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The long-term dynamics of Near-Earth Objects (NEOs) are driven by the secular perturba-

tions of the solar system and the presence of planetary close encounters. Close encounters with

the inner solar system planets cause the orbits of NEOs to become chaotic, thus we study their

long-term evolution stochastically. We combine analytical solutions of the long-term secular per-

turbations with the numerical evaluation of close encounters, allowing the rapid propagation of

NEO orbit trajectories. Using the semi-analytical propagation tool we obtain statistics of the orbit

long-term dynamics, characterizing their stochastic behavior.

Many of the physical properties of NEOs evolve over time. This evolution is usually coupled

with the orbit evolution through close encounters, long-term effects, or at least conditioned by the

location of the asteroid within the solar system. Planetary close encounters excite the relative

orbits of binary asteroids. Using the semi-analytical propagation we gather statistics of the close

encounters. Combined with models for the excitation of binaries we compute the probability of

experiencing encounters that disrupt binary systems. We conduct this analysis for the NASA Janus

and NASA/APL DART mission targets.

The rotational state of asteroids evolves under thermal torques or YORP effect. This effect

depends on the obliquity, the angle between the spin pole and the orbit plane. YORP theories

predict that the spin poles is torqued into equilibrium obliquities of 0, 90 or 180 degrees. Modeling

the obliquity component of the torque while propagating the orbit with the semi-analytical model

we obtain oscillations in obliquity that are near but offset from the equilibrium configurations.

We characterize the long-term impact hazard of asteroids by propagation of the Minimum

Orbit Intersection Distance (MOID). The MOID limits the closest encounters that can occur and

its uncertainty grows much slower than the overall uncertainty in the position of asteroids. Thus,



iii

we can extend the timescales of typical impact characterization analyses. We combine analytical

estimates of the intrinsic probability of collision with the propagation of the orbits to rank the

km-sized NEO population and PHAs, large asteroids (H < 22) currently with an Earth MOID

< 0.05au.

The analytical theories of planetary close encounters assume a constant MOID to find key-

holes, regions that lead to a future impact. We analyze different models for the evolution of the

MOID as corrections to the analytical theory. We find that the short-period oscillations and shallow

encounters play a significant role in the definition of keyholes, as the variations can be in the order

of tens of Earth Radii in a few years.
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Nesvorný and Dr. Farnocchia for their time and helpful feedback. Thanks to Prof. Bosanac for

her feedback as member of the committee of my comprehensive exam.

My graduate education was initially funded by the Balsells Fellowship Program, an invaluable

kick-starter for my academic career as international student. Then, this research has been supported

by missions NASA Janus, DART and the AIDA collaboration, grant support from JPL and NASA’s

YORPD program, and the ASEN department at CU Boulder. Thank you Drs. Park and Farnocchia

for allowing me to work with you at JPL’s SSD Group. Just a few years ago I couldn’t have

conceived all of these amazing opportunities.

The Smead Aerospace Engineering Sciences Dept. and CU have given me the opportunity to

become an educator as part of my doctoral training, an opportunity for which I am very grateful.

Thank you, Profs. Mah, Glusman and Schaub for being educational role models that I look up to.

It took a lot of referents and support to continue in higher education all the way to a PhD. I
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Chapter 1

Introduction

The study of asteroids is an opportunity to learn about the origin of the solar system as

they are remnants of primordial planetary formation. In addition, asteroids are considered as

potential resources for space exploration. More existentially, the risk of a natural disaster by an

asteroid impact can be mitigated if properly characterized. All of these opportunities are more

or less accessible to humankind depending on the orbits of the asteroids. Near-Earth objects (or

NEOs, asteroids or comets with q < 1.3 au) are the most accessible, and have been explored from

ground-based telescopes, space-based telescopes and in-situ exploration missions, both as flybys

and rendezvous missions.

From less than a 1000 NEOs being discovered in the 20th century, as of 2023 there are 32,000

discovered NEOs, with half of them being discovered in the last 6 years. Figure 1.1 shows the current

estimated completeness of the NEO catalog as function of size. The kilometer-sized population is

believed to be almost completely discovered, whereas the 140 m of diameter population is roughly

40% discovered. At even smaller sizes, the percentage is greatly reduced because of the difficulty

to discover such faint bodes. The frequencies of impacts from asteroids that are km-sized, 140 m,

or 50 m, is respectively of ∼1 million years, 20,000 years and 1000 years.

The next generation of surveys is expected to increase the total number of NEOs by another

order of magnitude [Jones et al., 2018], which will multiply these opportunities for humanity. The

rapid analysis of the impact hazard and the detection of relevant scientific assets will be more

necessary as these new generations of datasets become available to the community.
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Figure 1.1 Discovery rates of NEOs by size. Source: NASA and FEMA Planetary Defense TTX4
Read-ahead materials, February 2022.

1.1 Orbit long-term dynamics of NEOs

One of the main characteristics of the orbits of near-Earth asteroids is that they experience

planetary close encounters while being drifted by secular perturbations [Michel et al., 1996b]. Plan-

etary close encounters have a variety of effects: from abrupt changes in the orbits to changes in

the physical properties such as their spin states, the relative orbit of binary asteroids or changes

in their surfaces. The changes due to planetary close encounters are very sensitive to the initial

conditions, i.e., predictions of the past or future evolution can become chaotic [Tancredi, 1998].

After many planetary close encounters the orbits of near-Earth asteroids become stochastic and

must be studied statistically. For example, the origin of asteroids coming into the inner solar sys-

tem is expressed by the probability of the different source regions over millions of years [Granvik

et al., 2018]; or the probability of an Earth collision is obtained as the result of large Monte Carlo

simulations from the uncertainties of their orbits [Chamberlin et al., 2001, Roa et al., 2021].

The orbital motion of near-Earth asteroids is driven by different dynamical effects, which

dominate in different timescales. Asteroids move under the gravitational force of the Sun and, in

general, the long-term perturbations are dominated by the gravitational forces of the gas giants.

The secular components of these contributions are characterized by cycles of ∼100,000 years, which

define hundreds-to-thousand year windows when close encounters with the terrestrial planets are

possible. In the NEO regime and these timescales, smaller force contributions such as the Yarkovsky

acceleration can be shadowed by the stochastic growth in uncertainty. However, these must be

considered in short-term timescales of decades-to-hundreds of years.
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These dynamical effects define the orbit propagation tools that can be used to predict the

past or the future evolution of near-Earth asteroids. These range from the highest fidelity in

numerical integration for precise probability of collision predictions [Farnocchia et al., 2015] to

analytical estimates [Öpik, 1951, Wetherill, 1967]. The amount of information required also ranges

from spacecraft in-situ measurements to only a few ground-based astrometric observations, as well

as the computational expense of producing such predictions.

The orbits of NEOs are poorly determined far from the observation dates because of the

sensitivity of the orbits to planetary close encounters. The uncertainty grows the largest along the

direction of motion, meaning that the future position of the asteroid along its orbit is the hardest

to determine. This justifies models for the uncertainty like the line-of-variations [Milani et al.,

2005, Del Vigna et al., 2020], in which the uncertainty is sampled alone a 1-D line that captures

the spread along the orbit. However, the variation of the heliocentric orbit is not expected to be

as large in the absence of deep planetary close encounters.

1.2 Planetary close encounters and impact hazard

The conditions for an impact between two objects can be split in two: first, the orbits of

the two must intersect; then, they must meet at the intersection point at the same time. Given

the first condition, a very useful metric is the Minimum Orbit Intersection Distance (MOID), the

minimum distance between any two points of the orbits of the two bodies. Thus, it indicates the

closest possible encounter between them.

Figure 1.2 illustrates these two conditions. First, we need the MOID to be smaller than the

radius of the Earth with any gravitational focusing factor. The snapshot of the orbit of 2008 TC3

is shown 2 months before its Earth impact and disintegration over the desert of Sudan [Jenniskens

et al., 2009].1 This was the first time in history that an asteroid was discovered prior to its Earth

impact, a situation that has been repeated 6 times since.

1 Snapshot generated using JPL’s Small-Body Database Lookup Tool - Available online at ssd.jpl.nasa.gov/

tools/sbdb_lookup.html

ssd.jpl.nasa.gov/tools/sbdb_lookup.html
ssd.jpl.nasa.gov/tools/sbdb_lookup.html


4

/46ConclusionsRes. EncsHazard Ch.ObliquitiesBinariesSA-propIntroduction

Impact Hazard of NEOs

Uncertainty in orbit grows faster in direction of motion, 
limiting short-term collision assessment.

