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The long-term dynamics of Near-Earth Objects (NEOs) are driven by the secular perturba-
tions of the solar system and the presence of planetary close encounters. Close encounters with
the inner solar system planets cause the orbits of NEOs to become chaotic, thus we study their
long-term evolution stochastically. We combine analytical solutions of the long-term secular per-
turbations with the numerical evaluation of close encounters, allowing the rapid propagation of
NEO orbit trajectories. Using the semi-analytical propagation tool we obtain statistics of the orbit
long-term dynamics, characterizing their stochastic behavior.

Many of the physical properties of NEOs evolve over time. This evolution is usually coupled
with the orbit evolution through close encounters, long-term effects, or at least conditioned by the
location of the asteroid within the solar system. Planetary close encounters excite the relative
orbits of binary asteroids. Using the semi-analytical propagation we gather statistics of the close
encounters. Combined with models for the excitation of binaries we compute the probability of
experiencing encounters that disrupt binary systems. We conduct this analysis for the NASA Janus
and NASA/APL DART mission targets.

The rotational state of asteroids evolves under thermal torques or YORP effect. This effect
depends on the obliquity, the angle between the spin pole and the orbit plane. YORP theories
predict that the spin poles is torqued into equilibrium obliquities of 0, 90 or 180 degrees. Modeling
the obliquity component of the torque while propagating the orbit with the semi-analytical model
we obtain oscillations in obliquity that are near but offset from the equilibrium configurations.

We characterize the long-term impact hazard of asteroids by propagation of the Minimum
Orbit Intersection Distance (MOID). The MOID limits the closest encounters that can occur and

its uncertainty grows much slower than the overall uncertainty in the position of asteroids. Thus,



iii
we can extend the timescales of typical impact characterization analyses. We combine analytical
estimates of the intrinsic probability of collision with the propagation of the orbits to rank the
km-sized NEO population and PHAs, large asteroids (H < 22) currently with an Earth MOID
< 0.05au.

The analytical theories of planetary close encounters assume a constant MOID to find key-
holes, regions that lead to a future impact. We analyze different models for the evolution of the
MOID as corrections to the analytical theory. We find that the short-period oscillations and shallow
encounters play a significant role in the definition of keyholes, as the variations can be in the order

of tens of Earth Radii in a few years.
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Chapter 1

Introduction

The study of asteroids is an opportunity to learn about the origin of the solar system as
they are remnants of primordial planetary formation. In addition, asteroids are considered as
potential resources for space exploration. More existentially, the risk of a natural disaster by an
asteroid impact can be mitigated if properly characterized. All of these opportunities are more
or less accessible to humankind depending on the orbits of the asteroids. Near-Earth objects (or
NEOs, asteroids or comets with ¢ < 1.3 au) are the most accessible, and have been explored from
ground-based telescopes, space-based telescopes and in-situ exploration missions, both as flybys
and rendezvous missions.

From less than a 1000 NEOs being discovered in the 20th century, as of 2023 there are 32,000
discovered NEOs, with half of them being discovered in the last 6 years. Figure[I.I]shows the current
estimated completeness of the NEO catalog as function of size. The kilometer-sized population is
believed to be almost completely discovered, whereas the 140 m of diameter population is roughly
40% discovered. At even smaller sizes, the percentage is greatly reduced because of the difficulty
to discover such faint bodes. The frequencies of impacts from asteroids that are km-sized, 140 m,
or 50 m, is respectively of ~1 million years, 20,000 years and 1000 years.

The next generation of surveys is expected to increase the total number of NEOs by another
order of magnitude [Jones et al., 2018], which will multiply these opportunities for humanity. The
rapid analysis of the impact hazard and the detection of relevant scientific assets will be more

necessary as these new generations of datasets become available to the community.



km-sized (95%) 140 m (40%) 50 m (7%)

OO

Figure 1.1 Discovery rates of NEOs by size. Source: NASA and FEMA Planetary Defense TTX4
Read-ahead materials, February 2022.

1.1 Orbit long-term dynamics of NEOs

One of the main characteristics of the orbits of near-Earth asteroids is that they experience

planetary close encounters while being drifted by secular perturbations [Michel et al.,[1996b]. Plan-

etary close encounters have a variety of effects: from abrupt changes in the orbits to changes in
the physical properties such as their spin states, the relative orbit of binary asteroids or changes

in their surfaces. The changes due to planetary close encounters are very sensitive to the initial

conditions, i.e., predictions of the past or future evolution can become chaotic |[Tancredi, 1998].

After many planetary close encounters the orbits of near-Earth asteroids become stochastic and
must be studied statistically. For example, the origin of asteroids coming into the inner solar sys-
tem is expressed by the probability of the different source regions over millions of years [Granviki

, 2018[; or the probability of an Earth collision is obtained as the result of large Monte Carlo

simulations from the uncertainties of their orbits [Chamberlin et al., 2001} Roa et al., [2021].

The orbital motion of near-Earth asteroids is driven by different dynamical effects, which
dominate in different timescales. Asteroids move under the gravitational force of the Sun and, in
general, the long-term perturbations are dominated by the gravitational forces of the gas giants.
The secular components of these contributions are characterized by cycles of ~100,000 years, which
define hundreds-to-thousand year windows when close encounters with the terrestrial planets are
possible. In the NEO regime and these timescales, smaller force contributions such as the Yarkovsky
acceleration can be shadowed by the stochastic growth in uncertainty. However, these must be

considered in short-term timescales of decades-to-hundreds of years.



These dynamical effects define the orbit propagation tools that can be used to predict the
past or the future evolution of near-Earth asteroids. These range from the highest fidelity in
numerical integration for precise probability of collision predictions [Farnocchia et al., |2015] to
analytical estimates [Opik, 1951, \Wetherill, [1967]. The amount of information required also ranges
from spacecraft in-situ measurements to only a few ground-based astrometric observations, as well
as the computational expense of producing such predictions.

The orbits of NEOs are poorly determined far from the observation dates because of the
sensitivity of the orbits to planetary close encounters. The uncertainty grows the largest along the
direction of motion, meaning that the future position of the asteroid along its orbit is the hardest
to determine. This justifies models for the uncertainty like the line-of-variations |[Milani et al.,
2005l Del Vigna et al., 2020|, in which the uncertainty is sampled alone a 1-D line that captures
the spread along the orbit. However, the variation of the heliocentric orbit is not expected to be

as large in the absence of deep planetary close encounters.

1.2 Planetary close encounters and impact hazard

The conditions for an impact between two objects can be split in two: first, the orbits of
the two must intersect; then, they must meet at the intersection point at the same time. Given
the first condition, a very useful metric is the Minimum Orbit Intersection Distance (MOID), the
minimum distance between any two points of the orbits of the two bodies. Thus, it indicates the
closest possible encounter between them.

