy expressed

in either set of coordinates is conserved along trajectories, i.e.,H(q, p) = constant =

K(Q,P ). Using Eq. (2.43) this last equation reads:

H(q,
∂F1

∂q
) = K(Q,−∂F1

∂Q
) . (2.45)
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In addition, if we assume thatf transforms the system to equilibrium thenK is a constant

and Eq. (2.45) simplifies into

H(q,
∂F1

∂q
) = E . (2.46)

Eq. (2.46) is the time-independent Hamilton-Jacobi equation. The remainder of this sec-

tion is devoted to explaining the derivation of this time-independent Hamilton-Jacobi equa-

tion in more detail.

In the followingf is a canonical transformation fromT ∗Q to T ∗Q; f(q, p) = (Q,P )

andXH is the Hamiltonian vector field associated withH on(T ∗Q, ω1 = dqi∧dpi). From

Prop. II.38,XK = f∗XH is the Hamiltonian vector field associated with the function

K = f∗H on (T ∗Q, ω2 = dQi ∧ dPi).

Theorem II.41. Let F1 : Q×Q → R be a smooth function. Definẽp(q,Q) = ∂F1

∂q
(q,Q)

andP̃ (q,Q) = −∂F1

∂Q
(q,Q). Then the following two conditions are equivalent:

1. F1 is the generating function associated withf ;

2. • For every curvec(t) in Q satisfying:

c′(t) = Tτ ∗
Q · XH(c(t), p̃(c(t), Q)) , (2.47)

the curvet 7→ (c(t), p̃(c(t), Q)) is an integral curve ofXH , whereτ ∗
Q : T ∗Q →

Q is the cotangent bundle projection.

• For every curvec(t) in Q satisfying:

c′(t) = Tτ ∗
Q · XK(c(t), P̃ (q, c(t))) ,

the curvet 7→ (c(t), P̃ (q, c(t))) is an integral curve ofXK .
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The idea of this theorem is rather simple. LetQ be fixed (the following also applies if

q is fixed instead), and define the mapp̃ : q 7→ ∂F1

∂q
which associates a momentum to every

point onQ. Then, construct a curvec : R → Q such thatc(t) verifies the differential

equation (2.47):

q̇ =
∂H

∂p
(q, p̃(q)) . (2.48)

Oncec is constructed, look at the curvẽp(c(t)) = ∂F1

∂q
(c(t), Q). The theorem states thatF1

is a generating function forf if and only if p̃(c(t)) is the momentum associated withc. In

other words,F1 is a generating function forf if and only if p̃(c(t)) verifies the differential

equation

˙̃p = −∂H

∂q
(c(t), p̃) , (2.49)

or equivalently if and only ift 7→ (c(t), p̃(c(t))) verifies Hamilton’s equations.

Proof. SupposeF1 is a generating function off . Let Q be fixed and consider a curve

c : R 7→ Q verifying Eq. (2.47), that is

c′(t) =
∂H

∂p
(c(t), p̃(c(t)) ,

where p̃(c(t)) = ∂F1

∂q
(c(t), Q). SinceF1 is a generating function,̃p(c(t)) is the gen-

eralized momentum associated withc(t). Therefore, we immediately obtain thatt 7→

(c(t), p̃(c(t))) is an integral of curve ofXH .

We apply the same reasoning for deriving the second condition with q fixed instead.

This conclude the proof of1. ⇒ 2..

Now suppose item2. is verified and let us show thatF1 is a generating function off ,

i.e., p̃ = ∂F1

∂q
andP̃ = −∂F1

∂Q
are the momenta associated withq andQ. But this is exactly

the meaning of the statements:
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The curvet 7→ (c(t), p̃(c(t), Q)) is an integral curve ofXH and the curvet 7→

(c(t), P̃ (q, c(t))) is an integral curve ofXK .

Theorem II.42. Let F1 : Q × Q → R be a smooth function. Then the following two

conditions are equivalent:

1. F1 is a generating function associated withf ;

2. For everyH : R × T ∗Q → R, there is a functionK : R × T ∗Q → R such that

H(q,
∂F1

∂q
) = K(Q,−∂F1

∂Q
) . (2.50)

Proof. Assume thatQ is fixed and consider a curvec(t) in Q such that:

c′(t) = Tτ ∗
Q · XH(c(t), p̃(c(t))) . (2.51)

From Thm. II.41,t 7→ (c(t), p̃(c(t))) is an integral curve ofXH . LetXH = ∂H
∂pi

∂
∂qi

− ∂H
∂qi

∂
∂pi

,

then,

XH

(

c(t),
∂S

∂qi

dqi

)

=

(

∂H

∂p
(c(t), p̃(c(t))),−∂H

∂q
(c(t), p̃(c(t))

)

.

Applying Tτ ∗
Q yields:

c(t)′ = Tτ ∗
Q · XH(c(t), p̃(c(t))) =

∂H

∂p
(c(t), p̃(c(t))) . (2.52)

Further, the statement “t 7→ (c(t), p̃(c(t))) is an integral curve ofXH” is equivalent to

the following:

(c(t), p̃(c(t)))′ = XH (c(t), p̃(c(t))) ,
(

c′(t),
∂S

∂qi

(c(t)) dqi

)′

= XH

(

c(t),
∂S

∂q
(c(t))

)

,

Taking only the ith component of the second part:

∂2S

∂qi∂qj
(c(t)) · c′j(t) = −∂H

∂qi

(

c(t),
∂S

∂q
(c(t))

)

,

∂2S

∂qi∂qj
(c(t)) · ∂H

∂pj

(

c(t),
∂S

∂q
(c(t))

)

= −∂H

∂qi

(

c(t),
∂S

∂q
(c(t))

)

. (2.53)
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On the other hand, deriving the left side of Eq. (2.50) yields:

d

dt
H(q,

∂S

∂q
) =

∂H

∂qi

(q,
∂S

∂q
)q̇i +

∂H

∂pi

(q,
∂S

∂q
)

∂2S

∂qi∂qj
(q)q̇j .

Theith component,αi, reads

αi =
∂H

∂qi

(q,
∂S

∂q
) +

∂H

∂pj

(q,
∂S

∂q
) · ∂2S

∂qj∂qi

(q) . (2.54)

Using Eq. (2.53), we conclude that Eq. (2.54) is identicallyzero if and only ifF1 is

a generating function forf . In the same way we prove that the total time derivative of

the right hand side of Eq. (2.50) is zero if and only ifF1 is a generating function of

f . ThereforeH(q, ∂S
∂q

) andK(Q,− ∂S
∂Q

) differ at most by a constant that can be added to

K.

The final result of this section is the Hamilton-Jacobi theorem. We have already de-

rived it from the variational point of view and we now presentits geometric version.

Theorem II.43 (Hamilton-Jacobi). Let F1 : Q × Q → R be a generating function

associated with the canonical transformationf . Then the following two conditions are

equivalent:

1. f transforms the Hamiltonian system(T ∗Q, ω1, XH) into a new Hamiltonian system

(T ∗Q, ω2, XK) which is in equilibrium, i.e.,K = constant, XK = 0.

2. F1 satisfies the Hamilton-Jacobi equationH(qi,
∂F1

∂qi
) = E whereE is a constant.

Proof. The proof is obvious using Thm. II.42. Indeed, ifF1 verifies the Hamilton-Jacobi

equation, thenK(Q,−∂F1

∂Q
) = E andXK = 0. On the other hand, ifK = constant Eq.

(2.50) simplifies to the Hamilton-Jacobi equation.
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RemarkII.44. If H = T + V , i.e.,pi = q̇i, then,

Tτ ∗
Q · XH(qi, pi) = Tτ ∗

Q((qi, pi), (q̇i, ṗi)) = (qi, q̇i) .

Thus,Tτ ∗
QXH = identity. If we assume a givenQ, the first item in Thm. II.41 reads:

“c(t) is a gradient line ofF1”, i.e., c(t) is orthogonal to level surfaces ofF1. As a result,

solutions to the Hamilton-Jacobi equation can be constructed as follows: for a givenQ,

F1 is such that locally the trajectories of the system are orthogonal to its level surfaces

(for eachq, q̇ is orthogonal to a level surface ofF1). This is the beginning of the anal-

ogy with geometric optics, we refer to Abraham and Marsden [1], Arnold [5], Lanczos

[60], Chetaev [22] and references therein for more details. This remark is also crucial for

understanding the geometric construction of the Hamilton-Jacobi theory based on the full

picture developed by Caratheodory and then Rund in [81] (see also Bliss [13] and Hestenes

[49]).

For non-autonomous Hamiltonian systems, we mentioned previously that there were

two ways to handle the time: we could either consider it as a generalized coordinate or as

an additional parameter. In the first case, the dimension of the phase space becomes2n+2

and the coordinates are no longer independent (the momentumassociated with the time

coordinate is the opposite of the total energy of the system). If one applies the autonomous

Hamilton-Jacobi theory to the2n + 2 dimensional system then canonical transformations

are no longer generated by the classical generating functions but by generalized canonical

transformations (see e.g. Greenwood [28] and Struckmeier and Riedel [89]). On the other

hand, if one considers the time as an independent parameter,the above material does not

apply and we must derive the Hamilton-Jacobi theory in the framework of contact geom-

etry. In particular, we must re-define canonical transformations and generating functions.
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2.2.4 From the extended phase space point of view

This section is also inspired by the excellent book “Foundations of Mechanics” written

by Abraham and Marsden [1] but the definition of canonical transformations have been

modified to allow comparison with previous sections. The last theorems on the Hamilton-

Jacobi theory cannot be found in this book nor in the literature (although we believe that

they are well known).

Canonical transformation

Definition II.45. Let (P1, ω1) and(P2, ω2) be symplectic manifolds and(R × Pi, ω̃i) the

corresponding contact manifold3. A smooth mappingf : R × P1 → R × P2 is called a

canonical transformation if each of the following holds:

• (C1)f is a diffeomorphism,

• (C2)f preserves time, that isf ∗t = t,

• (C3) there is a functionKf : R × P2 → R such that

f ∗ωKf
= ω̃1 ,

whereωKf
= ω̃2 + dKf ∧ dt.

Moreover, ifωi = −dθi, then (C3) is equivalent to

• (C4) there is aKf such thatf ∗θ̃2 − θKf
is closed, wherẽθi = dt + π∗θi andθKf

=

θ̃2 − Kfdt.

In order to make analogies with the autonomous Hamilton-Jacobi theory, we need to

characterize the property of being canonical in a more familiar way.

3ω̃i has been defined in Prop. II.18
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Proposition II.46. Let(P1, ω1) and(P2, ω2) be symplectic manifolds and(R×Pi, ω̃i) the

corresponding contact manifolds. A smooth mappingf : R × P1 → R × P2 is called a

canonical transformation if each of the following holds:

• (C1)f is a diffeomorphism,

• (C2)f preserves time, that isf ∗t = t,

• (C5) for all H : R × P1 → R, there is aK : R × P2 → R such that

f ∗ωK = ωH .

(C5) states that canonical transformations must preserve the contact two-form. This

condition is similar to the definition of time-independent canonical transformations, namely

f preserves the symplectic two-form.

Proof. Suppose (C3) holds and defineK = f∗H + Kf . Then,

f ∗ωK = f ∗(ω̃2 + dK ∧ dt)

= f ∗ω̃2 + d(K ◦ f) ∧ d(t ◦ f)

= f ∗ω̃2 + d(K ◦ f) ∧ dt (sincef preserves time)

= ω̃1 − f ∗dKf ∧ dt + d(K ◦ f) ∧ dt

= ω̃1 + dH ∧ dt .

Conversely, chooseH to be zero and letKf = K. Thenf ∗ωK = ωH reduces to

(C3).

RemarkII.47. Suppose(P , ω,XH) is an autonomous Hamiltonian system. From Prop.

II.18 we know that the extended phase space maybe be given thecontact structure(R ×

P , π∗ω). In that case,(C5) reduces to “f preserves the symplectic two-form”. In addition,
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if f is time-independent, then(C2) is trivially verified. Thus, the above definition is equiv-

alent to Def. II.35 for autonomous Hamiltonian systems and time-independent canonical

transformations.

Proposition II.48. Let f be a canonical transformation, thenf preserves the canonical

form of all time-dependent Hamiltonian systems, i.e., for all H : R × P1 → R, there is a

K : R × P2 → R such thatf∗X̃H = X̃K .

Let π : R × Pi → Pi be the projection onP andjt : Pi → R × Pi; x 7→ (t, x), then

for everyt ∈ R, ft : P1 → P2; π ◦ f ◦ jt is symplectic.

Proof. From Thm. II.21,XH is uniquely defined byiX̃H
ωH = 0 andiX̃H

dt = 1. Thus,

if∗X̃H
ωK = if∗X̃H

f∗ωH = f∗iX̃H
ωH = 0 .

Moreover,if∗X̃H
dt = 1 sincef preserves time. By uniqueness, we conclude thatX̃K =

f∗X̃H .

The remainder of the proof follows from the following lemma.

Lemma II.49. ft is symplectic for eacht if and only if there is a one-formα on R × P2

such thatf ∗(ω̃2 + α ∧ dt) = ω̃1.

Proof. If f ∗(ω̃2 + α ∧ dt) = ω̃1, then

f ∗
t (ω2) = (j∗t f

∗π∗)ω2

= j∗t f
∗ω̃2

= j∗t ω̃1 − j∗t f
∗(α ∧ dt)

= j∗t π
∗ω1 − j∗t f

∗α ∧ j∗t f
∗dt

= ω1 ,

sincej∗t f
∗dt = d(j∗t f

∗t) = d(j∗t t) = 0. Therefore,ft is symplectic for allt.
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Conversely, assumeft is symplectic and letβ = ω̃2 − f∗ω̃1. Then,

j∗t f
∗β = j∗t f

∗ω̃2 − j∗t ω̃1 = f ∗
t ω2 − ω1 = 0 .

Sinceβ is a two-form onR×P2, it can be written asβ = γ+α∧dt, whereγ is a two-form

which does not involvedt. Fromj∗t f
∗β = 0 andj∗t f

∗β = γ we conclude thatγ = 0.

Theorem II.50 (Jacobi). Let f : R × P1 → R × P2 satisfy (C1) and (C2). Then, (C3) is

equivalent to

(C6) There is a functionKf : R × P2 → R such that for allH : R × P1 → R,

f∗X̃H = X̃K , whereK = f∗H + Kf .

Proof. We have already proven that(C3) implies (C6) in Prop. II.48. For the converse,

takingH = 0 leads tof∗t = X̃Kf
. For an arbitraryH, we have,

f∗X̃H = f∗XH + X̃Kf
= f∗XH + XKf

+ t .

Further, we also have,

X̃K = XK + t = Xf∗H + XKf
+ t , and X̃K = f∗X̃H .

Combining these equations yields:

f∗XH = f∗(X̃H − t) = f∗X̃H − X̃Kf

= X̃K − X̃Kf
= Xf∗H . (2.55)

We defineHt = j∗t H and recall thatft∗ = f−1∗
t = j∗t f∗π

∗. Then,

Xft∗Ht = X(jt◦π◦f−1◦jt)∗H

= (jt ◦ π ◦ f−1 ◦ jt)
∗XH by Eq. (2.55)

= j∗t f∗π
∗XHt

= ft∗XHt .
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Using Prop. II.38, we conclude thatft is symplectic for allt and that there exists4 a

one-formα such thatf ∗(ω̃2 + α ∧ dt) = ω̃1. Hence,

iX̃Kf
f∗ω̃1 = iX̃Kf

ω̃2 + (iX̃Kf
α) ∧ dt − α ∧ iX̃Kf

dt . (2.56)

In addition, sinceX̃Kf
= f∗t, we have:

iX̃Kf
f∗ω̃1 = f∗itω̃1 = 0 . (2.57)

Using Eq. 2.57 together withiX̃Kf
dt = 1 andf ∗t = t, Eq. 2.56 simplifies to:

α = if∗tω̃2 + (if∗tα)dt ,

that is,f∗ω̃1 = ω̃2 + (if∗tω̃2) ∧ dt. Finally, we have

if∗tω̃1 = iX̃Kf
ω̃1 = dKf −

∂Kf

∂t
dt ,

which allows us to conclude thatf∗ω̃1 = ωKf
or equivalently thatf is canonical.

Generating functions Let (P1, ω1) and (P2, ω2) be symplectic manifolds and(R ×

Pi, ω̃i) the corresponding contact manifolds. Consider a canonical transformationf from

R×P1 to R×P2 and denote byΓf the graph off and byπ̃i : R×P1 ×P2 → R×Pi the

projection ontoR × Pi. We definegs such thatf(s, x) = (s, gs(x)) and identify elements

of Γf , ((s, x), f(s, x)) ∈ (R × P1) × (R × P2) with elements of(R × P1) × P2 of the

form ((s, x), gs(x)). The graph off is thus given by

Γf = {((s, x), gs(x)) ∈ (R × P1) × P2} .

We also define the inclusion mapif : Γf → R × P1 × P2.

4Using the previous lemma.
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Proposition II.51. Let

Ω = π̃∗
1ω̃1 − π̃∗

2ωKf

be a two form onR × P1 × P2 whereKf is defined as in (C3). Theni∗fΩ = 0.

Moreover, ifω̃i andωKf
are defined as in (C4), we have:

d(i∗f (π̃
∗
1θ1 − π̃∗

2θKf
)) = 0 .

Proof. The proof of this property is similar to the one in the time-independent case. We

take((s, x), g(x)) ∈ Γf and((si, vi), (Tgs · vi)) ∈ T((s,x),g(x))Γf and proceed to the com-

putation ofi∗fΩ:

i∗fΩ((s, x), g(x))(((s1, v1), (Tgs1
· v1)), ((s2, v2), (Tgs2

· v2))) =

(ω̃1 − f ∗ωKf
)(s, x)((s1, v1), (s2, v2)) .

ThereforeifΩ = 0.

The second part of the theorem requires only substitutions.

From the Poincaŕe lemma there exists locally a one-formΘ such thatΩ = −dΘ. Thus,

i∗fΘ is closed and there exists locally a functionF such that

i∗fΘ = dF .

Definition II.52. F as defined above is called a generating function forf . F is locally

defined and is not unique.

Depending on the choice of the canonical one-formΘ, F takes different expressions

and we can recover all4n kinds of generating functions. However, we do not give de-

tails of the derivation of each of the generating functions as it proceeds exactly as in the

autonomous case. We now move on the Hamilton-Jacobi for time-dependent canonical

transformations applied to non-autonomous Hamiltonian systems.
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The Hamilton-Jacobi theory Even though the following theorems may not be new,

we could not find them in the literature.

Proposition II.53. Let f be a canonical transformation andF its associated generating

function, then

f ∗Kf =
∂F

∂t
.

In addition, for a HamiltonianH onR × P1,

f∗X̃H = X̃K , wheref ∗K = H +
∂F

∂t
.

Proof. The definition ofF reads:

dF = i∗fΘ

= i∗f (π̃
∗
1 θ̃1 − π̃∗

2θKf
)

= i∗f (π̃
∗
1dt + π̃∗

1π
∗θ1 − π̃∗

2dt − π̃∗
2π

∗θ2 − π̃∗
2Kfdt)

= i∗f π̃
∗
1(π

∗θ1 − f ∗π∗θ2 − f ∗Kfdt) .

Therefore,f ∗Kf = ∂F
∂t

. The remainder of the proposition is just (C6) (cf. Jacobi’s theorem

(Thm. II.50))

The next two theorems focus on canonical transformations that transform the system to

equilibrium. They are the main results of this section: the last one is the Hamilton-Jacobi

theorem.

LetQ be the configuration space of the Hamiltonian system defined by H and consider

a canonical transformationf onR × T ∗Q.

Definition II.54. We say thatf transformsH to equilibrium if K = f∗H + Kf =

constant.
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Theorem II.55. Let F : R × Q × Q → R be a smooth function. Definẽpt(q,Q) =

∂F
∂q

(t, q, Q) and P̃t(q,Q) = −∂F
∂Q

(t, q, Q). Then the following two conditions are equiva-

lent:

1. F is the generating function associated withf ;

2. • For every curvec(t) in Q satisfying:

c′(t) = Tτ ∗
Q · XHt(c(t), p̃t(c(t), Q)) ,

the curvet 7→ (c(t), p̃t(c(t), Q)) is an integral curve ofXH , whereτ ∗
Q :

T ∗Q → Q is the cotangent bundle projection.

• For every curvec(t) in Q satisfying:

c′(t) = Tτ ∗
Q · XK(c(t), P̃t(q, c(t))) ,

the curvet 7→ (c(t), P̃t(q, c(t))) is an integral curve ofXK .

Proof. The proof is the same as in the autonomous case, so we omit it.

Theorem II.56 (Hamilton-Jacobi). Let F : R × Q × Q → R be a generating function

associated withf . Thenf transformsH to equilibrium if and only ifH(q, ∂F
∂q

) + ∂F
∂t

=

constant.

Proof. If f transformsH to equilibrium, then from Thm. II.50,H + ∂F
∂t

= constant.

Suppose now thatF verifies the Hamilton-Jacobi equation, then again Thm. II.50 allows

us to conclude thatK = constant.



CHAPTER III

SOLVING TWO-POINT BOUNDARY VALUE
PROBLEMS

One of the most famous two-point boundary value problems in astrodynamics is Lam-

bert’s problem, which consists of finding a trajectory in thetwo-body problem which goes

through two given points in a given time. Even though the two-body problem is integrable,

no closed-form solution has been found to this problem so far. Solving Lambert’s prob-

lem still requires one to solve Kepler’s equation, which hasmotivated many papers since

1650 (see e.g. Colwell [24]). As mentioned in the introduction, for a general Hamiltonian

dynamical system, a two-point boundary value problem is solved using iterative methods

that require a “good” initial guess for convergence. Thoughvery systematic, these tech-

niques are not appropriate when several boundary value problems need to be solved as

they require excessive computation and time. For example, in order to design a change of

configuration of a formation ofN spacecraft,N ! two-point boundary value problems need

to be solved [94]. AsN increases, the number of boundary value problems dramatically

grows.

The novel approach we propose in this dissertation addresses these limitations. Specif-

ically, it allows us to formally solve any kind of “symmetric” two-point boundary value

problems with no need for an initial guess and at the cost of a single function evaluation

56



57

once the generating functions are known (“symmetric” boundary value problems refer to

boundary value problems for which the same number of initialand final states are speci-

fied. In the following, we restrict ourselves to those problems and simply refer to them as

two-point boundary value problems).

Our method is based on the Hamilton-Jacobi theory (Chapter II). We consider the

transformation that maps the state of a Hamiltonian system at time t to its initial state.

Such a transformation is canonical and transforms the system to an equilibrium, i.e., to its

initial conditions which are constants of motion. As a result, the Hamilton-Jacobi theorem

tells us that there exist generating functions associated with this transformation that verify

the Hamilton-Jacobi equation (Eq. (2.34)). These generating functions have distinctive

properties that we now study.

This chapter is organized as follows. We first establish the canonical nature of the

transformation that maps the state of a system to its initialstate. Then we focus on the gen-

erating functions associated with this transformation. Weprove that they solve two-point

boundary value problems and analyze their properties. Specifically, for linear systems we

show that generating functions and state transition matrices are closely related. The state

transition matrix allows one to predict singularities of the generating functions whereas

the generating functions provide information on the structure of the state transition matrix.

This relationship also allows us to recover and extend some results on the perturbation

matrices developed by Battin in [10]. For nonlinear systems,generating functions may

also develop singularities (called caustics). Using the geometric framework introduced in

Chapter II together with the Legendre transformation, we propose a technique to study the

geometry of these caustics. We illustrate our method with the study of the singularities

of the F1 generating function in the Hill three-body problem. Most importantly, we re-

late the existence of singularities to the presence of multiple solutions to boundary value
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problems. Finally, we introduce Hamilton’s principal function, a functionsimilar to the

generating functions that also solves two-point boundary value problems. We highlight the

differences between Hamilton’s function and generating functions and justify our choice

of focusing on generating functions.

3.1 The phase flow transformation and its generating functions

In this section, we define the transformation that maps the state of a Hamiltonian sys-

tem to its initial state and prove that it is canonical. We also summarize the equations

verified by the generating functions associated with this transformation.

Consider a Hamiltonian system(P , H, ω) and recallΦt, the phase flow of the system:

Φt : P → P

(q0, p0) 7→ (Φ1
t (q0, p0) = q(q0, p0, t), Φ

2
t (q0, p0) = p(q0, p0, t)) . (3.1)

Φt induces a transformationφ onP × R as follows:

φ : (q0, p0, t) 7→ (Φt(q0, p0), t) .

In other words,φ−1 transforms the state of the system at timet into its state at the initial

time while preserving the time. Let us now prove thatφ, anda fortiori φ−1, are canonical

transformations.

Proposition III.1. The transformationφ induced by the phase flow is canonical.

Proof. From the theory of differential equations1, φ is an isomorphism. Moreover, Prop.

II.22 states thatΦt is symplectic. Thus,φ is canonical.

φ−1 maps the Hamiltonian system to equilibrium. Therefore, theassociated generating

functions,FIp,Kr , verify the Hamilton-Jacobi equation (Eq. (2.39)). In addition, they must

1Uniqueness of solutions of ordinary differential equations
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also verify Eqns. (2.30)-(2.34), where(Q,P ) now denotes the initial state(q0, p0):

pIp =
∂FIp,Kr

∂qIp

(qIp , pĪp
, q0Kr

, p0K̄r
, t) , (3.2)

qĪp
= −∂FIp,Kr

∂pĪp

(qIp , pĪp
, q0Kr

, p0K̄r
, t) , (3.3)

p0Kr
= −∂FIp,Kr

∂q0Kr

(qIp , pĪp
, q0Kr

, p0K̄r
, t) , (3.4)

q0K̄r
=

∂FIp,Kr

∂p0K̄r

(qIp , pĪp
, q0Kr

, p0K̄r
, t) , (3.5)

0 = H(qIp ,−
∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t) +

∂FIp,Kr

∂t
. (3.6)

Similarly, Eqns. (2.25), (2.35), (2.36) and (2.37) simplifies to:

p =
∂F1

∂q
(q, q0, t) , (3.7)

p0 = −∂F1

∂q0

(q, q0, t) , (3.8)

H(q,
∂F1

∂q
, t) +

∂F1

∂t
= 0 . (3.9)

p =
∂F2

∂q
(q, p0, t) , (3.10)

q0 =
∂F2

∂p0

(q, p0, t) , (3.11)

H(q,
∂F2

∂q
, t) +

∂F2

∂t
= 0 . (3.12)

q = −∂F3

∂p
(p, q0, t) , (3.13)

p0 = −∂F3

∂q0

(p, q0, t) , (3.14)

H(−∂F3

∂p
, p, t) +

∂F3

∂t
= 0 . (3.15)

q =
∂F4

∂p
(p, p0, t) , (3.16)

q0 = −∂F4

∂p0

(p, p0, t) , (3.17)

H(
∂F4

∂p
, p, t) +

∂F4

∂t
= 0 . (3.18)
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3.2 Properties of the generating functions

We now study the properties of the generating functions associated withφ−1. First

we show that they solve any two-point boundary value problem. Then we focus on linear

and non-linear systems. Specifically, we relate the state transition matrix to the generating

functions and extend some results on perturbation matricespresented by Battin in [10].

Most importantly, we study the singularities of the generating functions and prove that

they correspond to multiple solutions to boundary value problems.

3.2.1 Solving a two-point boundary value problem

Consider two points in phase space,X0 = (q0, p0) andX1 = (q, p), and two partitions

of (1, · · · , n) into two non-intersecting parts,(i1, · · · , ip) (ip+1, · · · , in) and(k1, · · · , kr)

(kr+1, · · · , kn). A two-point boundary value problem is formulated as follows:

Given 2n coordinates(qi1 , · · · , qip , pip+1
, · · · , pin) and (q0k1

, · · · , q0kr
, p0kr+1

, · · · , p0kn
),

find the remaining2n variables such that a particle starting atX0 reachesX1 in T units of

time.

From the relationship defined by Eqns.(3.2), (3.3), (3.4) and (3.5), we see that the

generating functionFIp,Kr solves this problem. This remark is of prime importance as it

provides us with a very general technique for solving any Hamiltonian boundary value

problems.

Example III.2. Lambert’s problem is a particular case of a boundary value problem where

p = r = n. Though, given two positionsq andq0 and a transfer timeT , the corresponding

momentum vectors are found from Eqns. (3.7) and (3.8):

pi =
∂F1

∂qi

(q, q0, T ) , p0i
= −∂F1

∂q0i

(q, q0, T ) .
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3.2.2 Linear systems theory

In this section we study the generating functions associated with the flow of linear

Hamiltonian systems. Specifically, we reduce the Hamilton-Jacobi equation to a set of

four matrix ordinary differential equations. Then, we relate the state transition matrix and

generating functions. We show that properties of one may be deduced from properties of

the other. The theory we present has implications in the study of relative motion and in

optimal control theory (Chapter VI).

Hamilton-Jacobi equation

To study the relative motion of two particles, one often linearizes the dynamics about

the trajectory (called the reference trajectory) of one of the particles. Then one uses this

linear approximation to study the motion of the other particle relative to the reference tra-

jectory (perturbed trajectory). Thus, the dynamics of relative motion reduces at first order

to a time-dependent linear Hamiltonian system, i.e., a system with a quadratic Hamiltonian

function without any linear terms (Appendix A, Eq. A.10):

Hh =
1

2
XhT







Hqq(t) Hqp(t)

Hpq(t) Hpp(t)






Xh , (3.19)

whereXh =
(

∆q
∆p

)

is the relative state vector.

Lemma III.3. The generating functions associated with the phase flow transformation of

the system defined by Eq.(3.19)are quadratic without linear terms.

The proof of this lemma is trivial once we understand the linkbetween the generating

functions and the state transition matrix (see later in the section).

From the above lemma, a general form forF2 is:

F2 =
1

2
Y T







F 2
11(t) F 2

12(t)

F 2
21(t) F 2

22(t)






Y , (3.20)
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whereY =
(

∆q
∆p0

)

and
(

∆q0

∆p0

)

is the relative state vector at the initial time. We point out

that both matrices definingHh andF2 are symmetric by definition. Then Eq. (3.10) reads:

∆p =
∂F2

∂∆q

=

(

F 2
11(t) F 2

12(t)

)

Y ,

Substituting into Eq. (3.12) yields:

Y T

















Ḟ 2
11(t) Ḟ 2

12(t)

Ḟ 2
12(t)

T Ḟ 2
22(t)







+







I F 2
11(t)

T

0 F 2
12(t)

T













Hqq(t) Hqp(t)

Hpq(t) Hpp(t)













I 0

F 2
11(t) F 2

12(t)

















Y = 0 . (3.21)

Though the above equation has been derived usingF2, it is also valid forF1 (replacing

Y =
(

∆q
∆p0

)

by Y =
(

∆q
∆q0

)

) sinceF1 andF2 solve the same Hamilton-Jacobi equation

(Eqns. (3.9) and (3.12)). Eq. (3.21) is equivalent to the following four matrix equations:

Ḟ 1,2
11 (t) + Hqq(t) + Hqp(t)F

1,2
11 (t) + F 1,2

11 (t)Hpq(t) + F 1,2
11 (t)Hpp(t)F

1,2
11 (t) = 0 ,

Ḟ 1,2
12 (t) + Hqp(t)F

1,2
12 (t) + F 1,2

11 (t)Hpp(t)F
1,2
12 (t) = 0 ,

Ḟ 1,2
21 (t) + F 1,2

21 (t)Hpq(t) + F 1,2
21 (t)Hpp(t)F

1,2
11 (t) = 0 ,

Ḟ 1,2
22 (t) + F 1,2

21 (t)Hpp(t)F
1,2
12 (t) = 0 ,

(3.22)

where we replacedF 2
ij by F 1,2

ij to signify that these equations are valid for bothF1 and

F2. We also recall thatF 1,2
21 = F 1,2

12

T
. A similar set of equations can be derived for any

generating functionFIp,Kr . However, in this section we only give the equations verified

by F3 andF4:

Ḟ 3,4
11 (t) + Hpp(t) − Hpq(t)F

3,4
11 (t) − F 3,4

11 (t)Hqp(t) + F 3,4
11 (t)Hqq(t)F

3,4
11 (t) = 0 ,

Ḟ 3,4
12 (t) − Hpq(t)F

3,4
12 (t) + F 3,4

11 (t)Hqq(t)F
3,4
12 (t) = 0 ,

Ḟ 3,4
21 (t) − F 3,4

21 (t)Hqp(t) + F 3,4
21 (t)Hqq(t)F

3,4
11 (t) = 0 ,

Ḟ 3,4
22 (t) + F 3,4

21 (t)Hqq(t)F
3,4
12 (t) = 0 .

(3.23)
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The first equations of Eqns. (3.22) and (3.23) are Riccati equations. The second and

third are non-homogeneous, time varying, linear equationsonce the Riccati equations are

solved and are equivalent to each other (i.e., transform into each other under transpose).

The last are just a quadrature once the previous equations are solved.

Initial conditions

Although F1 andF2 (or more generallyFIp,Kr andFIp,Ks for all r ands) verify the

same Hamilton-Jacobi partial differential equation, these generating functions are differ-

ent. This difference is characterized by the boundary conditions. At the initial time, the

flow induces the identity transformation, thus the generating functions should also do so.

In other words, at the initial time,

∆q(t0) = ∆q0 , ∆p(t0) = ∆p0 .

In terms of generating functions this translates forF2 to:

∂F2

∂∆q
(∆q0, ∆p0, t0) = ∆p0 ,

∂F2

∂∆p0

(∆q0, ∆p0, t0) = ∆q0 ,

that is,

F 2
11∆q + F 2

12∆p0 = ∆p0 , F 2
21∆q + F 2

22∆p0 = ∆q0 ,

or equivalently:

F 2
11 = F 2

22 = 0 , F 2
12 = F 2

21 = Identity .

On the other hand,F1 is ill-defined at the initial time. Indeed, at the initial time Eqns. (3.7)

and (3.8) read:

F 1
11∆q + F 1

12∆q0 = ∆p0 , F 1
21∆q + F 1

22∆q0 = ∆p0 .
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These equations do not have any solutions. This was expectedsince at the initial time

(∆q, ∆q0) are not independent variables (∆q = ∆q0).

The same reasoning applies to all4n generating functions and in the same manner

we can prove that onlyF2 andF3 have well-defined boundary conditions at the initial

time. They are the only two kinds of generating functions that can generate the identity

transformation. We come back to this important issue in Chapter V.

Legendre transformation

We saw in Chapter II that the Legendre transformation (Eq. (2.28)) allows one to trans-

form one generating function into another. It plays a central role in the present research.

It is used to avoid singularities in the algorithm presentedin Chapter V. In addition, it

allows us to overcome some of the barriers to truly reconfigurable control in optimal con-

trol theory (Section 6.3). As an introduction to this technique, we detail in this section the

Legendre transformation for transformingF2 into F1 for linear systems.

Recall the Legendre transformation:

F1(∆q, ∆q0, t) = F2(∆q, ∆p0, t) − 〈∆p0, ∆q0〉 , (3.24)

where∆p0 is to be viewed as a function of(∆q, ∆q0). Let us first find∆p0(∆q, ∆q0).

From Eq. (3.11) we have:

∆q0 =
∂F2

∂∆p0

= F 2
21∆q + F 2

22∆p0 .

Solving the above equation for∆p0 yields:

∆p0 = F 2
22

−1 (

∆q0 − F 2
21∆q

)

.
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We now substitute∆p0 into Eq. (3.24) and obtainF1:

F1(∆q, ∆q0, t) =
1

2
∆qT F 2

11∆q + ∆qF 2
12F

2
22

−1 (

∆q0 − F 2
21∆q

)

+
1

2
F 2

22
−1 (

∆q0 − F 2
21∆q

)T
F 2

22
−T

F 2
22F

2
22

−1 (

∆q0 − F 2
21∆q

)

−∆q0
T F 2

22
−1 (

∆q0 − F 2
21∆q

)

=
1

2
Y T

1







F 1
11(t) F 1

12(t)

F 1
21(t) F 1

22(t)






Y1 ,

whereY1 =







∆q

∆q0






and







































F 1
11 = F 2

11 − F 2
12F

2
22

−1
F 2

21 ,

F 1
12 = F 2

12F
2
22

−1
,

F 1
21 = F 2

22
−1

F 2
21 ,

F 1
22 = −F 2

22
−1

.

Therefore, using the Legendre transformation we are able tofind a closed-form expres-

sion of F1 from knowledge ofF2, at the cost of one matrix inversion only. This result

generalizes to some extent to nonlinear systems as we show inSection 3.2.3.

Perturbation matrices

Another approach for studying relative motion at linear order relies on the state tran-

sition matrix. This method is developed by Battin in the textbook “An Introduction to the

Mathematics and Methods of Astrodynamics” [10] for the caseof a spacecraft moving in

a point mass gravity field. LetΦ be the state transition matrix which describes the relative

motion:






∆q

∆p






= Φ







∆q0

∆p0






,
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whereΦ =







Φqq Φqp

Φpq Φpp






. Battin[10] defines the fundamental perturbation matricesC

andC̃ as:

C̃ = ΦpqΦqq
−1 ,

C = ΦppΦqp
−1 .

That is, given∆p0 = 0, C̃∆q = ∆p and given∆q0 = 0, C∆q = ∆p. He shows that

for the relative motion of a spacecraft about a circular trajectory in a point mass gravity

field the perturbation matrices verify a Riccati equation andare therefore symmetric. Us-

ing the generating functions for the canonical transformation induced by the phase flow,

we immediately recover these properties. We also generalize these results to any linear

Hamiltonian system.

Using the notations of Eq. (3.20), Eqns. (3.10) and (3.11) read:

∆p =
∂F2

∂∆q

= F 2
11∆q + F 2

12∆p0 ,

∆q0 =
∂F2

∂∆p0

= F 2
21∆q + F 2

22∆p0 .