Orbital conditions for a deep close encounter/collision
1. Small Minimum Orbit Intersection Distance (MOID) 

(Gronchi 2005, Wísniowski 2013, Hedo 2018)
2. Timing such that distance < distance threshold

“At the right time at the right place”

• MOID Time varying quantity
Allows predictions over longer timescales.

Potentially Hazardous Asteroids

• MOID < 0.05 au

• H < 22 (~140 m)

9

MOID(t)

After a few 
decades or
centuries

Uncertainty 
in position

Introduction

Figure 1.2 Necessary conditions for a collision. Orbit of 2008 TC3 2 months before Earth impact.
Source: JPL’s Small-Body Database Lookup.

The MOID is currently used to catalog asteroids that are close enough to the Earth to be

considered a potentially hazardous or PHA (MOID < 0.05 au). The other condition is that they

must be large enough to cause regional damage in case of an Earth collision (H < 22, ∼140 m).

There are a few algorithms in the literature to compute the MOID [Gronchi, 2005, Hedo et al.,

2018, Wísniowski and Rickman, 2013]. The evolution of the MOID has been studied in the past

for the double averaged 3BP and focusing on the regularization of the evolution when it comes to

0 [Gronchi and Tardioli, 2013, Gronchi and Tardioli, 2011].

The mitigation of the hazards of asteroid impacts is the main goal of planetary defense efforts.

The main planetary defense efforts are in asteroid surveying, characterization and deflection. As

the near-Earth asteroid catalog is being completed by current and proposed surveys, they provide

new candidates of a future collision to study in more detail. Once new observations of NEOs

become available, their probability of collision is computed typically for 100 years and made publicly

available [Roa et al., 2021]. During a planetary close encounter, asteroids can cross keyholes, regions

that lead to a future collision or deep encounter [Chodas, 1999]. The analytical theories to compute

the location of keyholes typically assume the MOID to be constant between encounters [Valsecchi

et al., 2003].

In long-term predictions the fast angles become completely unknown. Thus, it is common

to model them with a uniform distribution. The latter assumption is frequently used to compute

probabilities of collision in the order of magnitude of the lifetimes of near-Earth asteroids, which
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are on the order of millions of years[Vokrouhlický et al., 2012, Pokorný and Vokrouhlický, 2013,

JeongAhn and Malhotra, 2017].

1.3 Physical properties of NEOs

The physical properties of NEOs can be used to constrain the orbit history of NEOs. For

example, the cratering history informed of the lifetime of the NEO [Ballouz et al., 2020]. Figure 1.3

shows physical properties of binary asteroid system Didymos. The spin state can be characterized by

the rotational angular momentum or spin pole and spin rate. Mission NASA/JHAPL DART allowed

to briefly observe the shape and surface of Dimorphos, the secondary or satellite of the Didymos

system. All of these properties are subject to impulsive excitation during very close planetary close

encounters. In addition, some of them also evolve coupled to the long-term dynamical evolution of

the orbit.

/46ConclusionsRes. EncsHazard Ch.ObliquitiesBinariesSA-propIntroduction
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Figure 1.3 Didymos system as imaged by DART. Credit: NASA, JHUAPL.
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Asteroids in the inner Solar System experience accelerations and torques as a result of solar

radiation pressure, thermal absorption and re-emission. The resulting acceleration from thermal

radiation and re-emission is called Yarkovsky effect. The resulting torque is the YORP effect

(Yarkovsky–O’Keefe–Radzievskii–Paddack), usually assumed as the resultant torque from solar

radiation pressure applied on the surface with negligible thermal inertia [Vokrouhlický et al., 2015].

Both Yarkovsky and YORP effects depend on obliquity, the angle between the orbit normal and

rotational angular momentum. Measuring the Yarkovsky acceleration can be one of the main

factors for impact hazard characterization [Farnocchia et al., 2021, Farnocchia and Chesley, 2022].

The YORP effect has many influences in the physical properties of asteroids: as asteroids spin

up, particles can be ejected, satellites can be formed, contact binaries can experience a fission into

binary asteroids, or the asteroid can be completely disrupted [Walsh et al., 2012, Scheeres, 2007,

Sánchez and Scheeres, 2016]. The effects of the spin-up can be observed in the surface by effects

such as the change in slopes [Bottke et al., 2006] or generation of cavities [Tardivel et al., 2018].

In addition, the rotational accelerations can give information of the internal structure of asteroids

[Scheeres et al., 2007, Scheeres and Gaskell, 2008, Lowry et al., 2014], and change the dynamical

environment around asteroids [Brown and Scheeres, 2023]. Binary asteroids also experience secular

variations in their orbit, in what is called Binary YORP or BYORP [McMahon and Scheeres, 2010].

The relative orbits of binary asteroids are sensitive to the perturbations, such as planetary

close encounters. This sensitivity makes them good test cases for a planetary defense missions such

as NASA/JHAPL DART [Rivkin and Cheng, 2023], which measured the change in the relative

orbital period after a spacecraft kinetic impact. We also find binary asteroids in nature that are in

a chaotic spin-orbit state, such as (35107) 1991 VH [Pravec et al., 2016, Scheeres et al., 2020].
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1.4 Outline

1.4.1 Thesis Statement

The semi-analytical propagation of Near-Earth Objects (NEOs) orbits will allow a fast and

accurate description of their long-term dynamics as driven by planetary secular perturbations and

close encounters. The characterization of planetary close encounters and their frequency will im-

prove our understanding of the evolution of their physical properties and hazardous nature.

1.4.2 Dissertation Overview

Chapter 2 describes the semi-analytical orbit propagation tool developed in this dissertation.

We compare the propagations using this tool to numerical integration to define a range of applica-

bility and performance. Then, in Chapter 3 we apply it to the study of binary asteroids considering

the changes in the orbits of binaries during close encounters. In Chapter 4 we propagate the orbits

of asteroids and introduce torques to the rotational angular momentum. This study allows us to

model the disturbed equilibrium at which we find the obliquities of near-Earth asteroids. Next,

we explore planetary defense applications by studying the hazardous nature of asteroids on two

different timescales considering different models for the long-term dynamics of the MOID. First,

in Chapter 5, we find the hazardous km-sized NEOs of the next thousands of years proposing a

new metric to rank NEOs by their long-term impact hazard probability. Then, we visit the PHA

definition to highlight the dynamical nature of this metric in centuries-to-thousands of years. In

Chapter 6 we aim to extend analytical Öpik theory of close encounters to find keyholes. We inspect

the variation of the MOID between encounters, in timescales of decades. Last, we present our

concluding remarks in Chapter 7.

1.4.3 Contributions

In this dissertation we developed a semi-analytical propagation tool to rapidly generate time

histories of the orbits and close encounters experienced by near-Earth objects. Then, we combine
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this information with models for the evolution of physical properties of asteroids. We study the

evolution of the Earth MOID as a tool for impact hazard characterization. Overall, in this disserta-

tion we made contributions to the fields of astrodynamics, planetary science and planetary defense,

as described next:

In chapter 2 we present a novel propagation tool that allows us to gather statistics of the

orbit evolution of near-Earth asteroids in similar fashion as numerical integration, but in a small

fraction of the computational time. The computational speed-up propagating 1 particle is found

to be of x500-x1000. This allows a flexible use of the tool to gather statistics of close encounters at

the desired timescales without having to assume a constant distribution from the asteroid’s proper

elements or distribution of orbits in its lifetime.

In chapter 3 we demonstrate this approach to compute probabilities of close encounters in

thousands of years for a few binary asteroid systems. This prediction in intermediate timescales

is needed if the excited state of binary systems was to be caused by close encounters, as in longer

timescales these perturbations can dissipate. These methods provide a time-varying distribution

of encounters beyond assuming the initial orbit elements or the whole lifetime. This allows us to

better understand the recent encounter history of asteroids.

Throughout this dissertation we contributed to the general knowledge of the growth in un-

certainty in the orbit of NEOs. In chapters 2 and 3 we show how a random walk can be assumed

for semi-major axis, eccentricity and inclination with different timescales depending on the loca-

tion in near-Earth space. In addition, many analytical theories in the literature assume a uniform

distribution of the mean anomaly of the asteroid to compute a probability of collision. In chapter

5 we study how the uncertainty grows from the deterministic part of the propagation all the way

to being uniformly distributed. This method bridges the gap between analytical long-term theories

and deterministic hazard characterization thanks to the propagation of the MOID between these

timescales.