Figure illustrates these two conditions. First, we need the MOID to be smaller than the
radius of the Earth with any gravitational focusing factor. The snapshot of the orbit of 2008 TC3
is shown 2 months before its Earth impact and disintegration over the desert of Sudan [Jenniskens
et al.| 2009]E] This was the first time in history that an asteroid was discovered prior to its Earth

impact, a situation that has been repeated 6 times since.

1 Snapshot generated using JPL’s Small-Body Database Lookup Tool - Available online at ssd.jpl.nasa.gov/
tools/sbdb_lookup.html


ssd.jpl.nasa.gov/tools/sbdb_lookup.html
ssd.jpl.nasa.gov/tools/sbdb_lookup.html

MOID(t)

Figure 1.2 Necessary conditions for a collision. Orbit of 2008 TC3 2 months before Earth impact.
Source: JPL’s Small-Body Database Lookup.

The MOID is currently used to catalog asteroids that are close enough to the Earth to be
considered a potentially hazardous or PHA (MOID < 0.05 au). The other condition is that they
must be large enough to cause regional damage in case of an Earth collision (H < 22, ~140 m).
There are a few algorithms in the literature to compute the MOID [Gronchi, 2005, [Hedo et al.,
2018, Wisniowski and Rickman) 2013]. The evolution of the MOID has been studied in the past
for the double averaged 3BP and focusing on the regularization of the evolution when it comes to
0 |Gronchi and Tardioli, 2013, |Gronchi and Tardioli, [2011].

The mitigation of the hazards of asteroid impacts is the main goal of planetary defense efforts.
The main planetary defense efforts are in asteroid surveying, characterization and deflection. As
the near-Earth asteroid catalog is being completed by current and proposed surveys, they provide
new candidates of a future collision to study in more detail. Once new observations of NEOs
become available, their probability of collision is computed typically for 100 years and made publicly
available [Roa et al.,[2021]. During a planetary close encounter, asteroids can cross keyholes, regions
that lead to a future collision or deep encounter [Chodas| [1999]. The analytical theories to compute
the location of keyholes typically assume the MOID to be constant between encounters [Valsecchi
et al., 2003].

In long-term predictions the fast angles become completely unknown. Thus, it is common
to model them with a uniform distribution. The latter assumption is frequently used to compute

probabilities of collision in the order of magnitude of the lifetimes of near-Earth asteroids, which



are on the order of millions of years[Vokrouhlicky et al., [2012, [Pokorny and Vokrouhlicky, 2013,

JeongAhn and Malhotraj, 2017].

1.3 Physical properties of NEOs

The physical properties of NEOs can be used to constrain the orbit history of NEOs. For
example, the cratering history informed of the lifetime of the NEO [Ballouz et al., [2020]. Figure[1.3]
shows physical properties of binary asteroid system Didymos. The spin state can be characterized by
the rotational angular momentum or spin pole and spin rate. Mission NASA /JHAPL DART allowed
to briefly observe the shape and surface of Dimorphos, the secondary or satellite of the Didymos
system. All of these properties are subject to impulsive excitation during very close planetary close
encounters. In addition, some of them also evolve coupled to the long-term dynamical evolution of

the orbit.

Dimorphos

Didymos

Figure 1.3 Didymos system as imaged by DART. Credit: NASA, JHUAPL.



Asteroids in the inner Solar System experience accelerations and torques as a result of solar
radiation pressure, thermal absorption and re-emission. The resulting acceleration from thermal
radiation and re-emission is called Yarkovsky effect. The resulting torque is the YORP effect

(Yarkovsky—O’Keefe-Radzievskii-Paddack), usually assumed as the resultant torque from solar

radiation pressure applied on the surface with negligible thermal inertia [Vokrouhlicky et al.l 2015].

Both Yarkovsky and YORP effects depend on obliquity, the angle between the orbit normal and

rotational angular momentum. Measuring the Yarkovsky acceleration can be one of the main

factors for impact hazard characterization [Farnocchia et al., 2021} [Farnocchia and Chesleyl, |2022].

The YORP effect has many influences in the physical properties of asteroids: as asteroids spin

up, particles can be ejected, satellites can be formed, contact binaries can experience a fission into

binary asteroids, or the asteroid can be completely disrupted [Walsh et al. 2012, [Scheeres, 2007,

\Sdnchez and Scheeres| 2016]. The effects of the spin-up can be observed in the surface by effects

such as the change in slopes [Bottke et al., 2006] or generation of cavities [Tardivel et al., 201§].

In addition, the rotational accelerations can give information of the internal structure of asteroids

[Scheeres et al., 2007, [Scheeres and Gaskell, 2008, Lowry et al. 2014], and change the dynamical

environment around asteroids [Brown and Scheeres| [2023]. Binary asteroids also experience secular

variations in their orbit, in what is called Binary YORP or BYORP [McMahon and Scheeres| 2010].

The relative orbits of binary asteroids are sensitive to the perturbations, such as planetary

close encounters. This sensitivity makes them good test cases for a planetary defense missions such

as NASA/JHAPL DART |Rivkin and Cheng, 2023|, which measured the change in the relative

orbital period after a spacecraft kinetic impact. We also find binary asteroids in nature that are in

a chaotic spin-orbit state, such as (35107) 1991 VH [Pravec et al., 2016} Scheeres et al., 2020].




1.4 Outline

1.4.1 Thesis Statement

The semi-analytical propagation of Near-Earth Objects (NEOs) orbits will allow a fast and
accurate description of their long-term dynamics as driven by planetary secular perturbations and
close encounters. The characterization of planetary close encounters and their frequency will im-

prove our understanding of the evolution of their physical properties and hazardous nature.

1.4.2 Dissertation Overview

Chapter [2| describes the semi-analytical orbit propagation tool developed in this dissertation.
We compare the propagations using this tool to numerical integration to define a range of applica-
bility and performance. Then, in Chapter 3| we apply it to the study of binary asteroids considering
the changes in the orbits of binaries during close encounters. In Chapter [4] we propagate the orbits
of asteroids and introduce torques to the rotational angular momentum. This study allows us to
model the disturbed equilibrium at which we find the obliquities of near-Earth asteroids. Next,
we explore planetary defense applications by studying the hazardous nature of asteroids on two
different timescales considering different models for the long-term dynamics of the MOID. First,
in Chapter b, we find the hazardous km-sized NEOs of the next thousands of years proposing a
new metric to rank NEOs by their long-term impact hazard probability. Then, we visit the PHA
definition to highlight the dynamical nature of this metric in centuries-to-thousands of years. In
Chapter |§| we aim to extend analytical Opik theory of close encounters to find keyholes. We inspect
the variation of the MOID between encounters, in timescales of decades. Last, we present our

concluding remarks in Chapter [7}

1.4.3 Contributions

In this dissertation we developed a semi-analytical propagation tool to rapidly generate time

histories of the orbits and close encounters experienced by near-Earth objects. Then, we combine



this information with models for the evolution of physical properties of asteroids. We study the
evolution of the Earth MOID as a tool for impact hazard characterization. Overall, in this disserta-
tion we made contributions to the fields of astrodynamics, planetary science and planetary defense,
as described next:

In chapter [2| we present a novel propagation tool that allows us to gather statistics of the
orbit evolution of near-Earth asteroids in similar fashion as numerical integration, but in a small
fraction of the computational time. The computational speed-up propagating 1 particle is found
to be of x500-x1000. This allows a flexible use of the tool to gather statistics of close encounters at
the desired timescales without having to assume a constant distribution from the asteroid’s proper
elements or distribution of orbits in its lifetime.