We solve for(∆q, ∆p):

∆q = F 2
21

−1
∆q0 − F 2

21
−1

F 2
22∆p0 ,

∆p = F 2
11F

2
21

−1
∆q0 + (F 2

12 − F 2
11F

2
21

−1
F 2

22)∆p0 ,

and identify the right hand side with the state transition matrix:






































Φqp = −F 2
21

−1
F 2

22 ,

Φqq = F 2
21

−1
,

Φpp = F 2
12 − F 2

11F
2
21

−1
F 2

22 ,

Φpq = F 2
11F

2
21

−1
.
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We conclude that

C̃ = ΦpqΦ
−1
qq = F 2

11 . (3.25)

In the same manner, but usingF1, we can show that:

C = ΦppΦ
−1
qp = F 1

11 . (3.26)

Thus,C and C̃ are symmetric by nature (asF 1,2
11 is symmetric by definition) and they

verify the Riccati equation given in Eq. (3.22).

Singularities of generating functions and their relation to the state transition matrix

In Chapter II we presented the Hamilton-Jacobi theory. The results we gave there were

local and did not concern the global behavior of the generating functions. We proved that

at least one of the generating functions is well-defined at every instant (Prop. II.31). In

general, we can notice that each of them can become singular at some point, even for

simple systems. As an example let us look at the harmonic oscillator.

Example III.4. The Hamiltonian for the harmonic oscillator is given by:

H(q, p) =
1

2m
p2 +

k

2
q2 ,

TheF1 generating function for the phase flow canonical transformation can be found to

be:

F1(q, q0, t) =
1

2

√
km csc(ωt)

(

−2qq0 + (q2 + q2
0) cos(ωt)

)

,

whereω =
√

k
m

. One can readily verify thatF1 is a solution of the Hamilton-Jacobi equa-

tion (Eq. (3.6)). Although it is well-defined most of the time, atT = mπ/ω, m ∈ Z, F1

becomes singular in that the values of the coefficients of theq’s andq0’s increase without
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bound. To understand these singularities, recall the general solution to the equations of

motion:

q(t) = q0 cos(ωt) + p0/ω sin(ωt) ,

p(t) = −q0ω sin(ωt) + p0 cos(ωt) .

At t = T , q(T ) = q0, that is q and q0 are not independent variables. Therefore the

generating functionF1 is undefined at this instant. We say that it is singular att = T .

However,F1 may be defined in the limit: att = T , q = q0, and thusF1 behaves as

m (q−q0)2

2(t−T )
ast 7→ T . Finally, att = T , q is equal toq0 whatever valuesp andp0 take, i.e.,

singularities correspond to multiple solutions to the boundary value problems.

The harmonic oscillator is a useful example. Since the flow isknown analytically, we

are able to explicitly illustrate the relationship betweenthe generating functions and the

phase flowφ. We can go a step further by noticing that both the state transition matrix

and the generating functions generate the flow. Therefore, singularities of the generating

functions should be related to properties of the state transition matrix:

∆p =
∂F2

∂∆p

= F 2
11∆q + F 2

12∆p0 ,

but we also have

∆p = ΦpqΦ
−1
qq ∆q + (Φpp − ΦpqΦ

−1
qq Φqp)∆p0 .

Similarly, (3.27)

∆q0 =
∂F2

∂∆p0

= F 2
21∆q + F 2

22∆p0 ,

but we also have

∆q0 = Φ−1
qq ∆q − Φ−1

qq Φqp∆p0 . (3.28)
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A direct identification yields:

F 2
11 = ΦpqΦ

−1
qq , (3.29)

F 2
12 = Φpp − ΦpqΦ

−1
qq Φqp , (3.30)

F 2
21 = Φ−1

qq , (3.31)

F 2
22 = Φ−1

qq Φqp . (3.32)

Thus, F2 is singular when and only whenφqq is not invertible. This relation between

singularities ofF2 and invertibility of a sub-matrix of the state transition matrix readily

generalizes to other kinds of generating functions. In particular, we can show that

• F1 is singular whenΦqp is singular,

• F2 is singular whenΦqq is singular,

• F3 is singular whenΦpp is singular,

• F4 is singular whenΦpq is singular.

To extend these results to other generating functions, we must consider other block decom-

positions of the state transition matrix. Everyn × n block of the state transition matrix

is associated with a different generating function. Since the determinant of the state tran-

sition matrix is1, there exists at least onen × n sub-matrix that must have a non-zero

determinant. The generating function associated with thisblock is non-singular, and we

recover Prop. II.31 for linear systems.

3.2.3 Nonlinear systems theory

We have proved the local existence of generating functions and mentioned that they

may not be globally defined. Using linear systems theory we are also able to predict
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where the singularities are and to interpret their meaning as multiple solutions to the two-

point boundary value problem. In this section we generalizethese results to singularities

of nonlinear systems.

The following proposition relates singularities of the generating functions to the in-

vertibility of sub-matrices of the Jacobi matrix of the canonical transformation.

Proposition III.5. The generating functionFIp,Kr for the canonical transformationφ is

singular at timet if and only if

det

(

∂φi

∂zj

)

i∈I,j∈J

= 0 , (3.33)

whereI = {i ∈ Ip}
⋃{n + i, i ∈ Īp}, J = {j ∈ K̄r}

⋃{n + j, j ∈ Kr} andz = (q0, p0)

is the state vector at the initial time.

Proof. For the sake of clarity, let us prove this property forF1. In that case,I = [1, n] and

J = [n + 1, 2n]. First we remark that

(

∂φi

∂zj

)

i∈I,j∈J

=

(

∂qi

∂p0j

)

.

Thus, from the inversion theorem, ifdet
(

∂φi

∂zj

)

i∈I,j∈J
= 0, there is no open set in which

we can solvep0 as a function ofq andq0.

On the other hand, suppose thatF1 is non singular. Then, from Eq. (3.8), we have:

p0 = −∂F1

∂q0

(q, q0, t) , (3.34)

that is, we can expressp0 as a function of(q, q0). This is in contradiction with the result

obtained form the local inversion theorem. Therefore,F1 is singular.

Example III.6. From the above proposition, we conclude that theF1 generating function

associated with the phase flow of the harmonic oscillator is singular if and only if:

det

(

∂φi

∂zj

)

i∈I,j∈J

= 0 . (3.35)
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In this example,I = 1, J = 2 andφ = (q0 cos(ωt) + p0/ω sin(ωt),−q0ω sin(ωt) +

p0 cos(ωt)). ThereforeF1 is singular if and only ifsin(ωt) = 0, i.e.,t = 2π/ω + 2kπ. We

recover previous results obtained by direct computation ofF1.

Prop. III.5 generalizes to nonlinear systems the relation between singularities and non-

uniqueness of the solutions to boundary value problems. Indeed,FIp,Kr is singular if and

only if zJ 7→ φI(t, z) is not an isomorphism. By definition of the flow,zJ 7→ φI(t, z)

is surjective. Thus it is not injective, that is, singularities arise when there exist multiple

solutions to the boundary value problem.

To study the singularities of nonlinear systems, we need to introduce the concept of

Lagrangian submanifolds. The theory of Lagrangian submanifolds goes far beyond the re-

sults we present in this section: “Some believe that the Lagrangian submanifold approach

will give deeper insight into quantum theories than does thePoisson algebra approach.

In any case, it gives deeper insight into classical mechanics and classical field theories”

(Abraham and Marsden [1]). We refer to Abraham and Marsden [1], Marsden [66] and

Weinstein [95] and references given therein for further information on these subjects.

Lagrangian submanifolds

Consider an arbitrary generating functionFIp,Kr . Then the graph ofdFIp,Kr defines a

2n-dimensional submanifold called a canonical relation [95]of the4n-dimensional sym-

plectic space(P1×P2, Ω = π∗
1ω1−π∗

2ω2). On the other hand, since the variables(q0, p0) do

not appear in the Hamilton-Jacobi equation (Eq. (3.6)), we may consider them as parame-

ters. In that case the graph of(qIp , pĪp
) 7→ dFIp,Kr defines ann-dimensional submanifold

of the symplectic space(P1, ω1) called a Lagrangian submanifold [95]. The study of sin-

gularities can be achieved using either canonical relations [1] or Lagrangian submanifolds

[5, 66].
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Theorem III.7. The generating functionFIp,Kr is singular if and only if the local projec-

tion of the canonical relationL defined by the graph ofdFIp,Kr onto(qIp , pĪp
, q0Kr

, p0K̄r
)

is not a local diffeomorphism.

Definition III.8. The projection of a singular pointFIp,Kr onto (qIp , pĪp
, q0Kr

, p0K̄r
) is

called a caustic.

If one works with Lagrangian submanifolds then the previoustheorem becomes:

Theorem III.9. The generating function2 FIp,Kr is singular if the local projection of the

Lagrangian submanifold defined by the graph of(qIp , pĪp
) 7→ dFIp,Kr onto(qIp , pĪp

) is not

a local diffeomorphism.

These theorems are the geometric formulation of Prop. III.5. If the projection of the

canonical relation defined by the graph ofdFIp,Kr onto(qIp , pĪp
, q0Kr

, p0K̄r
) is not a local

diffeomorphism, then there exists multiple solutions to the problem of finding(q0, p0, q, p)

knowing(qIp , pĪp
, q0Kr

, p0K̄r
). From the local inversion theorem, this is equivalent to Prop.

III.5.

In the light of these theorems, we can give a geometrical interpretation to Thm. II.31

on the existence of generating functions. Given a canonicalrelationL (or a Lagrangian

submanifold) defined by a canonical transformation, there exists a2n-dimensional (orn-

dimensional) submanifoldM of P1 × P2 (or P1) such that the local projection ofL onto

M is a local diffeomorphism.

Study of caustics

To study caustics two approaches, at least, are possible depending on the problem.

A good understanding of the physics may provide informationvery easily. For instance,

2We consider here that the generating function is a function of n variables only, and hasn parameters.
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consider the two-body problem in dimension2, and the problem of going from a pointA

to a pointB, symmetric with respect to the central body, in a certain lapse of time,T . For

certain values ofT , the trajectory that linksA to B is an ellipse whose perigee and apogee

areA andB. Therefore, there are two solutions to this problem depending upon which

way the particle is going. In terms of generating functions,we deduce thatF3 is non-

singular (there is a unique solution once the final momentum is given) butF1 is singular

(existence of two solutions).

Another method for studying caustics consists of using a known non-singular gener-

ating function to define the Lagrangian submanifoldL and then study its projection. A

very illustrative example is given by Ehlers and Newman [25]. Using the Hamilton-Jacobi

equation they treat the evolution of an ensemble of free particles whose initial momentum

distribution isp = 1
1+q2 . They identify a timet1 at whichF1 is singular. Then, using a

closed-form expression ofF3, they find the equations defining the Lagrangian submanifold

at t1. Its projection can be studied and they eventually find that the caustic is two folds.

Nevertheless, such an analysis is not always possible as solutions to the Hamilton-Jacobi

equation are usually found numerically, not analytically.In the remainder of this section,

we focus on systems with polynomial generating functions. Specifically, we show that, in

this case, the generating functions can be computed numerically and we develop a method

for studying their caustics.

Suppose we are interested in the relative motion of a particle whose coordinates are

(q, p) with respect to another one on a known reference trajectory whose coordinates are

(q0, p0), both moving in an Hamiltonian field. If both particles stay “close” to each other,

we can expand(q, p) as a Taylor series about the reference trajectory. The dynamics of the
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relative motion is described by the Hamiltonian functionHh (Appendix A, Eq. (A.13)):

Hh(Xh, t) =
N

∑

p=2

p
∑

i1,··· ,i2n=0 ,
i1+···+i2n=p

1

i1! · · · i2n!

∂pH

∂qi1
1 · · · ∂qin

n ∂p
in+1

1 · · · ∂pi2n
n

(q0, p0, t)Xh
1

i1
. . . Xh

2n

i2n
. (3.36)

For sake of clarity,(∆q, ∆p) and (∆q0, ∆p0) are replaced by(q, p) and (q0, p0) in the

following, so thatXh =







q

p






is the relative state vector. Using the algorithm we present

in Chapter V we are able to find an approximation of the generating functionFIp,Kr as

a polynomial of orderN in its spatial variables with time-dependent coefficients.Once

FIp,Kr is known, we find the other generating functions from the Legendre transformation

(Eq. (2.28)), at the cost of a series inversion. If a generating function is singular, the

inversion does not have a unique solution and the number of solutions characterizes the

caustic. To illustrate this method, let us consider the following example.

Example III.10 (Motion about the Libration point L2 in the Hill three-body problem).

Consider a spacecraft moving about and staying close to the Libration pointL2 in the nor-

malized Hill three-body problem (See Appendix C for a description of the Hill three-body

problem). Its relative motion with respect toL2 is described by the Hamiltonian function

Hh (Eq. (3.36), or equivalently Eq. (C.11)) and approximated atorderN by truncation of

terms of order greater thanN in the Taylor series definingHh. The flow associated with

the truncation ofHh defines a canonical transformation. Using the algorithm presented in

Chapter V, the associated generating functionF2 can be approximated by a Taylor series
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expansion of orderN :

F2(qx, qy, p0x , p0y , t) = f 2
11(t)q

2
x + f 2

12(t)qxqy + f 2
13(t)qxp0x + f 2

14(t)qxp0y

+ f 2
22(t)q

2
y + f 2

23(t)qyp0x(t) + f 2
24(t)qyp0y

+ f 2
33(t)p

2
0x

+ f 2
34(t)p0xp0y + f 2

44(t)p
2
0y

+ r(qx, qy, p0x , p0y , t) ,

where(q, p, q0, p0) are relative position and momenta of the spacecraft with respect toL2

at t and t0, the initial time, andr is a polynomial of degreeN in its spatial variables

with time dependent coefficients and without any quadratic terms. AtT = 1.6822, F1 is

singular butF2 is not. Eqns. (3.10) and (3.11) reads:

px = 2f 2
11(T )qx +f 2

12(T )qy +f 2
13(T )p0x +f 2

14(T )p0y +D1r(qx, qy, p0x , p0y , T ) , (3.37)

py = f 2
12(T )qx +2f 2

22(T )qy +f 2
23(T )p0x +f 2

24(T )p0y +D2r(qx, qy, p0x , p0y , T ) , (3.38)

q0x = f 2
13(T )qx +f 2

23(T )qy +2f 2
33(T )p0x +f 2

34(T )p0y +D3r(qx, qy, p0x , p0y , T ) , (3.39)

q0y = f 2
14(T )qx +f 2

24(T )qy +f 2
34(T )p0x +2f 2

44(T )p0y +D4r(qx, qy, p0x , p0y , T ) , (3.40)

whereDir represents the derivative ofr with respect to itsith variable. Eqns. (3.37)-(3.40)

define a canonical relationL. By assumptionF1 is singular, therefore the projection ofL

onto(q, q0) is not a local diffeomorphism and there exists a caustic.

Let us now study this caustic. Eqns. (3.37)-(3.40) providep andq0 as a function of

(q, p0), but to characterize the caustic we need to study the projection of the Lagrangian

manifold on3 (q, q0). Hence, we must expressp andp0 as a function of(q, q0). F1 being

singular, there are multiple solutions to the problem of finding p andp0 as a function of

(q, q0), and one valuable piece of information is the numberk of such solutions. To find

p andp0 as a function of(q, q0) we first invert Eqns. (3.39) and (3.40) to expressp0 as a

function of(q, q0). Then we substitute this relation into Eqns. (3.37) and (3.38). The first

3SinceF1 is a function of(q, q0).
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step requires a series inversion that can be carried out using the technique developed by

Moulton in “Differential equations” [72]. Let us rewrite Eqns. (3.39) and (3.40):

2f 2
33(T )p0x +f 2

34(T )p0y = q0x −f 2
13(T )qx−f 2

23(T )qy−D3r(qx, qy, p0x , p0y , T ) , (3.41)

f 2
34(T )p0x +2f 2

44(T )p0y = q0y −f 2
14(T )qx−f 2

24(T )qy−D4r(qx, qy, p0x , p0y , T ) . (3.42)

The determinant of the coefficients of the linear terms on theleft hand side is zero (oth-

erwise there is a unique solution to the series inversion) but each of the coefficients is

non-zero, that is, we can solve forp0x as a function of(p0y , q0x , q0y) using Eq. (3.41).

Then we substitute this solution into Eq. (3.42) and we obtain an equation of the form

R(p0y , q0x , q0y) = 0 , (3.43)

that contains no terms inp0y alone of the first degree. In addition,R contains a non-zero

term of the formαp2
0y

, whereα is a real number. In this case, Weierstrass proved that there

exist two solutions,p1
0y

andp2
0y

, to Eq. (3.43).

In the same way, we can study the singularity ofF1 at the initial time. Att = 0, F2

generates the identity transformation, hencef 2
33(0) = f 2

34(0) = f 2
43(0) = f 2

44(0) = 0. This

time there is no non-zero first minor, and we find that there exists infinitely many solutions

to the series inversion. Another way to see this is to use the Legendre transformation:

F1(q, q0, t) = F2(q, p0, t) − q0p0 ,

As t tends toward0, (q, p) goes to(q0, p0) andF2 converges toward the identity transfor-

mationlim
t→0

F2(q, p0, t) = qp0 −−→
t→0

q0p0. Therefore, ast goes to0, F1 also goes to0, i.e.,

the projection ofL onto(q, q0) reduces to a point.

The use of series inversion to quantify the number of solutions to the boundary value

problem is a very efficient technique for systems with polynomial generating functions.
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From the series inversion theory we know that the uniquenessof the inversion is deter-

mined by the linear terms whereas the number of solutions (ifmany) depends on proper-

ties of nonlinear terms (we illustrated this property in theabove example). In addition, this

technique allows us to study the projection of the canonicalrelation at the cost of a single

matrix inversion only.

In the case where generating functions are (or can be approximated by a) polynomial,

we can recover the phase flow (or its approximation) as a polynomial too. For instance,

from

p0 =
∂F1

∂q0

(q, q0, t) ,

we can findq(q0, p0) at the cost of a series inversion. Then,q(q0, p0) together withp =

∂F1

∂q
(q, q0, t) define the flow (or its polynomial approximation). This procedure is described

in greater detail in Section 5.3.2. We want to point out that only a series inversion (i.e.,

a matrix inversion and a few substitutions) is necessary fortransforming the flow into the

generating functions and vice versa. On the other hand, generating functions are well-

defined if and only if the transformation from the flow to the generating function has a

unique solution (Prop. III.5). From series inversion theory, we conclude that generating

functions are well-defined if and only if the inversion of thelinear approximation of the

flow has a unique solution. Therefore, we have the following property:

Proposition III.11. Singularities ofpolynomial generating functions correspond to de-

generacy of sub-matrices of the state transition matrix as in the linear case. In other

words, using our previous notation,

• F1 is singular whendet(Φqp) = 0,

• F2 is singular whendet(Φqq) = 0,
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• F3 is singular whendet(Φpp) = 0,

• F4 is singular whendet(Φpq) = 0.

Using other block decompositions of the state transition matrix, these results can be ex-

tended to the generating functionFIp,Kr .

Example III.12 (Singularities of the generating functions in the Hill three-body prob-

lem). To illustrate Prop. III.11, let us determine the singularities of F1 and F2 in the

normalized Hill three-body problem linearized aboutL2.

The state transition matrix for this problem satisfies (see Appendix C):

φ̇(t) =





















−8 0 0 −1

0 4 1 0

0 1 1 0

−1 0 0 1





















φ(t) , φ(0) = Identity .

We use theMathematica c© built in function DSolve to compute a symbolic expres-

sion of the state transition matrix. We plot in Fig. 3.1 the determinant ofΦqq and

Φqp as a function of time. As noticed beforeF1 is singular at the initial time and at

(a) Determinant ofΦqp (b) Determinant ofΦqq

Figure 3.1: Determinant ofΦqq andΦqp

t = {1.6821, 3.1938, 4.710} andF2 is singular att = {0.809, 2.3443, 3.86}. The singular-
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ity at t = 1.6821 was studied above. In addition, one can show thatdet(Φpp) = det(Φqq),

i.e.,F2(q, p0, t) andF3(p, q0,−t) have the same singularities.

In the above example, we predicted the singularities of thenonlineargenerating func-

tionsF1, F2 andF3. In particular, we noticed thatF2 andF3 have the same singularities.

This property is specific to this problem. It is the consequence of two results. First, the

determinant of the sub-matrices of the state transition matrix corresponding toF2 andF3

are invariant under the transformationt 7→ −t. The second result can be formulated as

follows:

Proposition III.13. Consider an autonomous Hamiltonian system. Then the generating

functionsFIp,Kr(t) andFKr,Ip(−t) associated with the phase flow transformation develop

singularities at the same instant. For instance, ifp = n andr = 0, we obtain the fact that

F2 andF3 have the same singularities.

Proof. Autonomous Hamiltonian systems are reversible, therefore, the two following bound-

ary value problems are equivalent:

• Going from(q0Kr
, p0K̄r

) to (qIp , pĪp
) in T units of time.

• Going from(q0Ip
, p0Īp

) to (qKr , pK̄r
) in −T units of time.

As a result, if one of these problems has multiple solutions the other one also has. In other

words, if FIp,Kr(t) is singular,FKr,Ip(−t) also is. In addition, the caustic for these two

generating functions are the same.

3.3 Hamilton’s principal function

Though generating functions are used in the present research to solve boundary value

problems, they were introduced by Jacobi, and mostly used thereafter, as fundamental
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functions which can solve the equations of motion by simple differentiations and elimi-

nations, without integration (Section 2.2.2). Nevertheless, it was Hamilton who first hit

upon the idea of finding such a fundamental function. He first proved its existence in geo-

metrical optics (i.e., for time-independent Hamiltonian systems) in1834 and called it the

characteristic function [46]. One year later he published asecond essay [47] on systems of

attracting and repelling points in which he showed that the evolution of dynamical systems

is characterized by a single function called Hamilton’s principal function:

The former Essay contained a general method for reducing allthe most im-

portant problems of dynamics to the study of one characteristic function, one

central or radical relation. It was remarked at the close of that Essay, that many

eliminations required by this method in its first conception, might be avoided

by a general transformation, introducing the time explicitly into a part S of

the whole characteristic function V ; and it is now proposed to fix the atten-

tion chiefly on this part S, and to call it the Principal Function. (William R.

Hamilton, in the introductory remarks of “Second essay on a General Method

in Dynamics” [47]).

Although Hamilton’s principal function has been introduced to derive solutions to the

equations of motion, it may also be used to solve boundary value problems as well. As

far as we know, no one has ever noticed this fact before. Therefore, in the next section we

introduce Hamilton’s principal function and prove that it solves two-point boundary value

problems. Then we discuss how it compares to the generating functions.
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3.3.1 Existence of the Hamilton principal function

Similarly to the generating functions, Hamilton’s principal function may be derived

using the calculus of variations. Consider the extended action integral:

A =

∫ τ1

τ0

(pq′ + ptt
′)dτ , (3.44)

under the auxiliary conditionK(q, t, p, pt) = 0, whereq′ = dq/dτ , pt is the momentum

associated with the generalized coordinatest andK = pt + H.

Define a line element4 dσ for the extended configuration space(q, t) by

dσ = Ldt = Lt′dτ .

Then, we can connect two points(q0, t0) and(q1, t1) of the extended configuration space

by a shortest lineγ and measure its length from:

A =

∫

γ

dσ =

∫

γ

Lt′dτ .

The distance we obtain is a function of the coordinates of theend-points and, by definition,

is given by the Hamilton principal function:W (q0, t0, q1, t1).

From the calculus of variations (see e.g. Lanczos [60]) we know that the variation of

the actionA can be expressed as a function of the boundary terms if we varythe limits of

the integral:

δA = p1δq1 + pt1δt1 − p0δq0 − pt0δt0 .

On the other hand, we have:

δA = δW (q0, t0, q1, t1) =
∂W

∂q0

δq0 +
∂W

∂t0
δt0 +

∂W

∂q1

δq1 +
∂W

∂t1
δt1 ,

4The geometry established by this line element is not Riemannian [60]
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that is:

p0 = −∂W

∂q0

(q0, t0, q1, t1) , (3.45)

p1 =
∂W

∂q1

(q0, t0, q1, t1) , (3.46)

and

−∂W

∂t0
(q0, t0, q1, t1) + H(q0,−

∂W

∂q0

, t0) = 0 , (3.47)

∂W

∂t1
(q0, t0, q1, t1) + H(q1,

∂W

∂q1

, t1) = 0 , (3.48)

whereK has been replaced bypt + H. As with generating functions of the first kind,

Hamilton’s principal function solves boundary value problems of Lambert’s type through

Eqns. (3.45) and (3.46). To findW , however, we need to solve a system of two partial

differential equations (Eqns. (3.47) and (3.48)).

3.3.2 Hamilton’s principal function and generating functions

In this section we highlight the main differences between generating functions asso-

ciated with the phase flow and Hamilton’s principal function. For sake of simplicity we

compareF1(q, q0, t) andW (q, t, q0, t0).

Calculus of variations Even if both functions are derived from the calculus of varia-

tions, there are fundamental differences between them. To derive generating functions the

time t is considered as an independent variable in the variationalprinciple. In contrast,

we increase the dimensionality of the system by adding the time t to the generalized co-

ordinates to derive Hamilton’s principal function. As a consequence, generating functions

generate a transformation between two points in the phase space, i.e., they act without

passage of time. On the other hand, Hamilton’s principal function generates a transfor-

mation between two points in the extended phase space, i.e.,between two points in the
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phase space with different times. This difference may be viewed as follows: Generating

functions allow us to characterize the phase flow given an initial time, t0 (i.e., to char-

acterize all trajectories whose initial conditions are specified at t0), whereas Hamilton’s

principal function does not impose any constraint on the initial time. The counterpart be-

ing that Hamilton’s principal function must satisfy two partial differential equations (Eq.

(3.47) definesW as a function oft0 and Eq. (3.48) definesW as a function oft1) whereas

generating functions satisfy only one.

Moreover, to derive the generating functions fixed endpoints are imposed, that is, we

impose the trajectory in both sets of variables to verify theprinciple of least action. On

the other hand, the variation used to derive Hamilton’s principal function involves moving

endpoints and an energy constraint. This difference may be interpreted as follows: Hamil-

ton’s principal function generates a transformation whichmaps a point of a given energy

surface to another point on the same energy surface and is notdefined for points that do

not lie on this surface. As a consequence of the energy constraint, we have [60]:

| ∂2W

∂q0∂q1

| = 0 . (3.49)

As noticed by Lanczos [60], “this is a characteristic property of theW -function which has

no equivalent in Jacobi’s theory”. On the other hand, generating functions map any point

of the phase space into another one, the only constraint is imposed through the variational

principle (or equivalently by the definition of canonical transformation): we impose the

trajectory in both sets of coordinates to be Hamiltonian with Hamiltonian functionsH and

K respectively.

Fixed initial time In the derivation of Hamilton’s principal functiondt0 may be chosen

to be zero, that is, the initial time is imposed. Then Hamilton’s principal function loses its

dependence with respect tot0. Eq. (3.47) is trivially verified and Eq. (3.49) does not hold
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anymore, meaning thatW andF1 become equivalent.

Finally, in [47] Hamilton also derives another principal functionQ(p0, t0, p1, t1) which

compares toW as F4 compares toF1. The derivation being the same we will not go

through it.

To conclude, Hamilton’s principal function appears to be more general than the gener-

ating functions for the canonical transformation induced by the phase flow. On the other

hand, the initial and final times are usually specified when solving two-point boundary

problems and therefore, any of these functions will identically solve the problem. How-

ever, to find Hamilton’s principal function we need to solve two partial differential equa-

tions with a constraint whereas only one needs to be solved tofind the generating functions.

For these reasons, generating functions are more appropriate for addressing the problem

of solving two-point boundary value problems.



CHAPTER IV

DISCRETE VARIATIONAL PRINCIPLES AND
HAMILTON-JACOBI THEORY

In the last two chapters the Hamilton-Jacobi theory as well as a new approach for

solving two-point boundary value problems were introduced. This approach relies on

knowledge of the generating functions. In general these functions are not known analyti-

cally, and so they need to be computed numerically. The purpose of the next two chapters

is to understand the numerics of Hamiltonian systems and develop a robust algorithm to

compute the generating functions. Such an algorithm needs to address several challenges:

1) the initial conditions for integration are specified in terms of functions with parameters,

2) generating functions may develop singularities that prevent the integration from going

further.

In this chapter, we explore the numerics of Hamiltonian systems. In Chapter V, we de-

velop an algorithm for computing the generating functions for a certain class of problems.

The numerics of Hamiltonian systems Hamiltonian systems have a very rich structure

and distinctive properties that we can take advantage of. For instance, we have seen (Chap-

ter II) that the energy and the symplectic two-form were invariant along the flow. Most

importantly, the invariance of the symplectic two-form gives rise to the Hamilton-Jacobi

theory which is the backbone of the approach we developed in Chapter III. Therefore,

85
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when simulating Hamiltonian systems we must make sure that at least the symplectic two-

form is conserved. The aim of the work presented in this chapter is first to address this

issue, but as we will see our results go far beyond our objective.

Standard methods (called numerical integrators) for simulating motion usually take an

initial condition and move objects in the direction specified by the differential equations.

These methods do not directly satisfy the physical conservation laws associated with the

system. An alternative approach to integration, the theoryof geometric integrators [68,

20], has been developed over the last two decades. These integrators strictly obey some

of these physical laws, and take their name from the law they preserve. For instance,

the class of energy-momentum integrators conserves energyand momenta associated with

ignorable coordinates. Another class of geometric integrators is the class of symplectic

integrators which preserves the symplectic structure. This last class is of particular interest

when studying Hamiltonian and Lagrangian systems since thesymplectic structure plays

a crucial role in these systems (see e.g. Chapter II, Bloch et al. [14], Arnold [5] and

Abraham and Marsden [1]). The work done by Wisdom [97, 98] on then-body problem

perfectly illustrates the benefits of such integrators.

At first, symplectic integrators were derived mostly as a subclass of Runge-Kutta al-

gorithms for which the Runge-Kutta coefficients satisfy specific relationships [84]. Such

a methodology, though very systematic, does not provide much physical insight and may

be limited when we require several laws to be conserved. Other methods were developed

in the 90’s, among which we may cite the use of generating functions for the canonical

transformation induced by the phase flow [21, 26, 45] and the use of discrete variational

principles. This last method “gives a comprehensive and unified view on much of the

literature on both discrete mechanics as well as integration methods” (Marsden and West

[67]). Several discrete variational principles can be found in the literature: Discrete modi-
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fied Hamilton’s principles were introduced by Shibberu [87]and Wu [99] whereas Moser

and Veselov [71] and then Marsden, West and Wendlandt [67, 96] developed a fruitful

approach based on a discrete Hamilton’s principle. Also, Jalnapurkar, Pekarsky and West

[54] developed a variational principle on the cotangent bundle based on generating func-

tion theory.

In the present research, we focus on the discrete variational principles introduced by

Guo, Li and Wu [39, 40, 41] because the theory they have developed provides both a dis-

crete modified Hamilton’s principle (DMHP) and a discrete Hamilton’s principle (DHP)

that are equivalent. We modify and generalize both variational principles they introduce

by changing the time discretization so that a suitable analogue of the continuous boundary

conditions may be enforced. These boundary conditions are crucial for the analysis of

optimal control problems (Section 6.2) and play a fundamental role in dynamics. Our ap-

proach not only allows us to obtain a large class of discrete algorithms but it also gives new

geometric insight into the Newmark model [73]. Most importantly, using our improved

version of the discrete variational principles introducedby Guo et al., we develop a dis-

crete Hamilton-Jacobi theory that yields new results on symplectic integrators. Finally, we

derive some properties of symplectic integrators that are of prime importance for building

a robust algorithm to compute the generating functions (Chapter V).

In the first part of this chapter (Sections 4.1, 4.2 and 4.3), we present a discrete Hamil-

ton’s principle on the tangent bundle and a discrete modifiedHamilton’s principle on the

cotangent bundle (Section 4.1), we discuss the differenceswith other works on varia-

tional integrators (Section 4.2) and show that we are able torecover classical symplectic

schemes (Section 4.3). The second part (Sections 4.4 and 4.5) is devoted to issues related

to energy conservation and energy error. We first show that byconsidering time as a gen-

eralized coordinate we can ensure energy conservation (Section 4.4). Then we introduce
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the framework for discrete symplectic geometry and the notion of discrete canonical trans-

formations. We obtain a discrete Hamilton-Jacobi theory that allows us to show that the

energy error in the symplectic integration of a dynamical system is invariant under discrete

canonical transformations (Section 4.5).

In each part, we illustrate some of the ideas with simulations. In particular we show

in the first part that symplectic methods allow one to recoverthe generating function from

the phase flow while standard numerical integrators fail because they do not enforce the

necessary exactness condition. In the second part we look atthe energy error in the inte-

gration of the equations of motion of a particle in a double well potential using a set of

coordinates and their transform under a discrete symplectic map.

4.1 Discrete principles of critical action: DMHP and DHP

In this section, we develop a modified version of both variational principles introduced

by Guo, Li and Wu [39, 40, 41] and present the geometry associated with them.

4.1.1 Discrete geometry

Consider a discretization of the timet into n instantsT = {(tk)k∈[1,n]}. Heretk+1 − tk

may not be equal totk − tk−1 but for sake of simplicity we assume in the following that

tk+1 − tk = τ , ∀k ∈ [1, n]. The configuration space attk, is then-dimensional manifold

Mk andM =
⋃

Mk is the configuration space onT . Define a discrete time derivative

operator∆d
τ onT . Note that∆d

τ may not verify the usual Leibnitz law but a modified one.

For instance, if we choose∆d
τ to be the forward difference operator onTT :

∆d
τq(tk) :=

1

τ
(q(tk + τ) − q(tk)) =

qk+1 − qk

τ
:= ∆τqk ,

then∆d
τ verifies:

∆d
τ (f(t)g(t)) = ∆d

τf(t) · g(t) + f(t + τ) · ∆d
τg(t) . (4.1)
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4.1.2 Discrete Hamilton’s principle

Our modified version of the discrete Hamilton’s principle derived by Guo, Li and Wu

[39] is the discrete time counterpart of Hamilton’s principle for Lagrangian systems (Thm.

II.5). Consider a discrete curve of points(qk)k∈[0,n] and a discrete LagrangianLd(q
d
k, ∆

d
τq

d
k)

where∆d
τ is a discrete time derivative operator andqd

k is a function of(qk, qk+1).

Definition IV.1 (Discrete Hamilton’s principle). Trajectories of the discrete Lagrangian

systemLd going from(t0, q0) to (tn, qn) correspond to critical points of the discrete action

SL
d =

n−1
∑

k=0

Ld(q
d
k, ∆

d
τqk)τ , (4.2)

in the class of discrete curves(qd
k)k whose ends are(t0, q0) and(tn, qn). In other words, if

we require that the variations of the discrete actionSL
d be zero for any choice ofδqd

k, and

δq0 = δqn = 0, then we obtain the discrete Euler-Lagrange equations.

RemarkIV.2. If we do not imposetk+1 − tk = tk − tk−1, then the discrete action would

be defined as:

SL
d =

n−1
∑

k=0

Ld(q
d
k, ∆

d
τqk)(tk+1 − tk) , (4.3)

but the discrete Hamilton’s principle would be stated in thesame manner1.

To proceed to the derivation of the equations of motion, we need to specify the deriva-

tive operator,∆d
τ . As we will explain below, its definition depends on the scheme we

consider. We should also mention that our variational principle differs from Guo, Li and

Wu’s since we consider that the action has only finitely many terms and we impose fixed

end points. Such a formulation is more in agreement with continuous time variational prin-

ciples and preserves the fundamental role played by boundary conditions. For a discussion

on this topic, we refer to Lanczos [60] Section15.

1In this formulation, thetk’s are known, so there are no additional variables.
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4.1.3 Discrete modified Hamilton’s principle

As in the continuous case, there exists a discrete variational principle on the cotangent

bundle that is equivalent to the above discrete Hamilton’s principle (Thm. II.6).

Definition IV.3. LetLd be a discrete Lagrangian onTM and define the discrete Legendre

transform (or discrete fiber derivative)FL : TM → T ∗M which maps the discrete state

spaceTM to T ∗M by

(qd
k, ∆

d
τq

d
k) 7→ (qd

k, p
d
k) , (4.4)

where

pd
k =

∂Ld(q
d
k, ∆

d
τq

d
k)

∂∆d
τq

d
k

. (4.5)

If the discrete fiber derivative is a local isomorphism,Ld is called regular and if it is a

global isomorphism we say thatLd is hyperregular.

If Ld is hyperregular, we define the corresponding discrete Hamiltonian function on

T ∗M by

Hd(q
d
k, p

d
k) = 〈pd

k, ∆
d
τq

d
k〉 − Ld(q

d
k, ∆

d
τq

d
k) , (4.6)

where∆d
τq

d
k is defined implicitly as a function of(qd

k, p
d
k) through Eq. (4.5). LetSH

d be the

discrete action summation:

SH
d =

n−1
∑

k=0

(

〈pd
k, ∆

d
τq

d
k〉 − Hd(q

d
k, p

d
k)

)

τ , (4.7)

whereτ is to be replaced bytk+1 − tk if tk+1 − tk 6= tk − tk−1. Then the discrete principle

of least action may be stated as follows:

Definition IV.4 (Discrete modified Hamilton’s principle). Trajectories of the discrete

Hamiltonian systemHd going from(t0, q0) to (tn, qn) correspond to critical points of the
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discrete actionSH
d in the class of discrete curves(qd

k, p
d
k) whose ends are(t0, q0) and

(tn, qn).

Again, for deriving the equations of motion we need to specify the discrete derivative

operator,∆d
τ and its associated Leibnitz law. It will generally depend upon the scheme we

consider as we will see through examples later.