Analytical theories of the evolution of the spin state of asteroids suggest that the obliquities

of asteroids under YORP torques go to 0, 90, or 180 deg. In chapter 4 we model the obliquity
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component of these torques and predict an offset from equilibrium as more frequently observed

in nature. This is a step in the realistic modeling of the long-term dynamics of the spin state of

asteroids. The spin rate components of these torques are left as future work.

Chapters 5 and 6 describe our contributions to planetary defense, built on the time propa-

gation of the MOID. The evolution of the MOID was modeled on an individual case basis in the

literature. In addition, operational impact monitoring systems typically characterize the hazard

for 100 years. Our estimated probability of collision allowed us to rank the km-sized population

and to highlight how the PHA category, that assumes a constant MOID threshold, will vary over

time.

In chapter 6 we explore the problem of finding keyholes via the exploration of the B-plane.

The Öpik theory of resonant close encounters assumes a constant MOID (ξ) between encounters.

We use the models of chapter 2 as corrections to the theory to model the change in MOID between

encounters. In this process we provide novel insight into the dynamics of the MOID. For example,

by quantifying the secular rate in the MOID, the amplitude of short-period components, or how

the MOID varies along a resonant circle or across the B-plane. These contributions extend the

insight of analytical theories for a fast assessment of the hazard of resonant encounters.

1.4.4 Publications

Journal Publications

This dissertation is comprised of the following publications:

� Fuentes-Muñoz, O., Meyer, A. J., & Scheeres, D. J. (2022). Semi-analytical near-Earth

objects propagation: the orbit history of (35107) 1991 VH and (175706) 1996 FG3. The

Planetary Science Journal, 3(11), 257. https://doi.org/10.3847/PSJ/ac83c6 - [Fuentes-

Muñoz et al., 2022]

� Fuentes-Muñoz, O., Scheeres, D. J., Farnocchia, D., & Park, R. S. (2023). The hazardous

https://doi.org/10.3847/PSJ/ac83c6
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km-sized NEOs of the next thousands of years. The Astronomical Journal, 166(1):10.

https://doi.org/10.3847/1538-3881/acd378 - [Fuentes-Muñoz et al., 2023]

� Richardson, D.C., Agrusa, H.F., ..., Fuentes-Muñoz, O., ..., Tsiganis, K., & Zhang, Y

(2022). Predictions for the Dynamical States of the Didymos System before and after the

Planned DART Impact. The Planetary Science Journal, 3(7):157, https://dx.doi.org/

10.3847/PSJ/ac76c9 - [Richardson et al., 2022]

In addition, the following publications are currently in review or preparation:

� Fuentes-Muñoz, O. & Scheeres, D. J. The disturbed equilibrium of NEA obliquities under

stochastic orbital motion (In preparation)

� Fuentes-Muñoz, O., Pedrós-Faura, A., Amato D., Scheeres, D.J., McMahon J.W. Effect of

MOID evolution on preliminary keyhole analyses (In preparation)

Conference Papers
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� Fuentes-Munoz, O., Pedros-Faura, A. & Amato, D. (2021). Effect of non-Keplerian MOID
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Chapter 2

Semi-analytical Orbit Propagation

2.1 Introduction

The long-term study of asteroid orbits has been achieved in the past using a wide variety

of analytical, semi-analytical and numerical methods. Analytical methods are based on the study

of the gravity potential to obtain secular and resonant perturbations [Milani and Knežević, 1990].

Semi-analytical methods are used to map orbital elements to the locations of linear secular res-

onances, which are resonances involving one planetary and one asteroid frequency [Michel et al.,

1997, Michel and Froeschlé, 1997]. Both types of solutions represent the dynamics of asteroids in

the absence of planetary encounters by averaging the perturbing potential.

On the other hand, previous studies focus on the accumulation of planetary encounters in

contrast to numerical integration [Dones et al., 1999]. The effect of close encounters on the orbit

of asteroids can be computed using analytical [Öpik, 1976], semi-analytical or numerical methods.

Semi-analytical solutions [Alessi and Sánchez, 2015] allow the computation of flybys treating the

planet as a perturbing force in the Lagrange Planetary Equations. Specific numerical integrators are

convenient to propagate orbits of asteroids in the long-term, in which symplecticity is desired along

with the capacity to accurately solve close encounters [Wisdom and Holman, 1991, Chambers, 1999].

Under multiple resonances asteroids start to encounter planets while their eccentricity increases.

This increase often causes the asteroids to eventually collide with the Sun, planets or to be ejected

from the Solar System on a hyperbolic orbit [Farinella et al., 1994, Gladman et al., 1997, Milani

et al., 1989, Dones et al., 1999, Michel et al., 2005].
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In this chapter we aim to provide a simulation framework for the propagation of particles in

the Solar System. Our approach consists in the analytical propagation of the particle until a close

encounter is found. The propagation is stopped when the trajectory is close to a planet, then the

close encounter is evaluated numerically. The evaluation of the encounters is based on a quadrature

of the Lagrange Planetary Equations (LPE) around the closest approach date. After the encounter

the analytical propagation of the orbit is resumed. The propagation under secular perturbations

provides a realistic prediction of when the next encounter can occur as the orbit of the asteroid

drifts between different regions of the inner Solar System. This approach reduces substantially the

computational time of solutions obtained entirely by numerical integration while providing deeper

insight into the dynamics.

The use of the analytical secular model allows the prediction of long-term properties of the

asteroid dynamics. Eccentricities, inclinations and angles of asteroid and planets drift secularly.

Thus, we can propagate the minimum orbit intersection distance (MOID). The MOID constrains

the minimum closest approach distance between the asteroid and the planets and defines if asteroids

are potentially hazardous (PHAs). The long-term dynamics of the orbits of NEOs and the MOID

are studied by sampling a large number of virtual asteroids from their uncertainty distributions. We

use the semi-analytical propagation of these asteroids to show the stochastic nature of the orbital

evolution of NEOs.

This chapter is organized as follows. Section 2.2 provides additional background of the long-

term dynamics of NEOs in the inner Solar System. Next, section 2.3 describes the propagation

methodology including a detailed study of flybys evaluation and the derivation of an analytical

N-body secular problem solution. Section 2.4 shows examples of the long-term propagation of

asteroids and how the long-term dynamics can be characterized stochastically. Section 2.5 discusses

the limitations of the semi-analytical propagation tool. Last, section 2.6 concludes by evaluating

the aspects in which this methodology proves beneficial, questions that remained unanswered, and

future work with respect to the orbit propagation methodology.
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2.2 Background

The long-term dynamics of NEOs are governed by their gravitational interactions with the

other bodies of the Solar System. The effects of the most massive and external planets have

timescales of millennia. However, planetary close encounters can abruptly change an orbit over a

timescale of days. The accumulation of such planetary encounters causes the orbits of NEOs to be

chaotic [Tancredi, 1998]. This section describes this phenomenon in more detail. The evaluation

of close encounters is necessary for the propagation of NEOs, hence the variety of possible flybys

is demonstrated later for the validation of the method.

Many asteroids experience long periods of time without flybys. The dominant dynamics

in those periods of time are the secular perturbations from massive planets in the Solar System.

Likewise, the orbits of the planets evolve secularly over similar timescales. The Laplace-Lagrange

secular theory qualitatively describes the evolution of the elements of the planets at any distant time

in the future or past. As for the asteroid, the secular solution from external perturbers represents

the orbital dynamics of asteroids between encounters.

The presence of repeated encounters is one of the main characteristics of the long-term prop-

agation of asteroids in the inner Solar System. Repeated close encounters cause a random walk in

the elements of the asteroids. Very close encounters occur less frequently but change substantially

the orbits of NEOs, modifying predictions on the long-term evolution of their orbits. Thus, we

propose an informed analytical propagation of the orbits while characterizing planetary close en-

counters. The proposed methodology is born from the combination of these two dynamical regimes:

the long-term effects of secular dynamics and the frequent changes in elements experienced in plan-

etary encounters. Considering the secular drift of the asteroid we model the seasonal variation of

the possible encounters with planets.
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2.2.1 Chaotic dynamics in the inner Solar System

An accurate description of the evolution of orbits of near-Earth asteroids beyond a few

centuries is challenging. This is because the succession of planetary encounters disperse neighboring

trajectories to become chaotic [Tancredi, 1998]. Small deviations in the orbital period change the

timing of the flybys, spreading the uncertainty along the Line of Variation [Milani et al., 2005].