In chapter [3] we demonstrate this approach to compute probabilities of close encounters in
thousands of years for a few binary asteroid systems. This prediction in intermediate timescales
is needed if the excited state of binary systems was to be caused by close encounters, as in longer
timescales these perturbations can dissipate. These methods provide a time-varying distribution
of encounters beyond assuming the initial orbit elements or the whole lifetime. This allows us to
better understand the recent encounter history of asteroids.

Throughout this dissertation we contributed to the general knowledge of the growth in un-
certainty in the orbit of NEOs. In chapters [2 and [3] we show how a random walk can be assumed
for semi-major axis, eccentricity and inclination with different timescales depending on the loca-
tion in near-Earth space. In addition, many analytical theories in the literature assume a uniform
distribution of the mean anomaly of the asteroid to compute a probability of collision. In chapter
we study how the uncertainty grows from the deterministic part of the propagation all the way
to being uniformly distributed. This method bridges the gap between analytical long-term theories
and deterministic hazard characterization thanks to the propagation of the MOID between these
timescales.

Analytical theories of the evolution of the spin state of asteroids suggest that the obliquities

of asteroids under YORP torques go to 0, 90, or 180 deg. In chapter [4] we model the obliquity



component of these torques and predict an offset from equilibrium as more frequently observed
in nature. This is a step in the realistic modeling of the long-term dynamics of the spin state of
asteroids. The spin rate components of these torques are left as future work.

Chapters [5] and [6] describe our contributions to planetary defense, built on the time propa-
gation of the MOID. The evolution of the MOID was modeled on an individual case basis in the
literature. In addition, operational impact monitoring systems typically characterize the hazard
for 100 years. Our estimated probability of collision allowed us to rank the km-sized population
and to highlight how the PHA category, that assumes a constant MOID threshold, will vary over
time.

In chapter [6] we explore the problem of finding keyholes via the exploration of the B-plane.
The Opik theory of resonant close encounters assumes a constant MOID (€) between encounters.
We use the models of chapter 2] as corrections to the theory to model the change in MOID between
encounters. In this process we provide novel insight into the dynamics of the MOID. For example,
by quantifying the secular rate in the MOID, the amplitude of short-period components, or how
the MOID varies along a resonant circle or across the B-plane. These contributions extend the

insight of analytical theories for a fast assessment of the hazard of resonant encounters.

1.4.4 Publications

Journal Publications

This dissertation is comprised of the following publications:

e Fuentes-Munoz, O., Meyer, A. J., & Scheeres, D. J. (2022). Semi-analytical near-Earth
objects propagation: the orbit history of (35107) 1991 VH and (175706) 1996 FG3. The
Planetary Science Journal, 3(11), 257. https://doi.org/10.3847/PSJ/ac83c6 - [Fuentes-

Munoz et al., 2022]

e Fuentes-Munioz, O., Scheeres, D. J., Farnocchia, D., & Park, R. S. (2023). The hazardous
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e Richardson, D.C., Agrusa, H.F., ..., Fuentes-Munoz, O., ..., Tsiganis, K., & Zhang, Y
(2022). Predictions for the Dynamical States of the Didymos System before and after the
Planned DART Impact. The Planetary Science Journal, 3(7):157, https://dx.doi.org/

10.3847/PSJ/ac76c9 - [Richardson et al., [2022]

In addition, the following publications are currently in review or preparation:

e Fuentes-Munoz, O. & Scheeres, D. J. The disturbed equilibrium of NEA obliquities under

stochastic orbital motion (In preparation)

o Fuentes-Mutioz, O., Pedrés-Faura, A., Amato D., Scheeres, D.J., McMahon J.W. Effect of

MOID evolution on preliminary keyhole analyses (In preparation)

Conference Papers

e Fuentes-Munoz, O. & Scheeres, D.J. (2022). On the long-term hazardous nature of NEOs,
AAS 22-672. 2022 AAS/ATAA Astrodynamics Specialist Conference. August 2022. -

[Fuentes-Munoz and Scheeres, 2022]

e Fuentes-Munoz, O., Pedros-Faura, A. & Amato, D. (2021). Effect of non-Keplerian MOID
evolution on preliminary keyhole analyses. 7th TAA Planetary Defense Conference. April

2021. - [Fuentes-Munoz et al., 2021]

e Fuentes-Munoz, O. & Scheeres, D.J. (2020). Secular Evolution of the MOID for Near-Earth
Objects, AAS 20-584. 2020 AAS/ATAA Astrodynamics Specialist Conference. August

2020. - [Fuentes-Munoz and Scheeres, 2020a]
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e Fuentes Munoz, O. & Scheeres, D.J. (2020). Extremely long-term asteroid propagation,
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Chapter 2

Semi-analytical Orbit Propagation

2.1 Introduction

The long-term study of asteroid orbits has been achieved in the past using a wide variety
of analytical, semi-analytical and numerical methods. Analytical methods are based on the study
of the gravity potential to obtain secular and resonant perturbations [Milani and Knezevic, |1990].
Semi-analytical methods are used to map orbital elements to the locations of linear secular res-
onances, which are resonances involving one planetary and one asteroid frequency [Michel et al.,
1997, Michel and Froeschlél 1997]. Both types of solutions represent the dynamics of asteroids in
the absence of planetary encounters by averaging the perturbing potential.

On the other hand, previous studies focus on the accumulation of planetary encounters in
contrast to numerical integration |[Dones et all 1999]. The effect of close encounters on the orbit
of asteroids can be computed using analytical [()pik, 1976|, semi-analytical or numerical methods.
Semi-analytical solutions [Alessi and Sanchezl, 2015] allow the computation of flybys treating the
planet as a perturbing force in the Lagrange Planetary Equations. Specific numerical integrators are
convenient to propagate orbits of asteroids in the long-term, in which symplecticity is desired along
with the capacity to accurately solve close encounters [Wisdom and Holman) 1991, Chambers, |1999].
Under multiple resonances asteroids start to encounter planets while their eccentricity increases.
This increase often causes the asteroids to eventually collide with the Sun, planets or to be ejected
from the Solar System on a hyperbolic orbit [Farinella et al., 1994, |Gladman et al., |1997, Milani

et al., (1989, Dones et al., 1999, Michel et al., [2005].
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In this chapter we aim to provide a simulation framework for the propagation of particles in
the Solar System. Our approach consists in the analytical propagation of the particle until a close
encounter is found. The propagation is stopped when the trajectory is close to a planet, then the
close encounter is evaluated numerically. The evaluation of the encounters is based on a quadrature
of the Lagrange Planetary Equations (LPE) around the closest approach date. After the encounter
the analytical propagation of the orbit is resumed. The propagation under secular perturbations
provides a realistic prediction of when the next encounter can occur as the orbit of the asteroid
drifts between different regions of the inner Solar System. This approach reduces substantially the
computational time of solutions obtained entirely by numerical integration while providing deeper
insight into the dynamics.