4.2 Comparison with other classical variational principle

At this point it is of interest to compare discrete variational principles introduced in

this chapter and other classical discrete variational principles. As we mentioned above,

the discrete variational principles we develop are inspired by the work of Guo, Li and Wu

[39] and we explained above the key difference between our work and this earlier work.

We now point out the main differences of the work discussed here with that of Marsden

and West, based on the variational principle introduced by Moser and Veselov. In the

following, DVPI refers to the discrete variational principle developed by Moser, Veselov,

Marsden, Wendlandt et al. whereas DVPII denotes the discrete variational principles de-

veloped by Guo and this work.

The first main difference lies in the geometry of both variational principles. Whereas

the discrete Lagrangian is a functional onQ × Q whereQ is the configuration space in

DVPI, it is a functional onTQ in DVPII. As a consequence, DVPII has a form more like

that of the continuous case but has a major drawback: we have to specify the derivative

operator and the Leibnitz law it verifies in order to derive the discrete Euler-Lagrange

equation. Such a law allows us to perform the discrete counterpart of the integration by

parts and depends on the scheme we consider. On the other hand, the Euler-Lagrange

equation obtained by DVPI is scheme independent and one benefit is that these equations

ensure satisfaction of physical laws such as Noether’s theorem for any numerical scheme
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which can be derived from them.

The next important difference between the two discrete variational principles lies in

the role of the Legendre transformation in defining a discrete Hamiltonian function from

the discrete Lagrangian. In DVPI, one defines a discrete Legendre transform for comput-

ing the momenta from the discrete Lagrangian function, so one may study the discrete

dynamics on bothQ×Q andT ∗Q. However, it does not seem possible to define a discrete

Hamiltonian function from the discrete Lagrangian and develop a DMHP. Given a Hamil-

tonian system, to derive discrete equations of motion usingDVPI one needs to first find

a continuous Lagrangian function by performing a Legendre transform on the continuous

Hamiltonian function, then apply DVPI and finally use the discrete Legendre transform to

study the dynamics onT ∗Q (see e.g. Marsden and West [67] page408). While this point

may not be of importance when dealing with dynamical systems, it is crucial if one wants

to discretize an optimal control problem, where the continuous Hamiltonian function does

not have any physical meaning and the Legendre transformation may not be well-defined

(See Section 6.2). In contrast, DVPII naturally defines a discrete Legendre transform and

a DMHP.

As mentioned in the introduction, previous researchers have already introduced DMHPs

on the cotangent bundle, but, as far as we know, no one has developed an approach that

allows one to equivalently consider both the Hamiltonian and Lagrangian approaches in

discrete settings (i.e., a DMHP and a DHP that are equivalentfor non-degenerate La-

grangian systems). In addition, the DMHPs that can be found in the literature do not allow

one to recover most of the classical schemes. For instance, Shibberu’s DMHP [87] focuses

on the midpoint scheme and Wu [99] developed a different DMHPfor each scheme.

Let us now look at some classical schemes and see how they can be derived from

DVPII.
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4.3 Examples

4.3.1 Sẗormer’s rule and Newmark methods

Störmer’s scheme is a symplectic algorithm that was first derived for molecular dy-

namics problems. It can be viewed as a Runge-Kutta-Nyström method induced by the

leap-frog partitioned Runge-Kutta method [84]. The derivation of the Sẗormer rule as a

variational integrator came later and can be found in [99, 96]. Guo, Li and Wu [41] recov-

ered this algorithm using their discrete variational principles. In the next subsection, we

briefly go through the derivation and add to their work the velocity Verlet [90] and New-

mark methods [67]. In particular, we will show how the conservation of the Lagrangian

and symplectic two-forms is built into DVPII.

From the Lagrangian point of view

We first letqd
k = qk and define the discrete Lagrangian byLd(q

d
k, ∆

d
τqk) = L(qk, ∆

d
τqk)

and the discrete derivative operator as the forward difference∆d
τ = ∆τ . ∆τ satisfies the

modified Leibnitz law (Eq. (4.1)). Discrete equations of motion are obtained from discrete

Hamilton’s principle (Def. (IV.1)):
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δSL
d = τ

n−1
∑

k=0

δLd(qk, ∆τqk)

= τ
n−1
∑

k=0

〈D1Ld(qk, ∆τqk), δqk〉 + 〈D2Ld(qk, ∆τqk), δ∆τqk〉

= τ

n−1
∑

k=1

〈D1Ld(qk, ∆τqk) − ∆τD2Ld(qk−1, ∆τqk−1), δqk〉

+∆τ 〈D2Ld(qk−1, ∆τqk−1), δqk〉

+τ〈D1Ld(q0, ∆τq0)δq0〉 + τ〈D2Ld(q0, ∆τq0), δ∆τq0〉

= τ

n−1
∑

k=1

〈D1Ld(qk, ∆τqk) − ∆τD2Ld(qk−1, ∆τqk−1), δqk〉 −

−〈D2Ld(q0, ∆τq0), δq0〉 + τ〈D1Ld(q0, ∆τq0), δq0〉

+〈D2Ld(qn−1, ∆τqn−1), δqn〉 , (4.8)

where the commutativity ofδ and∆τ and the modified Leibnitz law defined by Eq. (4.1)

have been used.

Discrete Euler-Lagrange equations follow by requiring thevariations of the action to

be zero for any choice ofδqk, k ∈ [1, n − 1] andδq0 = δqn = 0:

D1Ld(qk, ∆τqk) − ∆τD2Ld(qk−1, ∆τqk−1) = 0 . (4.9)

SupposeL(q, q̇) = 1
2
q̇Mq̇ − V (q), then Eq. (4.9) yields Störmer’s rule:

qk+1 = 2qk − qk−1 + h2M−1(−∇V (qk)) . (4.10)

Consider the one-form2

θL
k =

∂Ld(qk−1, ∆τqk−1)

∂∆τqi
k−1

dqi
k ,

2Einstein’s summation convention is assumed
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and define the Lagrangian two-formωL
k onTqk

M:

ωL
k = dθL

k

=
∂2Ld(qk−1, ∆τqk−1)

∂qi
k−1∂∆τq

j
k−1

dqi
k ∧ dqj

k +
∂2Ld(qk−1, ∆τqk−1)

∂∆τqi
k−1∂∆τq

j
k−1

d∆τq
i
k ∧ dqj

k .

Lemma IV.5. The algorithm defined by Störmer’s rule preserves the Lagrangian two-

form,ωL
k .

Proof. Consider a discrete trajectory(qk)k that verifies Eq. (4.10). Then we have:

dSL
d = τ

n−1
∑

k=1

(

∂Ld(qk, ∆τqk)

∂qi
k

− ∆τ
∂Ld(qk−1, ∆τqk−1)

∂∆d
τq

i
k−1

)

dqi
k

+ ∆τ

(

∂Ld(qk−1, ∆τqk−1)

∂∆τqi
k

dqi
k

)

. (4.11)

Since theqk’s verify Eq. (4.10), andd2 = 0, Eq. (4.11) yields:

d(∆τθ
L
k ) = 0 , that is, ωL

k+1 = ωL
k . (4.12)

We conclude thatωL
k is preserved along the discrete trajectory

As we mentioned earlier, because DVPII acts on the tangent bundle it provides results

very similar to the continuous case as attested by the form ofthe Lagrangian two-form.

This is to be compared with the Lagrangian two-form arising in the continuous case:

ωL =
∂2L

∂qi∂q̇j
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dq̇i ∧ dqj .

Note that conservation of the Lagrangian two-form is a consequence of using the Leib-

nitz law, and therefore does not depend on the definition of the discrete Lagrangian. In the

remainder of this section we use different discrete Lagrangian functions, but the same

Leibnitz law. Thus Lemma IV.5 still applies.

More generally, we can derive Störmer’s rule using

Ld(qk, ∆τqk) = λL(qk, ∆τqk) + (1 − λ)L(qk + τ∆τqk, ∆τqk) ,
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for anyλ in R. A particular case of interest isλ = 1
2

which yields a symmetric version of

Störmer’s rule also called the velocity Verlet method [90]. For this value ofλ, we define

the associated discrete momenta using the Legendre transform (Eq. (4.5)):

pk+1 = pd
k

= D2Ld(qk, ∆τqk)

= M∆τqk −
1

2
τ∇V (qk + ∆τqk) , (4.13)

that is:

qk+1 = qk + τM−1(pk+1 +
1

2
τ∇V (qk+1)) . (4.14)

Moreover, from Eq. (4.9) we obtain:

pk+1 = pk + τ
−∇V (qk) −∇V (qk+1)

2
. (4.15)

Eqns. (4.14) and (4.15) define the velocity Verlet algorithm.

We now focus on the Newmark algorithm which is usually written for the system

L = 1
2
q̇T Mq̇ − V (q) as a map given by(qk, q̇k) 7→ (qk+1, q̇k+1) satisfying the implicit

relations:

qk+1 = qk + τ q̇k +
τ 2

2
[(1 − 2β)ak + 2βak+1] , (4.16)

q̇k+1 = q̇k + τ [(1 − γ)ak + γak+1] , (4.17)

ak = M−1(−∇V (qk)) , (4.18)

where the parametersγ ∈ [0, 1] andβ ∈ [0, 1
2
]. For γ = 1

2
and anyβ the Newmark

algorithm can be generated from DVPII as a particular case ofthe Sẗormer rule whereqd
k

andLd are chosen as follows:

qd
k = qk − βτ 2ak ,
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and

Ld(q
d
k, ∆

d
τq

d
k) =

1

2
q̇d
k

T
Mq̇d

k − Ṽ (qd
k) ,

with Ṽ , the modified potential, satisfying∇Ṽ (qd
k) = ∇V (qk). Since the derivative opera-

tor is the same as above, the discrete Hamilton’s principle yields Sẗormer’s equation where

qk is replaced byqd
k, that is:

qd
k+1 = 2qd

k − qd
k−1 + τ 2M−1(−∇Ṽ (qd

k)) . (4.19)

Eq. (4.19) simplifies to

qk+1 − 2qk + qk−1 = τ 2(βak+2 + (1 − 2β)ak+1 + βak−1) .

This last equation corresponds to the Newmark algorithm forthe caseγ = 1
2
. Lemma IV.5

guarantees that the Lagrangian two-form

ωL
k = d(D2Ld(q

d
k, ∆

d
τq

d
k)dqd

k+1)

is preserved along the discrete trajectory.

From the Hamiltonian point of view

The Sẗormer, velocity Verlet, and Newmark algorithms can also be derived using a

phase space approach, i.e., the DMHP (Def. IV.4). For Störmer’s rule, the Legendre

transform yields:

pk+1 = M∆τqk . (4.20)

The discrete Hamiltonian function is defined from Eq. (4.6):

Hd(qk, pk+1) =
1

2
pT

k+1M
−1pk+1 + V (qk) ,
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and discrete equations of motion are obtained from the DMHP3 (Def. IV.4). We skip a

few steps in the evaluation of the variations ofSH
d to finally find:

δSH
d = δ

(

τ
n−1
∑

k=0

〈pk+1, ∆τqk〉 − Hd(qk, pk+1)

)

= τ

n−1
∑

k=0

〈∆τqk − D2Hd(qk, pk+1), δpk+1〉 − 〈∆τpk + D1Hd(qk, pk+1), δqk〉

+〈pn, δqn〉 − 〈p0, δq0〉 .

If we impose the variations of the actionSH
d to be zero for any(δqk, δpk+1) andδq0 =

δqn = 0, we obtain:










∆τqk = pk+1 ,

∆τpk = −∇V (qk) .

(4.21)

Elimination of thepk’s yields Sẗormer’s rule.

To recover the velocity Verlet scheme from the Hamiltonian point of view, one needs

to solve for∆τqk as a function of(qk, pk+1) in Eq. (4.13). Suppose this has been done and

that∆τqk = f(qk, pk+1), then

Hd(qk, pk+1) = 〈pk+1, f(qk, pk+1)〉 − Ld(qk, f(qk, pk+1)) . (4.22)

Taking the variation of the actionSH
d yields the following discrete Hamilton’s equations:

∆τqk = D2Hd(qk, pk+1) , (4.23)

∆τpk = −D1Hd(qk, pk+1) . (4.24)

On the other hand, Eq. (4.22) provides the following relationships:

D1Hd(qk, pk+1) = 〈D1f(qk, pk+1), pk+1 − D2Ld(qk, f(qk, pk+1))〉

− D1Ld(qk, f(qk, pk+1)) , (4.25)

3qd
k = qk andpd

k = pk+1
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D2Hd(qk, pk+1) = ∆d
τqk + 〈D2f(qk, pk+1), pk+1 − D2Ld(qk, f(qk, pk+1))〉 . (4.26)

Combining Eqns. (4.23) and (4.24) together with Eqns. (4.25)and (4.26) yields the Ve-

locity Verlet algorithm (Eqns. (4.14) and (4.15)).

We now prove that the scheme we obtained is symplectic. As in the Lagrangian case,

the proof differs from the usual one that consists in computing dpk+1 ∧ dqk+1, in that it

relies on fundamental properties of DVPII and on the use of the Leibnitz law.

Lemma IV.6. The algorithm defined by Eqns. (4.23)-(4.24) is symplectic.

Proof. We have:

dSH
d = d

(

τ
n−1
∑

k=0

〈pk+1, ∆τqk〉 − Hd(qk, pk+1)

)

,

= τ

n−1
∑

k=0

〈∆τqk − D2Hd(qk, pk+1), dpk+1〉 − 〈∆τpk + D1Hd(qk, pk+1), dqk〉

+∆τ 〈pk, dqk〉 .

Hence, since(qk, pk) verifies Eqns. (4.23)-(4.24) andd2 = 0, we obtain:

∆τ (dpk ∧ dqk) = 0 .

The symplectic two-formdpk ∧ dqk is preserved along the trajectory.

Finally, we can also derive the Newmark methods from the Hamiltonian point of view.

The Legendre transform yields:

pd
k =

∂Ld(q
d
k, ∆

d
τq

d
k)

∂∆d
τq

d
k

= M∆d
τq

d
k .

The Newmark algorithm is again a particular case of the Störmer rule where(qk, pk+1) is

replaced by(qd
k, p

d
k):

∆d
τq

d
k = pd

k , (4.27)

∆d
τp

d
k = −∇Ṽ (qd

k) . (4.28)
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Defining q̇k from pk as

q̇k = M−1pd
k +

τ

2
ak

allows us to recover the Newmark scheme forγ = 1
2

(Eqns. (4.16) and (4.17)). From the

above lemma, we obtain that the symplectic two-formdpd
k ∧ dqd

k is preserved along the

trajectory.

4.3.2 Midpoint rule

The midpoint rule has been extensively studied and a complete study of its properties

can be found in the literature. It is a particular case of the Runge-Kutta algorithm, but can

also be derived as a variational integrator (see for instance [99, 87, 67]). The derivation of

this scheme has been done by Guo, Li and Wu [41] for the Hamiltonian point of view. In

the next section we present the Lagrangian point of view and then recall the Guo, Li and

Wu main results, the goal of this section being to illustratethe use of DVPII with other

discretization and discrete derivative operator.

From the Lagrangian point of view

Given a LagrangianL(q, q̇), define the discrete Lagrangian by:

Ld(q
d
k, ∆

d
τq

d
k) = L(qd

k, ∆
d
τq

d
k) ,

whereqd
k = qk+1+qk

2
, and∆d

τ = Rτ/2 − R−τ/2 where the operatorRτ is the translation by

τ . One can readily verify that∆d
τq

d
k = ∆τqk and that∆d

τ verifies the usual Leibnitz law:

∆d
τ (f

d
k gd

k) = ∆d
τf

d
k · gd

k + fd
k · ∆d

τg
d
k , (4.29)

wherefk = f(tk) andgk = g(tk) are functions of time andfd
k = fk+1+fk

2
.
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Applying the discrete Hamilton’s principle yields:

δSL
d = τ

n−1
∑

k=0

δLd(q
d
k, ∆

d
τq

d
k)

= τ
n−1
∑

k=0

〈D1Ld(q
d
k, ∆

d
τq

d
k), δq

d
k〉 + 〈D2Ld(q

d
k, ∆

d
τq

d
k), δ∆

d
τq

d
k〉 . (4.30)

From the Legendre transform (Eq. (4.5)), we define the associated momentum:

pk+1 + pk

2
= pd

k = D2Ld(q
d
k, ∆

d
τq

d
k) . (4.31)

Then, Eq. (4.30) becomes:

δSL
d = τ

n−1
∑

k=0

〈D1Ld(q
d
k, ∆

d
τq

d
k), δq

d
k〉 + 〈pd

k, δ∆
d
τq

d
k〉

= τ
n−1
∑

k=0

〈D1Ld(q
d
k, ∆

d
τq

d
k) − ∆d

τp
d
k, δq

d
k〉 + 〈pn, δqn〉 − 〈p0, δq0〉 .

If we require the variations of the action to be zero for any choice ofδqd
k, k ∈ [1, n − 1],

andδq0 = δqn = 0, we obtain the discrete Euler-Lagrange equations for the midpoint

scheme:

pk+1 − pk

h
= ∆d

τp
d
k

= D1Ld(q
d
k, ∆

d
τq

d
k)

= D1Ld(
qk+1 + qk

2
,
qk+1 − qk

h
) , (4.32)

pk+1 + pk

2
= pd

k

= D2Ld(q
d
k, ∆

d
τq

d
k)

= D2Ld(
qk+1 + qk

2
,
qk+1 − qk

h
) . (4.33)

Lemma IV.7. The midpoint scheme (Eqns.(4.32)and (4.33)) defines a symplectic algo-

rithm.
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Proof. The proof proceeds as for the Störmer rule:

dSL
d = τ

n−1
∑

k=0

〈D1Ld(q
d
k, ∆

d
τq

d
k), dqd

k〉 + 〈pd
k, d∆d

τq
d
k〉

= τ
n−1
∑

k=0

〈D1Ld(q
d
k, ∆

d
τq

d
k) − ∆d

τp
d
k, dqd

k〉 + ∆d
τ 〈pd

k, dqd
k〉 .

Sinced2 = 0 and(qk, pk) verifies Eqns. (4.32)-(4.33), we obtain:

∆d
τ (dpd

k ∧ dqd
k) = 0 .

A straightforward computation shows that∆d
τ (dpd

k ∧ dqd
k) = ∆τ (dpk ∧ dqk), i.e., the

symplectic two-formωk = dpk ∧ dqk is preserved along the trajectory.

From the Hamiltonian point of view

Let Hd(q
d
k, p

d
k) = H(qd

k, p
d
k) or equivalently defineHd from Ld via Eq. (4.6) and let

(qd
k, p

d
k) = ( qk+1+qk

2
, pk+1+pk

2
). Then the DMHP (Def. IV.4) yields:

qk+1 − qk

h
= ∆d

τp
d
k

= D2Hd(q
d
k, p

d
k)

=
∂H

∂p
(
qk+1 + qk

2
,
pk+1 + pk

2
) , (4.34)

pk+1 − pk

h
= ∆d

τp
d
k

= −D1Hd(q
d
k, p

d
k)

= −∂H

∂q
(
qk+1 + qk

2
,
pk+1 + pk

2
) . (4.35)

Lemma IV.8. The midpoint scheme defines a symplectic algorithm.

Proof. The proof is straightforward. We computed2SH
d assuming(qk, pk) verifies the

above equations of motion.

To conclude, we have illustrated the use of the discrete variational principles (Def.

IV.1) and (Def. IV.4) and derived discrete equations of motion. One can readily verify that
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both variational principles yield the same discrete equations, as in the continuous case.

Other schemes can be recovered in the same way, and we do not know yet if all classical

symplectic algorithms can be derived from DVPII. For instance, we have been able to

recover the conditions for the partitioned Runge-Kutta algorithm to be symplectic from

the Lagrangian point of view but so far it is not clear to us howit can be done using the

Hamiltonian approach (Def. IV.4).

4.3.3 Numerical example

Symplectic integrators are usually used as numerical integrators that preserve the quali-

tative behavior of dynamical systems and are especially valuable for long time simulations.

However, these are not the only uses of symplectic integrators. In this section, we present

an aspect of symplectic integrators that we have not seen pointed out in the literature: we

show that they allow one to recover the generating functionsfor the phase flow canonical

transformation, whereas numerical integrators do not, even over a short period of time.

This remark is of prime importance for deriving a robust algorithm to solve the Hamilton-

Jacobi equation (see Chapter V).

Let us first recall Eqns. (3.7) and (3.8) for theF1 generating function:

p =
∂F1

∂q
, p0 = −∂F1

∂q0

. (4.36)

Eq. (4.36) defines a relationship between the phase flow and the gradient of the generating

function. Specifically, if the flow is defined by:

φ : (q0, p0, t) 7→ ((q(t), p(t), t) = (Φ1
t (q0, p0), Φ

2
t (q0, p0)), t) ,

then, from the local inverse function theorem4, there exist two functionsS1 andS2 such

4| ∂φ
∂p0

| 6= 0 since we assume thatF1 exists
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that:

p0 = S1(q, q0, t) , (4.37)

p = Φ2
t (q0, S1(q, q0, t)) ≡ S2(q, q0, t) . (4.38)

From Eq. (4.36), we conclude thatS1 andS2 are the gradient ofS and therefore should

verify5:

∂2F1

∂q0∂q
≡ ∂S1

∂q
(q, q0, t) =

∂S2

∂q0

(q, q0, t) ≡
∂2F1

∂q∂q0

. (4.39)

These exactness conditions arise from the symplectic nature of the flow. Therefore, only

numerical algorithms that preserve the symplectic two-form (that is symplectic integrators)

yield numerical results that agree with Eq. (4.39). Classical numerical integrators fail to

provide numerical simulations in agreement with Eq: (4.39).

Example IV.9 (Harmonic Oscillator). The Hamiltonian function for the harmonic oscil-

lator is quadratic:

H(q, p) =
1

2m
p2 +

k

2
q2 .

It is a linear system so the phase flow is also linear:

Φ1(q0, p0) = a11(t)q0 + a12(t)p0

Φ2(q0, p0) = a21(t)q0 + a22(t)p0 .

Substituting these expressions into Hamilton’s equations(2.1) and balancing terms of the

same order yield:






































ȧ11(t) = a21(t)/m ,

ȧ12(t) = a22(t)/m ,

ȧ21(t) = ka11(t) ,

ȧ22(t) = ka12(t) .

(4.40)

5Since their exists an open set on which the generating functions are smooth, Schwartz’s theorem yields
∂2S

∂q0∂q
= ∂2S

∂q∂q0

.
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t
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(a) Midpoint scheme with fixed time stepτ =
0.01

.

.

.

.

.

.

t

(b) Implicit Gauss Runge-Kutta algorithm of or-
der8

t

(c) Explicit Runge-Kutta algorithm of order8

Figure 4.1: Exactness condition using3 different integrators

In Fig. 4.1, we plot∆ = ∂S1

∂q
(q, q0, t) − ∂S2

∂q0
(q, q0, t) over the time interval[0, 100]

using the symplectic midpoint scheme with fixed time step, a symplectic Gauss implicit

Runge-Kutta algorithm of order8 with fixed time step and a non-symplectic Runge-Kutta

integrator of order8 to integrate Eqns. (4.40). We remark that only symplectic integrators

allow us to recover the generating functions because the exactness condition is exactly

verified. We point out that even over a short time span, numerical integrators fail to satisfy

the exactness condition.

4.4 Energy conservation

Symplectic integrators do not conserve energy and in general induce bounded energy

error. There are several works that analyze the energy error, we refer to Hairer and Lubich

[44] and Hairer, Lubich and Wanner [45] and references therein for more details. The

end of this chapter is devoted to the study of the conservation of energy. In this section,

we enhance DVPII so that energy conservation is imposed. By considering the time as
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a coordinate and by adding an independent parameterτ , DVPII yields symplectic energy

conserving algorithms. For certain problems, such algorithms may provide better perfor-

mance6, but the contrary may also happen [43, 88]. The method we develop in this section

is variational and allows us to recover Shibberu’s algorithm [87] for Hamiltonian systems

and is equivalent to the Kane, Marsden and Ortiz [56] method for Lagrangian systems.

Then, in the next section, we develop a discrete Hamilton-Jacobi theory that defines a

class of coordinate transformations that leaves the energyerror invariant.

4.4.1 Generalized variational principles

Generalized Hamilton’s principle

Let us first recall Hamilton’s principle for dynamical systems for which time is consid-

ered as a generalized coordinate. Such a formulation is typically used in relativity where

the time coordinate is equivalent to the space coordinates.

Consider a LagrangianL(q, q̇) and define theparametricLagrangian

L̄(q, t, q′, t′) = t′L(q,
q′

t′
, t) ,

where′ = d
dτ

andτ is an independent parameter that parameterizes the trajectory and the

time. Then the generalized Hamilton’s principle reads:

Definition IV.10. Critical points of
∫ tf

t0
L̄(q, q′

t′
, t)dτ in the class of curves(q(τ), t(τ)) with

endpoints(τ0, q0, t0) and(τf , qf , tf ) correspond to trajectories of the Lagrangian systems

going from(q0, t0) to (qf , tf ).

The generalized Hamilton’s principle yields the followingset of equations:










∂L̄
∂t

− d
dτ

∂L̄
∂t′

= 0 ,

∂L̄
∂q

− d
dτ

∂L̄
∂q′

= 0 .

6To quantify the performance of an algorithm, not only we lookat its accuracy but we also evaluate
its ability to predict the qualitative behavior of the system. In that sense, symplectic-energy conserving
algorithms may not predict qualitative behavior better that symplectic algorithms.
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Replacing the parametric Lagrangian by the Lagrangian of thesystem simplifies the above

equations to:

t′
∂L

∂t
− d

dτ
L +

d

dτ

(

∂L

∂q̇

q′

t′

)

= 0 , (4.41)

t′
∂L

∂q
− d

dτ

∂L

∂q̇
= 0 . (4.42)

Thesen+1 equations should be compared to then equations obtained when the trajectory

is parameterized by the time:

∂L

∂q
− d

dt

∂L

∂q̇
= 0 . (4.43)

Since d
dτ

= t′ d
dt

, we conclude that the space components of the generalized Euler-Lagrange

equations (Eq. (4.42)) are a multiple byt′ of the original Euler-Lagrange equation (Eq.

(4.43)). Also, their time component (Eq. (4.41)) is a linearcombination of the components

of Eq. (4.43) (the sum of each component multiplied byq′). All n + 1 generalized Euler-

Lagrange equations are thus consistent with the original equations but there is no unique

solution because they are satisfied by any parameterization. To get a unique solution, it is

necessary to add to the generalized Hamilton’s principle anadditional condition fixing the

parameterization. As we see in the next section, in discretesettings we no longer have this

freedom. The discrete counterpart of Eq. (4.41) corresponds to an energy constraint that

fully specifies the time parameterization, i.e., the time step.

Generalized discrete Hamilton’s principle (GDHM)

In contrast with the variational principles introduced in the first part of this chapter, we

do not set the time step, i.e., we let the time act as a variableby adding an independent

parameterτk such thattk = t(τk) andτk+1 − τk = τ , τ being a constant.tk is now a

coordinate that plays the same role asqk, Mk is the extended configuration space(qk, tk),
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M =
⋃

Mk andT = {(τk)k∈[1,n]}. Define the modified discrete LagrangianL̄d:

L̄d(q
d
k, t

d
k, ∆

d
τq

d
k, ∆

d
τ t

d
k) = ∆d

τ t
d
kLd(q

d
k,

∆d
τq

d
k

∆d
τ t

d
k

, tdk) ,

whereLd is the discrete Lagrangian previously defined. In addition,since we are inter-

ested in conservation of energy, we only consider systems that are time independent (Prop.

II.24). As a consequence,Ld does not depend on time and∂L̄d

∂tdk
= 0.

Definition IV.11 (Generalized Discrete Hamilton’s Principle (GDHP)). Critical points

of the discrete action

SL
d =

n−1
∑

k=0

L̄d(q
d
k, t

d
k, ∆

d
τq

d
k, ∆

d
τ t

d
k)τ ,

in the class of discrete curves(qd
k, t

d
k)k with endpoints(τ0, t0, q0) and (τn, tn, qn) corre-

spond to discrete trajectories of the Lagrangian system going from(t0, q0) to (tn, qn).

Again, to proceed to the derivation of the equations of motion we need to specify the

derivative operator∆d
τ .

Generalized discrete modified Hamilton’s principle

Definition IV.12. Let L̄d be a discrete Lagrangian onTM and define the discrete Legen-

dre transform (or discrete fiber derivative)FL : TM → T ∗M which maps the discrete

extended phase spaceTM to T ∗M by

(qd
k, t

d
k, ∆

d
τqk, ∆

d
τ t

d
k) 7→ (qd

k, t
d
k, p

d
k, e

d
k) ,

where

pd
k =

∂L̄d(q
d
k, t

d
k, ∆

d
τq

d
k, ∆

d
τ t

d
k)

∂∆d
τq

d
k

, ed
k =

∂L̄d(q
d
k, t

d
k, ∆

d
τq

d
k, ∆

d
τ t

d
k)

∂∆d
τ t

d
k

. (4.44)

The Legendre transform as defined by Eqns. (4.44) is equivalent to the previous definition

(Eq. (4.5)). Indeed,

∂L̄d(q
d
k, t

d
k, ∆

d
τq

d
k, ∆

d
τ t

d
k)

∂∆d
τq

d
k

=
∂Ld(q

d
k,

∆d
τ qd

k

∆d
τ tdk

)

∂∆d
τq

d
k

= D2Ld(q
d
k, ∆

d
t q

d
k) ,
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where∆d
t = ∆d

τ

∆d
τ tdk

represents the discrete derivative with respect to time.

If the discrete fiber derivative is a local isomorphism,L̄d is called regular and if it is

a global isomorphism we say thatL̄d is hyperregular. If̄Ld is hyperregular, we define the

corresponding discrete Hamiltonian function onT ∗M by

H̄d(q
d
k, t

d
k, p

d
k, e

d
k) = 〈pd

k, ∆
d
τq

d
k〉 − L̄d(q

d
k, ∆

d
τq

d
k) , (4.45)

where∆d
τqk is defined implicitly as a function of(qd

k, p
d
k) through Eq. (4.44).̄Hd is related

to the previously defined Hamiltonian function by the following relationship:

H̄d(q
d
k, p

d
k) = ∆d

τ t
d
kHd(q

d
k, p

d
k) .

In addition, we have:ed
k = −Hd(q

d
k, p

d
k), that is, the momentum associated with the time

is the opposite of the Hamiltonian.

Let SH
d be the discrete action summation:

SH
d = τ

n−1
∑

k=0

〈pd
k, ∆

d
τq

d
k〉 − H̄d(q

d
k, p

d
k)

= τ

n−1
∑

k=0

〈pd
k, ∆

d
τq

d
k〉 + 〈ed

k, ∆
d
τ t

d
k〉 .

Before stating the generalized discrete modified Hamilton’sprinciple, we need to re-

mark that all the coordinates are not independent since theholonomicconstrainted
k =

−H(qd
k, p

d
k) holds. There are two ways to handle this situation: one can either replaceed

k

by−H(qd
k, p

d
k) in the action and then take the variations or one can use Lagrange multipli-

ers to append the constrainted
k + H(qd

k, p
d
k) = 0 to the integral. Therefore we can give two

equivalent formulations of the GDMHP:

Definition IV.13 (Generalized discrete modified Hamilton’sprinciple). Critical

points of the discrete action

SH
d = τ

n−1
∑

k=0

〈pd
k, ∆

d
τq

d
k〉 + 〈ed

k, ∆
d
τ t

d
k〉
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in the class of discrete curves(qd
k, t

d
k, p

d
k, e

d
k) with endpoints(τ0, t0, q0) and (τn, tn, qn),

subject to the constrainted
k + Hd(q

d
k, p

d
k) = 0, correspond to trajectories of the discrete

Hamiltonian system going from(t0, q0) to (tn, qn).

Definition IV.14 (Generalized discrete modified Hamilton’sprinciple). Critical

points of the discrete action

SH
d = τ

n−1
∑

k=0

〈pd
k, ∆

d
τq

d
k〉 − Hd(q

d
k, p

d
k)∆

d
τ t

d
k

in the class of discrete curves(qd
k, t

d
k, p

d
k) with endpoints(τ0, t0, q0) and (τn, tn, qn) cor-

respond to trajectories of the discrete Hamiltonian systemgoing from(t0, q0) to (tn, qn).

RemarkIV.15. To prove that these two formulations of the generalized discrete modified

Hamilton’s principle are equivalent, we only need to remarkthat the constraint is holo-

nomic. We refer to Bloch et al. [14] for more details.

To derive the equations of motion we need to specify the discrete derivative operator,

∆d
τ , and its associated Leibnitz law.

4.4.2 Examples

Störmer type of algorithm

Lagrangian approach Consider a Lagrangian functionL(q, q̇) and define the discrete

Lagrangian map trivially byLd(qk, ∆τqk) = L(qk, ∆τqk). Discrete equations of motion



111

are obtained from the generalized discrete Hamilton’s principle:

δSL
d = τ

n−1
∑

k=0

δL̄d(qk, tk, ∆τqk, ∆τ tk)

= τ
n−1
∑

k=0

δ(∆τ tkLd(qk,
∆τqk

∆τ tk
))

= τ

n−1
∑

k=0

(δ∆τ tk)L
k
d + ∆τ tk〈D1L

k
d, δqk〉

+∆τ tk〈D2L
k
d,

∆τδqk

∆τ tk
− ∆τqk

(∆τ tk)2
δ∆τ tk〉 ,

whereLk
d = Ld(qk,

∆τ qk

∆τ tk
). Using the Leibnitz law (Eq. (4.1)) and the fixed end point

constraint, we obtain:

δSL
d = τ

n−1
∑

k=1

−∆τekδtk + 〈∆τ tkD1L
k
d − ∆τD2L

k−1
d , δqk〉 , (4.46)

where

ek+1 =
∂L̄k

d

∂∆τ tk
= Ld(qk,

∆τqk

∆τ tk
) − 〈D2Ld(qk,

∆τqk

∆τ tk
),

∆τqk

∆τ tk
〉 .

Finally we obtain the modified Euler-Lagrange equations by setting the variations to

zero:

ek+1 − ek = 0 ,

∆τ tkD1Ld(qk,
∆τ qk

∆τ tk
) − ∆τD2Ld(qk−1,

∆τ qk−1

∆τ tk−1
) = 0 .

(4.47)

Lemma IV.16. The algorithm defined by Eqns. (4.47) preserves the Lagrangian two-form

and the energy.

Proof. The first equation of the algorithm proves energy conservation. To show that the

Lagrangian two-form is preserved, we computedSL
d along a discrete trajectory:

dSL
d = τ

n−1
∑

k=1

∆τ (L
k−1
d dtk) + ∆τ (D2L

k−1
d dqk) − ∆τ (

D2L
k−1
d

∆τ tk−1

∆τqk−1dtk)

= τ

n−1
∑

k=1

∆τ (ekdtk + D2L
k−1
d dqk)

= τ
n−1
∑

k=1

∆τθ
L
k , (4.48)
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whereθL
k = ekdtk + D2L

k−1
d dqk. Sinced2 = 0, we obtain that the symplectic two-forms

ωL
k = dθL

k is preserved along the trajectory.

The proof of this lemma only involves the modified Leibnitz law and does not depend

on the definition of the discrete Lagrangian function. As a consequence, it also applies to

the modified velocity Verlet and Newmark algorithms.

Hamiltonian approach Let the Lagrangian function beL(q, q̇) = 1
2
q̇T Mq̇ − V (q).

Then

L̄d = ∆τ tk

(

1

2

∆τqk

∆τ tk
M

∆τqk

∆τ tk
− V (qk)

)

, (4.49)

and the associated momenta are:

pk+1 = M ∆τ qk

∆τ tk
,

ek+1 = −1
2

∆τ qk

∆τ tk
M ∆τ qk

∆τ tk
− V (qk) .

The discrete Hamiltonian function is then:

H̄d = ∆τ tk(
1

2
pT

k+1M
−1pk+1 + V (qk)) = ∆τ tkHd(qk, pk+1) . (4.50)

One can readily verify thatHd(qk, pk+1) = −ek+1.

Let us now derive the modified discrete equations of motion byapplying the GDMHP

(Thm. (IV.14)). We skip a few steps in the evaluation of the variations ofSH
d to finally

find:

δSH
d = τδ

n−1
∑

k=0

〈pk+1, ∆τqk〉 − H̄d(qk, pk+1)

= τ
n−1
∑

k=0

〈∆τqk − ∆τ tkD2Hd(qk, pk+1), δpk+1〉

−〈∆τpk + ∆τ tkD1Hd(qk, pk+1), δqk〉 + τ

n−1
∑

k=1

∆τekδtk .
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The variations of(δqk, δpk+1, δtk) being independent, we obtain:


























∆τqk = ∆τ tkpk+1 ,

∆τpk = −∆τ tk∇V (qk) ,

∆τek = 0 .

(4.51)

Lemma IV.17. The algorithm defined by Eqns. (4.51) preserves the symplectic two-form

and the energy.

Proof. The proof proceeds as the previous ones: we computedSH
d along a discrete trajec-

tory. We skip the details of the computation:

dSH
d = τ

n−1
∑

k=0

∆τ 〈pk, dqk〉 + ekdtk .

DefineθH
k = 〈pk, dqk〉 + ekdtk andωH

k = dθH
k . Sinced2 = 0, we obtain that∆τω

H
k =

0.

RemarkIV.18. The one-formθH
k corresponds to the contact1-form θ encountered in con-

tinuous time dynamics (Thm. II.21). Indeed, if one remembers thatek = −Hd(qk−1, pk),

then we have:

θ = pdq − Hdt ,

θH
k = pkdqk−1 − Hd(qk−1, pk)dtk .