After successive flybys the resulting imaginary stream of particles is spread in highly non-linear

distributions. For this reason the study of long-term dynamics is often left to a statistical analysis

requiring a large number of particles and computational efforts. In this context we propose the use

of this semi-analytical tool to obtain long-term simulations in short computational times.

Figure 2.1 Chaotic dynamics of (35107) 1991 VH as obtained from numerical integration.
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We exemplify the sensitivity to initial conditions in a numerical integration of asteroid (35107)

1991 VH, which is one of the two targets of mission Janus [Scheeres et al., 2020], a NASA SIMPLEx

mission. Figure 2.1 shows 1440 particles generated from the uncertainty in the orbit solution of

(35107) 1991 VH, which is included in appendix B. These particles are propagated in the N-

body integrator IAS15 [Rein and Spiegel, 2014] including the Solar System planets from Venus to

Neptune. The particles are propagated for a million years, although in this section we study in

more detail the distributions after shorter periods of time. Each axis represents the variation from

the initial value of elements pairs: (left) semi-major axis-eccentricity, (center) semi-major axis-

inclination, (right) argument of the node-argument of perihelion in degrees. The orbital evolution

is shown at four instants of time: initial (first row), after 500 years (second row), after 5000 years

(third row) and after 1 million years (bottom).

After 500 years the initial normal distribution already becomes a stream of particles. While

the variation in the elements from the nominal is similar for all the particles, there is a dispersion

orders of magnitude smaller that represents the stream of particles. After 5000 years, the distri-

bution becomes completely different: the presence of planetary encounters disperses the particles

around the initial orbit. The variation in eccentricities and inclinations has a secular component.

However, the variation on the argument of the node and argument of perihelion is dominantly

secular after a few millennia. After a million years, the particles are spread along a large region of

near-Earth space. In argument of perihelion and ascending node we observe that the distribution

becomes almost uniform in the whole 2D angular space.

The secular drift in the arguments defines the possibility of encounters over time. For this

reason, it is important to characterize this drift and the secular cycles under the perturbation of

the large bodies of the Solar System. When encounters are possible with the inner Solar System

planets, these need to be accounted as perturbers of the orbit evolution.

The stochastic nature of the long-term dynamics of NEOs under close encounters implies that

the precise determination of their position after hundreds of thousands of years is unachievable.

However, we can still collect statistics that give us insight on their orbital history. Another impli-
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cation is that the inclusion of higher order dynamics is shadowed under the stochastic dispersion

caused by the main gravitational perturbations. For example, the magnitude of the Yarkovsky

effect is typically 10−4 au/Myr [Vokrouhlický et al., 2000, Nesvorný and Bottke, 2004], which is

still two orders of magnitude smaller than a typical dispersion after 10,000 yr under repeated close

encounters, as observed in the example of Figure 2.1. In section 3.2.1 we show that (35107) 1991

VH is not under a particularly high frequency of close encounters compared to other NEOs.

Similarly, relativistic effects can have a non-negligible effect in the secular rates of the ar-

gument of perihelion. These are usually measured in arcseconds per year or century, and typical

values are 1-2 orders of magnitude smaller than the typical secular periods of the order of 100,000

years [Benitez and Gallardo, 2008]. Even if the secular rate has an error, the presence of encounters

already causes the distributions to become uniform in argument of the node and perihelion after a

few secular periods.

2.2.2 NEO close encounters in the inner Solar System

Flybys can occur with multiple planets over short periods of time. Even if the encounters are

with the same planet, the closest approach distance and relative velocities can change depending

on the timing of the flyby. The geometry of the flyby is constrained by the heliocentric elements of

the asteroid. If shallow encounters are considered, the position in the asteroid orbit in which the

planet is encountered can significantly change the relative velocity. These variations are not well

captured by analytical theories, but the proposed propagation tool aims to accurately model these

variations. These are different regimes of flybys in which the evaluation tool needs to be accurate.

In order to broadly show the diversity in flybys that different NEOs experience, we generate

a list of flybys that will be used to validate the evaluation of close encounters. From the database

of NEOs we select the ones with semi-major axis smaller than 2 au [JPL Solar System Dynamics

and Center for NEO Studies (CNEOS), 2021]. Then, we propagate their positions using the secular

model for 50 years. For such a brief period of time the change in the elements is insignificant for our

purposes. Figure 2.2 shows more than 30,000 flybys generated with the described method, with the
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Figure 2.2 Relative velocity at closest approach of flybys generated from the propagation of NEOs.

symbols indicating the planet that the asteroid is encountering. The relative velocity is function of

the closest approach distance (au), inclination (deg) and eccentricity. Shallow encounters are much

more frequent than the very close encounters that cause large variations in orbit elements. Thus,

we want to consider them even if their individual contribution is not as significant.

The range of possible relative velocities in figure 2.2 depends on the planet in question,

with increasing maximum relative velocity for the planet closest to the Sun. The relative velocity

is defined by the heliocentric orbit of the asteroid, with an increasing range of possible values

depending on the inclination and eccentricity of the orbit. Overall, after millions of years asteroids

experience a variety of encounters that can be computed with different methods. With this purpose

the list of generated flybys is used to decide the method to compute the post-encounter elements

of flybys. In section 2.3 we compute the error of different close encounter evaluation methods

referenced to numerical integration of the trajectories.
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2.3 Methodology

This semi-analytical propagation tool consists in the following process. First, the orbit of the

asteroid is propagated by an analytical secular solution. This perturbed motion is interrupted when

an encounter is found with a nearby planet. Then, the trajectory during the planetary encounter is

modeled using a numerical method. Next, the secular propagation is continued until the subsequent

encounter.

The simplest way to find encounters is to track the distance between the asteroid and planets

at all times. While the regions in which encounters are possible are determined by the geometry

of the asteroid around the central body, searching at all times is the most generic approach. The

state of the planets is obtained from the secular solution of the 8 main planets interacting with

each other. The state of the small body is corrected given the secular dynamics model. Once we

determine the initial conditions of the encounter, the change in orbit elements is computed through

the proposed numerical procedure.

There are many methods to compute planetary encounters available in the literature. Ana-

lytical solutions for Keplerian elements before and after close encounters in Öpik’s Theory [Öpik,

1976] were extended for multiple applications by Valsecchi et al. [2003, 2015]. However, these ana-

lytical expressions are constrained to encounters that are very close and small bodies that are not

co-moving with the planet. Asteroid and planet are co-moving when they have a small inclination

and at least one of the node crossings close to the planet orbit.

We name shallow encounters those with large close approach distance but non-negligible

effects. Shallow encounters are more frequent and influence the long-term evolution of small bodies

in the Solar System. In order to account for shallow encounters, semi-analytical methodologies can

be used to map before and after encounter conditions [Alessi and Sánchez, 2015]. These methods

are based on the quadrature of Lagrange Planetary Equations around the encounter. In this work

we derive a quadrature of Lagrange Planetary Equations in Delaunay elements which is solved

using a numerical integration scheme. In the case of extremely close or slow encounters we solve
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the planetary close encounters using numerical integration.

Once the solution of most encounters is obtained satisfactorily we focus efforts in the compu-

tation of the perturbed motion of the asteroid in absence of encounters. We evaluate the solution of

N-bodies interacting secularly to generate the orbits of the planets. Then, we obtain the perturbed

motion of the asteroid including only the planets relevant to its secular influence. Taking into

account the influence of only Jupiter is a valid generic approach to estimate the secular dynamics

of NEOs [Vokrouhlický et al., 2012, Pokorný and Vokrouhlický, 2013, Fuentes-Munoz and Scheeres,

2020a]. In this work we use the Laplace-Lagrange secular model. The secular rates as obtained by

the analytical theory are compared to numerical integration to validate the range of validity of the

solution. This defines a range of applicability of the tool, as we discuss later.

In this section we compare the individual pieces of the semi-analytical propagation tool

to numerical methods. Last, we compare the combined semi-analytical propagation tool with

trajectories obtained through numerical integration and evaluate the computational efficiency of

the method.

2.3.1 Analytical secular dynamics of multibody systems

The dynamical landscape of the Solar System is complex with gravitational interactions be-

tween all planets. This landscape leads to resonances and secular motion in asteroids in the system.