The use of the analytical secular model allows the prediction of long-term properties of the
asteroid dynamics. Eccentricities, inclinations and angles of asteroid and planets drift secularly.
Thus, we can propagate the minimum orbit intersection distance (MOID). The MOID constrains
the minimum closest approach distance between the asteroid and the planets and defines if asteroids
are potentially hazardous (PHAs). The long-term dynamics of the orbits of NEOs and the MOID
are studied by sampling a large number of virtual asteroids from their uncertainty distributions. We
use the semi-analytical propagation of these asteroids to show the stochastic nature of the orbital
evolution of NEOs.

This chapter is organized as follows. Section [2.2] provides additional background of the long-
term dynamics of NEOs in the inner Solar System. Next, section [2.3] describes the propagation
methodology including a detailed study of flybys evaluation and the derivation of an analytical
N-body secular problem solution. Section shows examples of the long-term propagation of
asteroids and how the long-term dynamics can be characterized stochastically. Section [2.5]discusses
the limitations of the semi-analytical propagation tool. Last, section [2.6] concludes by evaluating
the aspects in which this methodology proves beneficial, questions that remained unanswered, and

future work with respect to the orbit propagation methodology.
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2.2 Background

The long-term dynamics of NEOs are governed by their gravitational interactions with the
other bodies of the Solar System. The effects of the most massive and external planets have
timescales of millennia. However, planetary close encounters can abruptly change an orbit over a
timescale of days. The accumulation of such planetary encounters causes the orbits of NEOs to be
chaotic [Tancredi, 1998]. This section describes this phenomenon in more detail. The evaluation
of close encounters is necessary for the propagation of NEOs, hence the variety of possible flybys
is demonstrated later for the validation of the method.

Many asteroids experience long periods of time without flybys. The dominant dynamics
in those periods of time are the secular perturbations from massive planets in the Solar System.
Likewise, the orbits of the planets evolve secularly over similar timescales. The Laplace-Lagrange
secular theory qualitatively describes the evolution of the elements of the planets at any distant time
in the future or past. As for the asteroid, the secular solution from external perturbers represents
the orbital dynamics of asteroids between encounters.

The presence of repeated encounters is one of the main characteristics of the long-term prop-
agation of asteroids in the inner Solar System. Repeated close encounters cause a random walk in
the elements of the asteroids. Very close encounters occur less frequently but change substantially
the orbits of NEOs, modifying predictions on the long-term evolution of their orbits. Thus, we
propose an informed analytical propagation of the orbits while characterizing planetary close en-
counters. The proposed methodology is born from the combination of these two dynamical regimes:
the long-term effects of secular dynamics and the frequent changes in elements experienced in plan-
etary encounters. Considering the secular drift of the asteroid we model the seasonal variation of

the possible encounters with planets.
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2.2.1 Chaotic dynamics in the inner Solar System

An accurate description of the evolution of orbits of near-Earth asteroids beyond a few

centuries is challenging. This is because the succession of planetary encounters disperse neighboring

trajectories to become chaotic [Tancredi, 1998]. Small deviations in the orbital period change the

timing of the flybys, spreading the uncertainty along the Line of Variation [Milani et al. |2005].

After successive flybys the resulting imaginary stream of particles is spread in highly non-linear
distributions. For this reason the study of long-term dynamics is often left to a statistical analysis
requiring a large number of particles and computational efforts. In this context we propose the use

of this semi-analytical tool to obtain long-term simulations in short computational times.
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Figure 2.1 Chaotic dynamics of (35107) 1991 VH as obtained from numerical integration.



16

We exemplify the sensitivity to initial conditions in a numerical integration of asteroid (35107)
1991 VH, which is one of the two targets of mission Janus [Scheeres et al.,[2020], a NASA SIMPLEx
mission. Figure shows 1440 particles generated from the uncertainty in the orbit solution of
(35107) 1991 VH, which is included in appendix These particles are propagated in the N-
body integrator IAS15 [Rein and Spiegel, [2014] including the Solar System planets from Venus to
Neptune. The particles are propagated for a million years, although in this section we study in
more detail the distributions after shorter periods of time. Each axis represents the variation from
the initial value of elements pairs: (left) semi-major axis-eccentricity, (center) semi-major axis-
inclination, (right) argument of the node-argument of perihelion in degrees. The orbital evolution
is shown at four instants of time: initial (first row), after 500 years (second row), after 5000 years
(third row) and after 1 million years (bottom).

After 500 years the initial normal distribution already becomes a stream of particles. While
the variation in the elements from the nominal is similar for all the particles, there is a dispersion
orders of magnitude smaller that represents the stream of particles. After 5000 years, the distri-
bution becomes completely different: the presence of planetary encounters disperses the particles
around the initial orbit. The variation in eccentricities and inclinations has a secular component.
However, the variation on the argument of the node and argument of perihelion is dominantly
secular after a few millennia. After a million years, the particles are spread along a large region of
near-Earth space. In argument of perihelion and ascending node we observe that the distribution
becomes almost uniform in the whole 2D angular space.

The secular drift in the arguments defines the possibility of encounters over time. For this
reason, it is important to characterize this drift and the secular cycles under the perturbation of
the large bodies of the Solar System. When encounters are possible with the inner Solar System
planets, these need to be accounted as perturbers of the orbit evolution.

The stochastic nature of the long-term dynamics of NEOs under close encounters implies that
the precise determination of their position after hundreds of thousands of years is unachievable.

However, we can still collect statistics that give us insight on their orbital history. Another impli-
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cation is that the inclusion of higher order dynamics is shadowed under the stochastic dispersion
caused by the main gravitational perturbations. For example, the magnitude of the Yarkovsky
effect is typically 10~* au/Myr [Vokrouhlicky et al., 2000, Nesvorny and Bottke, 2004], which is
still two orders of magnitude smaller than a typical dispersion after 10,000 yr under repeated close
encounters, as observed in the example of Figure In section we show that (35107) 1991
VH is not under a particularly high frequency of close encounters compared to other NEOs.
Similarly, relativistic effects can have a non-negligible effect in the secular rates of the ar-
gument of perihelion. These are usually measured in arcseconds per year or century, and typical
values are 1-2 orders of magnitude smaller than the typical secular periods of the order of 100,000
years |[Benitez and Gallardo, 2008]. Even if the secular rate has an error, the presence of encounters
already causes the distributions to become uniform in argument of the node and perihelion after a

few secular periods.