Midpoint discretization

In the same manner, we can apply the modified variational principle to other discretiza-

tions. For the midpoint scheme we haveqd
k = qk+1+qk

2
and the modified Leibnitz rule is

defined by Eq. (4.29). Let us define the generalized momenta:

pk+1 + pk

2
= pd

k =
∂L̄d

∂∆d
τq

d
k

,

ek+1 + ek

2
= ed

k =
∂L̄d

∂∆d
τ t

d
k

.
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Then applying the modified discrete Hamilton’s principle (Def. (IV.14)) yields (after a few

simplifications):

δSH
d = τ

n−1
∑

k=0

〈∆d
τ t

d
kD1L

k
d − ∆d

τp
d
k, δq

d
k〉 − ∆d

τe
d
kδt

d
k , (4.52)

whereLk
d = Ld(q

d
k,

∆d
τ qd

k

∆d
τ tdk

). The variations(δqd
k, δt

d
k) being independent, we obtain:

pk+1 − pk

τ
=

tk+1 − tk
τ

D1Ld(
qk+1 + qk

2
,
qk+1 − qk

tk+1 − tk
) ,

ek+1 = ek ,

pk+1 + pk

2
=

tk+1 − tk
τ

D2Ld(
qk+1 + qk

2
,
qk+1 − qk

tk+1 − tk
) ,

ek+1 + ek

2
= Ld(

qk+1 + qk

2
,
qk+1 − qk

tk+1 − tk
)

−〈D2Ld(
qk+1 + qk

2
,
qk+1 − qk

tk+1 − tk
),

qk+1 − qk

tk+1 − tk
〉 . (4.53)

Lemma IV.19. The algorithm defined by Eqns. (4.53) preserves the Lagrangian two-form

as well as the energy.

Proof. We omit the proof since it proceeds as before.

Now define the discrete Hamiltonian functionHd(q
d
k, p

d
k) = H( qk+1+qk

2
, pk+1+pk

2
) and

the modified Hamiltonian function̄Hd = ∆d
τ t

d
kHd(q

d
k, p

d
k). Then applying the generalized

discrete modified Hamilton’s principle yields:






































qk+1−qk

τ
= tk+1−tk

τ
D2Hd(

qk+1+qk

2
, pk+1+pk

2
) ,

pk+1−pk

τ
= tk+1−tk

τ
D1Hd(

qk+1+qk

2
, pk+1+pk

2
) ,

ek+1 − ek = 0 ,

ek+1+ek

2
= −Hd(

qk+1+qk

2
, pk+1+pk

2
) .

(4.54)

Lemma IV.20. The algorithm defined by Eqns. (4.54) preserves the symplectic two-form

as well as the energy.

Proof. We omit the proof since it proceeds as before.
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The algorithm defined by Eqns. (4.54) is the same as the one developed by Shibberu

[87]. Shibberu’s approach is a particular case of the first formulation of the generalized

discrete modified Hamilton’s principle (Def. (IV.13) ) for the midpoint rule but he used a

different discrete variational principle from DVPII.

One other work on symplectic energy preserving algorithms is that of Kane, Marsden

and Ortiz [56]. They developed a generalized discrete modified Hamilton’s principle that

is based on DVPI. Their approach is different from ours: theyassume a different time step

at each iteration, and then take the variation of the discrete action without varying the time

step (i.e., in ann-dimensional space). As a consequence they only obtainn equations for

the n + 1 variables(qk, hk) wherehk is the time step at thekth step. They then add an

energy constraint to obtainn+1 equations. Their definition of the energy is similar to ours

and therefore both methods provide the same algorithm. However, there are fundamental

differences between the two methods. First, our method is fully variational. Second, all the

differences between DVPI and DVPII that we emphasize at the beginning of this chapter

still remain because their work is based on DVPI whereas our is based on DVPII.

4.5 Discrete Hamilton-Jacobi theory

So far we have developed two variational principles that arethe discrete counterparts of

Hamilton’s principle on the tangent bundle and on the cotangent bundle. Through several

examples we have observed that both variational principlesare equivalent and that they

allow us to recover classical variational symplectic integrators. We have also shown that

they can be modified so that energy conservation is assured. In this section, we concentrate

on discrete Hamilton-Jacobi theory. We define discrete canonical transformations (DCT),

discrete generating functions (DGF) and derive a discrete Hamilton-Jacobi equation that

allows us to show that the energy error for a certain class of scheme is invariant under
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discrete canonical transformations.

4.5.1 Discrete symplectic geometry

We consider again a discretization of the timet into n instantsT = {(tk)k∈[1,n]} but we

restrict to the case whereMk is an-dimensional vector space. We still defineM =
⋃

Mk.

Definition IV.21. A discrete symplectic formω on M is one such that attk, ω = ωd
k,

whereωd
k is a non-degenerate, closed, two-form onMd

k = Mk ∪ Mk+1.

A discrete canonical one-formθ onM is such that attk, θ = θd
k, andωd

k = −dθd
k.

A discrete symplectic vector space(M, ω) is a vector spaceM =
⋃

Mk together with a

discrete symplectic two form onM.

Using a symplectic chart, a discrete symplectic form onM at tk can be written as:

ωd
k = dqd

k ∧ dpd
k ,

and the canonical one-form asθd
k = pd

kdqd
k.

In the remainder of this section we consider the geometry associated with the midpoint

scheme, that is, we definezd
k = (qd

k, p
d
k) aszd

k = zk+zk+1

2
and use the modified Leibnitz law

defined by Eq. (4.29). However, the content of this section can be applied to any scheme

as long as one can define a discrete Hamiltonian vector field from the discrete Hamiltonian

function and the discrete symplectic two-form (see Def. 4.55). In particular, it is clear that

the theory herein can be adapted to systems for which the action integral involves a term

of the formHd(z
d
k), wherezd

k is a linear combination ofzk andzk+1, but it is not clear if

it can be adapted to the Störmer rule for instance (zd
k = (qk, pk+1) cannot be written as a

linear combination ofzk+1 andzk so the next definition does not apply). We do not know

how to modify this approach so that a discrete Hamiltonian vector field can be defined

from the Hamiltonian functionHd(qk, pk+1) corresponding to the Störmer scheme).
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Definition IV.22. Let (M, ω) be a discrete symplectic vector space, andHd : M → R a

smooth function. Define the discrete vector fieldXd
H such that attk, Xd

H = Xd
k , whereXd

k

is of the form

Xd
H = ∆d

τq
d
k

∂

∂qd
k

+ ∆d
τp

d
k

∂

∂pd
k

,

and verifies:

iXd
k
ωd

k = dHd . (4.55)

The discrete vector fieldXd
H is called the discrete Hamiltonian vector field.

(M, ω,Xd
H) is called a discrete Hamiltonian system.

Proposition IV.23. Using the canonical coordinates, a Hamiltonian vector fieldis of the

form:

Xd
H = J · dHd , where J =







0 I

−I 0






. (4.56)

Proof. Eq. (4.55) is expressed in local coordinates as:

iXd
H
(dqd

k ∧ dpd
k) = D1Hd(q

d
k, p

d
k)dqd

k + D2Hd(q
d
k, p

d
k)dpd

k . (4.57)

Let Xd
H be:

Xd
H = ∆d

τq
d
k

∂

∂qd
k

+ ∆d
τp

d
k

∂

∂pd
k

,

then

iXd
H
(dqd

k ∧ dpd
k) = (iXd

H
dqd

k)dpd
k − dqd

k ∧ (iXd
H
dpd

k)

= ∆d
τq

d
kdpd

k − ∆d
τp

d
kdqd

k .

Identifying this last equation with Eq. (4.57) leads to Eq. (4.56).
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4.5.2 Discrete canonical transformation

We now define the class of discrete canonical transformations. The definition given

here is restricted to linear with respect to the phase space variables, time-dependent maps.

We believe a larger class of transformations may be considered if one works with dis-

cretization of the spacetime [65]. Let(M1, ω1) and(M2, ω2) be discrete symplectic vec-

tor spaces andF be the set of mapsf : T ×M1 → T ×M2 that are linear with respect

to the phase space variables. Consider a mapf ∈ F such that∀tk ∈ T , f(tk, ·) = fk(·)

wherefk is the following linear map:

fk : Md
1,k → Md

2,k

zk = (qk, pk) 7→ Zk = (Qk, Pk) = Akzk + Bk .

Sincefk is linear, we have:

fk(z
d
k) =

1

2
(fk(zk) + fk(zk+1)) , (4.58)

fk(∆
d
τz

d
k) = Ak∆

d
τz

d
k . (4.59)

Definition IV.24. A linear, time-dependent mapf is called a discrete canonical transfor-

mation (DCT) (or a discrete symplectic map) if and only iff ∗ω2 = ω1, or equivalently,

∀k ∈ [1, n], f ∗
kωd

2,k = ωd
1,k.

Proposition IV.25. If f is a DCT thenAk is invertible for allk ∈ [1, n].

Proof. Suppose there exists ak such thatAk is not invertible. Then

∃zd
k ∈ Md

1,k ∃v1 ∈ Tzd
k
Md

1,k | Tfk · v1 = 0 .

Sincef is symplectic,∀v2 ∈ Tzd
k
Md

1,k | v2 6= 0, ωd
1,k(v1, v2) = ωd

2,k(Tfk · v1, T fk · v2). The

right hand side is zero but the left hand side is not. This is a contradiction and therefore

Ak is invertible.
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Lemma IV.26. Letf be a discrete canonical transformation. Thenfk
∗ωd

2,k = ωd
1,k can be

written in the matrix formAkJAT
k = J . In addition,f preserves the form of the discrete

Hamilton’s equations.

Proof. The statementAkJAT
k = J is just the matrix statement offk

∗ωd
2,k = ωd

1,k. Let us

prove thatf preserves the form of the discrete Hamilton’s equations. Define the function

Kd such thatf ∗Kd = Hd.

On one hand, using Eq. (4.59) we have:

∆d
τZ

d
k =

fk(zk+1) − fk(zk)

τ

= Ak∆
d
τz

d
k .

On the other hand:

J∇Hd(z
d
k) = J∇(Kd ◦ fk(z

d
k))

= JAT
k ∇Kd(z

d
k) .

SinceAkJAT
k = J , we obtain∆d

τZ
d
k = J∇Kd(z

d
k)

This last result can be summarized as follows:

Proposition IV.27. LetXd
H be a discrete Hamiltonian vector field with Hamiltonian func-

tion Hd and f a discrete symplectic map. Thenf∗Xd
H is a discrete Hamiltonian vector

field with Hamiltonian functionf∗Hd.

4.5.3 Discrete generating functions

Proposition IV.28. Let (M1, ω1) and(M2, ω2) be two discrete symplectic vector spaces,

πi : M1 ×M2 → Mi the projection ontoMi and define

Ω = π∗
1ω1 − π∗

2ω2 .

Then,
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1. Ω is a discrete symplectic form onM1 ×M2,

2. a mapf : M1 → M2 is a discrete symplectic map if and only ifi∗fΩ = 0, where

if : Γf → M1 ×M2 is the inclusion map andΓf is the graph off .

Proof. We recall that attk, Ω = Ωd
k whereΩd

k = π1
∗ωd

1,k − π2
∗ωd

2,k. To prove thatΩ is a

discrete symplectic form, we need to prove thatΩd
k is a symplectic form onMd

1,k × Md
2,k

for all k ∈ [1, n].

dΩd
k = d(π∗

1ω
d
1,k − π∗

2ω
d
2,k)

= π∗
1dωd

1,k − π∗
2dωd

2,k

= 0 ,

sinceωd
i,k is closed andd commutes with the pull back operator.

Now let zd
k = (zd

1,k, z
d
2,k) ∈ Md

1,k × Md
2,k andv = (v1, v2) ∈ Tzd

k
(Md

1,k × Md
2,k) ∼

Tzd
1,k

Md
1,k × Tzd

2,k
Md

2,k such that

∀w = (w1, w2) ∈ Tzd
k
(Md

1,k × Md
2,k) , Ωd

k(v, w) = 0

and let us prove thatv is zero. We have

Ωd
k(v, w) = ωd

1,k(π1(z
d
k))(Tπ1 · v, Tπ1 · w) − ωd

2,k(π2(z
d
k))(Tπ2 · v, Tπ2 · w)

= ωd
1,k(z

d
1,k)(v1, w1) − ωd

2,k(z
d
2,k)(v2, w2) . (4.60)

The right hand side of Eq. (4.60) is zero for allw if and only if both terms are zero, that is,

ωd
1,k(z

d
1,k)(v1, w1) = 0 , ωd

2,k(z
d
2,k)(v2, w2) = 0 .

Sinceωd
i,k is non-degenerate,v1 = v2 = 0. Thus,Ωd

k is closed and non-degenerate for all

k, i.e,Ω a discrete symplectic two-form.
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We now prove the second statement of the proposition. We firstnotice thatfk induces

a diffeomorphism ofMd
1,k to Γfk

, so we can write

T(zd
k ,fk(zd

k)) =
{

(v, Tfk · v)|v ∈ Tzd
k
Md

1,k

}

.

Then,

i∗Ωd
k((v1, T fk · v1), (v2, T fk · v2)) = ωd

1,k(v1, v2) − ωd
1,k(Tfk · v1, T fk · v2)

= (ωd
1,k − fk

∗ωd
2,k)(v1, v2) .

Hence,fk is symplectic if and only ifi∗Ωd
k = 0, i.e.,f is a discrete symplectic map if and

only if i∗Ω = 0.

Using the Poincaŕe lemma, we may writeΩd
k = −dΘd

k and the previous proposition

says thati∗fk
Θd

k is closed if and only iff is a discrete symplectic map. Using again the

Poincaŕe lemma, we conclude that iff is a discrete symplectic map then there exists a

functionS : Γf → R such thati∗fΘ = dS, i.e.,∀k ∈ [1, n], i∗fk
Θd

k = dSk

Definition IV.29. Such a functionS is called a discrete generating function for the discrete

symplectic mapf . S is locally defined and depends on the choice ofΘ.

• Let θd
1,k = pd

kdqd
k andθd

2,k = P d
k dQd

k, then

i∗fk
Θd

k = (π1 ◦ ifk
)∗pd

kdqd
k − (π2 ◦ ifk

)∗P d
k dQd

k ,

dS =
∂S

∂q
(qd

k, Q
d
k)dqd

k +
∂S

∂Q
(qd

k, Q
d
k)dQd

k ,

that is,

pd
k =

∂S

∂q
(qd

k, Q
d
k) , P d

k = − ∂S

∂Q
(qd

k, Q
d
k) .

S as defined corresponds to a discrete generating function of the first kind.
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• Let θd
1,k = pd

kdqd
k andθd

2,k = −Qd
kdP d

k , then

i∗fk
Θd

k = (π1 ◦ ifk
)∗pd

kdqd
k + (π2 ◦ ifk

)∗Qd
kdP d

k ,

dS =
∂S

∂q
(qd

k, P
d
k )dqd

k +
∂S

∂Q
(qd

k, P
d
k )dP d

k ,

that is,

pd
k =

∂S

∂q
(qd

k, P
d
k ) , Qd

k =
∂S

∂P
(qd

k, P
d
k ) .

S as defined corresponds to a discrete generating function of the second kind.

In the same way, one can define4n generating functions as in the continuous case. Note

that sincef is linear with respect to its spatial variables (Def. IV.24), S is also linear with

respect to its spatial variables. Attk, S = Sk, whereSk(·) = Tk(·) + Uk is an affine map,

Tk is a2n × 2n matrix andUk is a2n × 1 matrix.

4.5.4 Discrete Hamilton-Jacobi theory

In this section we use the notions introduced previously to develop a discrete Hamilton-

Jacobi theory. Letf be a discrete symplectic map,Md
i,k = T ∗Qd

i,k andS be an associated

discrete generating function such thatS = Sd
k at tk, whereSk(·) = Tk(·) + Uk

Theorem IV.30. Define

p̃d
k(q

d
k, Q

d
k) = D1Sk(q

d
k, Q

d
k) , P̃ d

k (qd
k, Q

d
k) = −D2Sk(q

d
k, Q

d
k) .

Then the following two conditions are equivalent:

1. S is a discrete generating function associated withf ;

2. • For every curve(ck)k in Q1 =
⋃Q1,k satisfying:

∆d
τc

d
k = Tπ∗

Qd
1,k

Xd
H(cd

k, p̃
d
k) ,
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the curvek 7→ (cd
k, p̃

d
k) is a discrete integral curve ofXd

H , whereπ∗
Qd

1,k
is the

cotangent bundle projection onto the configuration space.

• For every curve(ck)k in Q2 =
⋃Q2,k satisfying:

∆d
τc

d
k = Tπ∗

Qd
2,k

Xd
K(cd

k, P̃
d
k ) ,

the curvek 7→ (cd
k, P̃

d
k ) is a discrete integral curve ofXd

K , whereπ∗
Qd

2,k
is the

cotangent bundle projection onto the configuration space.

Proof. SupposeS is a discrete generating function, letQd
k be fixed and consider a curve

(ck)k verifying

∆d
τc

d
k = Tπ∗

Qd
1,k

Xd
H(cd

k, p̃
d
k) ,

In other words,ck verifies:

∆d
τc

d
k = D2H(cd

k, p̃
d
k) ,

SinceS is a generating function,̃pd
k is the momentum associated withcd

k and verifies:

∆d
τ p̃

d
k = −D1H(cd

k, p̃
d
k) .

These last two equations are exactly a restatement of:k 7→ (cd
k, p̃

d
k) is a discrete integral

curve ofXd
H . To derive the second item we proceed in the same manner, but this timeqd

k

is fixed.

Now we suppose2. and we show thatS is a discrete generating function forf . The

statementsk 7→ (cd
k, p̃

d
k) is a discrete integral curve ofXd

H andk 7→ (cd
k, P̃

d
k ) is a discrete

integral curve ofXd
K are equivalent to saying thatp̃d

k andP̃ d
k are the momenta associated

with the generalized coordinates, and therefore,S is a generating function forf .

Theorem IV.31. We consider again a time-dependent functionS which is linear with

respect to the spatial variables. Then the following two statements are equivalent:
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1. S is a discrete generating function associated withf ;

2. For everyH there is a functionK such that

H(qd
k, D1S(qd

k, Q
d
k)) = K(Qd

k, D2S(qd
k, Q

d
k)) .

Proof. SupposeS is a discrete generating function. Then from the previous theorem,

for every curve(ck, Ck) in Q1 × Q2 satisfying∆d
τc

d
k = Tπ∗

Qd
1,k

Xd
H(cd

k, p̃
d
k) and∆d

τC
d
k =

Tπ∗
Qd

2,k
Xd

K(Cd
k , P̃ d

k ), the curvesk 7→ (cd
k, p̃

d
k) andk 7→ (Cd

k , P̃ d
k ) are discrete integral curves

of Xd
H andXd

K respectively. Then, using the symplectic identity (see e.g. Abraham and

Marsden [1] page382) that holds for any functionS:

ωd
1,k(T (D1S ◦ π∗

Qd
1,k

) · v, w) = ωd
1,k(v, w − T (D1S ◦ π∗

Qd
1,k

) · w) ,

we obtain:

ωd
1,k(T (D1S ◦ π∗

Qd
1,k

) · Xd
H(ck, D1Sk), w) =

ωd
1,k(X

d
H(ck, D1Sk), w) − dHd(ck, D1Sk) · TD1S(ck, D1Sk) · w , (4.61)

ωd
2,k(T (−D2S ◦ π∗

Qd
2,k

) · Xd
K(Ck,−D2Sk), w) =

ωd
2,k(X

d
K(Ck,−D2Sk), w) − dKd(Ck,−D2Sk) · T − D2S(Ck,−D2Sk) · w .

(4.62)

In addition, sincepd
k = D1S(cd

k, C
d
k) andP d

k = −D1S(cd
k, C

d
k),

∆d
τp

d
k = TD1S(cd

k, C
d
k)∆d

τc
d
k = T (D1S ◦ π∗

Qd
1,k

) · Xd
H(ck, D1Sk) ,

∆d
τP

d
k = T (−D2S ◦ π∗

Qd
2,k

) · Xd
K(Ck,−D2Sk) .

f being a discrete canonical map,Tfk(∆
d
τp

d
k) = ∆d

τP
d
k so the left hand side of Eq. (4.62)

is the image under f of the left hand side of Eq. (4.62). Using Prop. (IV.27), we conclude
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that:

Tfk · dHd(ck, D1Sk) · TD1S(ck, D1Sk) = −dKd(Ck,−D2Sk) · TD2S(Ck,−D2Sk) ,

which is equivalent to the discrete Hamilton-Jacobi equation.

The proof that2. implies1. follows from these arguments.

4.5.5 Applications of the discrete Hamilton-Jacobi theory

The goal of this section is to highlight the benefit of having adiscrete Hamilton-Jacobi

theory. First, we have proved the invariance of the discreteHamilton’s equations under a

certain class of coordinate transformations. Second, we have shown in Thm. IV.31 that

changing coordinates using a discrete symplectic map does not improve the performance

of the algorithm in terms of energy conservation. As a consequence we have the following

lemma:

Lemma IV.32. The midpoint scheme preserves the energy for linear systems.

Proof. The discrete phase flow for linear systems is piecewise linear continuous and the

map (qk, pk) 7→ (qk+1, pk+1) is symplectic (the midpoint scheme is a symplectic algo-

rithm). Therefore, the discrete phase flow is a discrete symplectic map that mapsH into

a constantK that can be chosen to be0 (the discrete flow maps(qk, pk) into (q0, p0)).

Integration of the Hamiltonian system defined byK is trivial since the system is in equi-

librium and it obviously preserves the energy. As a consequence, the integration of the

Hamiltonian system defined byH also preserves the energy (Thm. IV.31).

Finally, we illustrate the use of the above material with a nonlinear example. We study

the energy error in the integration of the equations of motion of a particle in a double well

potential using different sets of canonical coordinates.
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Example IV.33. Consider a particle in a double well potential, i.e.,H = 1
2
p2 + 1

2
(q4−q2).

As shown in Fig. (4.2), the midpoint scheme does not preservethe energy. The follow-

ing time-dependent discrete canonical transformation (ateach step the transformation is a

different expression)Zk = Akzk + Bk whereAk =







cos(kθ) − sin(kθ)

sin(kθ) cos(kθ)






andBk = 0 ,

rotates the system bykθ = k arccos 0.99 at thekth step. In Fig. (4.3) we plot the same

trajectory in the new system of coordinates. As predicted bythe discrete Hamilton-Jacobi

theory, the energy error is exactly the same. In other words,the energy error is invariant

under discrete canonical maps.

p

q

(a) Trajectory in theq − p plane

t

(b) Energy error for constant time step midpoint
scheme as a function of time.

Figure 4.2: Particle in a double well potential with initialconditions(q, p) = (1, 0.05)

p

q

(a) Trajectory in theq − p plane

t

(b) Energy error for constant time step midpoint
scheme as a function of time.

Figure 4.3: Particle in the vector fieldf∗Xd
H with initial conditionsf0(1, 0.05).



CHAPTER V

COMPUTING THE GENERATING FUNCTIONS

The Hamilton-Jacobi equation (Eq. (2.39)) was first encountered by Hamilton [46]

in geometric optics as a partial differential equation thatthe characteristic function had

to satisfy. A year later, he introduced Hamilton’s principal function [47] for studying

dynamical systems and found that this also satisfies the Hamilton-Jacobi equation. Since

then, this equation has been regularly encountered in many different fields.

• In quantum mechanics the phase of the wave function verifies the Schr̈odinger equa-

tion which is a Hamilton-Jacobi equation for Hamiltonian systems of the form

H = T + V .

• In optimal control the Hamilton-Jacobi equation arises from the sufficiency condi-

tions for optimality and is called the Hamilton-Jacobi-Bellman equation.

• In the present research, the generating functions for the phase flow transformation

verify the Hamilton-Jacobi equation.

Early on, researchers proved the existence of solutions to the Hamilton-Jacobi equation

(Lions [61] and Aubin [8]). Meanwhile, analytical methods were developed to solve this

partial differential equation. Many of them can be found in textbooks (see e.g. Greenwood

[28], Goldstein [27] and Arnold [4]). Since then, during thelast two decades, numerical

127
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techniques have been explored either based on geometric (multi-symplectic) integrators

or on properties of a particular system [64, 70, 17]. However, none of these methods and

algorithms allows us to solve the Hamilton-Jacobi equationfor the generating functions

because of three main difficulties: 1) The boundary conditions for integration are specified

in terms of functions with parameters. 2) Generating functions may develop singularities

that prevent the integration from going forward (some algorithms have been developed

to compute multiple solutions, see e.g. Benamou [11] and references therein). 3) We

want to apply our theory to non-trivial systems and so analytical methods fail due to the

complexity of the system. The purpose of this chapter is to develop a robust algorithm that

addresses these challenges. Specifically, the algorithm wepresent approximates solutions

to the Hamilton-Jacobi equation locally in space and globally in time. It allows one to

use a variety of boundary conditions and can avoid singularities in the functions during

the integration. Most important, our algorithm is independent of the complexity of the

dynamical system.

5.1 Initial conditions for the generating functions

To compute the generating functions, one needs boundary conditions to solve the

Hamilton-Jacobi partial differential equation. At the initial time, the flow induces the iden-

tity transformation, and thus the generating functions should also do so. In other words, at

the initial time,

q(t0) = q0 , p(t0) = p0 . (5.1)

that is,(q(t0), p0) and(p(t0), q0) are the only sets of independent variables that contain

n initial conditions andn components of the state vector at the initial time. As a con-

sequence, all the generating functions saveF2 andF3 are singular at the initial time (we

already saw this result for linear generating functions in Section 3.2.2).
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Example V.1. Let us look, for example, at the generating function of the first kind,

F1(q, q0, t). At the initial time,q is equal toq0 whatever values the associated momenta

p andp0 take. Therefore, there are multiple solutions to the boundary value problem that

consists of going fromq0 to q = q0 in 0 units of time. From Prop. III.5, we conclude that

F1 is singular.

We now focus on the boundary conditions for theF2 andF3 generating functions. At

the initial time we must have:










p0 = ∂F2

∂q
(q = q0, p0, t0) ,

q0 = ∂F2

∂p0
(q = q0, p0, t0) ,











q0 = −∂F3

∂p
(p = p0, q0, t0) ,

p0 = −∂F3

∂q0
(p = p0, q0, t0) .

Due to the non-commutativity of the derivative operator andthe operator that assigns the

valuet0 at t, solutions to these equations are not unique. As a result, the boundary con-

ditions verified byF2 andF3 are not uniquely defined as well. For instance, they may be

chosen to be:

F2(q, p0, t) = 〈q, p0〉 , F3(p, q0, t) = −〈p, q0〉 , (5.2)

or

F2(q, p0, t) =
1

t − t0
e(t−t0)〈q,p0〉 , F3(p, q0, t) = − 1

t − t0
e(t−t0)〈p,q0〉 , (5.3)

where〈, 〉 is the inner product. One can readily verify that Eqns. (5.2)and (5.3) generate

the identity transformation (5.1) at the initial timet = t0.

The singularity at the initial time of all but two generatingfunctions is a major issue: it

prevents us from initializing the integration, i.e., from solving the Hamilton-Jacobi equa-

tion. In Section 5.3.1 we present a technique to circumvent this problem, namely we are

able to specify boundary value conditions for all generating functions at a later time.
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5.2 The use of partial differential equation solvers

In the previous section, we saw that,a priori, only F2 andF3 may be found because

the other generating functions have singular boundary conditions at the initial time. In this

section, we use standard partial differential equation solvers to compute theF2 generating

function. In particular, we show that they impose drastic restrictions on the boundary value

problem solved byF2.

The Hamilton-Jacobi equation verified byF2 reads:

∂F2

∂t
(q, p0, t) + H(q,

∂F2

∂q
(q, p0, t), t) = 0 , F2(q, p0, 0) = 〈q, p0〉 .

In this partial differential equationp0 does not appear explicitly. Therefore it may be

viewed as a parameter, in which case the Hamilton-Jacobi equation simplifies to:

∂F2

∂t
(q, t) + H(q,

∂F2

∂q
(q, t), t) = 0 , F2(q, 0) = 〈q, p0〉 , (5.4)

wherep0 is a parameter that specifies the initial conditions. Classical numerical partial

differential equation solvers do not accept symbolic boundary conditions and so we need

to specifyp0. Oncep0 is set to a valueα, we can solve the Hamilton-Jacobi equation on

the interval[qmin, qmax]× [t0, tf ] as long as no singularities are encountered. The resulting

function corresponds to the generating functionF2(q, p0 = α, t). Sincep0 = α, F2 only

solves two-point boundary value problems that consists of going to q in t units of time

with a given initial momentump0 = α. We loose the freedom to choosep0.

Example V.2 (Weakly perturbed pendulum). To illustrate the use of classical partial

differential equation solvers, let us computeF2 for a weakly perturbed pendulum. The

Hamiltonian for this system is given by:

H(q, p) =
1

2
p2 +

0.01

2
q2 − cos(q) ,
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Figure 5.1:F2 computed using the method of lines

and the Hamilton-Jacobi equation reads:

∂F2

∂t
(q, t) +

1

2

(

∂F2

∂q
(q, t)

)

+
0.01

2
q2 − cos(q) = 0 , F2(q, 0) = qp0 ,

wherep0 is chosen to be2.1. Using the built-inMathematica c© functionNDSolve1 we

solve the Hamilton-Jacobi forF2 over the interval(q, t) ∈ [−1, 1] × [0, 17.215]. In Fig.

V.2 we plot this solution. In order to solve a boundary value problem that consists of

going toq ∈ [−1, 1] in t ∈ [0, 17.215] units of time with initial momentump0 = 2.1, we

approximate∂F2

∂q
(q, t) at the point(q, t). We point out that att = 17.215, F2 becomes

singular and the integration stops. Therefore, we cannot solve any problems involving

transfer times that are larger than17.215.

Through the weakly perturbed pendulum, we illustrated the restriction imposed by

partial differential equation solvers on boundary value problems. We showed that the

initial state must be partially knowna priori. Moreover, the integration of the Hamilton-

Jacobi equation stops as soon as a singularity is encountered. Most importantly, only two

types of boundary value problems can be solved because all but two generating functions

1NDSolve uses the method of lines. It consists of discretizing all butone variable so that at every node,
the partial differential equation reduces to an ordinary differential equation.
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are singular at the initial time. These issues are importantones and must be overcome in

order to take full advantage of the theory we introduced in Chapter III. In the remainder

of this chapter, we present a new algorithm that addresses this difficulty. Specifically, our

algorithm can approximate locally in the spatial domain anykind of generating functions

over an arbitrary large time interval while avoiding singularities.

5.3 A new algorithm to compute the generating functions

In this section we introduce an algorithm that computes an approximation to the gen-

erating functions locally in the spatial domain and globally in the time domain. By locally

in the spatial domain, we mean that we are able to compute the generating functions in a

domain in which the Hamiltonian function may be expressed asa convergent Taylor series

in theq’s andp’s.

5.3.1 Local solution of the Hamilton-Jacobi equation

We consider the general case of Hamiltonian systems whose Hamiltonian functionH

can be written as a power series in its spatial variables withtime-dependent coefficients.

This case obviously includes systems with polynomial Hamiltonians such as the harmonic

oscillator, and the double well potential. It also includessystems describing the relative

motion of two particles moving in a Hamiltonian vector field (see Appendix A for an

expression of the Hamiltonian) and more generally, the motion of a particle in the vicinity

of an equilibrium or of a known trajectory. Recall the Hamilton-Jacobi equation (Eq.

(3.6)):

H(qIp ,−
∂FIp,Kr

∂pĪp

,
∂FIp,Kr

∂qIp

, pĪp
, t) +

∂FIp,Kr

∂t
= 0 . (5.5)
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SinceH is a Taylor series in its spatial variables, we look for a solution of the same form,

that is, we assume that generating functions are Taylor series as well:

FIp,Kr(y, t) =
∞

∑

q=2

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)yi1

1 · · · yi2n
2n , (5.6)

wherey = (qIp , pĪp
, q0Kr

, p0K̄r
). We substitute this expression into Eq. (5.5). The resulting

equation is an ordinary differential equation that has the following structure:

P (y, fp,r
q,i1,··· ,i2n

(t), ḟp,r
q,i1,··· ,i2n

(t)) = 0 , (5.7)

whereP is a series iny with time-dependent coefficients. An explicit expression of P

up to order3 is given in Appendix B. Eq. (5.7) holds for ally if and only if all the

coefficients ofP are zero. In this manner, we transform the ordinary differential equation

(Eq. (5.7)) into a set of ordinary differential equations whose solutions are the coefficients

of the generating functionFIp,Kr .

Now it remains to specify initial conditions for the integration. We have seen before

that onlyF2 andF3 can generate the identity transformation, the other generating functions

being singular. Let us look more closely atF2 andF3, and especially at the coefficients2

f 2
q,i1,··· ,i2n

(t0) andf 3
q,i1,··· ,i2n

(t0). At the initial time we have:

p0 = p

=
∂F2

∂q
,

and

q = q0

=
∂F2

∂p0

.

2We change our notation for convenience:f2 stands forfn,0, i.e., represents the coefficients of the Taylor
series ofF2. We do the same for all four kinds of generating functionsF1, F2, F3 andF4.
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Within the radius of convergence, the Taylor series definingthe generating functions (Eq.

(5.6)) converge normally, therefore, we can invert the summation and the derivative oper-

ator. We obtain:

f 2
q,i1,··· ,i2n

(t0) =



















1 if q = 2, ik = ik+n = 1, il 6={k,k+n} = 0,∀(k, l) ∈ [1, n] × [1, 2n],

0 otherwise.

Similarly, we obtain forF3:

f 3
q,i1,··· ,i2n

(t0) =



















−1 if q = 2, ik = ik+n = 1, il 6={k,k+n} = 0,∀(k, l) ∈ [1, n] × [1, 2n],

0 otherwise.

These initial conditions allow one to integrate two generating functions among the4n,

but what about the other ones? This issue on singular initialconditions is similar to the one

on singularity avoidance during the integration. In the next section we propose a technique

to handle these problems based on the Legendre transformation. But before going further,

one remark needs to be made. After we proceed with the integration, one must always

verify that the series converge and that they describe the true dynamics3 in some open

set. If these two conditions are verified we can identify the generating functions with their

Taylor series within the radius of convergence.

Singularity avoidance

We have seen that most of the generating functions are singular at the initial time.

Moreover solutions to the Hamilton-Jacobi equations oftendevelop caustics (Chapter III).

These two issues prevent numerical integration, and the goal of this section is to introduce

a technique to overcome this difficulty.

3Remember that even if a function isC∞ and has a converging Taylor series, it may not equal its Taylor
series. As an example takef(x) = exp (1/x2) if x 6= 0, f(0) = 0, it is C∞ and its Taylor series atx = 0 is
0, and therefore converges. However,f is not identically zero.
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We first need to recall the Legendre transformation, which allows one to derive one

generating function from another (Eq. (2.28)). SupposeF2 is known, then we can findF1

from:

F1(q, q0, t) = F2(q, p0, t) − 〈q0, p0〉 , (5.8)

wherep0 is viewed as a function of(q, q0). Obviously, the difficulty in proceeding with

a Legendre transformation lies in findingp0 as a function of(q, q0). To find such an

expression we use Eq. (3.11):

q0 =
∂F2

∂p0

(q, p0, t) , (5.9)

and then solve forp0(q, q0).

For the class of problems we consider,F2 is a Taylor series. Therefore we need to

perform a series inversion to eventually findp0 as a Taylor series of(q, q0). Series inversion

is a classical problem and we can use the method developed by Moulton [72] (see also

Chapter III). We first suppose that there exists a series expansion of p0 as a function of

q andq0, then insert this expression into Eq. (5.9) and balance terms of the same order.

We obtain a set of linear equations, whose solution is found at the cost ofn × n matrix

inversion (an example of series inversion can be found in Ex.III.10).

Let us return to the problem of singularity avoidance. So far, we were able to integrate

generating functions of the second and third kinds since they have well-defined initial

conditions. If we want to findF1, then we perform a Legendre transformation att1 > 0 to

find the value ofF1 at this instant from the value ofF2. This value can in turn be used to

initialize the integration of the Hamilton-Jacobi equation for F1.

Now supposeF2 is singular att2, let us see how we can take advantage of the Legendre

transformation to integrateF2 for t > t2.
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Prop. II.31 tells us that at least one of the generating functions is non-singular att2.

Without loss of generality, supposeF1 is non-singular att2. At t1 < t2 we carry out a

Legendre transformation to findF1 from F2, then we integrateF1 over [t1, t3 > t2] and

carry out another Legendre transformation to recoverF2 at t3. Once the value ofF2 is

found att3, the integration of the Hamilton-Jacobi equation can be continued.

We have described an algorithm for solving the Hamilton-Jacobi equation and devel-

oped techniques to continue the integration despite singularities. In the next section, we

introduce an indirect approach to compute the generating functions based on the initial

value problem. This approach naturally avoids singularities but requires more computa-

tions (Section 5.3.3).

5.3.2 An indirect approach

By definition, generating functions implicitly define the canonical transformation they

are associated with. Hence, we may compute the generating functions from the canonical

transformation, that is, compute the generating functionsfor the phase flow transformation

from knowledge of the phase flow. In this section, we develop an algorithm based on these

remarks.

Recall Hamilton’s equations of motion for relative motion:







q̇

ṗ






= J∇Hh(q, p, t) . (5.10)

Suppose thatq(q0, p0, t) andp(q0, p0, t) can be expressed as series in the initial conditions

(q0, p0) with time dependent coefficients, truncate the series to orderN and substitute these

into Eq. (5.10). Hamilton’s equations reduce to an ordinarydifferential equation of a form

that is polynomial in(q0, p0). As before, we balance terms of the same order and transform

Hamilton’s equations into a set of ordinary differential equations whose variables are the
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time dependent coefficients definingq andp as series ofq0 andp0. Usingq(q0, p0, t0) = q0

andp(q0, p0, t0) = p0 as initial conditions for the integration, we are able to compute an

approximation of orderN of the phase flow. Once the flow is known, we recover the

generating functions by performing a series inversion.