Well inside the inner Solar System, the dynamics are dominantly secular. The secular solution of

a planetary system formed by N-planets can be obtained analytically to first order in inclinations

and eccentricities and in the absence of resonances. This section derives an implementation of

the solution following the procedure in Chapter 7 of Murray and Dermott [2000]. The perturbing

potential is written for the N bodies considered. Then Lagrange Planetary Equations are used to

compute the equations of motion of the elements of each particle, leading to a system of differential

equations solved simultaneously.
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The secular model is obtained as follows: (1) The perturbing potential is split in a direct

part and an indirect part based on the dependency on fast angles, (2) then the perturbing potential

is expanded in Keplerian Elements. (3) The important terms of the expansion are selected based

on the averaging principle. (4) The terms are rewritten in semi-equinoctial elements to ease the

solution of the global system of equations. (5) Take the necessary partials to solve the set of

Lagrange Planetary Equations. The perturbing potential experienced by a mass j by a second

mass k is:

Rjk =
Gmk

ak

(
RjkD +RjkI

)
(2.1)

Where ak is the semi-major axis of body the external body. The perturbing potential is separated

in the direct RjkD and indirect RjkI parts:

RjkD =
ak

|rj − rk|
RjkI = −

a2k
aj

rj · rk
|rk|3

(2.2)

The separation is convenient to expand in the ratio of semi-major axes αjk as well as sines and

cosines of {ϖj ,Ωj , λj , ϖk,Ωk, λk, }. The ratio of semi-major axes is αjk = aj/ak if the perturber is

external, or αjk = aj/ak if the perturber is internal. All the terms that depend on the longitudes

{λ, λj} are of short-period, so it can be argued that they do not contribute to the averaged potential

Rj . The secular potential lowest order in eccentricities and inclinations is:

Rj = R0,j +R1,j =
N∑

k=1,k ̸=j

Gmk
1

2ak
b
(0)
1/2 (αjk) +R1,j (2.3)

R1,j = nja
2
j

12Ajje
2
j +

1

2
BjjI

2
j +

N∑
k=1
k ̸=j

Ajkejek cos (ϖj −ϖk) +BjkIjIk cos (Ωj − Ωk)

 (2.4)

Where ᾱjk = aj/ak if the perturber is external, or ᾱjk = 1 if the perturber is internal. The

coefficients Ajj , Ajk, Bjj , Bjk are:
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Ajk = −nj
1

4

mk

mc +mj
αjkᾱjkb

(2)
3/2 (αjk) (2.5)

Bjk = +nj
1

4

mk

mc +mj
αjkᾱjkb

(1)
3/2 (αjk) (2.6)

Ajj = +nj
1

4

N∑
k=1,k ̸=j

mk

mc +mj
αjkᾱjkb

(1)
3/2 (αjk) =

N∑
k=1,k ̸=j

Bjk (2.7)

Bjj = −nj
1

4

N∑
k=1,k ̸=j

mk

mc +mj
αjkᾱjkb

(1)
3/2 (αjk) = −

N∑
k=1,k ̸=j

Bjk (2.8)

where the coefficients b
(k)
s are Laplace Coefficients. More details on their computation can be found

in Appendix A. The coefficients Ajj , Ajk, Bjj , Bjk form the matrices A and B. We can rewrite the

potential in semi-equinoctial elements,

hj = ej sinϖj

kj = ej cosϖj

pj = Ij sinΩj

qj = Ij sinΩj

(2.9)

the potential becomes:

R1,j = nja
2
j

1
2
Ajj(h

2
j + k2j ) +

1

2
Bjj(p

2
j + q2j ) +

N∑
k=1,k ̸=j

Ajk(hjhk + kjkk) +Bjk(pjpk + qjqk)


(2.10)

Our complete set of states includes the mean anomaly at epoch σj and Lj =
√
GMaj . The

equations of motion become:

ṗj =
1

nja2j

∂Rj

∂qj

q̇j = − 1

nja2j

∂Rj

∂pj

ḣj =
1

nja2j

∂Rj

∂kj

k̇j = − 1

nja2j

∂Rj

∂hj

L̇j =
∂Rj

∂σj

σ̇j = −∂Rj

∂Lj

(2.11)

The solution of hj , kj , pj , qj only depends on R1,j . For this reason the perturbing potential is

often only expressed with those components. However, if we want the solution of the mean anomaly

at epoch σj it is necessary to take into account R0,j . In the process of averaging the terms that
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would effect the semi-major axis are removed, meaning that under this assumption that element

remains constant. The solution of hj , kj , pj , qj is:

hj(t) =
N∑
i=1

eji sin (git+ βi)

kj(t) =

N∑
i=1

eji cos (git+ βi)

pj(t) =
N∑
i=1

Iji sin (fit+ γi)

qj(t) =

N∑
i=1

Iji cos (fit+ γi)

(2.12)

where two sets of eigenvalue problems are solved for eji, Iji, fi, gi. The frequencies gi are the

eigenvalues of A, and the frequencies fi are the eigenvalues of B. eji and Iji are related to the

eigenvectors of A and B, but need to be solved with βi, γi given a set of initial conditions. In order

to solve for eji, Iji, βi, γi we proceed as follows. From the matrices of normalized eigenvectors ēji, Īji

and the initial conditions h, k, p, q we form:

h = ēji [Si sinβi]

k = ēji [Si cosβi]

p = Īji [Ti sin γi]

q = Īji [Ti cos γi]

(2.13)

These are four linear systems of equations, where Si, Ti are the scaling factors of each eigen-

vector. Solving for the combined factors [Si sinβi] , [Si cosβi] , [Ti sin γi] and [Ti cos γi] we can re-

construct the vectors eji, Iji and the phase angles βi, γi.

Table 2.1 Initial conditions of the Solar System propagation in Figure 2.3, obtained from ephemeris
DE431 at Epoch: JD0 = 2455562.5 (2011 January 1) TDB

Planet a (au) e i (deg) Ω (deg) ω (deg) M0 (deg)

Mercury 0.39703 0.21337 6.936 48.264 31.991 52.745

Venus 0.73096 0.012687 3.378 76.799 45.020 16.566

Earth 1.0030 0.018402 0.001 154.979 296.322 8.654

Mars 1.5177 0.093083 1.852 49.461 288.507 322.879

Jupiter 5.1904 0.047388 1.305 100.514 273.897 353.761

Saturn 9.5499 0.05412 2.487 113.612 339.598 91.261

Uranus 19.207 0.04628 0.772 73.997 96.864 189.506

Neptune 30.109 0.0091006 1.770 131.780 265.440 291.693



24

Figure 2.3 Semi-equinoctial elements of the inner Solar System planets obtained using three models.

Figure 2.3 shows the solution of eq. 2.12 for Mercury, Venus, Earth and Mars as perturbed

mutually and from the rest of planets of the Solar System. This model is compared to two other

models for 15,000 years into the past. The first one is a numerical integration of the N-body problem

taking into account the main 8 planets of the Solar System and the Sun. Then, we also compare to

the planetary ephemerides DE431 [Folkner et al., 2014]. While the complete ephemerides models

show the short period effects, the secular component is modeled by the two simplified models.
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The initial conditions of the 9BP integration and the secular theory are obtained by averaging

the full ephemeris model for two orbit periods. As a result, the initial conditions visually appear

to be off from the mean of the full ephemeris solution, but they are the actual time average.

The short-term components have a significant effect in the evolution of hj , kj . In the case of

pj , qj , the secular component is the dominant effect of the evolution. Because of the assumptions

of small eccentricities and inclinations, the predicted frequencies are not perfectly accurate, as

observed in the drift between the 9BP solution and the analytical theory of figure 2.3, especially in

pj , qj .

A similar agreement in these elements is found for the gas giants. However, only the inner

Solar System planets are shown as they are the bodies that are encountered by near-Earth objects.

Thus, these are the planets for which we want to guarantee an accurate model of their secular

dynamics. The analytical propagation of Mercury drifts the most from the full ephemeris solution,

although it is the least relevant inner planet. Close encounters with Mercury are unfrequent and

have a small effect, as Mercury is the least massive planet and it is encountered with very high

relative velocity.

As a result of the averaging of the perturbing potential, the semi-major axis of the bodies

remains constant. The complete set of secular solutions includes the mean anomaly at epoch σj .

Short term applications benefit from the improved characterization of the position of the bodies

in their orbits. Solving for σj is straightforward if we ignore the contribution of R1,j , which has a

small effect compared to R0,j . The equation of motion for σj becomes:

σ̇j = −∂Rj

∂Lj
= − 2

njaj

∂R0,j

∂aj
(2.14)

and the solution depends on whether the perturber is external or internal:

σ̇j = −
N∑

k=1,k ̸=j

Gmk

nja2j
c̄jkDb

(0)
1/2 (2.15)

where c̄jk = aj/a
2
k in the case of an external perturber and c̄jk = −1/aj if the perturber is internal.
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The solution of the equation is simply a constant drift given by the rate σ̇. This element completes

the set of elements of the secular model.