2.2.2 NEO close encounters in the inner Solar System

Flybys can occur with multiple planets over short periods of time. Even if the encounters are
with the same planet, the closest approach distance and relative velocities can change depending
on the timing of the flyby. The geometry of the flyby is constrained by the heliocentric elements of
the asteroid. If shallow encounters are considered, the position in the asteroid orbit in which the
planet is encountered can significantly change the relative velocity. These variations are not well
captured by analytical theories, but the proposed propagation tool aims to accurately model these
variations. These are different regimes of flybys in which the evaluation tool needs to be accurate.

In order to broadly show the diversity in flybys that different NEOs experience, we generate
a list of flybys that will be used to validate the evaluation of close encounters. From the database
of NEOs we select the ones with semi-major axis smaller than 2 au [JPL Solar System Dynamics
and Center for NEO Studies (CNEOS), 2021]. Then, we propagate their positions using the secular
model for 50 years. For such a brief period of time the change in the elements is insignificant for our

purposes. Figure shows more than 30,000 flybys generated with the described method, with the



18

70T 701 70 1
++ ++ Lt + $+
L + W T L + P + L
60 +h +F +++# + f 60 P :¢+ + :— i 60
* + % + ¢++ * + + 4+ + I+
50 oAt st 50 Wi 50 |
+
> o
T 40 40 {# . 40¢
~ g
=3 .
JE 30 30 30t

20

10 1 44

| ! 2 % “ o o1, 0 ) | | | | 0 o 1 | { |
0 0.05 0.1 0 15 30 45 60 0 025 05 075 1
Dmin (au) Inclination (deg) Eccentricity

Figure 2.2 Relative velocity at closest approach of flybys generated from the propagation of NEOs.

symbols indicating the planet that the asteroid is encountering. The relative velocity is function of
the closest approach distance (au), inclination (deg) and eccentricity. Shallow encounters are much
more frequent than the very close encounters that cause large variations in orbit elements. Thus,
we want to consider them even if their individual contribution is not as significant.

The range of possible relative velocities in figure depends on the planet in question,
with increasing maximum relative velocity for the planet closest to the Sun. The relative velocity
is defined by the heliocentric orbit of the asteroid, with an increasing range of possible values
depending on the inclination and eccentricity of the orbit. Overall, after millions of years asteroids
experience a variety of encounters that can be computed with different methods. With this purpose
the list of generated flybys is used to decide the method to compute the post-encounter elements
of flybys. In section we compute the error of different close encounter evaluation methods

referenced to numerical integration of the trajectories.
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2.3 Methodology

This semi-analytical propagation tool consists in the following process. First, the orbit of the
asteroid is propagated by an analytical secular solution. This perturbed motion is interrupted when
an encounter is found with a nearby planet. Then, the trajectory during the planetary encounter is
modeled using a numerical method. Next, the secular propagation is continued until the subsequent
encounter.

The simplest way to find encounters is to track the distance between the asteroid and planets
at all times. While the regions in which encounters are possible are determined by the geometry
of the asteroid around the central body, searching at all times is the most generic approach. The
state of the planets is obtained from the secular solution of the 8 main planets interacting with
each other. The state of the small body is corrected given the secular dynamics model. Once we
determine the initial conditions of the encounter, the change in orbit elements is computed through
the proposed numerical procedure.

There are many methods to compute planetary encounters available in the literature. Ana-
lytical solutions for Keplerian elements before and after close encounters in Opik’s Theory [Opik,
1976] were extended for multiple applications by [Valsecchi et al.| [2003, 2015]. However, these ana-
lytical expressions are constrained to encounters that are very close and small bodies that are not
co-moving with the planet. Asteroid and planet are co-moving when they have a small inclination
and at least one of the node crossings close to the planet orbit.

We name shallow encounters those with large close approach distance but non-negligible
effects. Shallow encounters are more frequent and influence the long-term evolution of small bodies
in the Solar System. In order to account for shallow encounters, semi-analytical methodologies can
be used to map before and after encounter conditions [Alessi and Sanchez, |2015]. These methods
are based on the quadrature of Lagrange Planetary Equations around the encounter. In this work
we derive a quadrature of Lagrange Planetary Equations in Delaunay elements which is solved

using a numerical integration scheme. In the case of extremely close or slow encounters we solve
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the planetary close encounters using numerical integration.

Once the solution of most encounters is obtained satisfactorily we focus efforts in the compu-
tation of the perturbed motion of the asteroid in absence of encounters. We evaluate the solution of
N-bodies interacting secularly to generate the orbits of the planets. Then, we obtain the perturbed
motion of the asteroid including only the planets relevant to its secular influence. Taking into
account the influence of only Jupiter is a valid generic approach to estimate the secular dynamics
of NEOs [Vokrouhlicky et al., 2012, Pokorny and Vokrouhlicky), 2013, [Fuentes-Munoz and Scheeres|,
2020a]. In this work we use the Laplace-Lagrange secular model. The secular rates as obtained by
the analytical theory are compared to numerical integration to validate the range of validity of the
solution. This defines a range of applicability of the tool, as we discuss later.

In this section we compare the individual pieces of the semi-analytical propagation tool
to numerical methods. Last, we compare the combined semi-analytical propagation tool with
trajectories obtained through numerical integration and evaluate the computational efficiency of

the method.

2.3.1 Analytical secular dynamics of multibody systems

The dynamical landscape of the Solar System is complex with gravitational interactions be-
tween all planets. This landscape leads to resonances and secular motion in asteroids in the system.
Well inside the inner Solar System, the dynamics are dominantly secular. The secular solution of
a planetary system formed by N-planets can be obtained analytically to first order in inclinations
and eccentricities and in the absence of resonances. This section derives an implementation of
the solution following the procedure in Chapter 7 of Murray and Dermott| [2000]. The perturbing
potential is written for the IV bodies considered. Then Lagrange Planetary Equations are used to
compute the equations of motion of the elements of each particle, leading to a system of differential

equations solved simultaneously.
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The secular model is obtained as follows: (1) The perturbing potential is split in a direct
part and an indirect part based on the dependency on fast angles, (2) then the perturbing potential
is expanded in Keplerian Elements. (3) The important terms of the expansion are selected based
on the averaging principle. (4) The terms are rewritten in semi-equinoctial elements to ease the
solution of the global system of equations. (5) Take the necessary partials to solve the set of
Lagrange Planetary Equations. The perturbing potential experienced by a mass j by a second
mass k is:

Gmy, (

Rjr = — (Rjkp + Rjk[) (2.1)