Example V.3. SupposeF1 is needed. Fromq = q(q0, p0, t) we carry out a series inversion

to eventually findp0 = p0(q, q0, t). Thenp0 = p0(q, q0, t) together withp = p(q0, p0, t)

defines the gradient ofF1:

∂F1

∂q
(q, q0, t) = p

= p(q0, p0(q, q0, t)) , (5.11)

∂F1

∂q0

(q, q0, t) = −p0

= −p0(q, q0, t) , (5.12)

We recoverF1 from its gradient by performing two quadratures over the polynomial terms.

We point out that the inversion has multiple solutions if andonly if F1 is singular att. In ad-

dition, if one uses traditional numerical integrators to integrate the phase flow, Eqns. (5.11)

and (5.12) are not integrable due to numerical round off
(

∂p(q0,p0(q,q0,t))
∂q0

6= −∂p0(q,q0,t)
∂q

)

.

Using symplectic algorithms to compute the approximate phase flow, we preserve the

Hamiltonian structure of the flow. Therefore we are assured that Eqns. (5.11) and (5.12)

are integrable. This issue was discussed and illustrated inSection 4.3.3.

5.3.3 A comparison of the direct and indirect approach

We have introduced two algorithms that compute the generating functions associated

with the phase flow. In this section we highlight the advantages and drawbacks of each

method. In addition, we show that by combining them we obtaina robust and powerful

algorithm.
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Method specifications

The direct approach The direct approach provides us with a closed form approxi-

mation of the generating functions over a given time interval. However, there are inherent

difficulties as generating functions may develop singularities which prevent the integration

from going further in time. The technique we developed to bypass this problem results in

additional computations. It requires us to first identify the times at which generating func-

tions become singular, and then to find a non-singular generating function at each of these

times. Over a long time simulation, this method reaches its limits as many singularities

may need to be avoided.

The indirect approach The main advantage of the indirect method is that it never en-

counters singularities, as the flow is always non-singular.On the other hand, this method

requires us to solve many more equations than the direct approach (see below). Such trade

offs between dimensionality and singularities are well known to engineers. For instance,

to describe the attitude of a rigid body, one may use Eulerianangles or quaternions. Eu-

lerian angles allow one to describe the attitude with only3 coordinates, but may become

singular. In contrast, the quaternions are never singular but have an additional component.

Furthermore, a major drawback of the indirect approach is that it computes an expression

for the generating functions at a given time only, the time atwhich the series inversion is

performed. Finally, as mentioned earlier, we need to use symplectic integrators to run the

indirect approach. Therefore, we believe (but have not proven yet) that the solution found

is symplectic. This is very valuable, especially if we want to find the generating func-

tions over a large time span on which classical integrators fail to preserve the geometric

properties of the system.
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The curse of dimensionality In this paragraph, we point out a difficulty inherent to

both methods, namely the “curse of dimensionality”. As we solve the generating functions

to higher and higher orders, the number of variables grows dramatically. This problem is

the limiting factor for computation: typically on a2GHz Linux computer with1G RAM,

we have trouble solving the generating functions to order7 and up for a6-dimensional

Hamiltonian system.

Computation of the generating functions using the direct approach requires us to find

all the coefficients of a2n-dimensional series with no linear terms. At orderN , a 2n-

dimensional Taylor series hasM terms, where

M =







2n − 1 + N

N






=

(2n − 1 + N)!

N !(2n − 1)!
.

In the indirect approach we express the2n-dimensional state vector as Taylor series with

respect to the2n initial conditions. Therefore, we need to compute the coefficients of2n

2n-dimensional Taylor series.

To summarize, an approximation of orderN of the generating functions is found by

solving:

•
N

∑

n=2

(2n − 1 + N)!

N !(2n − 1)!
ordinary differential equations using the direct approach,

• 2n
N−1
∑

n=1

(2n − 1 + N)!

N !(2n − 1)!
ordinary differential equations using the indirect approach4.

In Fig. 5.3.3, the solid line and dotted line indicate the numbers of equations that needs

to be solved with the direct and indirect methods for a6-dimensional Hamiltonian system.

4The summation goes from1 to N − 1 because the indirect approach computes the gradient of the
generating functions.



140

order

Number of variables

Figure 5.2: Number of variables in the indirect (dashed) anddirect (solid) methods.

A combined algorithm

In practice, to solve boundary value problems over a long time span it is most conve-

nient to combine both methods. Typically, we first solve the initial value problem (indirect

method) up to a time of interest, sayt1. Then we solve the Hamilton-Jacobi equation

(direct approach) aboutt1, with initial conditions equal to the values of the generating

functions att1 found using the indirect approach.

5.4 Convergence and existence of solutions

We now study the convergence properties of our algorithm. Inparticular, we provide a

criterion to evaluate the domain in which the approximationof orderN of the generating

functions is valid. An example to illustrate this criterionis given.

5.4.1 Theoretical considerations

Recall the general form of a generating function (Eq. (5.6)):

FIp,Kr(qIp , pĪp
, q0Kr

, p0K̄r
, t) =

∞
∑

q=0

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)yi1

1 · · · yi2n
2n .
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Definition V.4 (Radius of convergence).The radius of convergence of the multi-variable

series definingFIp,Kr at t is the real numberRt such that:

∀η , 0 < η < Rt,

∞
∑

q=0







q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)






ηq

converges absolutely and

∀η > Rt ,
∞

∑

q=0







q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)






ηq diverges.

The following proposition whose proof can be found in many textbooks concerns the

normal convergence of the series. Earlier, we used this result for finding the initial condi-

tions to integrate the Hamilton-Jacobi equation.

Proposition V.5. LetRt be the radius of convergence of the multi-variable series defining

FIp,Kr at the timet. Then for allη < Rt the series converges normally in{y ∈ R
2n :

‖y‖ ≤ η} at t.

The radius of convergence is not appropriate for studying series of functions as it is a

function of time. To remove the time dependency, we define thedomain of convergence,

a domainD in R × R
2n in which the series converge uniformly.

Definition V.6 (Domain of convergence).The domain of convergenceD is a region in

R × R
2n in which the series

∞
∑

q=0

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)yi1

1 · · · yi2n
2n

converges uniformly.

In contrast with the radius of convergence, the domain of convergence is not uniquely

defined. The spatial domain depends on the time interval and vice versa. For instance,
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∑

n tnyn converges if and only ifty < 1. D = {[0, 2]× [0, 0.5]} andD = {[0, 0.5]× [0, 2]}

are two well-defined domains of convergence.

In Def. V.6, the uniform convergence of the series is of primeimportance. It allows

one to bound the error between the true series and its truncation. Indeed, by definition we

have:

∀ǫ > 0 , ∃N > 0 , ∀(t, y) ∈ D ,

FIp,Kr(qIp , pĪp
, q0Kr

, p0K̄r
, t)−

N
∑

q=0

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n!
fp,r

q,i1,··· ,i2n
(t)yi1

1 · · · yi2n
2n < ǫ .

(5.13)

In other words, given a domain of convergence and a precisiongoalǫ, there exists a positive

integerN such that the truncated Taylor series of orderN approximates the true function

within ǫ in the domain.

5.4.2 Practical considerations

In practice, for most of the problems we are interested in, weare only able to compute

finitely many terms in the series. As a result, it is impossible to estimate a domain of

convergence. Worst, we cannot theoretically guaranty thatthe generating functions can

be expressed as Taylor series. In fact, we have seen earlier that even if the Taylor series

of FIp,Kr converges on some open set andFIp,Kr is smooth, thenFIp,Kr may not be equal

to its Taylor series. One can readily verify that the function f(x) = exp(1/x2) if x 6= 0,

f(0) = 0 is smooth and has a converging Taylor series at0. However,f is not equal to

its Taylor series. In the following we make two realistic assumptions in order to develop a

practical tool for estimating a domain of convergence.

We first assume that the flow may be expressed as a Taylor seriesin some open set.

This is a very common assumption when studying dynamical systems. For example, we
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make this hypothesis when we approximate the flow by the statetransition matrix at linear

order. We noticed in the indirect approach that the generating functions may be computed

from the flow at the cost of a series inversion. From the seriesinversion theory (see e.g.

Moulton [72]), we conclude that the generating functions can also be expressed as Taylor

series (when they are not singular). Thus, for almost everyt, there exists a non-zero radius

of convergence. In addition, the concept of domain of convergence is well-defined.

The second assumption we make is also reasonable. We assume that there exists a

domain in which the first order terms of the series definingFIp,Kr are dominant. In other

words, we assume that there exists a domain in which the linear order is the largest, fol-

lowed by the second order, third order etc... This is again a very common assumption

for dynamical systems. When approximating the flow with the state transition matrix, we

implicitly assume that the linear term is dominant. However, in the present case, there is

a subtlety due to the presence of singularities. We observe that this assumption no longer

holds as we get closer to a singularity. Let us look at an example to illustrate this phe-

nomenon.

Example V.7. The Taylor series inx of f(x, t) = (1 − t)x for t ∈ (0, 1) is

∞
∑

r=0

anx
n , wherean =

log(1 − t)n

n!
.

Its radius of convergence isRt = ∞ for all t ∈ (0, 1) and it is singular att = 1. In

figure 5.3, we plot the first four terms of the series as a function of x for different times.

Clearly, ast gets closer to1, the first order terms are less and less dominant. Equivalently,

thex-interval in which the first order terms are dominant shrinksast goes to1. In figure

5.4, we plot(1 − t)x − ∑3
r=0

log(1−t)n

n!
xn. One can readily verify that given a prescribed

error margin, the domain in which the order4 approximatesf within this margin shrinks

ast gets closer to1. This is a very common behavior that motivates the need for a new
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criterion.

Suppose that the fourth order approximation off is to be used for solving a given

problem where the time evolves from0 to 0.6. We know that such an approximation is

relevant if the firsts order terms are dominant, i.e.,a0 > a1 > a2 > a3. From figure

5.3, we infer that this condition is satisfied if and only if‖x‖ ≤ 1. We call the domain

Du = {[0, 1], [0, 0.6]} the domain of use.

(a) t = 0.2 (b) t = 0.6 (c) t = 0.8

Figure 5.3: Contribution of the first four terms in the Taylor series of(1 − t)x

(a) t = 0.2 (b) t = 0.6 (c) t = 0.8

Figure 5.4: (1 − t)x − ∑3
n=0

log(1−t)n

n!
xn

Let us formalize the concept ofdomain of use.

Definition V.8 (Domain of use).The domain of useDu is a domain inR × R
2n in which






|

q
∑

i1,··· ,i2n=0
i1+···+i2n=q

1

i1! · · · i2n

fp,r
q,i1,··· ,i2n

(t)yi1
1 · · · yi2n

2n







q

is a decreasing sequence.
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This definition is very conservative but very easy to work with. For a given problem,

we identify a time interval (or a spatial domain) in which we want to use the generating

functions. Then we compute the spatial domain (or the time interval) in which our solution

is valid. Once we have identified the domain of use, one can safely work with the solution

within this domain. Let us illustrate the use of the above tool with an example.

5.4.3 Examples

We consider the following fictional space mission: A formation of spacecraft is flying

about the Libration pointL2 in the nondimensionalized Hill three-body problem (Ap-

pendix C) and we wish to useF1 for solving position to position boundary value problems

in order to reconfigure the formation. The mission specifications restrict the spacecraft to

stay within0.05 units of length fromL2 (i.e.,107, 500 km in the Earth-Sun system).

We expand the Hamiltonian describing the Hill three-body problem about the equilib-

rium pointL2 and use the algorithm described previously to solveF1 up to order5 in the

time interval(0, 3.5). We encounter a number of singularities forF1 at t = 0, t = 1.68,

andt = 3.19 (these were predicted in Section 3.2.3). In Fig. 5.5, we plotthe maximum

value of‖y‖ so that the first five terms are in decreasing order5. We notice that as we get

closer to the singularity, the maximum value of‖y‖ goes to0. To find the domain of use,

we only need to intersect this plot with‖y‖ = 0.05 and check that we are within the radius

of convergenceRt. From Fig. 5.5, we infer that the domain of use is

D = {(y, t) ∈ [−0.05, 0.05]2n, (0.01, 1.32) ∪ (1.84, 3.12) ∪ (3.12, 3.5)} . (5.14)

Error in the approximation We can verifya posteriorithat the Taylor series expansion

found for the generating functionF1 approximates the true dynamics. To do so, we set

5Some terms may change sign and therefore may be very small. Inthat case we ignore these terms so
that the decreasing condition can be satisfied (For instanceif the order2 term goes to0, it will be smaller
than any other terms and therefore must be ignored).
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q(T ) = q1 andq0, and findp(T ) = p1 andp0 from Eqns. (3.7)-(3.8). Then we integrate

the trajectory whose initial condition is(q0, p0) to find (q(T ), p(T )) = (q2, p2). The error

in the approximation is defined as the norm of(q2 − q1, p2 − p1). In Fig. 5.6 we plot this

error for q0 = 0 andq1 that takes values on the circle centered atL2 of radius0.05 for

different values oft. We observe that the truncated series provide a good approximation

of the true dynamics.

Figure 5.5: Domain of use

(a) t = 1.3 (b) t = 1

Figure 5.6: Difference between the true and the approximatedynamics

We also point out that since the series is converging and the magnitude of each order

decreases in the domain of use, the accuracy must always increase if an additional order

is taken into account. In Fig. 5.7, we observe that the order two solution provides a poor

approximation to the initial momentum because the error ranges up to4.5 · 10−3 units
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of length (i.e.,9615 km in the Earth-Sun system). Order three and four give order of

magnitude improvements, the error is less than2.2 · 10−4 units of length (480 km) for

order three and less than3.5 · 10−5 units of length (77 km) for order four, over two orders

of magnitude better than the order two solution.

(a) Order2 (b) Order3

(c) Order4

Figure 5.7: Error in the normalized final position fort = 0.9



CHAPTER VI

THE NUMERICS OF OPTIMAL CONTROL
PROBLEMS AND A NOVEL METHOD TO SOLVE

OPTIMAL CONTROL PROBLEMS

For a general optimal control problem, necessary conditions for optimality may be

derived from the Pontryagin maximum principle. These conditions often take the form

of a two-point boundary value problem and are therefore difficult to solve in general.

There has been much work on solving this type of problem, someanalytical and others

numerical. We will not attempt to survey this literature in any systematic fashion as the

literature is simply too large, but we can confidently say that numerical techniques almost

always require (there are a few exceptions such as methods that consists of solving the

Hamilton-Jacobi-Bellman equation) integration of some if not all of the ordinary differ-

ential equations given by the Pontryagin maximum principle. To perform this integration,

one uses numerical integrators that take an initial condition and move objects in the direc-

tion specified by the differential equations. As discussed in Chapter IV, these methods do

not exactly satisfy all the physical conservation laws associated with the system. An alter-

native approach to integration, the theory of geometric integrators (Chapter IV), has been

developed. However, integration of the necessary conditions using geometric integrators

is usually not possible because they are often coupled with nonlinear equations that would

148
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need to be discretized in such a manner that the algorithm keeps its properties. For in-

stance, under some smoothness conditions, the Pontryagin maximum principle yields the

following conditions:

ẋ = D2H(x, p, u) , (6.1)

ṗ = −D1H(x, p, u) , (6.2)

0 = D3H(x, p, u) . (6.3)

To solve this set of equations, one needs to simultaneously solve the ordinary differential

equations (Eqns. (6.1) and (6.2)) as well as the (nonlinear)equation (Eq. (6.3)). In Section

6.2, we extend the discrete geometric framework introducedin Chapter IV to overcome

this difficulty. Specifically, we are able to state a discretemaximum principle that yields

discrete necessary conditions for optimality. Most importantly, these conditions are in

agreement with the ones obtained from the Pontryagin maximum principle and define

symplectic algorithms. The approach adopted here allows one to recover as a particular

case earlier works on symplectic integrators in optimal control such as [16] and to adapt

most of the classical symplectic integrators used in dynamics.

Furthermore, if Eq. (6.3) can be solved for the optimal feedback control law, then the

boundary value problem defined by the necessary conditions for optimality (Eqns. (6.1)-

(6.3)) reduces to aHamiltonianboundary value problem. In Section 6.3, we show that our

approach for solving two-point boundary value problems directly applies. In particular,

using the generating functions, we obtain an estimate of theinitial adjoint variables without

an initial guess and therefore solve the optimal control problem. Most important, our

approach overcomes some of the barriers to truly reconfigurable control. Specifically, at

the cost of algebraic manipulations, we can solve optimal control problems with different

boundary conditions as long as the cost function and the dynamics are unchanged.
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In the first section of this chapter, we review the maximum principle and derive neces-

sary conditions for optimality. Then, we introduce a discrete maximum principle and show

with a few examples how it yields necessary conditions that define symplectic algorithms.

Finally, we apply the theory developed in Chapter III to solveoptimal control problems

for which the optimal feedback control law may be expressed as a function of the state and

the adjoint variables. To illustrate this approach, we analyze the linear quadratic controller

problem and then a targeting problem using the Hill three-body dynamics.

6.1 Necessary and sufficient conditions for optimality

6.1.1 Problem Statement

LetJ =
∫ tf
0

g(x, u)dt be a performance index (also called a cost function) and consider

the following optimal control problem:

min
u

∫ tf

t0

g(x, u)dt , (6.4)

subject to the dynamics

ẋ = f(x, u) , (6.5)

and tori initial andrf final constraints:

φi(x(t0), t0) = 0 , φf (x(tf ), tf ) = 0 , (6.6)

wheref andg are functions fromR
n × R

m to R of classC1, φi : (R)n × R → R
ri and

φf : (R)n × R → R
rf

RemarkVI.1. Although this optimal control problem is written using the Lagrange for-

mulation, the following readily applies to the Bolza or the Mayer formulations.

min
u

K(x(tf )) +

∫ tf

t0

L(x, u, t)dt Bolza formulation (6.7)

min
u

K(x(tf )) Mayer formulation (6.8)
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RemarkVI.2. The boundary conditions defined by Eq. (6.6) are in a very general form.

They include hard constraint problems (HCP), as well as soft constraint problems (SCP).

For HCP, the initial and terminal boundary conditions are fully specified, i.e.,ri = rf = n

whereasri = n andrf = 0 for SCP.

6.1.2 Maximum principle

To solve the optimal control problem defined by Eqns. (6.4), (6.5) and (6.6), we apply

the Pontryagin principle.

Theorem VI.3 (Maximum principle). Solutions to the optimal control problem defined

by Eqns.(6.4), (6.5) and (6.6) correspond to critical points of the cost functionJ in the

class of curvesγ = (x(t), u(t)) ∈ Γ whereΓ is the set of curves satisfying Eqns. (6.5) and

(6.6).

Proof. To find critical points of the functionalJ under the non-holonomic constraints de-

fined by Eqns. (6.5) and (6.6), we must impose the constraintson the velocity vectors

of the class of allowable curves (details on non-holonomic variational principle may be

gleaned in Bloch and Crouch [15] and Bloch, Bailleul, Crouch and Marsden [14] for in-

stance). Therefore, before taking the variations of the cost function J , we must append

the constraints using the Lagrange multipliers. The new function, Ja, is often called the

augmented cost function:

Ja =

∫ tf

t0

g(x, u) − 〈p, ẋ − f(x, u)〉dt + 〈λi, φi(x(t0), t0)〉 + 〈λf , φf (x(tf ), tf )〉

=

∫ tf

t0

H(x, p, u) − 〈p, ẋ〉dt + 〈λi, φi(x(t0), t0)〉 + 〈λf , φf (x(tf ), tf )〉 ,

where thep’s, theλi’s and theλf ’s are Lagrange multipliers andH(x, p, u) = g(x, u) +

〈p, f(x, u)〉. Taking variations of the augmented cost function assumingfixed initial and
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final times yields:

δJa = δ

(∫ tf

t0

H(x, p, u) − 〈p, ẋ〉dt

)

+ δ〈λi, φi(x(t0), t0)〉

+δ〈λf , φf (x(tf ), tf )〉

=

∫ tf

t0

〈D2H(x, p, u) − ẋ, δp〉 + 〈D1H(x, p, u) + ṗ, δx〉

+ 〈D3H(x, p, u), δu〉dt + 〈−p(tf ) + D1φ
T
f λf , δxf〉

+ 〈p(ti) + D1φ
T
i λi, δxi〉 .

We now let the variations ofJa be zero to obtain necessary conditions for optimality:

ẋ = D2H(x, p, u) , (6.9)

ṗ = −D1H(x, p, u) , (6.10)

0 = D3H(x, p, u) , (6.11)

as well as transversality conditions:

p(ti) = −D1φi(x(t0), t0)
T λi , p(tf ) = D1φf (x(tf ), tf )

T λf . (6.12)

Eqns. (6.9)-(6.12) define the necessary conditions for optimality.

Eqns. (6.9) and (6.10) are2n ordinary differential equations coupled withm (non-

linear) equations defined by Eq. (6.11). To solve these equations we need2n boundary

conditions. On one hand,ri initial andrf final conditions are given in the problem state-

ment. On the other hand, the transversality conditions yield n initial andn final conditions

but introduceri unknownsλi andrf unknowsλf . Thus, we obtain2n boundary conditions

as well asri + rf equations that allows us to solve for(λi, λf ). As a result, the necessary

conditions obtained by the maximum principle define a well-posed problem.

RemarkVI.4. This formulation of the necessary conditions differs from the one given by

Pontryagin [78] but the main point of the Pontryagin principle is that it yields necessary
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conditions for optimality under far less severe regularityconditions. The above formu-

lation is based on the equivalence between the Pontryagin principle and the calculus of

variations in the case where the control region is an open setin a finite dimensional vector

space (see [78] chapter V for more details). It is therefore equivalent to classical variational

formulations given in Bloch et al. [14, 15] and Gregory and Lin[29] for instance.

The necessary conditions are of the same form as Hamilton’s equations but are coupled

with a nonlinear equation (Eq. (6.11)). We have seen previously that Hamiltonian systems,

i.e., Hamilton’s equations, can be integrated using symplectic integrators. However, if

Hamilton’s equations are coupled with algebraic nonlinearequations the theory no longer

applies. What is the correct discretization of the algebraicequation? In the next section,

we develop a discrete maximum principle that tackles this problem and provides a unified

view on solving optimal control problems using symplectic integrators.

6.2 Discretization of optimal control problems

We propose two methods to discretize the necessary conditions for optimality. The

first, most intuitive one, has several inherent drawbacks that we point out. The second

method requires the use of a discrete maximum principle thatwe present. It is more

general and we show, with a few examples, that it yields necessary conditions that de-

fine symplectic algorithms. Furthermore, this second approach can be enhanced to yield

symplectic-energy conserving algorithms. Finally we prove that the discrete necessary

conditions are in agreement with the necessary conditions obtained from the Pontryagin

maximum principle. We illustrate this equivalence with an example from sub-Riemannian

optimal control problems.
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6.2.1 Solving the necessary conditions for optimality

The first method we propose to discretize the necessary conditions assumes that we

can find the optimal feedback control law as a function of thex’s and thep’s. More

precisely, suppose Eq. (6.11) allows one to solve foru as a function of(x, p) and define

the Hamiltonian function

H̄(x, p) = H(x, p, u(x, p)) . (6.13)

Then the necessary conditions (6.9) and (6.10) simplify to:

ẋ = D2H̄(x, p) , (6.14)

ṗ = −D1H̄(x, p) . (6.15)

Equations (6.14) and (6.15) are of the same form as the Hamilton equations. Therefore, the

system defined bȳH is Hamiltonian, and is better simulated using symplectic algorithms

(see Chap. IV). We point out that this Hamiltonian system has no physical meaning

in general and may even not be Lagrangian. For example, we show later thatH̄ is not

hyperregular for sub-Riemannian optimal control problems.As a result, the Legendre

transform is ill-defined and we cannot define a Lagrangian function associated with the

HamiltonianH̄. This fact has many consequences, for instance DVPI (DVPI and DVPII

are defined in Section 4.2) cannot be used to discretize such systems whereas one could use

DVPII (DVPI acts on the tangent bundle only whereas DVPII hastwo formulations, one on

the tangent bundle for Lagrangian systems and one the co-tangent bundle for Hamiltonian

systems (Def. IV.4)).

Example VI.5 (Midpoint scheme). To integrate the necessary conditions using the mid-

point scheme, we apply the modified discrete Hamilton’s principle (Def. IV.4) to the
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Hamiltonian system defined bȳH using the midpoint Leibnitz law (Eq. (4.29)). We ob-

tain:

xk+1 − xk

h
= D2H̄(

xk+1 + xk

2
,
pk+1 + pk

2
) , (6.16)

pk+1 − pk

h
= −D1H̄((

xk+1 + xk

2
,
pk+1 + pk

2
) . (6.17)

Lemma IV.7 guarantees the symplectic nature of this implicit algorithm.

6.2.2 Discrete maximum principle

If the feedback control law cannot be solved from Eq. (6.11),then the above method to

discretize the necessary conditions no longer applies. In this section we address this issue.

Specifically, we introduce a discrete maximum principle that allows us to derive discrete

necessary conditions for optimality that are in agreement with the one obtained from the

maximum principle.

Problem statement

We assume the same geometric framework than in Chapter IV, that is, we consider

a discretization of the timet into n instantsT = {(tk)k∈[1,n]}. tk+1 − tk may not be

equal totk − tk−1 in general but for sake of simplicity, we assume in the following that

tk+1 − tk = τ , ∀k ∈ [1, n]. At tk, xk lies in then-dimensional vector spaceMk = R
n,

uk lies in Uk = R
m and we setM =

⋃

Mk andU =
⋃

Uk. OnT , we define a discrete

time derivative operator∆d
τ . ∆d

τ may not verify the usual Leibnitz law but a modified one.

We denote byxd
k andud

k two points inM andU respectively. Later we give an explicit

definition of these points but so far we only need to know thatxd
k can be expressed as a

function ofxk andxk+1 (andud
k can be expressed as a function ofuk anduk+1).

In discrete settings, the cost function is

J =
n−1
∑

k=0

gd(x
d
k, u

d
k)τ ,
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and the optimal control problem (6.4) is formulated as:

min
ud

k

n−1
∑

k=0

gd(x
d
k, u

d
k)τ , (6.18)

subject to the dynamics

∆d
τx

d
k = fd(x

d
k, u

d
k) , (6.19)

and tori + rf boundary conditions:

φi(x0, t0) = 0 , φf (xn, tn) = 0 , (6.20)

wherefd andgd are functions fromR
n×R

m to R of classC1 that correspond to discretiza-

tion of the continuous time functionsf andg, φi : (R)n ×R → R
ri andφf : (R)n ×R →

R
rf

Discrete maximum principle

To obtain necessary conditions for optimality, we define thefollowing discrete maxi-

mum principle, the discrete counterpart of the Pontryagin maximum principle:

Definition VI.6 (Discrete maximum principle). Solutions to the discrete optimal control

problem correspond to critical points of the cost functionJ in the class of discrete curves

γ ∈ Γ, whereΓ is the set of all discrete curves(xk, uk)k∈[1,n] that verify Eqns. (6.19) and

(6.20).

RemarkVI.7. The above definition is the discrete counterpart of Thm. VI.3. It compares

to previous works on discrete optimal control theory that extend the Pontryagin maximum

principle to discrete systems such as Jordan and Polak [55] as Thm. VI.3 compares to the

Pontryagin maximum principle. In other words, in contrast with Jordan and Polak [55],

we restrict the class of discrete optimal control problems so that we can derive necessary

conditions that define symplectic algorithms.
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As in the continuous case, to find critical points ofJ under the non-holonomic con-

straints defined by Eqns. (6.19) and (6.20), we must append the constraints toJ using the

Lagrange multipliers. The resulting function is called theaugmented cost function:

Ja =
n−1
∑

k=0

(gd(x
d
k, u

d
k) − 〈pd

k, ∆
d
τx

d
k − fd(x

d
k, u

d
k)〉)τ + 〈λ0, φ0〉 + 〈λn, φn〉 (6.21)

=
n−1
∑

k=0

(Hd(x
d
k, p

d
k, u

d
k) − 〈pd

k, ∆
d
τx

d
k〉)τ + 〈λ0, φ0〉 + 〈λn, φn〉 , (6.22)

where thepk’s, the λ0’s and theλn’s are Lagrange multipliers andHd(x
d
k, p

d
k, u

d
k) =

gd(x
d
k, u

d
k) + 〈pd

k, fd(x
d
k, u

d
k)〉. To apply the discrete maximum principle, one needs to

specify the discrete derivative operator as well as the expressions ofxd
k, ud

k andpd
k as a

function of(xk+1, xk), (uk+1, uk) and(pk+1, pk) respectively.

Examples

Störmer’s rule If we choose∆d
τ to be the forward difference∆τ andxd

k = xk , pd
k =

pk+1 , ud
k = uk , then we recover the discrete maximum principle developed byBloch,

Crouch, Marsden and Ratiu [16].

δJa = δ

(

n−1
∑

k=0

(Hd(x
d
k, p

d
k, u

d
k) − 〈pd

k, ∆
d
τx

d
k〉)τ

)

+ δ〈λ0, φ0〉 + δ〈λn, φn〉

=
n−1
∑

k=0

〈D2Hd(xk, pk+1, uk) − ∆τxk, δpk+1〉τ

+ 〈D1Hd(xk, pk+1, uk) + ∆τpk, δxk〉τ + 〈D3Hd(xk, pk+1, uk), δuk〉τ

+ 〈φ0, δλ0〉 + 〈φn, δλn〉 + 〈−pn + D1φ
T
nλn, δxn〉 + 〈p0 + D1φ

T
0 λ0, δx0〉 ,

where the modified Leibnitz law (Eq. (4.1)) has been used. We impose that the variation

of the augmented cost function be zero to obtain the discretenecessary conditions for
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optimality and the transversality conditions:

∆τxk = D2Hd(xk, pk+1, uk) , (6.23)

∆τpk = −D1Hd(xk, pk+1, uk) , (6.24)

0 = D3Hd(xk, pk+1, uk) , (6.25)

p0 = −D1φ0(x0, t0)
T λ0 , pn = D1φn(xn, tn)T λn . (6.26)

The algorithm defined by Eqns. (6.23), (6.24) and (6.25) is equivalent to the one derived

by Bloch, Crouch, Marsden and Ratiu [16] for the symmetric rigidbody. Our approach

generalizes the discrete varaitional principle developedin [16]. We now prove the sym-

plectic nature of the above algorithm.

Lemma VI.8. The algorithm defined by Eqns. (6.23), (6.24) and (6.25) is symplectic.

Proof. Define the cost function̄Ja as:

J̄a =
n−1
∑

k=0

(Hd(xk, pk+1, uk) − 〈pk+1, ∆τxk〉)τ .

J̄a is the augmented cost function from which we have removed theboundary conditions.

Boundary conditions yield transversality conditions, thatis conditions on the initial and

final states of the system. Hence these terms are irrelevant to the study of the advance map

(xk, pk, uk) 7→ (xk+1, pk+1, uk+1). As in discrete dynamics, we considerd2Ja, assuming

(xk, pk, uk) verifies the above necessary conditions and we obtain:

dJ̄a =
n−1
∑

k=0

∆τ 〈pk, dxk〉τ .

Fromd2 = 0, we conclude:

0 =
n−1
∑

k=0

∆τd〈pk, dxk〉τ , that is,∀k ∈ [0, n − 1] , dpk+1 ∧ dxk+1 = dpk ∧ dxk .
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The symplectic nature of the algorithm is obtained directlyfrom the variational prin-

ciple - there is no need to computedpk ∧ dxk anddpk+1 ∧ dxk+1.

Midpoint scheme Midpoint discretization may also be obtained by choosing

xd
k =

xk+1 + xk

2
, pd

k =
pk+1 + pk

2
, ud

k =
uk+1 + uk

2
.

and∆d
τ = Rτ/2 − R−τ/2. One can readily verify that the discrete maximum principle

yields the following necessary conditions for optimality and transversality conditions:

∆d
τx

d
k = D2Hd(x

d
k, p

d
k, u

d
k) , (6.27)

∆d
τp

d
k = −D1Hd(x

d
k, p

d
k, u

d
k) , (6.28)

0 = D3Hd(x
d
k, p

d
k, u

d
k) , (6.29)

p0 = D1φ0(x0, t0)
T λ0 , pn = −D1φn(xn, tn)T λn . (6.30)

Lemma VI.9. The algorithm defined by Eqns. (6.27), (6.28) and (6.29) is symplectic.

Proof. We omit the proof since it proceeds as before.

6.2.3 Discrete maximum principle v.s. discretization of the Pontryagin maximum
principle

So far we have considered two methods for obtaining a symplectic algorithm that in-

tegrates the necessary conditions for optimality. The firstmethod, which applies only

to a certain class of problems, consists of discretizing thenecessary conditions obtained

from the Pontryagin maximum principle once the control has been expressed as a function

of (x, p). The second method consists of using the discrete maximum principle. In this

section, we show that under certain assumptions both methods are equivalent, that is, we
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prove the commutative diagram (6.31).

minu

∫ T

0
g(x, u)dt

ẋ = f(x, u)

minu

∑n−1
k=0 gd(x

d
k, u

d
k)

∆d
τx

d
k = fd(x

d
k, u

d
k)

H(x, p, u)

H̄(x, p)

Hd(x
d
k, p

d
k, u

d
k)

H̄d(x
d
k, p

d
k)

//

²²

(PMP )

²²

(DMP )

//

(DMHP )

(6.31)

whereH̄ is defined by (Eq. (6.13)), DMHP stands for the discrete modified Hamilton’s

principle, PMP stands for the Pontryagin maximum principle, and DMP stands for the

discrete maximum principle.

We recall the required assumptions to prove the equivalenceof the diagram. We as-

sume that Eq. (6.11) can be solved foru as a function of(x, p) and that the initial and final

statesx(tf ) = xf andx(t0) = xi are given. In addition, we imposegd = g andfd = f .

To discretize the Hamiltonian system defined byH̄, we use the discrete modified

Hamilton’s principle:

0 = δSH
d = δ

(

τ
n−1
∑

k=0

〈pd
k, ∆

d
τx

d
k〉 − H̄(xd

k, p
d
k)

)

, (6.32)

for any variations of(xd
k, p

d
k) andδx0 = δxn = 0. One can readily check that Eq. (6.32)

can also be written in an equivalent form as:

0 = δSH
d = δ

(

τ
n−1
∑

k=0

〈pd
k, ∆

d
τx

d
k〉 − H(xd

k, p
d
k, u

d
k)

)

,

for any variations of(xd
k, p

d
k, u

d
k) andδx0 = δxn = 0 whereud

k is now considered as an

independent variable. In addition sincef = fd andg = gd, H = Hd, and we conclude

that the discrete modified Hamilton’s principle as formulated and the discrete maximum

principle are equivalent.
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6.2.4 The Heisenberg optimal control problem

The Heisenberg problem (Brockett [18], Bloch et al. [14]) refers to under actuated

optimal control problems which are controllable. For instance, consider a particle that

has two actuators in the(x, y)-plane and with velocity in thez direction defined bẏz =

yẋ−xẏ. This system is controllable, however, to reach a point(a > 0, 0, 0) from the origin

(0, 0, 0) requires a non-trivial control vector. In the following, westudy the Heisenberg

problem to illustrate the approaches we have developed above. For this problem the cost

function is given by:

J = min
u=(u1,u2)

∫ tf

t0

〈u, u〉dt ,

subject to

ẋ = u ,

ẏ = v ,

ż = uy − vx ,

and to the boundary conditions:

(x(t0), y(t0), z(t0)) = (0, 0, 0) , (x(tf ), y(tf ), z(tf )) = (a > 0, 0, 0) .

DefineH as

H(q, p, u) =
1

2
〈u, u〉 + 〈p, q̇〉 ,

whereq = (x, y, z) andp = (px, py, pz). The Pontryagin maximum principle yields:

q̇ =
∂H

∂p
(q, p, u) , (6.33)

ṗ = −∂H

∂q
(q, p, u) , (6.34)

0 =
∂H

∂u
(q, p, u) . (6.35)
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with boundary conditions

(x(t0), y(t0), z(t0)) = (0, 0, 0) , (x(tf ), y(tf ), z(tf )) = (a > 0, 0, 0) .

Note this is a hard constraint problem, therefore the transversality conditions are of no use;

They yield2n equations but introduce2n new variables(λi, λf ). Eq. (6.35) allows us to

solve foru as a function of(q, p):

u1 = px + pzy , u2 = py − pzx .

Hence, Eqns. (6.33)-(6.34) become:

q̇ =
∂H̄

∂p
(q, p) , (6.36)

ṗ = −∂H̄

∂q
(q, p) , (6.37)

where

H̄(q, p) = H(q, p, u(q, p))

= −1

2
(p2

x + p2
y) − pxpzy + pypzx . (6.38)

Eqns. (6.36) and (6.37) are of the same form as the Hamilton equations. Therefore, the

necessary conditions for optimality yield a Hamiltonian system with Hamiltonian function

H̄. We now prove that̄H is degenerate at the origin, and so is the Legendre transform.

The Hessian of̄H is:

(

∂H̄

∂(q, p)

)

=















−1 0 −y

0 −1 x

−y x 0















Thus,det
(

∂H̄
∂(q,p)

)

= x2 + y2, i.e., the determinant of the Hessian ofH̄ is singular at

(0, 0). As a result, it is not,a priori, possible to define a Lagrangian function associated
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with the HamiltonianH̄ using the Legendre transform1. Therefore, the discrete modified

Hamilton’s principles (DMHP) must be used to discretize Eqns. (6.36) and (6.37). One

cannot use a discrete Hamilton’s principles (DHP) for instance because the system is not

Lagrangian. This point is of importance. It motivates the need to introduce the variational

principles presented in Chapter IV, as previous works on variational principles focused on

systems with non-degenerate Lagrangian functions.