2.3.2 Analytical secular dynamics of near-Earth asteroids

The secular dynamics of asteroids can be modelled as a particular case of the secular dynamics

of multibody systems described above. In the present work we apply this solution to the evolution

of the asteroid under the external perturbation of Jupiter. The solutions of equation 2.13 simplify

in the case of a system of 2 bodies with a massless internal body. We follow the same process to

obtain the solution. Matrices Ajk and Bjk simplify to:

Ajk =

B12 A12

0 0

 Bjk =

−B12 B12

0 0

 (2.16)

where the subindexes 1, 2 correspond respectively to the massless particle and the external per-

turber. The coefficients of the matrices are found as in equations 2.5-2.8 above. The solution to

the eigenvalue problem yields the secular frequencies of the secular propagation g1 = B12, g2 = 0,

f1 = −B12, f2 = 0. As expected, the elements of the perturber h2, k2, p2, k2 remain constant. The

eigenvectors are the columns of the matrices:

ējk =

1 κ

0 1

 ījk

1
√
2
2

0
√
2
2

 (2.17)

where the constant κ is found as the ratio between Laplace coefficients:

κ =
A12

−B12
=
b
(2)
3/2

b
(1)
3/2

(2.18)

Note that the vector (e12, e22) is not normalized. This is not necessary because in the process

of obtaining the integration constants from the initial conditions the scaling of the eigenvectors is

found. The solution of the elements of the massless particle becomes:
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h1(t) = S1 sin (g1t+ β1) + κh2

k1(t) = S1 cos (g1t+ β1) + κk2

p1(t) = T1 sin (f1t+ γ1) + p2

q1(t) = T1 cos (f1t+ γ1) + q2

(2.19)

with constants of integration:

S2
1 = e21,0 + κ2e22 − 2κe1,0e2 cos (ϖ1,0 −ϖ2)

T 2
1 = i21,0 + i22 − 2i1,0i2 cos (Ω1,0 − Ω2)

tanβ1 =
h1,0 − κh2
k1,0 − κk2

tan γ1 =
p1,0 − p2
q1,0 − q2

(2.20)

The time evolution of the Keplerian elements set can be obtained from the relationships

with the semi-equinoctial set in equation 2.9. The solutions of ϖ(t),Ω(t) are the secular drift with

frequencies g1, f1 that are equal with opposite signs. The solutions of e(t), i(t) are oscillations

with frequencies g1, f1 as obtained from the development of eccentricity e1(t) =
√
h21(t) + k21(t)

and inclination i1(t) =
√
p21(t) + q21(t). The maximum and minimum values of eccentricity and

inclination are:

e21,min = S2
1 + κ2e22 − 2S1κe2

e21,max = S2
1 + κ2e22 + 2S1κe2

i21,min = T 2
1 + i22 − 2T1i2

i21,max = T 2
1 + i22 − 2T1i2

(2.21)

The secular model is computed for the fictitious asteroid of Case 1 of table B.1 with the

perturbation of Jupiter given by the elements of table 2.1. These cases are used later to demonstrate

the propagation tool. For a nominal eccentricity of 0.15 the minimum eccentricity is 0.14946 and

maximum is 0.17466. For a nominal inclination of 10 degrees, the minimum inclination is 7.41823

degrees and maximum is 10.02508 degrees. The characteristic period of the secular motion Tsec is

154,116 years.

This model assumes small eccentricities and inclinations. While these conditions are usually

not fulfilled, it is important to remark that eccentricity and inclination are under frequent distur-

bance due to close encounters. Most importantly, the secular drift in Ω, ω controls the evolution of

the possible planetary encounters.
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The assumptions on the heliocentric orbit of the asteroid for the analytical secular pertur-

bation solution are not always fulfilled among the NEO population. In this section we show that

the analytical theory represents the dynamics of the perturbation by Jupiter. For this reason, we

integrated the orbits of 4462 NEOs with e < 0.7 and i < 0.5 rad for 50,000 years. Note that in

the solution of equation 2.19 if the terms of the external perturber are small the solution tends to

a linear drift of the angles Ω, ϖ. In addition, given the relationship between the frequencies g and

f , the relationship between the arguments rates is ω̇ = −2Ω̇.

Figure 2.4 Error in the secular rates of near-Earth objects.

Figure 2.4 shows the secular rates computed from linear regression of the time histories of

Ω,ω using the Laplace-Lagrange secular theory and compared to numerical integration of the three-

body problem in percent. The secular rates in ascending node (left) and argument of perihelion

(center) are shown as function of the initial conditions semi-major axis and inclination. The secular

rates are shown function of the initial semi-major axis (right) for the two methods. The dashed

lines indicate the region in which we compute the average errors. This region includes the initial

conditions used throughout the chapter, indicated as cross marks.

Note that from an initially larger list of NEOs, a significant fraction (12%) was discarded

because either eccentricity or inclination were larger than 0.5. An additional 11% of the solutions

were discarded because the error in the regression was too large or during the propagation close

encounters with Jupiter moved the orbit of the NEO to a completely different location than the
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initial conditions. While the linear regression secular rates are not equivalent to the frequencies of

the analytical solution, they serve as a comparison between the two dynamical models. The error is

computed in percent relative to the rate measured from the regression of the numerically integrated

trajectories, given by:

E(ω̇) = 100

∣∣∣∣ ω̇sec − ω̇3BP

ω̇3BP

∣∣∣∣ (2.22)

As observed in Figure 2.4 the rates obtained with the two methods agree towards the smaller

end of semi-major axis. Since these are near-Earth objects, the condition of being in the vicinity

of Earth means that eccentricity increases with semi-major axis. We can see that past 1.5-2 au the

difference between the two models is increased, as well as the secular rates values themselves also

increase. This difference is also appreciated in the rates as function of semi-major axis, in which

we show the agreement in the NEO region. Using the current model we find secular rates for 60%

of the population with an error less than 30% in both ω̇ and ϖ̇. If we limit the application of the

secular theory to semi-major axes between 0.8-1.4 au (dashed region in Figure 2.4) we find that

this agreement improves to 88%. It is important to note that the examples chosen to demonstrate

the semi-analytical propagation tool fall within this region. Outside of this region we can verify if

the secular rates found are reliable by using numerical integration. This test integration must be

long enough to observe the secular rates, but still orders of magnitude shorter than the time-scales

that we can more efficiently study using the semi-analytical propagation.

At larger semi-major axes the effect of mean-motion resonances becomes important, and that

Lidov-Kozai dynamics may better represent the dynamics for large eccentricities and inclinations

[Michel et al., 1996b, Morbidelli et al., 2009]. The implementation of additional analytical long-term

dynamics models to model any generic asteroid is left as future work.
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2.3.3 Finding the subsequent encounter

The analytical propagation of particles is interrupted when an encounter with a planet is

detected. In principle it is not necessary to track the distance to planets at all times, since the

regions in which encounters are possible are determined by the geometry of the asteroid around the

central body. If the inclination relative to the planet is high, then the encounters are only possible

in the vicinity of the ascending and descending node. However, the most generic approach is to

track the distance between the asteroid and the crossing planets at all times. Thus, the results in

this work follow the latter approach to find encounters within a closest approach distance of 0.1 au.

When the two bodies are close, the unperturbed closest approach distance is found using a bisection

method where the function is the derivative of the distance as obtained by finite differences. This

process results in less evaluations of the relative distance function based on the heliocentric elements

of the bodies.

The elements of the planets and the asteroid are propagated using the secular solution at the

date of start of the encounter, which is defined below. The transition between models consists in the

conversion between the sets of elements, obtaining the necessary Keplerian elements in the process.

These are semi-equinoctial elements for the analytical perturbed propagation as in equation 2.9

and Delaunay elements for the quadrature of the Lagrange planetary equations.

2.3.4 Evaluation of planetary encounters

Close encounters are commonly solved using the analytical Öpik theory [Öpik, 1976]. While

this theory requires the least computational resources, its accuracy is limited to specific circum-

stances. The quadrature of Lagrange Planetary Equations can be used to solve close encounters

[Alessi and Sánchez, 2015]. In this work we derive a solution using this method for generic close

encounters using Delaunay elements. The two methods are compared to the integration of the three

body problem from the same date and during the same period of time.
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Öpik theory of close encounters

An analytical solution to the planetary close encounter problem was derived by Öpik [Öpik,

1976]. This solution was extended and studied in detail by Valsecchi et al. [2003, 2015]. The

encounter solution uses a linearized mapping from orbital elements to a planetocentric Cartesian

frame, that is later expressed in B-plane coordinates. Then, the encounter is assumed instantaneous

and the incoming asymptote and B-plane both rotate. The new B-plane coordinates are mapped

back to the orbit elements space.