Where ay, is the semi-major axis of body the external body. The perturbing potential is separated

in the direct Rji, and indirect R, parts:

ag a% ’l"j Tk

Rikp = Ir; — Tk‘i Ry = _aj \T‘HS (2:2)
The separation is convenient to expand in the ratio of semi-major axes «;; as well as sines and
cosines of {w;, 2, \j, Wk, Q, Ak, }. The ratio of semi-major axes is o, = a;/ay if the perturber is
external, or aj, = aj/ay if the perturber is internal. All the terms that depend on the longitudes
{A, A} are of short-period, so it can be argued that they do not contribute to the averaged potential

R;. The secular potential lowest order in eccentricities and inclinations is:

N
1
R;=Ryp;+ Ry; = Z Gmkﬁbg(})g (Oéjk) + Ry (2.3)
k=1k#] F

1 1 ol
Rl,j = nja? 5Ajj€? + §Bjj1]2 + Z Ajkejek cos (wj — wk) + BjkIjIk cos (Qj — Qk) (2.4)

k=1

k#j

Where @;i, = a;/ay, if the perturber is external, or a;, = 1 if the perturber is internal. The

coefficients A;;, Aji, Bj;, Bjj are:
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where the coeflicients bg ’ are Laplace Coefficients. More details on their computation can be found
in Appendix @ The coefficients A;;, A, Bjj, Bji form the matrices A and B. We can rewrite the

potential in semi-equinoctial elements,

hj :ejSiIle' bj :Ij Sian
(2.9)
k; = ej cosw; qj = Ijsin€);
the potential becomes:
1 1 al
Ry ; = nja; §Ajj(hf +k7) + §Bjj(p§ +@)+ D Agelhh + kiki) + Bjk(pipr + q5ax)
k=1,k#j
(2.10)

Our complete set of states includes the mean anomaly at epoch o; and L; = \/GMa;. The

equations of motion become:

.1 OR . 1 OR, . OR
T ngad gy T nad Ok - doy (2.11)
.1 R, L1 08 . _ OB
qJ N nja? Bpj 7 nja? 8hj 7 8Lj

The solution of hj, kj, pj, q; only depends on R ;. For this reason the perturbing potential is
often only expressed with those components. However, if we want the solution of the mean anomaly

at epoch o; it is necessary to take into account Ry ;. In the process of averaging the terms that



23

would effect the semi-major axis are removed, meaning that under this assumption that element

remains constant. The solution of hj, k;, p;, q; is:

N N
hj(t) = Zeji sin (git—i—ﬁi) pj(t) = Z[j,’ sin (fit"i‘%)
= =1 (2.12)
N N
kij (t) = Z €53 COS (git + ﬂz) q; (t) = Z Iji CcoS (fﬂf + 'Yi)
i=1 i=1

where two sets of eigenvalue problems are solved for ej;, I}, fi, g;- The frequencies g; are the
eigenvalues of A, and the frequencies f; are the eigenvalues of B. ej; and I;; are related to the
eigenvectors of A and B, but need to be solved with 3;,~; given a set of initial conditions. In order
to solve for ej;, 1;i, B;, v; we proceed as follows. From the matrices of normalized eigenvectors é;;, fj,
and the initial conditions h, k, p, ¢ we form:
h = €;; [S; sin f3;] p= fji [T sin ;]
(2.13)
k = €j; [S; cos f3i] q = Iji [T; cos i
These are four linear systems of equations, where S;, T; are the scaling factors of each eigen-

vector. Solving for the combined factors [\S;sin ;] , [S; cos 5] , [T} siny;] and [T} cosy;] we can re-

construct the vectors ej;, Ij; and the phase angles 3;, ;.

Table 2.1 Initial conditions of the Solar System propagation in Figure obtained from ephemeris
DE431 at Epoch: JDy = 2455562.5 (2011 January 1) TDB

Planet a (au) e i (deg) € (deg) w (deg) My (deg)
Mercury 0.39703  0.21337 6.936  48.264  31.991 52.745
Venus 0.73096 0.012687  3.378  76.799  45.020 16.566
Earth 1.0030 0.018402  0.001 154.979 296.322 8.654
Mars 1.5177  0.093083  1.852  49.461 288.507 322.879
Jupiter ~ 5.1904  0.047388  1.305 100.514 273.897  353.761
Saturn 9.5499 0.05412 2487 113.612 339.598  91.261
Uranus  19.207  0.04628  0.772  73.997 96.864  189.506
Neptune 30.109 0.0091006 1.770 131.780 265.440 291.693
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Figure 2.3 Semi-equinoctial elements of the inner Solar System planets obtained using three models.

Figure [2.3] shows the solution of eq. for Mercury, Venus, Earth and Mars as perturbed
mutually and from the rest of planets of the Solar System. This model is compared to two other
models for 15,000 years into the past. The first one is a numerical integration of the N-body problem

taking into account the main 8 planets of the Solar System and the Sun. Then, we also compare to

the planetary ephemerides DE431 [Folkner et al., [2014]. While the complete ephemerides models

show the short period effects, the secular component is modeled by the two simplified models.
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The initial conditions of the 9BP integration and the secular theory are obtained by averaging
the full ephemeris model for two orbit periods. As a result, the initial conditions visually appear
to be off from the mean of the full ephemeris solution, but they are the actual time average.

The short-term components have a significant effect in the evolution of hj, k;. In the case of
Pj,qj, the secular component is the dominant effect of the evolution. Because of the assumptions
of small eccentricities and inclinations, the predicted frequencies are not perfectly accurate, as
observed in the drift between the 9BP solution and the analytical theory of figure especially in
Dj 4j-

A similar agreement in these elements is found for the gas giants. However, only the inner
Solar System planets are shown as they are the bodies that are encountered by near-Earth objects.
Thus, these are the planets for which we want to guarantee an accurate model of their secular
dynamics. The analytical propagation of Mercury drifts the most from the full ephemeris solution,
although it is the least relevant inner planet. Close encounters with Mercury are unfrequent and
have a small effect, as Mercury is the least massive planet and it is encountered with very high
relative velocity.

As a result of the averaging of the perturbing potential, the semi-major axis of the bodies
remains constant. The complete set of secular solutions includes the mean anomaly at epoch o;.
Short term applications benefit from the improved characterization of the position of the bodies
in their orbits. Solving for o; is straightforward if we ignore the contribution of R j, which has a
small effect compared to Rg ;. The equation of motion for o; becomes:

OR; 2 0Ry;

S - _ 2.14
UJ aL] njaj 8aj ( )

: Gmy, 0

where ¢, = aj/ai in the case of an external perturber and ¢;; = —1/a; if the perturber is internal.
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The solution of the equation is simply a constant drift given by the rate ¢. This element completes

the set of elements of the secular model.