To discretize the necessary conditions, we choose the geometry associated with the

Störmer rule and use the DMHP (Def. IV.4) to eventually find the following symplectic

algorithm:

∆τqk = D2H̄(qk, pk+1) , (6.39)

∆τpk = −D1H̄(qk, pk+1) . (6.40)

Let us now discretize the Heisenberg problem using the second approach, based on the

use of the discrete maximum principle. We first discretize the problem statement:

min
uk=(u1,k,u2,k)

1

2

n−1
∑

k=0

〈uk, uk〉 ,

subject to

∆τxk = u1,k ,

∆τyk = u2,k ,

∆τzk = u1,kyk − u2,kxk .

Define the discrete augmented cost functionJa:

Ja =
n−1
∑

k=1

Hd(qk, pk+1, uk) − 〈pk+1, ∆τqk〉 ,

1Using Lagrange multipliers one can define a Legendre transform and find a Lagrangian function asso-
ciated with the system. We refer to Bloch [14] for a presentation of this technique that involves variational
principles with constraints.
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whereHd(qk, pk+1, uk) = 〈uk, uk〉+ 〈pk+1, qk〉, uk = (u1,k, u2,k) andqk = (xk, yk, zk). To

find discrete necessary conditions for optimality we set thevariations ofJa to zero, and

we obtain:

∆τqk = D2Hd(qk, pk+1, uk) , (6.41)

∆τpk = −D1Hd(qk, pk+1, uk) , (6.42)

0 = D3Hd(qk, pk+1, uk) . (6.43)

Eq. (6.41) allows us to finduk as a function of(qk, pk+1):

u1,k = px,k+1 + pz,k+1yk , u2,k = py,k+1 − pz,k+1xk . (6.44)

We then substitute these expressions into Eqns. (6.41)-(6.42):

∆τqk = D2H̄d(qk, pk+1) , (6.45)

∆τpk = −D1H̄d(qk, pk+1) , (6.46)

whereH̄d(qk, pk+1) = Hd(qk, pk+1, uk(qk, pk+1)). By virtue of the commutative diagram,

Eqns. (6.45) and (6.46) define the same symplectic algorithmas Eqns. (6.36) and (6.37).

In this example, we chose a trivial discretization of the dynamics and of the cost func-

tion; f = fd andg = gd. Other algorithms may be obtained using non-trivial discretiza-

tions. In that case the equivalence principle may not hold but the algorithm we obtain

will still be symplectic. Finally, as in discrete dynamics,the discrete maximum principle

may be modified in order to yield symplectic-energy conserving algorithms. We detail the

procedure in the next section.

6.2.5 Energy conservation

We have seen that the discrete maximum principle (Def. VI.6)allows one to derive

necessary conditions that define symplectic algorithms. Using different definitions for the
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derivative operator and for the variables(xd
k, p

d
k, u

d
k), one is able to adapt classical sym-

plectic algorithms to optimal control problems. In generalthese algorithms are not energy

preserving, and we now show how the discrete maximum principle may be modified so

that the discrete necessary conditions yield symplectic-energy preserving algorithms.

Generalized discrete maximum principle

In contrast with the discrete maximum principle (Def. VI.6), we allow the time step to

vary, the time now plays the same role as the state vectorx and we introduce an indepen-

dent parameterτk such thattk = t(τk), xk = x(τk) andτk+1 − τk = τ . The configuration

spaceMk is nowR
n × R andT =

{

(τk)k∈[1,n]

}

. One must pay attention to the definition

of the cost function sincetk+1 − tk no longer equals the constantτ :

J =
n−1
∑

k=0

gd(x
d
k, u

d
k)(tk+1 − tk) =

n−1
∑

k=0

gd(x
d
k, u

d
k)∆τ tkτ . (6.47)

In the same manner, the dynamics of the system becomes (∆d
τ is now the derivative oper-

ator with respect toτ whereas the dynamics is given as function of the discrete derivative

of x with respect to time):

∆d
τx

d
k

∆d
τ t

d
k

= fd(x
d
k, u

d
k) ,

or equivalently

∆d
τx

d
k = ∆d

τ t
d
kfd(x

d
k, u

d
k) . (6.48)

The boundary conditions are left unchanged:

φ0(x0, t0) = 0 , φn(xn, tn) = 0 . (6.49)

The generalized discrete maximum principle reads as follows:

Definition VI.10 (Generalized discrete maximum principle). Solutions to the discrete

optimal control problem defined by Eqns.(6.47), (6.48)and (6.49)correspond to critical
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points of the cost functionJ in the class of discrete curvesγ ∈ Γ, whereΓ is the set of

all curves(xk, uk, tk)k∈[1,n] that verify Eqns. (6.48), (6.49),tn = tf andt0 = ti (i.e., fixed

initial and final times).

Again we need to define the augmented cost function to apply the constraints:

Ja = τ
n−1
∑

k=0

gd(x
d
k, u

d
k)∆

d
τ t

d
k − 〈pd

k, ∆
d
τx

d
k − ∆d

τ t
d
kfd(x

d
k, u

d
k)〉 + 〈λ0, φ0〉 + 〈λn, φn〉

= τ

n−1
∑

k=0

∆d
τ t

d
kHd(x

d
k, p

d
k, u

d
k) − 〈pd

k, ∆
d
τx

d
k〉 + 〈λ0, φ0〉 + 〈λn, φn〉 , (6.50)

where thepk’s, the λ0’s and theλn’s are Lagrange multipliers andHd(x
d
k, p

d
k, u

d
k) =

gd(x
d
k, u

d
k) + 〈pd

k, fd(x
d
k, u

d
k)〉.

Example: the Sẗormer rule

We only go through the derivation of Störmer type of algorithm. One can derive other

symplectic-energy conserving algorithms using the same methodology. For the Störmer

rule,∆d
τ is the forward difference operator,xd

k = xk, pd
k = pk+1 andud

k = uk. Variations

of the augmented Lagrangian read:

δJa = δ

(

n−1
∑

k=0

(∆τ tkHd(x
d
k, p

d
k, u

d
k) − 〈pd

k, ∆
d
τx

d
k〉)τ

)

+ δ〈λ0, φ0〉 + δ〈λn, φn〉

=
n−1
∑

k=0

〈∆τ tkD2Hd(xk, pk+1, uk) − ∆τxk, δpk+1〉τ

+ 〈∆τ tkD1Hd(xk, pk+1, uk) + ∆τpk, δxk〉τ + 〈∆τ tkD3Hd(xk, pk+1, uk), δuk〉τ

−
n−1
∑

k=1

∆τHd(xk−1, pk, uk−1)δtkτ + Hd(xn−1, pn, un−1)δtn − Hd(x0, p1, u0)δt0

+ 〈−pn + D1φ
T
nλn, δxn〉 + 〈p0 + D1φ

T
0 λ0, δx0〉 + 〈φ0, δλ0〉 + 〈φn, δλn〉 (6.51)
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Since the variations of the augmented cost function must be zero for anyδtk, δxk, δpk and

δt0 = δtn = 0, we obtain the discrete necessary conditions for optimality:

∆τxk = ∆τ tkD2Hd(xk, pk+1, uk) , (6.52)

∆τpk = −∆τ tkD1Hd(xk, pk+1, uk) , (6.53)

0 = D3Hd(xk, pk+1, uk) , (6.54)

0 = ∆τHd(xk−1, pk, uk−1) , (6.55)

as well as transversality conditions:

p0 = −D1φ0(x0, t0)
T λ0 , (6.56)

pn = D1φn(xn, tn)T λn . (6.57)

Let ek = −Hd(xk−1, pk, uk−1) define the energy atτk and

θk = 〈pk, dxk〉 − Hd(xk−1, pk, uk−1)dtk

be the contact one-form.

Theorem VI.11. The algorithm defined by Eqns. (6.52), (6.53), (6.54) and (6.55) defines

a symplectic-energy conserving algorithm, i.e.,ek+1 = ek andωk+1 = ωk whereωk = dθk.

Proof. Eq. (6.55) is equivalent toek+1 = ek, so the algorithm is energy conserving. Let

us prove that the symplectic two-form is also preserved. Again we define the augmented

cost functionJ̄a:

J̄a =
n−1
∑

k=0

(∆τ tkHd(xk, pk+1, uk) − 〈pk+1, ∆τxk〉)τ . (6.58)

J̄a is the augmented cost function to which we have withdrawn theboundary conditions.

Consider a discrete trajectory(qk, pk, uk, tk) that satisfies Eqns. (6.52), (6.53), (6.54) and
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(6.55) and let us compute the one-formdJ̄a:

dJ̄a = d

n−1
∑

k=0

(∆τ tkHd(xk, pk+1, uk) − 〈pk+1, ∆τxk〉)τ

=
n−1
∑

k=0

〈∆τ tkD2Hd(xk, pk+1, uk) − ∆τxk, dpk+1〉τ

+ 〈∆τ tkD1Hd(xk, pk+1, uk) + ∆τpk, dxk〉τ + 〈∆τ tkD3Hd(xk, pk+1, uk), duk〉τ

− ∆τ (ektk) + ∆τektk − ∆τ 〈pk, dxk〉τ , (6.59)

where the modified Leibnitz law (Eq. (4.1)) has been used. Since (qk, pk, uk, tk) is a

solution to the necessary conditions, Eq. (6.59) reduces to:

dJ̄a = −
n−1
∑

k=0

∆τ (〈pk, dxk〉 + ektk)τ ,

and fromd2 = 0, we conclude
n−1
∑

k=0

∆τd(〈pk, dxk〉 − Hd(xk−1, pk, uk−1)tk)τ = 0 ,

that is,∀k ∈ [0, n − 1] , dθk+1 = dθk.

In this section we have developed a new approach to solve optimal control problem.

Using discrete geometry we have been able to develop a unifiedtheory to solve optimal

control problems using symplectic integrators. We have introduced a discrete maximum

principle that yields discrete necessary conditions for optimality. These conditions are

in agreement with the ones derived from the Pontryagin maximum principle and define

symplectic algorithms. We have also shown that the discretemaximum principle can be

enhanced to yield symplectic-energy conserving algorithms. Now, we focus on a specific

class of optimal control problem, those for which the optimal control law can be expressed

as a function of the state and co-state, i.e., using Eq. (6.11), u may be solved as a function

of x andp. For this class of problems we saw earlier that the necessaryconditions for

optimality yield aHamiltoniantwo-point boundary value problem. In the next section, we

show how it can be solved using the theory presented in ChapterIII.
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6.3 Solving optimal control problems from the Hamilton-Jacobi the-
ory

We saw earlier that if the feedback control law can be found asa function of(x, p)

then the necessary conditions for optimality define a Hamiltonian system (Eqns. (6.14)

and (6.15)). Together with the transversality conditions,the necessary conditions reduce

to a two-point boundary value problem that can be solved using the theory we developed

in Chapter III. In this section, we expose this novel approachto solving optimal control

problems.

In the following, we make three assumptions.

1. The cost functionJ is smooth.

2. One can solve foru as a function of(x, p) using Eq. (6.11), that is, we can define a

new Hamiltonian function̄H(x, p, t) = H(x, p, ū(x, p, t), t).

3. One can eliminate theλi’s andλf ’s in Eq. (6.12), so that Eq. (6.12) becomes

pk(tf ) = pfk
, ∀k ∈ (ri + 1, n) , pk(t0) = p0k

, ∀k ∈ (rf + 1, n) , (6.60)

and one can transform Eq. (6.6) into:

xk(ti) = x0k
, k ∈ (1 · · · ri) , xk(tf ) = xfk

, k ∈ (1 · · · rf ) . (6.61)

Under these assumptions, solutions to the optimal control problem correspond to solutions

(x, p) of the following conditions:

ẋ =
∂H̄

∂p
(x, p, t) , (6.62)

ṗ = −∂H̄

∂x
(x, p, t) , (6.63)



170

with boundary conditions

xk(t0) = x0k
∀k ∈ (1, · · · , ri) ,

pk(t0) = p0k
∀k ∈ (ri + 1, · · · , n) ,

xk(tf ) = xfk
∀k ∈ (1, · · · , rf ) ,

pk(tf ) = pfk
∀k ∈ (rf + 1, · · · , n) .

(6.64)

These equations define a two-point boundary value problem. Hence they are usually

difficult to solve because they generally require an estimate of the initial (or final) state,

which usually has no physical interpretation (we illustrated this point earlier in this chap-

ter with the Heisenberg optimal control problem). However,treating the system defined

by these equations as a Hamiltonian system allows us to applythe theory we developed

in Chapter III. DefineIri
= {1, · · · , ri}, Krf

= {1, · · · , rf} and recall the generating

functionFIri ,Krf
that verifies Eqns. (2.30), (2.31), (2.32) and (2.33):

p0Iri
= −

∂FIri ,Krf

∂x0Iri

(xfKrf
, pfK̄rf

, x0Iri
, p0Īri

, tf ) , (6.65)

x0Īri
=

∂FIri ,Krf

∂p0Īri

(xfKrf
, pfK̄rf

, x0Iri
, p0Īri

, tf ) , (6.66)

pfKrf
=

∂FIri ,Krf

∂xKrf

(xfKrf
, pfK̄rf

, x0Iri
, p0Īri

, tf ) , (6.67)

xfK̄rf
= −

∂FIri ,Krf

∂pK̄rf

(xfKrf
, pfK̄rf

, x0Iri
, p0Īri

, tf ) . (6.68)

These equations solve the above two-point boundary value problem and thus the nec-

essary conditions for optimality.

Example VI.12 (Hard and soft constraint problems). Hard constraint problems [76]

have their initial and terminal conditions entirely specified by the problem statement, i.e.,

x0 andxf are known (ri = n = rf ). Thus, theF1 generating function solves the necessary
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conditions for HCP:

pf =
∂F1

∂qf

(xf , x0, tf ) , (6.69)

p0 = −∂F1

∂q0

(xf , x0, tf ) . (6.70)

On the other hand, soft constraint problems for which the initial state is fully determined,

are solved usingF3. In fact, the transversality conditions provide us withpf . Then,xf and

p0 can be found from Eqns. (3.13) and (3.14):

xf = −∂F3

∂pf

(pf , x0, tf ) , (6.71)

p0 = −∂F3

∂x0

(pf , x0, tf ) . (6.72)

Using the Legendre transformation (Eq. (2.28)), we can transform generating func-

tions into each other.As a consequence, if the dynamics and the cost function remain

unchanged (i.e., the Hamiltonian is the same), we are able to solve the optimal control

problem for any boundary conditions at the cost of algebraicmanipulations. This fact

is of importance because as different boundary conditions are applied to the system, the

nature of the optimal feedback control laws change. This is afundamental difficulty, and

implies that the optimal control law for a given dynamical system must be re-solved as the

boundary conditions and targets for the system change. Our approach directly tackles this

issue, and allows us to overcome some of the barriers to trulyreconfigurable control.

6.3.1 Linear quadratic terminal controller

Only rarely it is feasible to find theexplicit feedback control laws for nonlinear sys-

tems. However, if an extremal path is known, it is usually possible to approximate the

optimal control law in its neighborhood. For instance, at linear order this consists of solv-

ing an optimal control problem with quadratic performance criteria for time-varying linear

systems. This class of problems has been widely studied and adetailed solution procedure
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is known. For that reason, it is of interest to first analyze the linear quadratic terminal

controller as an introduction to our approach. This problemhas been studied by Guibout

and Scheeres [37] and Park and Scheeres [75].

Consider a linear dynamical system:

ẋ(t) = A(t)x(t) + B(t)u(t) ,

and a quadratic cost functionJ :

J =
1

2
x(tf )

T Qfx(tf ) +
1

2

∫ tf

t0

xT Qx + uT Ru ,

subject tori initial andrf terminal conditions of the form:

xk(t0) = x0k
, ∀k ∈ [1, ri] , xk(tf ) = xfk

, ∀k ∈ [1, rf ] ,

whereQf , Q andR are symmetric positive definite matrices. We define the LagrangianL

asL = xT Qx + uT Ru and the Hamiltonian functionH as:

H(x, p, u) = pT ẋ + L(x, u) .

From Eq. (6.11), we obtain

ū = −R−1BT p .

Substitutingū in Eqns. (6.9) and (6.10) implies:

H̄(x, p) = H(x, p,−R−1BT p − R−1NT x)

=
1

2







x

λ







T 





Q AT

A −BR−1BT













x

λ






.

Then the necessary conditions for optimality yield2n ordinary differential equations:

ẋ = Ax − BR−1BT p , (6.73)

ṗ = −(AT p + Qx) , (6.74)
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as well as2n boundary conditions. To showcase our method, we consider the two follow-

ing particular cases.

• HCP:rf = ri = n, i.e., the initial and final positions are specified. In that case the

transversality conditions are void since we already know that:

x(t0) = x0 , and x(tf ) = xf . (6.75)

The necessary conditions can also be solved usingF1. From Eqns. (3.7) and (3.8),

we directly findp0 andpf :










p = ∂F1

∂x
(xf , x0, tf ) ,

p0 = ∂F1

∂x0
(xf , x0, tf ) .

(6.76)

• SCP: Another case that is often treated (see e.g. Bryson [19] and Park and Scheeres

[76]), is the soft constraint problem, where only the initial state is given. In that

case, the transversality conditions yield:

x(t0) = x0 ,

p(tf ) = Qfx(tf ) .

(6.77)

Eqns. (6.73), (6.74) and (6.77) define a linear Hamiltonian two-point boundary

value problem. However, it is not defined as usual boundary value problems since

the final conditions are expressed as constraints on the state and co-state. This is

due to the explicit dependence in the final state of the cost function. If Qf = 0,

the necessary conditions for optimality reduce to a classical Hamiltonian two-point

boundary value problem and we recover the results found in Ex. VI.12. The gener-

ating function can also solve the soft constraint problem. From Lemma III.3,F1 can

be written in the following form:

F1 =
1

2
Y T







F 1
11(t) F 1

12(t)

F 1
21(t) F 1

22(t)






Y , (6.78)
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whereY = (x, x0)
T . Then, using Eqns. (3.7) and (3.8), we obtain:



























p = F 1
11(t)x + F 1

12(t)x0 ,

p0 = −F 1
21(t)x − F 1

22(t)x0 ,

pf = Qfxf .

Solving forp0 yields:

p0 = −
[

F 1
21(t)(Qf − F 1

11(t))
−1F 1

12(t)
]

.

This method readily applies to other kinds of boundary conditions. Thus, using the gen-

erating functions, we are able to solve the necessary conditions for the linear quadratic

terminal controller. This is not surprising since there exist methods to solve this prob-

lem based on the state transition matrix, and we showed that state transition matrix and

generating functions are closely related.

6.3.2 Targeting problem

To illustrate the use of the generating functions to solve nonlinear optimal control prob-

lems we now consider a targeting problem in the two-dimensional Hill three-body problem

(Appendix C). We consider a spacecraft away from the Libration pointL2 and want to find

the control sequence that moves the spacecraft at the equilibrium pointL2 while minimiz-

ing the fuel consumption. Specifically, this optimal control problem formulates as follows:

We want to minimize the cost functionJ = 1
2

∫ t=tf
t=0

(u2
x + u2

y)dt subject to the con-

straints






































ẋ1 = x3 ,

ẋ2 = x4 ,

ẋ3 = 2x4 − x1

(x2
1
+x2

2
)3/2 + 3x1 + ux ,

ẋ4 = −2x3 − x2

(x2
1
+x2

2
)3/2 + uy ,

(6.79)
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and the boundary conditions:

X(t = 0) = X0 , X(t = tf ) = XL2
= (3−1/3, 0, 0, 0) , (6.80)

whereX = (x1, x2, x3, x4) = (x, y, ẋ, ẏ). Define the Hamiltonian:

H(X,P, U) = p1x3 + p2x4 + p3

(

2x4 −
x1

(x2
1 + x2

2)
3/2

+ 3x1 + ux

)

+ p4

(

−2x3 −
x2

(x2
1 + x2

2)
3/2

+ uy

)

+
1

2
u2

x +
1

2
u2

y,

whereP = (p1, p2, p3, p4) andU = (ux, uy). Then, from∂H
∂U

= 0, we find the optimal

control feedback law:

ux = −p3 , uy = −p4 .

SubstitutingU = (ux, uy) into H yields:

H̄(X,P ) = p1x1 + p2x2 + p3

(

2x4 −
x1

(x2
1 + x2)3/2

+ 3x1 − p3

)

+ p4

(

−2x3 −
x2

(x2
1 + x2)3/2

− p4

)

+
1

2
p2

3 +
1

2
p2

4 . (6.81)

We deduce the necessary conditions for optimality:

Ẋ =
∂H̄

∂P
, (6.82)

Ṗ = −∂H̄

∂X
, (6.83)

X(t = 0) = X0 , X(t = tf ) = (3−1/3, 0, 0, 0) .

This is a Hamiltonian two-point boundary value problem thatwe can solve using the the-

ory developed in Chapter III once the generating functions are known. To compute the

generating functions, we can use the algorithm developed inChapter V by noticing that

the solution to the optimal control problem that consists ofgoing fromL2 to L2 in tf

units of time is the trivial trajectoryX = XL2
andU = (0, 0) for all t. This trajectory
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can be taken to be the reference trajectory in the algorithm.In the following we use an

approximation of order4 of F1.

In Fig. 6.1, we plot the optimal trajectory that starts atX0 = (10, 700, 10, 700) km

and reachesL2 in tf = 145 days. The dotted line corresponds to the solution found using

a linear approximation of the dynamics whereas the solid line is the solution computed

with an order4 approximation of the dynamics. We immediately notice that the linear

approximation fails to predict a relevant approximation ofthe control since the trajectory

does not reach the Libration point (nor its vicinity). On theother hand,F1 provides an

excellent approximation of the control since the spacecraft is 13 km away fromL2 at tf .

Fig. 6.2 shows the associated control sequence. The dotted line and solid line correspond

to the control history computed from the linear model and thefourth order approximated

system.

y

x

0.01 unit of length ←→ 21, 500 km

Figure 6.1: Optimal trajectory of the spacecraft

Furthermore, it should be clear that once theF1 generating function is known, we can

instantaneouslysolve this hard constraint problem for any boundary conditions and any

final times. In Fig. 6.3 we illustrate this key point by plotting the trajectories for different

final times. Astf increases, the trajectory tends to wrap around the Libration point so that

the spacecraft takes advantage of the geometry of the Libration point (Appendix C). On
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ux

t

(a) Time history ofux

uy t

(b) Time history ofuy

1 unit of time ←→ 58 days ,
10−3 unit of control ←→ 1.36 · 10−2m.s−2

Figure 6.2: Time history of the control laws

the other hand, if the transfer time is small, the trajectoryis almost a straight line and it

completely ignores the dynamics. In Fig. 6.4, the associated control laws are represented.

As expected, the longer the transfer time is, the smaller themagnitude of the control is.

We emphasize that we only need to evaluate the gradient ofF1 (which is a polynomial

of order3) seven times and integrate Eqns. (6.82) and (6.82) seven times to obtain the

seven curves in Fig. 6.3. Similarly, in Fig. 6.5, at the cost of sixteen evaluations of the

gradient ofF1, we are able to represent the optimal trajectories of spacecraft starting at

X0 = (r cos(θ), r sin(θ)) wherer = 10, 700 km andθ = kπ/8, and ending atL2 in 145

days. In Fig. 6.6 the corresponding optimal control laws arerepresented.

Finally, if different types of boundary conditions are imposed (for instance, the ter-

minal state is free) then we need to perform a Legendre transform to find the generating

function that solves this new boundary value problem. We recall that for these types of

problems, the Legendre transform is found at the cost of an × n matrix inversion.
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y

x

0.01 unit of length ←→ 21, 500 km

Figure 6.3: Optimal trajectories of the spacecraft for different transfer times.

ux

t

(a) Time history ofux

uy

t

(b) Time history ofuy

1 unit of time ←→ 58 days ,
10−3 unit of control ←→ 1.36 · 10−2m.s−2

Figure 6.4: Time history of the control laws
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y

x

0.01 unit of length ←→ 21, 500 km

Figure 6.5: Optimal trajectories of the spacecraft as a function of the initial position.

ux

t

(a) Time history ofux

uy

t

(b) Time history ofuy

1 unit of time ←→ 58 days ,
10−3 unit of control ←→ 1.36 · 10−2m.s−2

Figure 6.6: Time history of the control laws



CHAPTER VII

THE SEARCH FOR PERIODIC ORBITS

Periodic orbits have been widely studied over the last century and are still a topic of

great interest. Poincaré [77] already realized their importance for understandingthe dy-

namics of non-integrable Hamiltonian systems when he claimed that they are “the only

opening through which we can try to penetrate the stronghold”. Indeed, he conjectured

that periodic orbits are dense on typical energy surfaces. Though the Poincaré conjecture

is not true for every system (e.g., for a product of harmonic oscillator with incommensu-

rate frequencies), many systems have the property predicted by Poincaŕe. MacKay [63]

provides conditions under which the Poincaré conjecture holds.

Many techniques, that we will not attempt to survey in any systematic fashion, have

been developed to find periodic orbits. For instance, in the restricted three-body problem

one may use perturbation methods (see e.g. Hénon [48]). Such a method allows one to

find families of periodic orbits very efficiently once a member of the family is known, but

does not provide a systematic procedure to find a periodic orbit of either a given period or

going through a given point. By using the theory we developed in Chapter III we can solve

such a problem. Specifically, we are able to reduce the searchfor periodic orbits to either

finding the solution to a set of implicit equations, which canoften be done graphically,

or to finding the roots of an equation of one variable only. Most importantly, the novel

180
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approach we develop applies to any Hamiltonian system and therefore is very general. We

illustrate its use with two non-trivial examples of finding periodic orbits in the vicinity of

other periodic orbits and around the Libration points in thethree-body problem.

7.1 Periodic orbits and generating functions

The aim of this section is to transform the search for periodic orbits into a two-point

boundary value problem that can be handled with the theory developed in Chapter III.

Periodic orbits in a2n-dimensional Hamiltonian dynamical system are characterized

by the following equations:

q(T ) = q0 , (7.1)

p(T ) = p0 , (7.2)

whereT is the period of the orbit,(q0, p0) are the initial conditions at timet0 = 0 and

(q(t), p(t)) verifies Hamilton’s equations:

q̇ =
∂H

∂p
(q, p, t) , ṗ = −∂H

∂q
(q, p, t) . (7.3)

In the most general case, the search for periodic orbits consists of solving the2n equa-

tions (7.1) and (7.2) for the2n + 1 unknowns(q0, p0, T ). Simple methods that solve this

problem take a set of initial conditions(q0, p0), and integrate Hamilton’s equations. If

there exists a timet = T such that Eqns. (7.1) and (7.2) are verified, then a periodic orbit

is found. Else, other initial conditions need to be guessed.In the approach we propose in

this chapter, instead of looking at the initial conditions and the period as the only variables

of the problem, we suppose that the period,n initial conditions as well asn components

of the state vector at timeT are unknowns. Then the search for periodic orbits reduces to

solving the2n equations (7.1) - (7.2) for these2n + 1 unknowns.
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Example VII.1. If (q(T ), q0, T ) are taken to be the2n + 1 unknowns, then the search for

periodic orbits consists of solving the2n equations (7.1)-(7.2) for(q(T ), q0, T ). Let us

now find all periodic orbits of a given period. In other words,T is given and we need to

find (q(T ), q0) such thatq(T ) = q0 andp(T ) = p(0). This is a two-point boundary value

problem with constraints that can be solved with the generating functionF1. Combining

Eqns. (3.7)-(3.8) and Eqns. (7.1)-(7.2) yields:

p(T ) = ∂F1

∂q
(q, q0, T ) , q(T ) = q0 ,

p0 = −∂F1

∂q0
(q, q0, T ) , p(T ) = p0 ,

(7.4)

that is:

∂F1

∂q
(q = q0, q0, T ) +

∂F1

∂q0

(q = q0, q0, T ) = 0 , (7.5)

p = p0 =
∂F1

∂q
(q = q0, q0, T ) . (7.6)

Hence, the search for all periodic orbits of a given period isreduced to solvingn equations

(7.5) for n variables, theq0’s, and then evaluaten equations (7.6) to compute the corre-

sponding momenta.2n equations still need to be solved, but nown of them are decoupled.

Most importantly, onceF1 is known, no additional integration is required. In addition, us-

ing the algorithm we developed in Chapter V, solutions of Eq. (7.5) correspond to roots

of polynomials and are therefore easily computed.

Similarly, by taking(p(T ), p0, T ) as unknowns we can use theF4 generating function

to derive necessary and sufficient conditions. In that case we obtain:

∂F4

∂p
(p = p0, p0, T )+

∂F4

∂p0

(p = p0, p0, T ) = 0 , q = q0 = −∂F4

∂p
(p = p0, p0, T ) . (7.7)

However, there is a difference between these two approaches. UsingF1 we solve the

necessary and sufficient conditions defined by Eq. (7.5) in the configuration space (q0 is

the unknown) whereasF4 yields an equation whose variables are in the momentum space.
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Although this difference does not have any importance if onesearches for all periodic

orbits of a given period, it is crucial if some constraints are imposed on the domain in the

phase space in which we search for periodic orbits. For instance, if one wants to find all

periodic orbits of periodT crossing an axis defined by all but one component ofq0 being

non-zero, then one should solve Eq. (7.5) for the only non-zero component ofq0. If one

usesF4 instead, then one needs to solve Eq. (7.7) for then components ofp0, and then

check afterwards which solutions satisfy the constraint.

Finally, we point out that other choices of unknowns may yield more complex neces-

sary and sufficient conditions. Suppose we consider that(q(T ), p0, T ) are unknowns, then

F2 must be used. We have:

p(T ) = ∂F2

∂q
(q, p0, T ) , q(T ) = q0 ,

q0 = ∂F2

∂p0
(q, p0, T ) , p(T ) = p0 .

(7.8)

These equations cannot be decoupled. As a result, we must solve 2n coupled equations

for q(T ) andp0 to find periodic orbits:

p0 =
∂F2

∂q
(q(T ), p0, T ) , q(T ) =

∂F2

∂p0

(q(T ), p0, T ) . (7.9)

Through this example we have discussed a novel application of the Hamilton-Jacobi

theory to find periodic orbits. By considering the period,n initial conditions andn com-

ponents of the state vector atT as unknowns, we reduced the search for periodic orbits to

solving two-point boundary value problems with constraints. Using the generating func-

tions, these boundary value problems simplify into a set of necessary and sufficient con-

ditions that characterize periodic solutions. Furthermore, we proved that there are choices

of unknowns that give simpler sets of conditions. Most importantly, once the generating

functions are known, solutions of these necessary and sufficient conditions are computed

using algebraic manipulations only, no integration is required. In particular, using the
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algorithm developed in Chapter V, solutions of the necessaryand sufficient conditions

correspond to roots of polynomials and are therefore easilyfound.

We now generalize our approach and study its properties. We noticed in the above ex-

ample that there are choices of unknowns that give simpler sets of necessary and sufficient

conditions. For instance, the use of(q(T ), q0, T ) and(p(T ), p0, T ) allowed us to derive2n

necessary and sufficient conditions for periodicity, amongwhich n were decoupled. On

the other hand, the use of(q(T ), p0, T ) yielded2n coupledequations, the reason being

that we were unable to simplify the2n equations (3.10) and (3.11). In the general case, an

arbitrary generating functionFIp,Kr verifies:

pIp =
∂FIp,Kr

∂qIp
(qIp , pĪp

, q0Kr
, p0K̄r

, T ) ,

qĪp
= −∂FIp,Kr

∂pĪp
(qIp , pĪp

, q0Kr
, p0K̄r

, T ) ,

p0Kr
= −∂FIp,Kr

∂q0Kr

(qIp , pĪp
, q0Kr

, p0K̄r
, T ) ,

q0K̄r
=

∂FIp,Kr

∂p0K̄r

(qIp , pĪp
, q0Kr

, p0K̄r
, T ) .

(7.10)

Assumingq(T ) = q0 andp(T ) = p0, these equations can be decoupled if and only if

Ip

⋂

Kr 6= ∅. If dim (Ip

⋂

Kr) = m, thenm equations can be decoupled. The case where

m = n is optimal as it yieldsn coupled equations andn decoupled equations. In the

following, we restrict ourselves to the case wherem = n, i.e., Ip = Kr, and thus only

consider unknowns of the form(qIp , pĪp
, q0IP

, p0Īp
, T ).

Let (i1, · · · , ip) (ip+1, · · · , in) be a partition of the set(1, · · · , n) into two non-

intersecting parts such thati1 < · · · < ip, ip+1 < · · · < in, and defineIp = (i1, · · · , ip).

Let us solve the problem that consists of finding(qIp , pĪp
, q0Ip

, p0Īp
, T ) such that Eqns.

(7.1)-(7.2) are satisfied. This is a two-point boundary value problem with an unknown

transfer timeT , and constraints defined by Eqns. (7.1)-(7.2). Solutions(qIp = q0Ip
, pĪp

=

p0Īp
, q0Ip

, p0Īp
, T ) of this problem are, by definition, periodic orbits of periodT that go

through the point whose coordinates are partially given by(q0Ip
, p0Īp

) at the initial time
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t = 0 and att = T . For instance, ifp = n, we recover the above example in which we

find all the periodic orbits of periodT going though the pointq0 at t = 0 andt = T .

To find the set of solutions(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) satisfying Eqns. (7.1)-

(7.2) we use the generating functionFIp,Ip. Recall the equations satisfied byFIp,Ip :

pIp =
∂FIp,Ip

∂qIp
(qIp , pĪp

, q0Ip
, p0Īp

, T ) ,

qĪp
= −∂FIp,Ip

∂pĪp
(qIp , pĪp

, q0Ip
, p0Īp

, T ) ,

p0Ip
= −∂FIp,Ip

∂q0Ip

(qIp , pĪp
, q0Ip

, p0Īp
, T ) ,

q0Īp
=

∂FIp,Ip

∂p0Īp

(qIp , pĪp
, q0Ip

, p0Īp
, T ) .

(7.11)

Combining Eq. (7.11) together with Eqns. (7.1)-(7.2) yieldsthe2n following equations:

∂FIp,Ip

∂qIp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T )

+
∂FIp,Ip

∂pĪp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = 0 , (7.12)

∂FIp,Ip

∂q0Ip

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T )

+
∂FIp,Ip

∂p0Īp

(qIp = q0Ip
pĪp

=, p0Īp
, q0Ip

, p0Īp
, T ) = 0 , (7.13)

−∂FIp,Ip

∂q0Ip

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = p0Ip

, (7.14)

∂FIp,Ip

∂p0Īp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = q0Īp

. (7.15)

These2n equations are composed ofn coupled equations (Eqns. (7.12) and (7.13)) andn

decoupled equations (Eqns. (7.14) and (7.15)). Their solutions(q0, p0, T ) fully determine

periodic orbits. In addition, if we use the algorithm presented in Chapter V to approxi-

mate the generating functions as polynomials, then the periodic orbits are solutions of2n

polynomial equations.

However, these equations cannot be solved as they are because there are2n + 1 un-

knowns,(q0, p0, T ), and only2n equations. Thus, in general, one needs to take at least one
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variable as a known parameter. In the above example, we decided to set the periodT , but

other choices could have been possible. In this chapter, we focus on two choices which

are of particular interest in astrodynamics.

1. Searching in the time domain: Suppose we are looking at all periodic orbits go-

ing through a point in the configuration space that corresponds to the position of

a spacecraft. The positionq0 is fixed but the associated momenta and the period

are unknowns. This problem requires us to solve2n equations forn + 1 variables

only. Now the problem is over-determined. In the following we show that it can

be reduced to solving a single equation for the periodT , followed byn function

evaluations to find the othern variables. As a result the only variable that is not triv-

ially found is the periodT . This motivates our choice to call this class of problem

“Searching in the time domain”.

2. Searching in phase space: The second type of problem we consider corresponds to

the one we discussed in the example Ex. VII.1. We set the period and look at all

periodic orbits of that period in the phase space. This corresponds to a search for

periodic orbits in thephase space.

Searching in the time domain

We assume knowledge ofn components of a point in the phase space, say(q0Ip
, p0Īp

),

and search for all periodic orbits going through that point.Recall the conditions (Eqns.

(7.12) and (7.13)) derived usingFIp,Ip . Since the coordinates(q0Ip
, p0Īp

) are known, these

equations are functions of the periodT only:

∂FIp,Ip

∂qIp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T )

+
∂FIp,Ip

∂pĪp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = 0 ,
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∂FIp,Ip

∂q0Ip

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T )

+
∂FIp,Ip

∂p0Īp

(qIp = q0Ip
pĪp

=, p0Īp
, q0Ip

, p0Īp
, T ) = 0 .