The analytical solution is derived for a hyperbolic flyby around a point secondary mass. This

mapping between B-plane coordinates and orbit elements is linearized in the impact parameter.

Thus, the encounter must be close for the method to be reliable. Additionally, if the inclination is

small the relative velocity coordinates become undefined. A possible way to avoid this is by using

a method sometimes referred as pseudo-Öpik [Greenberg et al., 1988]. In this case the relative

velocity vector is computed directly and defines the turn angle γ at the time of closest approach:

tan
γ

2
=

m

bU2
(2.23)

where m is the mass of the planet in units of the mass of the Sun, b is the impact parameter and U2

is the relative velocity in units of the circular velocity of the planet. Here we use the unperturbed

trajectory of the planet and asteroid to find these quantities. That is, the impact parameter and

relative velocity are found as the planetocentric distance and velocity at closest approach.

In Chapter 6 we propose an extension of Öpik theory to account for the variation of the

MOID between encounters in the computation of keyholes. Thus, we provide more details of the

analytical solution of planetary close encounters.

Lagrange Planetary Equations

The proposed computation of the encounter effect is computed as follows. The variation

in elements over the encounter event is obtained from a quadrature of the Lagrange Planetary

Equations assuming the geometry of the unperturbed flyby. The elements used are obtained from
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the secular propagation of the asteroid. The Lagrange Planetary Equations describe the evolution

of orbit elements due to a perturbing potential. The derivation of Lagrange Planetary Equations

can be found in some references for different sets of orbit elements [Brouwer and Clemence, 1961,

Roy, 2004]. In general, they have the form of:

Ḋ = [L(D)]
∂R

∂D
(D, t) (2.24)

where D is the set of elements of choice and L(D) is a function of the elements that depends

on the chosen elements. In this case the perturbing potential R is the gravitational potential

of the encountered planet. Note that without further simplifying assumptions the partials of the

perturbing potential are function of the elements and function of time. For the elements of choice we

take the partial derivatives that relate the set of elements to Keplerian elements K = [a, e, i,Ω, ω, σ]

and Cartesian coordinates. From the orbital elements representations available to choose, the

current implementation uses the Delaunay elements:

L =
√
µa

G = L
√

1− e2

H = G cos i

l = σ

g = ω

h = Ω

(2.25)

The Lagrange Planetary Equations with the perturbing potential of Equation 2.1 with j

being the asteroid and k the encountered planet can be written as:

dL

dt
=
∂R

∂r

∂r

∂K

∂K

∂l
dG

dt
=
∂R

∂r

∂r

∂K

∂K

∂g

dH

dt
=
∂R

∂r

∂r

∂K

∂K

∂h

dl

dt
= −∂R

∂r

∂r

∂K

∂K

∂L
dg

dt
= −∂R

∂r

∂r

∂K

∂K

∂G
dh

dt
= −∂R

∂r

∂r

∂K

∂K

∂H

(2.26)

The proposed solution is the integration of these differential equations around the encounter

date te and assuming the unperturbed geometry of the flyby. Hence, the asteroid coordinates are

obtained from the heliocentric elements secularly propagated until the start of integration date D0

and the quadrature is only a function of time:
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Figure 2.5 Logarithm of the errors in the computation of the final Keplerian elements during close
encounters given by pseudo-Öpik theory (PÖpik) and the quadrature of LPE (QLPEs)



34

∆D =

∫ te+δt

te−δt
Ḋ(D0, t)dt (2.27)

The integration is conducted for a fraction of the orbit period around the closest approach

distance. This fraction is a constant set large enough such that the effect of the encounter is captured

completely. In this work we use a self-coded fast quadrature function based on the midpoint rule and

a total integration time of 20% of the orbital period. This method avoids the frame transformation

to the center of the planet, since it considers the planet as an external perturber of the asteroid

motion around the Sun. For this reason, it is not possible to obtain a closed form solution of

the integral. Nonetheless, this approach does not imply further assumptions that limit its range

of applicability. Future work will be done in finding the optimal set for this application. This

approach is accurate for the vast majority of encounters, but it is less accurate for the closest ones,

as we explore in the following section.

Using the list of flybys generated in figure 2.2 we computed the errors of Öpik theory and

the quadrature of LPE compared to the solution of the encounter using the three-body problem.

The error E(K) is relative to the variation and in percent, given by:

E(K) = 100
∆KQLPE −∆K3BP

∆K3BP
(2.28)

The results of this evaluation are described in figure 2.5. The list of flybys used is shown in

figure 2.2 and generated as previously described. The flybys are represented in the plane of relative

velocity at closest approach Vinf (km s−1) and distance of closest approach (au).

Using pseudo-Öpik theory there is a region in the space of relative velocity and closest ap-

proach distance in which flybys can be computed accurately. However, this region is not constant

for all Keplerian elements. In addition, most flybys in our range of interest are not computed

correctly using this method. Slow flybys break the assumption in Öpik theory that the behavior

during the flyby is modeled by the two-body hyperbolic interaction. Many of the faster flybys occur

with Venus and Mercury. The two-body hyperbolic flyby model fails to characterize the effect of
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flybys with Mercury even if the planetary close encounters are faster.

Using the quadrature of the Lagrange Planetary Equations 99% of the flybys list are computed

with less than 3% of error, and more than 88% with less than 0.1% error. The flybys that are not

computed accurately with this method are very close and with a slow relative velocity. These flybys

can break the assumption of the unperturbed geometry of the flyby. Given that these encounters

also cause significant variations in the elements, these infrequent encounters are solved using a

three-body problem integration in Cartesian coordinates. The criteria to solve these encounters

using the alternative method is by defining three threshold regions in the encounter parameters:

with very small V∞, very small closest approach distance, and a combination of both close to zero.

This process simplifies the detection of collisions with the planets during the numerical integration

in Cartesian space in the heliocentric frame.

2.3.5 Semi-analytical propagation vs. numerical integration

In the previous sections we validated the individual pieces of the semi-analytical propagation

tool. Once combined, we want to compare the resulting trajectories to trajectories obtained using

numerical integration. With this purpose we generate a fictitious NEO population and propagate

their orbits using both methods.

The fictitious NEO population we define consists in normal distributions for the perihelion

distance, eccentricity, inclination. The distributions are centered respectively around 0.8 au, 0.2, 10

deg and with standard deviations of 0.05 au, 0.05, 3 deg. Arguments of the node, perihelion

and initial mean anomalies are defined as uniform distributions in the [0, 360] degrees range. We

sample 1000 particles from these distributions as our test set for the comparison between the two

methodologies. We setup the numerical integration of the asteroid orbits considering the planets

as third body perturbers. The model we use for the orbits of the planets is the secular theory

developed in section 2.3.1.
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Figure 2.6 shows the results of the propagation for 200,000 years using both methods as

well as the distributions that defined the initial conditions. The analytical probability density

function of the initial conditions is shown as a continuous red line. In addition, the mean number

of encounters found is shown as function of the closest approach distance for both methods.

We find that the cumulative distribution of the mean number of encounters versus closest

approach distance is matched very closely. After 200,000 years, the presence of planetary encounters

causes a dispersion of the initial distributions. The distribution obtained through semi-analytical

propagation is able to track this drift.

The main difference between the results using the two methods is that the numerically inte-

grated distribution shows a small drift in the center of the distribution, but very similar dispersions.

In terms of the longitude of the perihelion, the resulting distributions after 200,000 years remain

uniform using either of the two propagation methods. The other significant difference between the

two methods is in the required the computational time, which is discussed next.

Figure 2.6 Comparison between the 1000 trajectories obtained using numerical integration and
semi-analytical propagation.