2.3.2 Analytical secular dynamics of near-Earth asteroids

The secular dynamics of asteroids can be modelled as a particular case of the secular dynamics
of multibody systems described above. In the present work we apply this solution to the evolution
of the asteroid under the external perturbation of Jupiter. The solutions of equation [2.13| simplify
in the case of a system of 2 bodies with a massless internal body. We follow the same process to

obtain the solution. Matrices Aj; and Bjj;, simplify to:

Blg A12 —312 Bl2
Ajy = Bj = (2.16)
0 0 0 0

where the subindexes 1,2 correspond respectively to the massless particle and the external per-
turber. The coefficients of the matrices are found as in equations [2.5 above. The solution to
the eigenvalue problem yields the secular frequencies of the secular propagation g1 = Bis, g2 = 0,
f1 = —Bia, fo = 0. As expected, the elements of the perturber ho, ks, p2, k2 remain constant. The

eigenvectors are the columns of the matrices:

1w 1 £
ik = Uik (2.17)
0 1 0 ¥
where the constant s is found as the ratio between Laplace coefficients:
)
A b
12 53/2

Note that the vector (e12, e22) is not normalized. This is not necessary because in the process
of obtaining the integration constants from the initial conditions the scaling of the eigenvectors is

found. The solution of the elements of the massless particle becomes:



27

hi(t) = Sysin (g1t + B1) + rho p1(t) = Tysin (fit + 1) + p2
(2.19)
k1(t) = S1cos (g1t + B1) + Kk q1(t) = Ty cos (fit +71) + @2
with constants of integration:
hl,O — th
S% = eio + K,QG% — 2kKeq peg cos (wr,0 — w2) tan B = k1o — Kko
’ (2.20)
T2 = iio + i3 — 2i1,0i cos (1,0 — Qa) tany; = P10~ P2
q1,0 — 42

The time evolution of the Keplerian elements set can be obtained from the relationships
with the semi-equinoctial set in equation The solutions of w(t),2(t) are the secular drift with
frequencies g1, f1 that are equal with opposite signs. The solutions of e(t),i(t) are oscillations
with frequencies g1, fi as obtained from the development of eccentricity ej(t) = /A3 (t) + k3 (t)
and inclination i1 (t) = \/m The maximum and minimum values of eccentricity and

inclination are:

2 2 2.2 -2 2 -2 :

el’mm - Sl + K 62 - 2S1H€2 Zl,min = Tl + Z2 - 2T1Z2 (2 21)
2 2 2.2 -2 2 -2 .

€1 maz = ST+ ke5 + 251 kes 11 maz = 11 +15 — 27119

The secular model is computed for the fictitious asteroid of Case 1 of table with the
perturbation of Jupiter given by the elements of table[2.1] These cases are used later to demonstrate
the propagation tool. For a nominal eccentricity of 0.15 the minimum eccentricity is 0.14946 and
maximum is 0.17466. For a nominal inclination of 10 degrees, the minimum inclination is 7.41823
degrees and maximum is 10.02508 degrees. The characteristic period of the secular motion Ty, is
154,116 years.

This model assumes small eccentricities and inclinations. While these conditions are usually
not fulfilled, it is important to remark that eccentricity and inclination are under frequent distur-
bance due to close encounters. Most importantly, the secular drift in 2, w controls the evolution of

the possible planetary encounters.
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The assumptions on the heliocentric orbit of the asteroid for the analytical secular pertur-
bation solution are not always fulfilled among the NEO population. In this section we show that
the analytical theory represents the dynamics of the perturbation by Jupiter. For this reason, we
integrated the orbits of 4462 NEOs with e < 0.7 and ¢ < 0.5 rad for 50,000 years. Note that in
the solution of equation if the terms of the external perturber are small the solution tends to

a linear drift of the angles ), . In addition, given the relationship between the frequencies g and

f, the relationship between the arguments rates is w = —2Q).
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Figure 2.4 Error in the secular rates of near-Earth objects.

Figure shows the secular rates computed from linear regression of the time histories of
Q,w using the Laplace-Lagrange secular theory and compared to numerical integration of the three-
body problem in percent. The secular rates in ascending node (left) and argument of perihelion
(center) are shown as function of the initial conditions semi-major axis and inclination. The secular
rates are shown function of the initial semi-major axis (right) for the two methods. The dashed
lines indicate the region in which we compute the average errors. This region includes the initial
conditions used throughout the chapter, indicated as cross marks.

Note that from an initially larger list of NEOs, a significant fraction (12%) was discarded
because either eccentricity or inclination were larger than 0.5. An additional 11% of the solutions
were discarded because the error in the regression was too large or during the propagation close

encounters with Jupiter moved the orbit of the NEO to a completely different location than the
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initial conditions. While the linear regression secular rates are not equivalent to the frequencies of
the analytical solution, they serve as a comparison between the two dynamical models. The error is
computed in percent relative to the rate measured from the regression of the numerically integrated

trajectories, given by:

U:Jsec - w3BP

E(w) = 100 | =<
W3BP

(2.22)

As observed in Figure the rates obtained with the two methods agree towards the smaller
end of semi-major axis. Since these are near-Earth objects, the condition of being in the vicinity
of Earth means that eccentricity increases with semi-major axis. We can see that past 1.5-2 au the
difference between the two models is increased, as well as the secular rates values themselves also
increase. This difference is also appreciated in the rates as function of semi-major axis, in which
we show the agreement in the NEO region. Using the current model we find secular rates for 60%
of the population with an error less than 30% in both w and <o. If we limit the application of the
secular theory to semi-major axes between 0.8-1.4 au (dashed region in Figure we find that
this agreement improves to 88%. It is important to note that the examples chosen to demonstrate
the semi-analytical propagation tool fall within this region. Outside of this region we can verify if
the secular rates found are reliable by using numerical integration. This test integration must be
long enough to observe the secular rates, but still orders of magnitude shorter than the time-scales
that we can more efficiently study using the semi-analytical propagation.

At larger semi-major axes the effect of mean-motion resonances becomes important, and that
Lidov-Kozai dynamics may better represent the dynamics for large eccentricities and inclinations
[Michel et al.,{1996b, Morbidelli et al.,2009]. The implementation of additional analytical long-term

dynamics models to model any generic asteroid is left as future work.
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2.3.3 Finding the subsequent encounter

The analytical propagation of particles is interrupted when an encounter with a planet is
detected. In principle it is not necessary to track the distance to planets at all times, since the
regions in which encounters are possible are determined by the geometry of the asteroid around the
central body. If the inclination relative to the planet is high, then the encounters are only possible
in the vicinity of the ascending and descending node. However, the most generic approach is to
track the distance between the asteroid and the crossing planets at all times. Thus, the results in
this work follow the latter approach to find encounters within a closest approach distance of 0.1 au.
When the two bodies are close, the unperturbed closest approach distance is found using a bisection
method where the function is the derivative of the distance as obtained by finite differences. This
process results in less evaluations of the relative distance function based on the heliocentric elements
of the bodies.

The elements of the planets and the asteroid are propagated using the secular solution at the
date of start of the encounter, which is defined below. The transition between models consists in the
conversion between the sets of elements, obtaining the necessary Keplerian elements in the process.
These are semi-equinoctial elements for the analytical perturbed propagation as in equation

and Delaunay elements for the quadrature of the Lagrange planetary equations.