Solutions of these equations,T , correspond to the periods of periodic orbits that go through

(q0Ip
, p0Īp

). Instead of solving then equations for1 variable we may combine them in the

following way:

∥

∥

∥

∥

∥

(

∂FIp,Ip

∂qIp

(α) +
∂FIp,Ip

∂pĪp

(α),
∂FIp,Ip

∂q0Ip

(α) +
∂FIp,Ip

∂p0Īp

(α)

)∥

∥

∥

∥

∥

= 0 , (7.16)

whereα = (qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) and‖‖ is a norm. This equation can be

easily solved numerically or even graphically. Finally, torecover then remaining unknown

coordinates, we only need to evaluate then equations (7.14) and (7.15):

−∂FIp,Ip

∂q0Ip

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = p0Ip

,

∂FIp,Ip

∂p0Īp

(qIp = q0Ip
, pĪp

= p0Īp
, q0Ip

, p0Īp
, T ) = q0Īp

.
(7.17)

Example VII.2. Supposep = n, so thatFIp,Ip = F1. Then Eq. (7.16) simplifies to:

‖∂F1

∂q
(q = q0, q0, T ) +

∂F1

∂q0

(q = q0, q0, T )‖ = 0 . (7.18)

Eq. (7.18) is a single equation of one variable that can be solved graphically. To find the

corresponding momentum, we can use Eq. (7.6):

p(T ) = p0 =
∂F1

∂q
(q = q0, q0, T ) , (7.19)

To conclude, using the Hamilton-Jacobi theory we are able tocharacterize periodic

orbits going through a point in the phase space partially specified byn of its 2n coordi-

nates. Solutions to the obtained equations are easily foundonce the generating functions

are known. Indeed, it suffices to solve an equation of one variable to find the periods of the

orbits,T . Then then remaining coordinates are found at the cost ofn function evaluations.
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Searching in phase space

We now search for all periodic orbits of a given periodT . This problem is well-posed

since we now have2n equations and2n unknowns. A priori, there are no imposed choices

for generating functions to solve this problem. Any generating function of the formFIp,Ip

may be used equivalently. Indeed, Eqns. (7.12)-(7.14) define2n equations of2n variables,

n of the equations being decoupled. The difference between conditions derived using

different generating functions is mainly the space on whichthen coupled equations need

to be solved. For instance,F1 yields conditions whose variables lie in the configuration

space whereasF4 yields conditions whose variables lie in the momentum space. If domain

constraints are imposed then some particular choice of generating function may be more

appropriate. For instance, if one looks for periodic orbitsin the vicinity of an equilibrium

point, one should use theF1 generating function.

To conclude, the approach we propose has many advantages compared to other meth-

ods developed in the literature. First, there is no need to integrate the equations of motion

once the generating functions are known. Only a system of at most n equations (where

2n is the dimension of the phase space) need to be solved. Second, we do not need any

initial guess to initialize our algorithm. Finally, and most importantly, our approach is very

general and applies to any Hamiltonian system, independentof its complexity.

Let us now illustrate the theory developed above with some examples. First we analyze

the necessary and sufficient conditions obtained for linearsystems, and then look at some

more sophisticated problems such as periodic orbits in the Hill three-body problem and in

the restricted three-body problem.



189

7.2 Linear systems analysis

In this section we focus on finding periodic orbits of linear systems using the generat-

ing functions. In particular, we simplify the set of equations (7.12)-(7.14) that characterize

periodic orbits. For sake of simplicity, and without loss ofgenerality, we only focus on the

F1 generating function, the content of this section can readily be transported to the other

generating functions.

Consider a linear Hamiltonian system with quadratic Hamiltonian function:

H(q, p, t) =
1

2
XT







Hqq(t) Hqp(t)

Hpq(t) Hpp(t)






X , (7.20)

whereHqp = HT
pq, Hqq andHpp are symmetric andX =







q

p






. If one studies the relative

motion of two particles, thenX = Xh =







∆q

∆p






as previously defined.

For linear systems, the generating functionF1 is also quadratic in its spatial variables

without any linear term (Lemma III.3), i.e,

F1(Y, t) =
1

2
Y T







F 1
11(t) F 1

12(t)

F 1
21(t) F 1

22(t)






Y , (7.21)

whereF 1
12 = F 1

21
T , F 1

11 andF 1
22 are symmetric andY =







q

q0






. Then, Eqns. (7.12)-(7.15)

transform into:

[F 1
11(T ) + F 1

21(T ) + F 1
12(T ) + F 1

22(T )] q0 = 0 ,

[F 1
21(T ) + F 1

22(T )] q0 = p0 .

(7.22)

Eq. (7.22) defines twon-dimensional matrix equations that are functions of2n + 1

variables. As we mentioned before, we need to take at least one variable as a known

parameter.
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Example VII.3 (Periodic orbits about the Libration point L2 in the Hill three-body

problem). Let us find all the periodic orbits going through a given pointq0 using the

linearized equations of the dynamics about the Libration point L2 in the normalized Hill

three-body problem (Appendix C).

We first need to solve then coupled equations for the time period:

[

F 1
11(T ) + F 1

21(T ) + F 1
12(T ) + F 1

22(T )
]

q0 = 0 . (7.23)

From linear algebra theory, a necessary condition for this equation to have a solution (as-

sumingq0 6= 0) is that:

det
[

F 1
11(T ) + F 1

21(T ) + F 1
12(T ) + F 1

22(T )
]

= 0 . (7.24)

Fig. 7.1 represents this determinant. We notice that there exists one time at which the

Figure 7.1: Determinant of the matrix defined in Eq. (7.24)

determinant vanishes. Using Newton iteration we find that itvanishes at1 T = 3.0330191

and that the rank of the matrixF 1
11(T )+F 1

21(T )+F 1
12(T )+F 1

22(T ) at thisT is 0. Therefore,

any pointq0 in the configuration space belongs to a periodic orbit of period T . These

1Higher accuracy may be obtained using a smaller time step when solving forF1
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results are in agreement with known results on periodic orbits about the Libration points

in the linearized system. Using linear systems theory, we find that the true period of

oscillatory motion aboutL2 is 3.0330193236451116.

7.3 Nonlinear systems

In this section, we illustrate the power of the proposed method to find periodic orbits

of nonlinear systems. We address two non-trivial examples.First, we study periodic orbits

about the Libration pointL2 in the normalized Hill three-body problem. Then, we search

for periodic orbits in the vicinity of a periodic orbit in thenormalized restricted three-body

problem.

Study of periodic orbits about L2

In order to apply our method to finding periodic orbits we needto compute the generat-

ing functions. Using the algorithm presented in Chapter V we are able to find a polynomial

approximation of the generating functionF1 up to order5, that is, we use an approxima-

tion of order5 for the dynamics. For the present study, such an approximation is sufficient

since we found in Section 5.4.3 that the domain of use is (5.14):

D = {0.05, (0.01, 1.32) ∪ (1.84, 3.12) ∪ (3.12, 3.5)} .

Within the domain of use, we observed that the error is3.5 · 10−5 (about77 km for the

Earth-Sun system).

We consider the following two problems:

1. Searching in the time domain: Find all periodic orbits going throughq0 = (0.01, 0).

To solve such a problem, we use Eq. (7.16):

‖∂F1

∂q
(q = q0, q0, T ) +

∂F1

∂q0

(q = q0, q0, T )‖ = 0 . (7.25)
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In Fig. 7.2 we plot the left-hand side of Eq. (7.25) as a function of the normalized

time. We observe that the norm vanishes only att = T = 3.03353. Therefore,

Figure 7.2: Plot of‖∂F1

∂q
(q = q0, q0, T ) + ∂F1

∂q0
(q = q0, q0, T )‖ whereq0 = (0.01, 0)

there exists only one periodic orbit going throughq0, and its period isT (there may

be additional periodic orbits of periodT > 3.2, but we cannot see them in this

figure). Again, these results are in agreement with known results on periodic orbits

aboutL2. One can show that any point in the vicinity ofL2 belongs to a periodic

orbit. The periods of these orbits increase as their distances fromL2 increase. In the

limit, as the distance between periodic orbits andL2 goes to zero, the period goes to

T = Tlinear = 3.0330193236451116.

2. Searching in position space: Another problem is to find all periodic orbits of a

given periodT = 3.0345. To solve this problem we use Eq. (7.12) which defines

two equations with two unknowns that can be solved graphically. In Fig. 7.3, we

plot the solutions to each of these two equations and then superimpose them to

find their intersection. The intersection corresponds to solutions of Eq. (7.12), that

is, to the set of points that belongs to periodic orbits of period T . We observe
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that the intersection is composed of a circle and two points whose coordinates are

(qx, qy) = (−0.0603795,±0.187281). The circle is obviously a periodic orbit but

the two points are not equilibrium points, and rather correspond to out-of-plane

periodic orbits2.

(a) Plot of the solution to the first equation
defined by Eq. (7.12)

(b) Plot of the solution to the second equa-
tion defined by Eq. (7.12)

(c) Superposition of the two sets of solutions

Figure 7.3: Periodic orbits for the nonlinear motion about aLibration point

By plotting the intersection for different periodsT , we generate a map of a family

2We point out that these points do not lie in the domain of use and are only consequences of our approx-
imation of the dynamics.



194

of periodic orbits around the Libration point. In Fig. 7.4 werepresent the solutions

to Eq. (7.12) fort = 3.033 + 0.0005n , n ∈ {1 · · · 10}. For t = 3.033 (which is

less than the period of periodic orbits in the linearized system), the intersection only

contains the origin, which is why there are only9 periodic orbits shown around the

origin. We note that at larger values ofx2 + y2 the curves do not overlay precisely,

indicating that higher order terms are needed.

(a) Plot of the solution to the first equa-
tion defined by Eq. (7.12) fort = 3.033 +
0.0005n n ∈ {1 · · · 10}

(b) Plot of the solution to the second equa-
tion defined by Eq. (7.12) fort = 3.033 +
0.0005n n ∈ {1 · · · 10}

(c) Superposition of the two sets of so-
lutions for t = 3.033 + 0.0005n n ∈
{1 · · · 10}

Figure 7.4: Periodic orbits for the nonlinear motion about aLibration point
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Periodic orbits in the vicinity of a given periodic orbit in t he restricted three-body
problem

We consider the normalized circular restricted three-bodyproblem (Appendix C) with

µ = 3.0359 · 10−6 (this value ofµ corresponds to the Earth-Sun mass ratio). The peri-

odic orbit of periodT ∗ = 3.568576 going through the point(1.2, 0) is chosen to be the

reference trajectory. It is represented in Fig. 7.5. In thissection, we search for periodic

orbits in the vicinity of the reference trajectory. To solvethis problem, we use a polyno-

mial approximation of the generating functions of order5 computed using the algorithm

developed in Chapter V. We emphasize the following two problems:

Figure 7.5: Periodic orbit in the restricted three-body problem with periodT = 3.568576

1. Searching in the time domain: Given a point in relative position space(1.23, 0.03),

find the periods of all periodic orbits going through this point. In Fig. 7.6 we plot
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the left hand side of Eq. (7.18). We notice the existence of two periodic orbits with

respective periodsT and2T whereT = 3.62613. In Fig. 7.7, we generate the

t

Figure 7.6: Plot of‖∂F1

∂q
(q = q0, q0, T ) + ∂F1

∂q0
(q = q0, q0, T )‖ whereq0 = (0.03, 0.03)

obtained periodic orbit going through(1.23, 0.03). Note that the approximation of

the generating function provides an accurate picture of thetrue motion since the the

periodic orbit repeats itself perfectly. In Fig. 7.7, the orbit repeats itself30 times.

2. Searching in position space: Let us now recover the previous periodic orbit from its

period. In this case, we setT = 3.62613 and we use Eq. (7.12). Eq. (7.12) defines

two equations with two variables. In Fig. 7.8 we have plottedthe set of solutions to

each of these equations and their superposition. The intersection of the two sets of

solutions represent the set of solutions to Eq. (7.12) and isan arc of circle. We verify

using Eqns. (7.5) that the intersection corresponds to a periodic orbit (we exactly

recover the periodic orbit represented in Fig. 7.6).

We note that our method does not recover the entire periodic orbit, because the entire

orbit does not lie in the domain of convergence. Indeed, we should have found an

almost circular trajectory close to the nominal one, that is, of radius larger than1.2.
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y

x

Figure 7.7: Periodic orbits going through the point(1.23, 0.03)

To describe such an orbit we must be able to predict relative motions that are as large

as2.4. Nonetheless, the set of intersections we find is enough to recover the whole

trajectory using Eq. (3.8) and Hamilton’s equations.

Finally, we can let the time vary and obtain a family of periodic orbits. In Fig. 7.9

we setT = 3.58 + 0.01k , k ∈ [0, 7]

To conclude, we have presented a novel approach for finding periodic orbits. The

method we propose allows us to search for periodic orbits in phase space or in the time

domain without requiring any initial guess or knowledge of aperiodic orbit that belongs

to the family. This is a major advantage compared to traditional methods. Most important,

we reduce the search for periodic orbits to solving a nonlinear system of equations. Once

the generating functions are known, no integration is required to find periodic orbits of
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y

x

(a) Set of solutions to the first equation de-
fined by Eq. (7.12)

y

x

(b) Set of solutions to the first equation de-
fined by Eq. (7.12)

y

x

(c) Set of solutions to Eq. (7.12)

Figure 7.8: Periodic orbits of periodT = 3.62613

different periods and/or going through different points inthe phase space. This is a fun-

damental property of the generating functions that we will use again in the next chapters;

once the generating functions are known, any two-point boundary value problem can be

solved at the cost of a single function evaluation. Finally,we mention that searching in the

time domain may not be as accurate as searching in phase spaceif one uses the algorithm

we developed in Chapter V. Indeed, generating functions are expressed as polynomials

with respect to their spatial coordinates with time-dependent coefficients. These coeffi-

cients are solutions of ordinary differential equations and are therefore known at certain
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y

x

(a) Plot of the solution to the first equa-
tion defined by Eq. (7.12) forT = 3.58 +
0.01k , k ∈ {0, 7}

y

x

(b) Plot of the solution to the second equa-
tion defined by Eq. (7.12) forT = 3.58 +
0.01k , k ∈ {0, 7}
y

x

(c) Superposition of the two sets of solutions forT =
3.58 + 0.01k , k ∈ {0, 7}

Figure 7.9: Periodic orbits in the three-body problem

times (the nodes) only. As a result, solutions to Eq. (7.16) must be computed using an

interpolation of the coefficients between the nodes.



CHAPTER VIII

SPACECRAFT FORMATION DYNAMICS AND
DESIGN

Several missions and mission statements have identified formation flying as a means

for reducing cost and adding flexibility to space-based programs. However, such missions

raise a number of technical challenges as they require accurate dynamic models of the

relative motion and control techniques to achieve formation reconfiguration and formation

maintenance. There is a large literature on spacecraft formation flight that we will not

attempt to survey in a systematic manner. On the one hand we find articles that focus

on analytical studies of the relative motion, and on the other hand there are a large class

of articles that develop numerical algorithms that solve specific reconfiguration and for-

mation keeping problems. Theoretical studies require a dynamical model for the relative

motion that is accurate and tractable. For that reason the Clohessy-Wilshire (CW) equa-

tions, Hill’s equations or Gauss variational equations have often been used as a starting

point. Using the CW equations, Hope and Trask [50] study hovertype formation flying

about the Earth, Vadali, Vaddi and Alfriend [92] look at periodic relative motion about

the Earth, Gurfin and Kasdin[42], and Scheeres, Hsiao and Vinh[85] focus on formation

keeping, Howell and Marchand[51], and Vadali, Bae and Alfriend [91] analyze relative

motion in the vicinity of the libration points and Vaddi, Alfriend and Vadali [93] study the

200
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reconfiguration problem using impulsive thrusts. However,for a large class of orbits these

approximations do not hold -J2 effects as well as non-circular reference trajectory should

be taken into account for low Earth orbits and an elliptic orbit for the primary should be

considered to study the dynamics at the Libration points. Asa result, past researchers have

modified the CW equations in order to take theJ2 gravity coefficient into consideration.

These improved equations have been widely used; Alfriend and Schaub [2] study periodic

relative motion and Lovell, Horneman, Tollefson and Tragesser [62] analyze formation re-

configuration with impulsive thrusts. The non-impulsive thrust problem is usually solved

using optimal control theory (although there are some exceptions, for instance F.Y. Hsiao

and D.J. Scheeres[52] and I. Hussein, D.J. Scheeres and D. Hyland [53]), and if the dy-

namical model is tractable then analytical solutions for the feedback control law may be

found (see Mishne [69]). These analytical approaches allowone to perform qualitative

analysis and provide insight into the dynamics of the relative motion, however they cannot

be used for actual mission design (except [3]). Indeed, theyhave inherent drawbacks: they

neglect higher order terms in the dynamics and their domain of validity in phase space

is very restricted and difficult to quantify. In addition, methods based on the state tran-

sition matrix tend to be valid only over short time spans. On the other hand, numerical

algorithms have been developed to design spacecraft formations using the true dynamics.

Koon, Marsden, Masdemont and Murray [59] use Routh reductionto reduce the dimen-

sionality of the system and then develop an algorithm based on the use of the Poincaré map

to find pseudo-periodic relative motion in the gravitational field of the Earth (including the

J2 gravity coefficient only), Xu and Fitz-Coy[100] and Avanzini, Biamonti and Minisci[9]

study formation maintenance as a solution to an optimal control problem that they solve

using a genetic algorithm and a multi-objective optimization algorithm respectively. Even

though these methods use the exact dynamics and therefore can be used to solve a spe-
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cific reconfiguration or formation maintenance problem, they fail (except [59]) to provide

insight into the dynamics. In addition, as noticed by Wang and Hadaegh [94], formation

reconfiguration design is a combinatorial problem. As a result the algorithms mentioned

above are not appropriate for reconfiguration design as theyrequire excessive computation

(to reconfigure a formation ofN spacecraft, there areN ! possibilities in general).

The method we expose in this chapter, based on the theory developed in Chapter III and

on the algorithm presented in Chapter V, directly tackles these issues and should be viewed

as a semi-analytic approach, since it consists of a numerical algorithm whose output is a

polynomial approximation of the dynamics. As a consequence, we are able to use a very

accurate dynamic model and to obtain tractable expressionsdescribing the relative motion.

A fundamental difference with previous studies is that we describe the relative motion,

i.e., the phase space in the vicinity of a reference trajectory, as two-point boundary value

problems whereas it is usually described as an initial valueproblem. Such a description of

the phase space is very natural and convenient, For instancethe reconfiguration problem

and the search for periodic formations can be naturally formulated as two-point boundary

value problems.

In this chapter, to showcase the strength of our method, we have chosen to study two

challenging mission designs.

1. We first consider a spacecraft formation about an oblate Earth (theJ2 andJ3 gravity

coefficients are taken into account) that must achieve5 missions over a one month

period. For each mission the formation must be in a given configurationCi that

has been specified beforehand, and we wish to minimize the overall fuel expendi-

ture. The configurationsCi are specified as relative positions of the spacecraft with

respect to a specified reference trajectory (Fig. 8.1(a)). TheCi’s may be fully de-

fined or have one degree of freedom. In our example we require the spacecraft to
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be equally spaced on a circle centered on the reference trajectory at several epochs

over the time period. The design of such a mission has severalchallenges:

• the dynamics are non-trivial and non-integrable,

• the reference trajectory has high eccentricity, high inclination and is not peri-

odic,

• missions are planned a month in advance,

• in our specific example discussed here,4 spacecraft must achieve5 missions,

if one assumes that theCi are fully defined there are7, 962, 624 ways of satis-

fying the missions,

• theCi may be defined by holonomic constraints and have an additional degree

of freedom.

2. Next we consider the design of stable formations, the initial deployment of a forma-

tion and the redesign of an already deployed formation. For both problems, given

a reference trajectory we wish to place the spacecraft in itsvicinity and ensure that

they remain “close” to each other over an extended period of time (see Fig. 8.1(b)).

This design is also very challenging because:

• the dynamics and the reference trajectory are non-trivial (as before),

• trajectories must not collide (except at the initial time for the deployment prob-

lem),

• high accuracy in the initial conditions is required for long-term integration.
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Figure 8.1: The multi-task mission and the search for stableconfigurations.

8.1 Problem settings

The motion of a satellite under the influence of the Earth modeled by an oblate sphere

(J2 and J3 gravity coefficients are taken into account) in the fixed coordinate system

(x, y, z) whose origin is the Earth center of mass is described by the following Hamil-

tonian:

H =
1

2
(p2

x + p2
y + p2

z)

− 1
√

x2 + y2 + z2

[

1 − R2

2r2
0(x

2 + y2 + z2)

(

3
z2

x2 + y2 + z2
− 1

)

J2

− R3

2r3
0(x

2 + y2 + z2)2

(

5
z3

x2 + y2 + z2
− 3z

)

J3

]

,

where

GM = 398600.4405 km3s−2 , R = 6378.137 km ,

J2 = 1.082626675 · 10−3 , J3 = 2.532436 · 10−6 ,

(8.1)
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and all the variables are normalized (r0 is the radius of the trajectory at the initial time):

x → xr0 , y → yr0 , z → zr0 ,

t → t

√

r3
0

GM
, px → px

√

GM

r0

, py → py

√

GM

r0

, pz → pz

√

GM

r0

.

(8.2)

In the following, we consider a reference trajectory whose state is designated by

(q0, p0) and study the relative motion of spacecraft with respect to it. The reference trajec-

tory is chosen to be highly eccentric and inclined, but any other choice could have been

considered. At the initial time its state is:

q0
x = rp , q0

y = 0 km , q0
z = 0 km ,

p0
x = 0 kms−1 , p0

y =
√

GMra
1

2
rp(ra+rp)

cos(α) kms−1 , p0
z =

√

GMra
1

2
rp(ra+rp)

sin(α) kms−1 ,

α = π
3
rad , rp = 7, 000 km , ra = 13, 000 km .

(8.3)

Without theJ2 andJ3 gravity coefficients the reference trajectory would be an elliptic

orbit with eccentricitye = 0.3, inclination i = π/3 rad, argument of perigeeω = 0,

longitude of the ascending nodeΩ = 0, semi-minor axisrp = 7, 000 km, semi-major

axis ra = 13, 000 km and of periodtp = 2π
√

1
23

(ra+rp)3

r3
p

sec ≈ 2 hours 45 min. The

Earth oblateness perturbation causes (see Chobotov [23] formore details) secular drifts

in the eccentricity (due toJ3), in the argument of perigee (due toJ2 andJ3) and in the

longitude of the ascending node (due toJ2 andJ3). In addition, all the orbit elements

are subject to short and long period oscillations. In Fig. 8.2 and 8.3, we plot the orbit

elements for this trajectory as a function of time during a day (about10 revolutions about

the Earth) and over a month period. The symplectic implicit Runge-Kutta integrator built

in Mathematica c© is used for integration of Hamilton’s equations.
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Figure 8.2: Time history of the orbital elements over a one day period
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Figure 8.3: Time history of the orbital elements over a one month period
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8.2 Formation design

We introduced a dynamical model and defined a reference trajectory. In the previous

chapters we presented an algorithm whose outputs are the generating functions associated

with the phase flow describing the relative motion. In addition, we explained how these

generating functions may be used to solve two-point boundary value problems. We now

combine all the above and use it to design spacecraft formations. We first use the “com-

bined” algorithm to find the generating functionF1 up to order4, that is we need to solve

498 ordinary differential equations in the indirect method, then proceed a series inversion

and solve the203 ordinary differential equations given by the direct method(see appendix

for computational times). Once the generating functions are known, we can solve any

position to position boundary value problem with only six polynomial evaluations (Eqs.

(3.7) and (3.8)).

8.2.1 Multi-task mission

We consider four imaging satellites flying in formation about the reference trajectory.

We want to plan spacecraft maneuvers over the next month knowing that they must ob-

serve the Earth, i.e., must be in a given configurationCi at the following instants (chosen

arbitrarily for our study:

t0 = 0 , t1 = 5 days 22 hours , t2 = 10 days 20 hours ,

t3 = 16 days 2 hours , t4 = 21 days 14 hours , t5 = 26 days 20 hours .

(8.4)

Define the local horizontal by the unit vectors(ê1, ê2) such that̂e2 is alongr0 × v0 and

ê1 is alongê2 × r0, then at everyti, the configurationCi is defined by the four following

relative positions (or slots):

q1 = 700 m ê1 , q2 = −700 m ê1 , q3 = 700 m ê2 , q4 = −700 m ê2 . (8.5)
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Note that atti, q1 is in front of the reference state (in the local horizontal plane),q2 is

behind,q3 is on the left andq4 is on the right (see Fig. 8.1(a)). At eachti, there must

be one spacecraft per slot and we want to determine the sequence of reconfigurations that

minimizes the total fuel expenditure (other cost functionssuch as equal fuel consumption

for each spacecraft may be considered as well). For the first mission, there are4! config-

urations (number of permutation of the set{1, 2, 3, 4}), for the second mission, for each

of the previous4! configurations, there are again4! configurations, that is a total of4!2

possibilities. Thus for5 missions there are4!5 = 7, 962, 624 possible configurations.

In this paper, we focus on impulsive controls, but the methodwe develop can equiv-

alently apply to continuous thrust problems. Indeed, continuous thrust problems are usu-

ally solved using optimal control theory and reduce to a set of necessary conditions that

are formulated as a Hamiltonian two-point boundary value problem. This boundary value

problem can in turn be solved using the method we present in this paper [86]. Let us now

design the above mission. We assume impulsive controls thatconsist of impulsive thrusts

applied atti∈[0,5]. For each of the four spacecraft, we need to compute the velocity at ti so

that the spacecraft moves to its position specified atti+1 under gravitational forces only.

As a result, we must solve5 · 4! = 120 position to position boundary value problems

(given two positions atti andti+1, we need to compute the associated velocity). Using the

generating functions, this problem can be handled at the cost of only 120 function evalu-

ations. Then, we need to compute the cost function (sum of thenorm of all the required

impulses, assuming zero relative velocities at the initialand final times) for all the permu-

tations (there are7, 962, 624 combinations) to find the sequence that minimizes the cost

function. Fig. 8.4 represents the number of configurations as a function of the values of the

cost function. We notice that most of the configurations require at least three times more

fuel than the best configuration, and less than6% yield values of the cost function that are
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less than twice the value associated with the best configuration. The cost function for the

optimal sequence of reconfigurations is0.00644 km · s−1 whereas it is0.0396 km · s−1

in the least optimal design. In the optimal case, the four spacecraft have the following

positions:

Spacecraft1: (t0, q
1), (t1, q

2), (t2, q
2), (t3, q

2), (t4, q
2), (t5, q

2).

Spacecraft2: (t0, q
2), (t1, q

1), (t2, q
1), (t3, q

1), (t4, q
1), (t5, q

1).

Spacecraft3: (t0, q
3), (t1, q

4), (t2, q
4) (t3, q

4), (t4, q
3), (t5, q

4).

Spacecraft4: (t0, q
4), (t1, q

3), (t2, q
3) (t3, q

3), (t4, q
4), (t5, q

3).

whereas the worst scenario corresponds to:

Spacecraft1: (t0, q
1), (t1, q

1), (t2, q
2), (t3, q

2), (t4, q
1), (t5, q

2).

Spacecraft2: (t0, q
2), (t1, q

2), (t2, q
3), (t3, q

4), (t4, q
4), (t5, q

3).

Spacecraft3: (t0, q
3), (t1, q

3), (t2, q
1) (t3, q

3), (t4, q
3), (t5, q

4).

Spacecraft4: (t0, q
4), (t1, q

4), (t2, q
4) (t3, q

1), (t4, q
2), (t5, q

1).

6.44 15.09 22.64 30.18 37.73

502,940

1,027,384

1,979,581

4,452,719*10
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Figure 8.4: Number of configurations as a function of the value of the cost function

We may verify,a posteriori, if the solutions found meet the mission goals, i.e., if

the order4 approximation of the dynamics is sufficient to simulate the true dynamics.
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Explicitly comparing the analytical solution with numerically integrated results shows that

the spacecraft are at the desired positions at everyti with a maximum error of1.5·10−8 km.

Considerations on collision management

Our algorithm does not consider the risk of collision in the design. However, it pro-

vides a simple way to check afterwards if there is collision.Recall the indirect method. It

is based on the initial value problem and essentially consists in solving Hamilton’s equa-

tions for an approximation of the flow. Once such a solution isfound, we can generate

any trajectory at the cost of a function evaluation, there isno need to integrate Hamilton’s

equations again. Checking for collisions is again a combinatorial problem and therefore

our approach is particularly adapted to this. As an example let us verify if the design we

proposed for the multi-task mission yields collisions. In figure 8.5 we plot the distance

between each of the spacecraft. We remark that spacecraft1 and2, 1 and3, 2 and3, and

3 and4 may collide (relative distance less than100 m). A detail of the figure shows that

spacecraft3 and4 collide whereas the other spacecraft have a relative distance larger than

40 meters.

It can be proven that for this specific mission, there is no design that prevents the

relative motion of the spacecraft to be less than100 m. In the best scenario, the smallest

relative distance between the spacecraft is about15 m, and is achieved in3, 360 different

designs. Among these3, 360 possibilities, we represent in Fig. 8.6 the time history of

the relative distance between the spacecraft for the designthat achieves minimum fuel

expenditure (the total fuel expenditure is60 % larger than in the best case). This scenario

corresponds to:

Spacecraft1: (t0, q
1), (t1, q

2), (t2, q
3), (t3, q

3), (t4, q
4), (t5, q

3).

Spacecraft2: (t0, q
2), (t1, q

3), (t2, q
4), (t3, q

4), (t4, q
3), (t5, q

4).
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Figure 8.5: Distance between the spacecraft as a function oftime for the best scenario

Spacecraft3: (t0, q
3), (t1, q

4), (t2, q
1) (t3, q

2), (t4, q
1), (t5, q

2).

Spacecraft4: (t0, q
4), (t1, q

1), (t2, q
2) (t3, q

1), (t4, q
2), (t5, q

1).

For times at which the spacecraft are close to each other, we may use some local control

laws to perform small maneuvers for ensuring appropriate separation.

Another option consists of changing the configurations atti so that there exists a se-

quence of reconfigurations such that the relative distance between the spacecraft stay larger

than100 m. This can easily be done using our approach sinceF1 is already known. Solv-

ing a new design would only require120 evaluations of the gradient ofF1.

In the above example we take advantage of our algorithm to perform the required de-

sign, that is, we are able to plan missions involving severalspacecraft over a month using

non-trivial dynamics while minimizing a given cost function. Such a design is possible

because we focus directly on specifying the problem as a series of boundary value prob-

lems. Solution of this problem using a more traditional approach to solving boundary
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Figure 8.6: Distance between the spacecraft as a function oftime

value problems would have required direct integration of the equations of motion for each

of the720 boundary value problems.

However, we have not taken full advantage of our algorithm yet, as the above example

does not provide insight on the dynamics. We now consider a different mission to remedy

this and show how our algorithm may be used for analytical studies.

8.2.2 A different multi-task mission

For simplicity, we assume that the spacecraft must achieve only one task, that is we

constrain the geometry of the formation att0 andt1. However, instead of imposing abso-

lute relative positions, we only require the spacecraft to be equally spaced on a circle of

a given radius in the local horizontal plane att1. Such a constraint is more realistic, es-

pecially for imaging satellites as rotations of the formation about the local vertical should

not influence performance. In this problem, combinatorics and smooth functional analysis

are mixed together. Indeed, the positions of the four slots are given by a variableθ (θ

indicates the position of the first slot, the other slots are determined from the constraint
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that they should be equally spaced). Then, we need to solve a combinatorial problem as

in the previous case. To find theθ that minimizes the cost function, we use the polyno-

mial approximation of the generating functions provided byour algorithm to express the

cost function as a one dimensional polynomial inθ. Variations of the cost function are

determined analytically by computing the derivative of thecost function.

We choose the initial position to be as in the previous example and require the space-

craft to be equally spaced att1 on a circle of radius700 meters in the local horizontal

plane. In addition, we assume zero relative velocities at the initial and final times and

again choose the cost function to be the sum of the norm of the required impulses. As

before,(ê1, ê2) span the local horizontal plane and we defineθ as the angle between the

relative position vector and̂e1. Sinceθ is allowed to vary from0 to 2π (i.e., slot1 describes

the whole circle asθ goes from0 to 2π), we may consider that spacecraft1 always goes

from slot1 to slot1. As a consequence, there are3! free configurations. In Fig. 8.7, we

plot the values of the cost function as a function ofθ for each of the configurations. The

best design is the one for whichθ = 3.118 rad, spacecraft1 goes from slot1 to slot 1,

spacecraft2 from 2 to 3, spacecraft3 from 3 to 2 and spacecraft4 from 4 to 4.

If several missions need to be planned, then a new variable isintroduced for each and

a multi-variable polynomial must be studied. As a result, minima of the cost function are

found by evaluating as many derivatives as there are missions.

Through this example, we have gained insight on the dynamicsby using the analytical

approximation of the generating function and were able to solve the fuel optimal recon-

figuration problem. The method we use is very general and can be applied to solve any

reconfiguration problem given that the constraints on the configurations are holonomic.
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Figure 8.7: Fuel expenditure as a function ofθ for each configuration

8.2.3 Stable trajectories

Now we focus on another crucial, but difficult, design issue for spacecraft formations.

We search for configurations, called stable configurations,such that spacecraft stay close

to the reference trajectory over a long time span.

Definitions

Let us first define the notion of stable formation more precisely. Let T be a given

instant andM a real number.

Definition VIII.1 (Stable relative trajectory). A relative trajectory between two space-

craft is (M,T )-stable if and only if their relative distance never exceedsM over the time

span[0, T ].

Definition VIII.2 (Stable formation). A formation of spacecraft is(M,T )-stable if and

only if all the spacecraft have(M,T )-stable relative trajectories with respect to the refer-

ence trajectory.
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Periodic formations are instances of stable formations, they are(M,∞)-stable. We

also point out that our definition recovers the notion of Lyapunov stability: Lyapunov sta-

ble relative trajectories are(M,∞)-stable relative trajectories. In this paper, we focus on

(M,T )-stable formations withT large but finite, the approach we present is not appro-

priate to find(M,∞)-stable configurations. However, when the reference trajectory is

periodic Guibout and Scheeres[33] developed a technique based on generating functions

and Hamilton-Jacobi theory to find periodic configurations.

Stable trajectories as solutions to two-point boundary value problems

In order to use the theory we have presented above, we formulate the search for stable

trajectories as two-point boundary value problems.

Define the local vertical plane as the two-dimensional vector space perpendicular to

the velocity vector of the reference trajectory. In other words, the local vertical is spanned

by (f̂1, f̂2) wheref̂1 andf̂2 are two unit vectors alongr0 × v0 andv0 × f̂1 respectively. In

the local vertical plane, we use polar coordinates,(r − r0, θ), θ being the angle between

f̂1 and the local relative position vectorr − r0. We denote byCr
t the circle of radiusr

centered on the reference trajectory that lies in the local vertical plane att. A position on

this circle is fully determined byθ (see Fig. 8.8). Then, given an instanttf > t0 and a

distancerf > 0, the circleCrf

tf
is defined.

Before searching for stable configurations, we first introduce a new methodology to

find (M,T )-stable relative trajectories for a single spacecraft about the reference trajectory

defined above. Consider the following two-point boundary value problem:

Find all trajectories going from the initial position of thespacecraft to any point onCrf

tf=T

in T units of time whererf < M (Fig. 8.9).

Solutions to this boundary value problem have the followingproperties:
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1. they contain(M,T )-stable relative trajectories.

2. they contain relative trajectories that are not(M,T )-stable, i.e., trajectories that go

far from the reference trajectory in the time interval(0, tf = T ) but come back close

to the reference trajectory attf . We point out that many of these trajectories are

ignored by our algorithm since it uses a local approximationof the dynamics.

On the other hand, we know that stable trajectories must havesimilar orbit elements as

compared to the reference trajectory. Therefore, to discriminate between the solutions

to the two-point boundary value problem we can use orbit elements, especially since we

know,a priori, that the longitude of the ascending node and the argument ofperigee have

secular drifts. This leads us to define a cost functionJ as:

J =
1

4
‖∆ωtf‖ +

1

4
‖∆ωtf − ∆ωt0‖ +

1

4
‖∆Ωtf‖ +

1

4
‖∆Ωtf − ∆Ωt0‖ , (8.6)

where‖∆ωtf‖ corresponds to the relative argument of perigee attf , i.e, the difference

at tf between the argument of perigee of the spacecraft trajectory and the argument of

perigee of the reference trajectory,‖∆ωtf −∆ωt0‖ characterizes the change in the relative

argument of perigee betweent0 and tf and the other terms are similar and involve the

longitude of the ascending node instead.

Let us now consider the following boundary value problem: Find all trajectories going

from the initial position of the spacecraft to any point onCrf

tf
in tf − t0 units of time that

minimizeJ .

From the above discussion, we conclude that solutions to this boundary value problem

characterize stable relative trajectories.

Methodology

We showed in the previous section that the search for stable trajectories reduces to

solving a two-point boundary value problem while minimizing a given cost function. In
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this section, we solve this problem using generating functions.

First we notice thatF1 solves the boundary value problem that consists of going from

an initial positionq0 to a positionqf in tf units of time. Indeed, from Eqns. (3.7) and (3.8)

we have:

p0 = −∂F1

∂q0

(qf , q0, tf ) , (8.7)

pf =
∂F1

∂q
(qf , q0, tf ) . (8.8)

Then we assume thatqf describesCrf

tf
, that is,qf = rf cos(θf )f̂1 + rf sin(θf )f̂2 where

θf ranges from0 to 2π. SinceF1 is approximated by a polynomial in(qf , q0) with time-

dependent coefficients, Eqns. (8.7) and (8.8) allow us to expressp0 andpf as polynomials

in θf with time-dependent coefficients. Finally, with knowledgeof p0(θf ), pf (θf ), q0 and

qf (θf ), we can expressJ as a function ofθf and easily find its minima{θ1
f , · · · , θr

f}.

Stable trajectories are then those that travel fromq0 to qf = rf cos(θi
f )f̂1 + rf sin(θi

f )f̂2,

i ∈ [1, r] in tf units of time.

Example

Let us illustrate this procedure by searching for stable trajectories for a spacecraft

whose initial position relative to the reference trajectory at the initial time isq0 =

(495,−428.6, 247.5) m in the inertial frame or equivalentlyq0 = 700 cos(π/4)f̂1 +

700 sin(π/4)f̂2 m. We use an order4 approximation of the dynamics,tf =

10 d 19 h 13 min and rf = 700 m. Then, using a symbolic manipulator, we ex-

pressJ as a function ofθf and plot its values in Fig. 8.10. It has two local minima at

θ1 = 0.671503 rad andθ2 = 2.4006615 rad that correspond to stable trajectories. The

relative motions associated with these two trajectories are represented in Fig. 8.11 and

8.12 over time spans smaller and larger thantf . We notice the excellent behavior of these

trajectories, they remain stable over a time interval larger than the one initially considered.
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We also point out that one of the trajectories (figure 8.11) is(rf , tf )-stable whereas the

other one (figure 8.12) is(3rf , tf )-stable.