2.34 Evaluation of planetary encounters

Close encounters are commonly solved using the analytical Opik theory IOpik, 1976]. While
this theory requires the least computational resources, its accuracy is limited to specific circum-
stances. The quadrature of Lagrange Planetary Equations can be used to solve close encounters
[Alessi and Sanchez, [2015]. In this work we derive a solution using this method for generic close
encounters using Delaunay elements. The two methods are compared to the integration of the three

body problem from the same date and during the same period of time.
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épik theory of close encounters

An analytical solution to the planetary close encounter problem was derived by Opik [Opik,
1976]. This solution was extended and studied in detail by |Valsecchi et al. [2003, [2015]. The
encounter solution uses a linearized mapping from orbital elements to a planetocentric Cartesian
frame, that is later expressed in B-plane coordinates. Then, the encounter is assumed instantaneous
and the incoming asymptote and B-plane both rotate. The new B-plane coordinates are mapped
back to the orbit elements space.

The analytical solution is derived for a hyperbolic flyby around a point secondary mass. This
mapping between B-plane coordinates and orbit elements is linearized in the impact parameter.
Thus, the encounter must be close for the method to be reliable. Additionally, if the inclination is
small the relative velocity coordinates become undefined. A possible way to avoid this is by using
a method sometimes referred as pseudo-Opik [Greenberg et al., [1988|. In this case the relative

velocity vector is computed directly and defines the turn angle v at the time of closest approach:

tan% = b% (2.23)

where m is the mass of the planet in units of the mass of the Sun, b is the impact parameter and U?
is the relative velocity in units of the circular velocity of the planet. Here we use the unperturbed
trajectory of the planet and asteroid to find these quantities. That is, the impact parameter and
relative velocity are found as the planetocentric distance and velocity at closest approach.

In Chapter |§| we propose an extension of Opik theory to account for the variation of the
MOID between encounters in the computation of keyholes. Thus, we provide more details of the

analytical solution of planetary close encounters.

Lagrange Planetary Equations

The proposed computation of the encounter effect is computed as follows. The variation
in elements over the encounter event is obtained from a quadrature of the Lagrange Planetary

Equations assuming the geometry of the unperturbed flyby. The elements used are obtained from
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the secular propagation of the asteroid. The Lagrange Planetary Equations describe the evolution
of orbit elements due to a perturbing potential. The derivation of Lagrange Planetary Equations
can be found in some references for different sets of orbit elements [Brouwer and Clemence, (1961,

Roy}, 2004]. In general, they have the form of:

OR

D= [L(D) 5

(D,1) (2.24)

where D is the set of elements of choice and L(D) is a function of the elements that depends
on the chosen elements. In this case the perturbing potential R is the gravitational potential
of the encountered planet. Note that without further simplifying assumptions the partials of the
perturbing potential are function of the elements and function of time. For the elements of choice we
take the partial derivatives that relate the set of elements to Keplerian elements K = [a, e, i, Q, w, 0]
and Cartesian coordinates. From the orbital elements representations available to choose, the

current implementation uses the Delaunay elements:

L =./ua l=0
G=1L\1—e¢2 g=uw (2.25)
H = Gcosi h=0Q

The Lagrange Planetary Equations with the perturbing potential of Equation with j

being the asteroid and k the encountered planet can be written as:

dL OR Or 0K dl OR Or OK
dt ~ or 0K al dt ~  9r 0K oL
dG _ OR Or 0K dg _ OR or 0K (2.26)
dt or 0K dg dt or OK 0G
dH OR or 0K dh  OR Or 0K
At ~ or 0K oh dt ~ or 9K 0H

The proposed solution is the integration of these differential equations around the encounter
date t. and assuming the unperturbed geometry of the flyby. Hence, the asteroid coordinates are
obtained from the heliocentric elements secularly propagated until the start of integration date Dy

and the quadrature is only a function of time:
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Figure 2.5 Logarithm of the errors in the computation of the final Keplerian elements during close
encounters given by pseudo-Opik theory (POpik) and the quadrature of LPE (QLPEs)
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tetot
AD = D(Dy, t)dt (2.27)
te—0t

The integration is conducted for a fraction of the orbit period around the closest approach
distance. This fraction is a constant set large enough such that the effect of the encounter is captured
completely. In this work we use a self-coded fast quadrature function based on the midpoint rule and
a total integration time of 20% of the orbital period. This method avoids the frame transformation
to the center of the planet, since it considers the planet as an external perturber of the asteroid
motion around the Sun. For this reason, it is not possible to obtain a closed form solution of
the integral. Nonetheless, this approach does not imply further assumptions that limit its range
of applicability. Future work will be done in finding the optimal set for this application. This
approach is accurate for the vast majority of encounters, but it is less accurate for the closest ones,
as we explore in the following section.

Using the list of flybys generated in figure we computed the errors of Opik theory and
the quadrature of LPE compared to the solution of the encounter using the three-body problem.

The error E(K) is relative to the variation and in percent, given by:

AKgrpe — AKspp

FK)=1
(K) =100 AK3pp

(2.28)

The results of this evaluation are described in figure [2.5] The list of flybys used is shown in
figure and generated as previously described. The flybys are represented in the plane of relative
velocity at closest approach Vj,s (km s™!) and distance of closest approach (au).

Using pseudo-Opik theory there is a region in the space of relative velocity and closest ap-
proach distance in which flybys can be computed accurately. However, this region is not constant
for all Keplerian elements. In addition, most flybys in our range of interest are not computed
correctly using this method. Slow flybys break the assumption in Opik theory that the behavior
during the flyby is modeled by the two-body hyperbolic interaction. Many of the faster flybys occur

with Venus and Mercury. The two-body hyperbolic flyby model fails to characterize the effect of
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flybys with Mercury even if the planetary close encounters are faster.

Using the quadrature of the Lagrange Planetary Equations 99% of the flybys list are computed
with less than 3% of error, and more than 88% with less than 0.1% error. The flybys that are not
computed accurately with this method are very close and with a slow relative velocity. These flybys
can break the assumption of the unperturbed geometry of the flyby. Given that these encounters
also cause significant variations in the elements, these infrequent encounters are solved using a
three-body problem integration in Cartesian coordinates. The criteria to solve these encounters
using the alternative method is by defining three threshold regions in the encounter parameters:
with very small V., very small closest approach distance, and a combination of both close to zero.
This process simplifies the detection of collisions with the planets during the numerical integration

in Cartesian space in the heliocentric frame.

2.3.5 Semi-analytical propagation vs. numerical integration

In the previous sections we validated the individual pieces of the semi-analytical propagation
tool. Once combined, we want to compare the resulting trajectories to trajectories obtained using
numerical integration. With this purpose we generate a fictitious NEO population and propagate
their orbits using both m