1 2 3 4 5 6
Θ HradL

0.0001

0.0002

0.0003

Values of the cost functions

at t = 259 h 13 min

Figure 8.10: Cost function as a function ofθ for tf = 10d19h13m

Before going further, let us discuss the role played bytf . We transformed the search

for stable trajectories into a boundary value problem over atime span defined bytf that

we apparently chose arbitrarily. By varyingtf , we notice that minima of the cost function

correspond to different stable trajectories. In Fig. 8.13 we plot the cost function as a

function ofθf for t = tf − 1 h 6 min = 10 d 18 h 19 min. In contrast to the previous

case, the cost function has only one minimum atθ = 3.814575 rad. In Fig. 8.14 we

represent the trajectory that corresponds to this minimum.It is stable but different from the

previous ones (Fig. 8.11 and 8.12). This result was expectedand makes our approach even

more valuable. Indeed, since we reduced the search for stable trajectories to a boundary

value problem, we completely ignore the behavior of the spacecraft at intermediary times

t ∈ [0, tf ], we only take into account the states of the spacecraft at theinitial time and at

tf . As a result, short term oscillations play a major role and alter the locus of the minima

of J . Thus, by varyingtf we are potentially able to find infinitely many stable trajectories

going throughq0 at the initial time. This aspect allows us to design a deployment problem,

for instance, where several spacecraft are at the same location at the initial time and we
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Figure 8.11: Trajectory associated with the minimum
θ = 0.671503 rad, tf = 10 d 19 h 13 min
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(a) x − y motion during
26 hours

(b) x − z motion during
26 hours

(c) y − z motion during
26 hours

(d) x − y motion during
11 days 19 hours

(e) x − z motion during
11 days 19 hours

(f) y − z motion during
11 days 19 hours

10 m

10 m

(g) x − y motion during
21 days 11 hours

10 m

10 m

(h) x − z motion during
21 days 11 hours

(i) y − z motion during
21 days 11 hours

Figure 8.12: Trajectory associated with the minimum
θ = 2.4006615 rad, tf = 10 d 19 h 13 min
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want to place them on stable trajectories that do not collide.

1 2 3 4 5 6
Θ HradL

0.0001

0.0002

0.0003

0.0004

Values of the cost functions

at t = 258 h 19 min

Figure 8.13: Cost function as a function ofθ for tf = 10 d 18 h 19 m

(m)

(m)

(a) x − y motion during
26 hours

(m)

(m)

(b) x − z motion during
26 hours

(m)

(m)

(c) y − z motion during
26 hours

Figure 8.14: Trajectory associated with the minimum
θ = 3.814575 rad, tf = 10 d 18 h 19 min

Furthermore, larger or smaller values oftf could have been chosen, however we must

be aware that iftf is too small, short term oscillations may be as large as the drift and in that

case the cost function does not discriminate well; its minima do not necessarily correspond

to stable trajectories. On the other hand, iftf is very large, the minima correspond to

(M,T )-stable relative trajectories withT increasing astf increases.

Finally, in the above example we selected trajectories thatcorrespond to minima ofJ

and lettf vary to find several stable trajectories. However, trajectories that correspond to

values ofJ close to the minimum may be stable trajectories as well. If wevarytf , say from

T 1 toT 2, we notice that the trajectory corresponding to the minimumof J atT 1 is different
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from the one corresponding to the minimum ofJ atT 2. Although the trajectory associated

to T 1 does not correspond to a minimum ofJ atT 2, it is stable and therefore corresponds

to a small value ofJ at T 2. As a result, we are able to identify regions in which there are

no stable trajectories that go through an initial positionq0 and through the circle of radius

rf at tf . For example, all stable trajectories that go throughq0 = (495,−428.6, 247.5) m

andqf = 700 cos(θf )f̂1 + 700 sin(θf )f̂2 m at tf are roughly localized on the arc defined

by θf ∈ [0, π] whentf = 10 d 19 h 13 min (Fig. 8.10) and byθf ∈ [2, 5] rad when

tf = 10 d 18 h 19 min (Fig. 8.13).

8.2.4 Stable configurations

In this section, we generalize the approach introduced above in order to design stable

configurations. Without loss of generality, and for sake of simplicity, we assume that the

formation is onCr0

t0 at the initial time so that the positions of the spacecraft are determined

by the angleθ0, the angle between̂f1 and the local relative position vector. As a result, the

initial position may be regarded as a function ofθ0. Thus, Eqns. (8.7) and (8.8) provide a

polynomial approximation ofp0 andpf in the variables(θ0, θf ) (instead ofθf only) with

time-dependent coefficients. The procedure to find stable trajectories is the same as before

but now we have an additional variable,θ0. In Fig. 8.15 we represent the values of the

cost function as a function ofθi and θf for different times. We notice that if two out

of the three variables(θf , θ0, tf ) are given, there exists a value of the third variable that

minimizes the cost function. In other words, whateverθ0 andtf are, there exists a stable

trajectory that goes through the initial position at the initial time and reachesCrf

tf
in tf units

of time. Moreover, iftf varies, minima of the cost function correspond to differentstable

trajectories due to short term oscillations.
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(a) At tf = 10 d 18 h 19 min (b) At tf = 10 d 18 h 34 min (c) At tf = 10 d 18 h 42 min

(d) At tf = 10 d 18 h 50 min (e) At tf = 10 d 18 h 57 min (f) At tf = 10 d 19 h 13 min

Figure 8.15: Cost function as a function of the initial and final positions for severaltf

Example

We consider a formation of four spacecraft equally spaced ona circle of radius700 m

about the reference trajectory that lies in the local vertical plane at the initial time. Space-

craft k has its initial position defined byθi = π/4 + kπ/2 , k ∈ [0, 3]. Stable trajectories

may be found by minimizing the cost function with respect toθ. For every choice oftf

there is a solution to the minimization problem (see Fig. 8.15). As a result, we are able

to find infinitely many stable trajectories for each spacecraft. In Fig. 8.16 we plot the

trajectories of the four spacecraft that are found by consideringtf = 10 d 18 h 19 m and

in Fig. 8.17,tf = 10 d 19 h 13 m. The two solutions have very different properties; Even

though the positions at the final timetf are constrained to be at700 m from the reference

trajectory in the local vertical plane, the relative distance may be large at intermediary

times. For instance the solution found fortf = 10 d 18 h 19 m yields a formation that

is as large as6 km. Such trajectories cannot be found using linear approximations of the

relative motion.
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Figure 8.16: Trajectories of the four spacecraft fortf = 10 d 18 h 19 m



226

(m)

(m)

(a) Spacecraft1

(m)

(m)

(b) Spacecraft1

(m)

(m)

(c) Spacecraft1

(m)

(m)

(d) Spacecraft2

(m)

(m)

(e) Spacecraft2

(m)

(m)

(f) Spacecraft2

(m)

(m)

(g) Spacecraft3

(m)

(m)

(h) Spacecraft3

(m)

(m)

(i) Spacecraft3

(m)

(m)

(j) Spacecraft4

(m)

(m)

(k) Spacecraft4

(m)

(m)

(l) Spacecraft4

Figure 8.17: Trajectories of the four spacecraft fortf = 10 d 19 h 13 m



CHAPTER IX

CONCLUSIONS AND FUTURE RESEARCH
DIRECTIONS

9.1 Summary and contribution of the thesis

Starting from the observation that new methods are needed toaddress complex prob-

lems arising in spacecraft formation design and control, wehave developed a novel ap-

proach for solving Hamiltonian two-point boundary value problems. The theoretical as-

pects of our approach make contributions to several fields, shed light on the properties

of two-point boundary value problems and have found new results. The numerics of our

approach is also very rich, and our study of it has led us to investigate and make contri-

butions to the field of variational integrators. Finally, wepresented several applications of

our method. In particular, it allows us to develop innovative solution procedures to address

difficult problems arising in a wide range of fields.

9.1.1 Theoretical aspects

The method we develop in this thesis is based on the Hamilton-Jacobi theory. We have

observed that the generating functions associated with thephase flow readily solve any

Hamiltonian two-point boundary value problem. This observation, that we believe no one

has made before, has many consequences that we now re-state.Above all, it provides a

very general methodology for solving boundary value problems for Hamiltonian systems.
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Whereas traditional methods solve boundary value problems about an initial guess only,

our approach gives a “full picture”. In particular, traditional methods completely ignore

the number of solutions to the boundary value problem. Our approach, however, indicates

the presence of multiple solutions as singularities of generating functions. In turn, we

proved and illustrated that these singularities can be studied and the number of solutions

may be determined.

In linear systems theory, it is well-known that perturbation matrices solve boundary

value problems. These matrices have distinctive properties that are studied in the litera-

ture. Using generating functions we have recovered and extended some of these properties.

Most importantly, we have proved that they correspond to coefficients of the generating

functions. As a result, our approach naturally contains thetheory of perturbation matri-

ces. The relation between perturbation matrices and generating functions may also be

investigated using the state transition matrix. In this respect, we have shown that the state

transition matrix and generating functions are closely related. One of the main conse-

quences of this allows us to predict singularities of the generating functions using the state

transition matrix. This result broadens to nonlinear systems with polynomial Hamiltonian

function.

In nonlinear systems theory, there is no equivalent of the perturbation matrices. Thus,

the approach we have proposed is the first to define functions,namely the generating

functions, that describe the phase flow as two-point boundary value problems. Obviously,

no results as general as the ones derived for linear systems may be gleaned in this case.

However, for polynomial generating functions we have established that singularities of the

generating functions may still be predicted from the state transition matrix. As a result,

the existence of multiple solutions to two-point boundary value problems is fully predicted

by the linear dynamics. The number of solutions, however, depends on the nonlinear
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dynamics.

9.1.2 Numerics

To demonstrate the efficiency of our novel approach, we have proposed a robust algo-

rithm to compute the generating functions. By combining two techniques (called direct

and indirect), our algorithm allows one to approximate the generating functions locally in

space and globally in time. We now briefly review its main characteristics:

• It handles initial conditions specified in terms of functions with parameters.

• It applies to any Hamiltonian system, independent of its complexity.

• It avoids or bypasses singularities.

• We believe (but have not proven yet) that the indirect methodpreserves the symplec-

tic two-form if one uses a symplectic integrator. If a boundary value problem with

long transfer time needs to be solved, this property is very valuable as long-term

behaviors of nonlinear systems are better simulated by symplectic algorithms.

• The software is freely available upon request, from Daniel Scheeres and myself.

The necessity of using a symplectic algorithm in the indirect approach has led us to in-

vestigate geometric integrators. The research we have pursued in that direction went far

beyond our objectives and contributed to advances in the field of variational integrators.

Specifically, we have presented a general framework to studydiscrete systems. We

have introduced variational principles on the tangent and cotangent bundles that are the

discrete counterpart of the known principles of critical action for Lagrangian and Hamilto-

nian dynamical systems. Our formulation has several important differences with previous

works. One of its main advantages is its ability to work with both Lagrangian and Hamil-

tonian systems. Most of the work in the literature focuses onthe Lagrangian point of
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view, and defines a discrete Legendre transformation to map the tangent bundle to the

co-tangent bundle. In this manner, Hamiltonian systems that are also Lagrangian may be

studied. However, this approach fails if the Hamiltonian system is not Lagrangian. As

illustrated in Chapter IV, this particular case is often encountered, especially in optimal

control theory. Furthermore, we have shown that our approach allows us to recover most

of the classical symplectic algorithms. By increasing the dimensionality of the configu-

ration space, it can also yield symplectic-energy conserving algorithms. When time is a

generalized coordinate, the dynamical system is subject toan energy constraint, and we

are able to adapt our variational principles to take such a constraint into account. In the

same manner, our approach may be modified to derive symplectic algorithms to integrate

non-autonomous dynamical systems with (non-holonomic) constraints.

In addition, we have given a discrete symplectic structure to the discrete phase space.

For the first time, we have been able to extend the notions of symplectic two-form, canon-

ical transformation and generating function to discrete settings. Once all these notions

were introduced, we were able to develop a discrete Hamilton-Jacobi theory. This theory

allows us to estimate the energy error in the integration using different set of coordinates

related by discrete canonical transformations.

Finally, we have extended the above framework to optimal control problems and de-

veloped a unified theory to solve optimal control problems using symplectic integrators.

Specifically, we have introduced a discrete maximum principle that yields discrete neces-

sary conditions for optimality. These conditions are in agreement with the ones derived

from the Pontryagin maximum principle and define symplecticintegrators.
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9.1.3 Applications

The approach we have presented to solve two-point boundary value problems applies

to any Hamiltonian system. It is therefore not surprising that it has implications in several

fields. In particular, it allows us to develop new solution procedures to study the phase

space structure, solve optimal control problems and designspacecraft formations. These

methods are all based on two important aspects of the presentresearch:

1. Once the generating functions are known, we can solve any two-point boundary

value problem at the cost of a single function evaluation; noinitial guesses or itera-

tions are required.

2. Using the algorithm we developed in Chapter V, we obtain a closed-form solution

to two-point boundary value problems.

Spacecraft formation dynamics and design The first motivation for the present re-

search was to address complex problems arising in spacecraft formation flight. We believe

that the method we propose meets our expectations and objectives. Despite a complex

dynamical model and an arbitrary reference trajectory, we have been able to obtain a semi-

analytic description of the nonlinear relative phase flow assolutions to two-point boundary

value problems. This representation allowed us to design two extremely difficult missions

with little effort. Our approach, however, is not limited tothese two missions and we recall

its main features:

• The dynamical environment may be as complex as one wants, theonly constraint

being that the dynamical system must be Hamiltonian. In addition, the complexity

of the dynamical system does not seriously impact the computation time.

• The reference trajectory may be arbitrary.



232

• The time span we consider may be very large, the larger it is the longer the ordinary

differential equations obtained with the indirect algorithm should be integrated. The

main advantage of describing the phase flow as two-point boundary value problems

is that the time period we consider does not influence the accuracy of the results.

This aspect is of major importance, especially as this is a weakness of traditional

approaches based on the initial value problem.

• Our approach also allows one to deal with low-thrust spacecraft. In this case, the

reconfiguration problem can be formulated as an optimal control problem whose

necessary conditions for optimality are a Hamiltonian two-point boundary value

problem. For these problems, the dynamical environment maynot be Hamiltonian

since the necessary conditions for optimality yield a Hamiltonian system. However,

it should be emphasized that the dimensionality is double (because of the adjoint

variables).

• There are no limitation on the complexity of the formation geometry in the reconfig-

uration problem as long as the geometry can be described withconstraints on(q, p)

only.

• From the semi-analytic expression of the generating functions, several problems

may be addressed. We have seen how to solve the reconfiguration problem and the

deployment problem, we have also been able to find stable configurations. One can

readily apply Chapter VII to find periodic configurations.

Phase space structure By posing the search for periodic orbits as a two-point boundary

value problem with constraints, we have reduced the search for periodic orbits to solving

a few nonlinear equations. Through several examples, we have shown that our method
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recovers known periodic orbits and thus, captures the nonlinear dynamics. Compared

to traditional methods, the technique we propose does not require initial guesses and/or

iterations. It characterizes periodic orbits as solutionsof nonlinear algebraic equations.

Optimal control theory Finally, we have proved that the method we developed for

solving two-point boundary value problems has major implications in optimal control the-

ory. Not only does it allow one to solve the necessary conditions for optimality, but it also

overcomes barriers to truly reconfigurable control. Using traditional techniques, the op-

timal control law needs to be re-calculated as the boundary conditions and targets for the

system change. Using the generating functions we have shownthat if the boundary con-

ditions change in values, the resulting optimal control lawmay be found instantaneously.

Further, if the nature of the boundary conditions change, then we need to perform a Leg-

endre transformation (i.e., a series of algebraic manipulations) to compute the new control

law. These properties are specific to our approach and cannotbe found in any other non-

linear methods.

9.2 Limitations and suggestions for further research

We now discuss the limitations of the present research and propose some ideas for

future research.

9.2.1 On solving two-point boundary value problems

Computing the generating functions remains the main hurdle to successfully applying

our work to any problem. The algorithm we present applies to polynomial Hamiltonian

systems only. This is a severe restriction as it prevents us from solving the Hamilton-Jacobi

equation for both non-polynomial Hamiltonian functions over a large spatial domain (we

are restricted to study relative motion only) and non-analytic Hamiltonian functions. This
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latter case arises in optimal control problems involving control constraints or non-analytic

cost functions, for instance.

In addition, some systems may be singular over a finite time span. For instance, in the

three-dimensional two-body problem, transfers with the two radius vectors anti paralleled

to each other have multiple solutions for all transfer times. Thus, we expectF1 to be singu-

lar at all times in this geometry. Similarly, the Heisenbergoptimal control problem yields a

singularF1 generating function. For such problems, certain classes oftwo-point boundary

value problems can never be solved as the corresponding generating functions are always

singular. This topic is still to be explored. To remove the singularities, one might need to

consider generating functions with fewer variables (keeping only the independent ones),

but subject to some constraints involving the missing variables.

9.2.2 In optimal control theory

A major implication of our work is in the field of optimal control. Using the generating

functions, we can solve the Pontryagin necessary conditions for optimality for a large class

of optimal control problems. However, if the cost function is not analytic, or if there exist

control constraints, then the method we present must be altered. For instance, for time-

optimal control problems, since we know that the control is either at its upper or lower

bound, we can solve the Hamilton-Jacobi equation for both cases and then find the times

at which the control shifts.

Furthermore, we previously pointed out that the Hamilton-Jacobi equation reduces to

a set of matrix ordinary differential equations, one of thembeing a Riccati equation. We

believe that the connection between the Hamilton-Jacobi equation and the Riccati equation

is deeper. Its understanding could yield insights into nonlinear control theory. Sakamoto

[83] started to analyze this link. In particular, he generalized properties of the Riccati
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equation to the Hamilton-Jacobi equation.

Finally, it should not surprise one that generating functions and cost functions are

related, as they both verify similar equations and solve theoptimal control problem. Park

and Scheeres [76] have started to investigate this connection. They proved that “the cost

function is related to a special kind of generating function, and that the optimal feedback

control problem can be considered as part of a more comprehensive field of canonical

transformations for Hamiltonian systems” (Park and Scheeres in [76]).

9.2.3 Variational integrators

We have presented a general framework for studying the discretization of certain dy-

namical systems. We believe that this framework may be extended to spacetime discretiza-

tion. This would open the doors to variational principles for multi-symplectic algorithms.

Such algorithms would allow one to develop efficient numerical techniques for simulating

the motion of rigid bodies and complex interconnected systems, for instance.

In addition, the discrete maximum principle we have developed yields discrete neces-

sary conditions for optimality under some smoothness conditions. Pontryagin’s maximum

principle applies under far less severe regularity conditions. Its discrete counterpart has

been studied by Jordan and Polak [55] for instance. However,the obtained discrete nec-

essary conditions for optimality do not define a symplectic algorithm. It is not clear yet

how one can remove the smoothness conditions in discrete settings while preserving the

geometric features of the necessary conditions.
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APPENDIX A

THE DYNAMICS OF RELATIVE MOTION

In this appendix, we show that the dynamics of the relative motion of two particles in a

Hamiltonian vector field is Hamiltonian.

Consider a Hamiltonian system with Hamiltonian functionH(q, p, t). Let (q0
0, p

0
0) and

(q1
0, p

1
0) be two points in phase space such that:

q1
0 = q0

0 + ∆q0 , (A.1)

p1
0 = p0

0 + ∆p0 , (A.2)

where(∆q0, ∆p0) is small enough to guaranty the convergence of the Taylor series in Eq.

(A.8). We denote by(qi, pi) the trajectory with initial conditions(qi
0, p

i
0), i.e.,

q1 = q(q1
0, p

1
0, t) , p1 = p(q1

0, p
1
0, t) , (A.3)

q0 = q(q0
0, p

0
0, t) , p0 = p(q0

0, p
0
0, t) . (A.4)

and we defineXh =







∆q

∆p






the relative state vector by:

X1 = X0 + Xh , (A.5)

whereX i =







qi

pi






. For convenience we shall call(q0, p0) the reference trajectory and

(q1, p1) the displaced trajectory .
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Both trajectories verify the Hamilton equations of motion:

Ẋ i = J∇H i , (A.6)

whereJ =







0 I

−I 0






and∇H i =







∂H
∂q

∂H
∂p






(qi, pi, t). Using our previous notation,

Eq. (A.6) reads, fori = 1:

Ẋ0 + Ẋh = J∇H1 . (A.7)

We expand the right hand side of Eq. (A.7) about the nominal trajectoryX0, assuming

(∆q, ∆p) small enough for convergence of the series:

∇H(q1, p1, t) = ∇H(q0, p0, t)+







∂2H
∂q2 (q0, p0, t)∆q + ∂2H

∂q∂p
(q0, p0, t)∆p

∂2H
∂q∂p

(q0, p0, t)∆q + ∂2H
∂p2 (q0, p0, t)∆p






+· · · (A.8)

Substituting this into Eq. (A.7) yields

Ẋ0 + Ẋh = J∇H0 + J







∂2H
∂q2 (q0, p0, t)∆q + ∂2H

∂q∂p
(q0, p0, t)∆p

∂2H
∂q∂p

(q0, p0, t)∆q + ∂2H
∂p2 (q0, p0, t)∆p






+ · · · (A.9)

Using equation (A.6), Eq. (A.9) simplifies to:

Ẋh = J







∂2H
∂q2 (q0, p0, t)∆q + ∂2H

∂q∂p
(q0, p0, t)∆p

∂2H
∂q∂p

(q0, p0, t)∆q + ∂2H
∂p2 (q0, p0, t)∆p






+ · · · (A.10)

Therefore, the dynamics describing the relative motion of two particles in a Hamil-

tonian vector field is Hamiltonian if and only if there existsan Hamiltonian functionHh

such that Eq. (A.10) can be written as Hamilton’s equations.Let

Hh(Xh, t) =
1

2
Xh







∂2H
∂q2 (q0, p0, t) ∂2H

∂q∂p
(q0, p0, t)

∂2H
∂q∂p

(q0, p0, t) ∂2H
∂q2 (q0, p0, t)






Xh + · · · (A.11)

We can check that:

Ẋh = J∇Hh(Xh, t) . (A.12)



239

Without ignoring higher order terms, the expansion of the right hand side of Eq. (A.7)

yields:

Hh(Xh, t) =

∞
∑

p=2

p
∑

i1,··· ,i2n=0
i1+···+i2n=p

1

i1! · · · i2n!

∂pH

∂qi1
1 · · · ∂qin

n ∂p
in+1

1 · · · ∂pi2n
n

(q0, p0, t)Xh
1

i1
. . . Xh

2n

i2n
.

(A.13)

Thus, the dynamics of a particle relative to a known trajectory is Hamiltonian with a

Hamiltonian functionHh(Xh, t) = Hh(∆q, ∆p, t). The coefficients of the Taylor series

1
i!j!

∂i+jH
∂qi∂pj (q

0, p0, t) are time varying quantities and are easily evaluated for anyHamiltonian

once the reference trajectory is known.
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APPENDIX B

THE HAMILTON-JACOBI EQUATION AT HIGHER
ORDERS

In this appendix, we give an explicit expression ofP as defined by Eq. (5.7). This gener-

alizes the approach developed in Section 3.2.2 for linear systems to nonlinear systems.

We assume a2n-dimensional Hamiltonian system with polynomial Hamiltonian func-

tion and polynomial generating functions. We have seen in Chapter V that the Hamilton-

Jacobi partial differential equation reduces to an ordinary differential equation of the form

P (y, fp,r
i1,··· ,i2n

(t), ḟp,r
i1,··· ,i2n

(t)) = 0 . (B.1)

In the following we use tensor notation in order to derive an explicit expression ofP . In

tensor notation, a Taylor series expansion writes as:

f(x, t) = f 0(t) + f 1(t) · ~x + (f 2(t) · ~x) · ~x + ((f 3(t) · ~x) · ~x) · ~x + · · · . (B.2)

Applying this formula toH(~x, t) andF2 = F (~y, t) yields:

H(~x) = hi,j(t)xixj + hi,j,k(t)xixjxk + · · · , (B.3)

F (~y) = fi,j(t)yiyj + fi,j,k(t)yiyjyk + · · · . (B.4)

where we assume the summation convention. Let us now express~x = (∆q, ∆p) as a

function of~y = (∆q, ∆p0) (we drop the time dependence in the notation, i.e., we shall
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write hi,j instead ofhi,j(t)). For alla ≤ n andj = n + a

xa = ya , (B.5)

xj =
∂F

∂ya

(B.6)

= fa,kyk + fk,ayk + fa,k,lykyl + fk,a,lykyl + fk,l,aykyl + · · · , (B.7)

wheren is the dimension of the configuration space. The Hamilton-Jacobi equation be-

comes:

ḟi,jyiyj + ḟi,j,kyiyjyk + · · · + hi,jxixj + hi,j,kxixjxk + · · · = 0 . (B.8)

Replacing~x by ~y in Eq. (B.8) using Eq. (B.7), and keeping only terms of order less

than 3 yields:

0 = ḟi,jyiyj + ḟi,j,kyiyjyk + ha,byayb + ha,b,cyaybyc

+ (ha,n+b + hn+b,a)ya(fb,kyk + fk,byk + fb,k,lykyl + fl,b,kykyl + fk,l,bykyl)

+ hn+a,n+b(fa,kyk + fk,ayk + fa,k,lykyl + fl,a,kykyl + fk,l,aykyl)

(fb,mym + fm,bym + fb,m,pymyp + fp,b,mymyp + fm,p,bymyp)

+ (hn+a,b,c + hc,n+a,b + hb,c,n+a)ybyc(fa,kyk + fk,ayk)

+ (hn+a,n+b,c + hn+b,c,n+a + hc,n+a,n+b)yc(fa,kyk + fk,ayk)(fb,lyl + fl,byl)

+ hn+a,n+b,n+c(fa,kyk + fk,ayk)(fb,lyl + fl,byl)(fc,mym + fm,cym) . (B.9)

Eq. (B.9) is the expression ofP up to order3 as defined by Eq. (5.7). It is a polynomial

equation in theyi variables with time dependent coefficients and holds if every coefficient

is zero. We notice that the equations of order2 (the one obtained by setting the coefficients

of yiyj to zero) are the same as the ones found previously in Section 3.2.2. The equations
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of order 3 reads:

ḟi,j,kyiyjyk + (Ai,j,k + Bi,j,k + Ci,j,k)yiyjyk + (Da,i,j + Ea,i,j)yayiyj

+ Ga,b,iyaybyi + ha,b,cyaybyc = 0 , (B.10)

where

Ai,j,k = hn+a,n+b,n+c(fa,i + fi,a)(fb,j + fj,b)(fc,k + fk,c) ,

Bi,j,k = hn+a,n+b(fa,i + fi,a)(fb,j,k + fj,k,b + fk,b,j) ,

Ci,j,k = hn+a,n+b(fb,i + fi,b)(fa,j,k + fj,k,a + fk,a,j) ,

Da,i,j = (ha,n+b,n+c + hn+c,a,n+b + hn+b,n+c,a)(fb,i + fi,b)(fc,j + fj,c) ,

Ea,i,j = (ha,n+b + hn+b,a)(fb,i,j + fj,b,i + fi,j,b) ,

Ga,b,i = (ha,b,n+c + hb,n+c,a + hn+c,a,b)(fc,i + fi,c) . (B.11)

We deduce the coefficients ofyiyjyk:

• Coefficients ofy3
i≤n

Ai,i,i + Bi,i,i + Ci,i,i + Di,i,i + Ei,i,i + ḟi,i,i + Gi,i,i + hi,i,i = 0 . (B.12)

• Coefficients ofy3
i>n

Ai,i,i + Bi,i,i + Ci,i,i + ḟi,i,i = 0 . (B.13)

• Coefficients ofy2
i≤nyj≤n

(A + B + C + D + E + ḟ + G + h)τ(i,i,j) = 0 . (B.14)

whereτ(i, j, k) represents all the distinct permutations of(i, j, k), that is

Aτ(i,j,k),l = Ai,j,k,l + Ai,k,j,l + Ak,i,j,l + Ak,j,i,l + Aj,k,i,l + Aj,i,k,l

but

Aτ(i,i,j),l = Ai,i,j,l + Ai,j,i,l + Aj,i,i,l .
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• Coefficients ofy2
i≤nyj>n

(A + B + C + ḟ)τ(i,i,j) + (D + E)i,τ(i,j) + Gi,i,j = 0 . (B.15)

• Coefficients ofyi≤nyj≤nyk≤n:

(A + B + C + D + E + ḟ + G + h)τ(i,j,k) = 0 . (B.16)

• Coefficients ofyi≤nyj≤nyk>n

(A+B +C + ḟ)τ(i,j,k) +(D+E)i,τ(j,k) +(D+E)j,τ(i,k) +Gτ(i,j),k = 0 . (B.17)

• Coefficients ofy2
i>nyj≤n

(A + B + C + ḟ)τ(i,i,j) + (E + D)j,i,i = 0 . (B.18)

• Coefficients ofy2
i>nyj>n

(A + B + C + ḟ)τ(i,i,j) = 0 . (B.19)

• Coefficients ofyi≤nyj>nyk>n

(A + B + C + ḟ)τ(i,j,k) + (D + E)i,τ(j,k) = 0 . (B.20)

• Coefficients ofyi>nyj>nyk>n

(A + B + C + ḟ)τ(i,j,k) = 0 . (B.21)

Eqns. (B.12)-(B.21) allow us to solve forF2 (andF1 since they both verify the same

Hamilton-Jacobi equation, only the initial conditions being different). The process of

deriving equations for the generating functions can be continued to arbitrarily high order

using a symbolic manipulation program.
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APPENDIX C

THE HILL THREE-BODY PROBLEM

The three-body problem describes the motion of three point mass particles under their

mutual gravitational interactions. This is a classical problem that covers a large range of

situations in astrodynamics. An instance of such situations is the motion of the Moon

about the Earth under the influence of the Sun. However, this problem does not have a

general solution and thus we usually consider simplified formulations justified by physical

reasoning. In this dissertation we consider three simplifications that yield two different

models:

1. The circular restricted three-body problem: If one of thethree bodies has negligible

mass compared to the other two bodies (for instance a spacecraft under the influence

of the Sun and the Earth), it is rather obvious that its gravitational attraction has

very little effect on the motion of the other bodies. Ignoring the mass of this smaller

body yields the restricted three-body problem. If in addition one of the two massive

bodies is in a circular orbit about the other one, then we obtain the circular restricted

three-body problem [7].

2. The Hill three-body problem: The Hill three-body problemcan naturally be derived

from the circular restricted three-body problem by assuming that one of the two
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massive bodies has larger mass than the other one (the Sun compared to the Earth

for instance).

C.1 The circular restricted three-body problem

We consider the planar motion of a massless body (a spacecraft for instance) under

the influence of two massive bodies in circular orbit about each other. In the coordinate

system centered at the center of mass of the two massive bodies the Hamiltonian function

describing the dynamics of the massless body is:

H(qx, qy, px, py) =

1

2
(p2

x + p2
y) + pxqy − qxpy −

1 − µ
√

(qx + µ)2 + q2
y

− µ
√

(qx − 1 + µ)2 + q2
y

, (C.1)

whereµ = M2

M1+M2
, M1 andM2 are the mass of the two bodies withM1 > M2, qx = x,

qy = y, px = ẋ−y andpy = ẏ+x. In the above formulation we use normalized quantities,

distances are normalized with respect to the two massive bodies relative distance and the

time scale is such that the orbit period of one massive body with respect to the other one

is 2π. Then Hamilton’s equations of motion read:






































q̇x = px + qy

q̇y = py − qx

ṗx = py − (1 − µ) qx+µ
((qx+µ)2+q2

y)3/2 − µ x−1+µ
((qx−1+µ)2+q2

y)3/2

ṗy = −px − (1 − µ) qy

((qx+µ)2+q2
y)3/2 − µ y

((qx−1+µ)2+q2
y)3/2

(C.2)

There are five equilibrium points for this system, called theLibration points.

C.2 The Hill three-body problem

If one body has a larger mass than the other one, we can expand the equations of motion

aboutµ = 0. Then, shifting the coordinate system so that its center is the body with mass
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M2 << M1 yields Hill’s formulation of the three-body problem. The Hamiltonian for this

system reads:

H(q, p) =
1

2
(p2

x + p2
y) + (qypx − qxpy) −

1
√

q2
x + q2

y

+
1

2
(q2

y − 2q2
x) , (C.3)

and the equations of motion become:







































q̇x = px + qy ,

q̇y = py − qx ,

ṗx = py + 2qx − qx

(q2
x+q2

y)3/2 ,

ṗy = −px − qy − qy

(q2
x+q2

y)3/2 .

(C.4)

Among the5 equilibrium points identified in the circular three-body problem, only two

survive in the planar Hill formulation. Their coordinates are

L1(−
(

1

3

)1/3

, 0) andL2(

(

1

3

)1/3

, 0) .

Using linear systems theory, one can prove that the Libration have a stable, an unstable

and two center manifolds (Fig. C.1).

M2M1
L2L1

x

y

Stable manifold

Unstable
manifold

Center manifold

Figure C.1: The Libration points in the Hill three-body problem

To study the relative motion of a spacecraft aboutL2, we use Eq. (A.13) to compute
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Hh, the Hamiltonian function describing the relative motion dynamics.

Hh =
1

2
XT

h







Hqq(t) Hqp(t)

Hpq(t) Hpp(t)






Xh + · · · , (C.5)

whereXh =







q − q0

p − p0






=

(

∆qx
∆qy

∆px
∆py

)

, (q0, p0) = (
(

1
3

)1/3
, 0, 0,

(

1
3

)1/3
) refers to the state at

the equilibrium pointL2 and,

Hqq(t) =







1
(q2

0x+q2
0y)3/2 − 3q2

0x

(q2
0x+q2

0y)5/2 − 2 − 3q0xq0y

(q2
0x+q2

0y)5/2

− 3q0xq0y

(q2
0x+q2

0y)5/2

1
(q2

0x+q2
0y)3/2 −

3q2
0y

(q2
0x+q2

0y)5/2 + 1






,(C.6)

Hqp(t) =







0 −1

1 0






, (C.7)

Hpq(t) =







0 1

−1 0






, (C.8)

Hpp(t) =







1 0

0 1






. (C.9)

Substituting(q0, p0) by its value yields the expression ofHh at second order:

Hh =
1

2

(

∆qx ∆qy ∆px ∆py

)





















−8 0 0 −1

0 4 1 0

0 1 1 0

−1 0 0 1









































∆qx

∆qy

∆px

∆py





















. (C.10)
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At higher order, we find:

Hh =
1

2

(

∆qx ∆qy ∆px ∆py

)





















−8 0 0 −1

0 4 1 0

0 1 1 0

−1 0 0 1









































∆qx

∆qy

∆px

∆py





















+ 34/3∆q3
x −

37/3

2
∆qx∆q2

y − 35/3∆q4
x + 38/3∆q2

x∆q2
y −

38/3

8
∆q4

y · · · (C.11)

We point out thatHh is time-independent.

Finally, we give in the following table the values of the normalized variables for the

Earth-Sun system.

Normalized units Earth-Sun system

0.01 unit of length ←→ 21, 500 km

1 unit of time ←→ 58 days 2 hours

1 unit of velocity ←→ 428 m/s

1 unit of acceleration ←→ 1.38 · 10−5 m/s2
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ABSTRACT

THE HAMILTON-JACOBI THEORY FOR SOLVING TWO-POINT BOUNDARY

VALUE PROBLEMS: THEORY AND NUMERICS WITH APPLICATION TO

SPACECRAFT FORMATION FLIGHT, OPTIMAL CONTROL AND THE STUDY OF

PHASE SPACE STRUCTURE

by

Vincent M. Guibout

Co-Chairs: Daniel J. Scheeres and Anthony M. Bloch

This dissertation has been motivated by the need for new methods to address complex

problems that arise in spacecraft formation design. As a direct result of this motivation,

a general methodology for solving two-point boundary valueproblems for Hamiltonian

systems has been found. Using the Hamilton-Jacobi theory inconjunction with the canon-

ical transformation induced by the phase flow, it is shown that generating functions solve

two-point boundary value problems. Traditional techniques for addressing these problems

are iterative and require an initial guess. The method presented in this dissertation solves

boundary value problems at the cost of a single function evaluation, although it requires

knowledge of at least one generating function. Properties of this method are presented.

Specifically, we show that it includes perturbation theory and generalizes it to nonlinear



systems. Most importantly, it predicts the existence of multiple solutions and allows one

to recover all of these solutions.

To demonstrate the efficiency of this approach, an algorithmfor computing the gen-

erating functions is proposed and its convergence properties are studied. As the method

developed in this work is based on the Hamiltonian structureof the problem, particu-

lar attention must be paid to the numerics of the algorithm. To address this, a general

framework for studying the discretization of certain dynamical systems is developed. This

framework generalizes earlier work on discretization of Lagrangian and Hamiltonian sys-

tems on tangent and cotangent bundles respectively. In addition, it provides new insights

into some symplectic integrators and leads to a new discreteHamilton-Jacobi theory. Most

importantly, it allows one to discretize optimal control problems. In particular, a discrete

maximum principle is presented.

This dissertation also investigates applications of the proposed method to solve two-

point boundary value problems. In particular, new techniques for designing spacecraft

formation flight, reconfiguring a formation, and searching for stable configurations in a

general dynamical environment are presented. In addition,the present work allows one

to reduce the search for periodic orbits with specified periods or locations to solving a set

of nonlinear equations. Finally, a novel approach for solving optimal control problems is

derived and applied.