2.3.6 Computational time of the semi-analytical propagation tool

The semi-analytical propagation of near-Earth asteroids reduces the computational time re-

quired to obtain long-term trajectories. The use of numerical techniques is limited almost exclu-

sively to the computation of planetary encounters, a small fraction of the simulated time.
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In order to estimate the speedup of the propagation we generate a fictitious population of

NEOs and propagate them for 100,000 years with the semi-analytical propagation tool and with

numerical integration. The semi-analytical propagation tool uses the secular solution of the Solar

System to compute the orbits of the planets over long periods of time. Then, planetary encounters

can occur with any planet. The secular propagation of the asteroid is derived as described in the

text accounting only for Jupiter, which accurately represents the asteroid motion in the absence

of resonances. The semi-analytical propagation of 100,000 years with this setup is computed in

around 5 seconds. In order to account for these effects in numerical integrations we use the N-Body

problem integrator IAS15 [Rein and Spiegel, 2014] with all the planets and the asteroid.

The simulation is set up using high-level programming code that runs libraries in more efficient

low-level code. This is the case for both numerical integrations and semi-analytical propagation,

running in the same 2.5GHz Intel Core i7 processor. The result is a speed-up of x500-x1000

of the semi-analytical propagation tool as compared to the numerical integration. The current

implementation allows room for significant speed-up that is left for future work. The perturbed long-

term propagation could be extended to use other suitable models of interest. The computational

cost is not expected to increase while we use analytical solutions of these long-term perturbations.

2.4 Semi-analytical propagation results

In this section we demonstrate the semi-analytical propagation tool in a variety of scenarios.

First, we want to compare the semi-analytical model with trajectories obtained through numerical

integration. Matching very accurately trajectories obtained with more complex models is outside

the scope of the comparison. Even if the models were identical, trajectories under encounters are

very sensitive to the initial conditions and under small perturbations they diverge into different

paths. This effect was visualized in figure 2.1 using only numerical integration. For this reason,

long term simulations may focus on the statistical analysis of the dynamical evolution rather than

individual trajectories. Throughout the section, the simulations include Jupiter as the only planet

secularly perturbing the asteroids. All the inner Solar System bodies are considered to evaluate
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planetary encounters. These are secularly evolving due to mutual perturbations and the perturba-

tions of the outer Solar System planets, as described in section 3.a..

2.4.1 Short-term propagation of near-Earth objects using different models

The asteroid chosen for the tool demonstrations is the binary (35107) 1991 VH. The first

reference trajectory is obtained from the HORIZONS system of JPL [Giorgini and JPL Solar

System Dynamics, 2021]. The second model is the numerical integration of the asteroid motion

under the influence of the Sun, Earth and Jupiter. Jupiter is the main driver of the secular motion,

which is observed as a linear drift in the argument of perihelion and argument of the ascending

node. Given the current orbit of (35107) 1991 VH, it only experiences planetary encounters with

Earth in the next few centuries. In Figure 2.7, we compare these two models from numerical

integration with the present semi-analytical propagation tool.

Figure 2.7 Trajectories of a particle that mirrors the binary asteroid (35107) 1991 VH for 500 years.
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In the three trajectories we observe similar behavior, although it manifests differently in

every element. First, there is a close agreement in the encounter dates of the Sun-Earth-Jupiter

integration and the encounters found by the propagation tool that shows in all elements. The

encounter dates can be distinguished as the discontinuities in the trajectories, especially in the

semi-analytical propagation trajectory. The variation of the semi-major axis is characterized by a

random walk from the planetary encounters. In both eccentricity and inclination there is a relevant

role of the encounters with an additional secular component that the secular model is able to model.

The dynamics of the argument of the ascending node are dominated by the secular drift.

There is not a significant effect that can be perceived by the planetary encounters and this is

expected when the encounters occur with a unique planet and close to the node. What we observe

is that the secular dynamics including the complete effects of Earth and Jupiter are very similar,

and the analytical secular drift is off by about a degree after the 500 years of the propagation.

The secular drift rate in the argument of perihelion is not as trivial to compare since it must be

observed between encounters, although good agreement is found too. Last, the mean anomaly at

epoch evolves over time with an increasing amplitude present in all three models.

2.4.2 Long-term propagation and the MOID

The minimum orbit intersection distance (MOID) indicates what the minimum distance

between any two points of the two heliocentric Keplerian orbits is. In this case we focus on the

orbit of Earth and the orbit of the asteroid. The MOID is also used as one of the criteria to

define an asteroid as a potentially hazardous asteroid. There are many algorithms available in the

literature to compute the MOID [Gronchi, 2005, Wísniowski and Rickman, 2013, Armellin et al.,

2010]. In this chapter we use the tool derived in Hedo et al. [2018, 2020] based on an asymptotic

approach.

The MOID constrains the minimum distance of a possible close encounter. In other words,

the periods with a large MOID are absent of close encounters. Three examples are used to visualize

time histories of close encounters and the evolution of the MOID for 100,000 years. These are



40

obtained for high and low eccentricities and inclinations, with initial conditions in table B.1.

The distributions of closest approach distances are shown in figure 2.8 and the unperturbed

relative velocity V∞ at those encounters is found in figure 2.9, with initial conditions given in

table B.1. We show the closest approach distance dCA (au) of the encounters and MOID with the

planets. The dots indicate close encounters, solid lines indicate the MOID. The color code indicates

the planets: (Green) Venus, (Blue) Earth, (Red) Mars.

Case 1 is an example of a NEO with relatively low eccentricity and inclination. In these

conditions, close encounters are only possible with Earth and at a low relative velocity. The MOID

oscillates secularly with long periods of low MOID. Case 2 is an example of an opposite scenario

in which both eccentricity and inclination are large. In the secular evolution of the MOID this

translates in short periods of low MOID and long periods absent from encounters. This is a

scenario in which the semi-analytical propagation of the asteroid allows a rapid propagation until

Figure 2.8 Distance of closest approach of close encounters in the semi-analytical propagation of
the fictitious NEOs Cases 1-3.
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Figure 2.9 V∞ at closest approach of close encounters in the semi-analytical propagation of the
fictitious NEO Cases 1-3.

the next period of frequent encounters. Case 2 faces fast close encounters with Venus, Earth and

Mars.

Case 3 is an example of a NEO with high eccentricity and low inclination. This combination of

factors leads to a large frequency of close encounters with the inner planets. In this case, encounters

are very frequent with Venus, Earth and Mars. The close encounters experienced by Case 3 are with

a relative velocity smaller than in Case 2 given the reduced inclination. Even under the elevated

frequency of close encounters, the secular signature of the MOID is maintained. The structure

persists until the event of an energetic close encounter. The occurrence of such encounters is just

a matter of probability of having the right timing during the low-MOID intervals of the secular

propagation.
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2.4.3 Statistics of long-term propagation

The chaotic nature of the dynamics implies that the study of the orbital evolution over long

timescales should be done statistically. Given the uncertainty in the orbit solution of an asteroid,

we can sample a large number of particles and study the dynamical paths that the different particles

take. Because of the sensitivity to initial conditions in planetary encounters, very well determined

distributions diverge in a few centuries to widely different paths. After demonstration of these

dynamics and its relationship to the number of planetary close encounters found, we propose

statistical models for the growth in uncertainty.

Monte Carlo long-term propagations

We demonstrate the growth in orbital uncertainty by Monte Carlo propagation of 500 particles

that sample uncertainty distributions around a nominal trajectory for 500,000 years. We inspected

7 examples: first, in detail, orbit solution of (35107) 1991 VH; then, the orbit solution of (175706)

1996 FG3; last, the previous Cases 1-5 of table B.1 with artificial orbit uncertainties as described

in appendix B.

Figure 2.10 shows the time histories of the individual runs of the cloud of points originally

neighboring (35107) 1991 VH. Initial conditions are given in table B.1 as obtained from HORIZONS

[Giorgini and JPL Solar System Dynamics, 2021] and uncertainties in the distribution are obtained

from JPL’s Small-Body Database as described in appendix B.1 Elements shown are perihelion,

eccentricity, inclination, argument of the ascending node, argument of perihelion and minimum

orbit intersection distance (MOID). Grey lines show individual simulations, black lines are the

median of the 500 simulations of each parameter shown.

The results in Figure 2.10 show that the cloud of particles distributes over a wide region of

near-Earth space. On the order of hundreds of thousand years, the dispersion is accomplished by

the less frequent very close encounters. Eccentricity and inclination show the secular component

1 As extracted from JPL’s Small-body Database Lookup (Date accessed: 2021-04-25) - Available for query at:
ssd.jpl.nasa.gov/tools/sbdb_lookup.html

ssd.jpl.nasa.gov/tools/sbdb_lookup.html
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Figure 2.10 500,000 year Monte Carlo semi-analytical propagation of asteroid (35107) 1991 VH.

but are dispersed by the presence of encounters. The dynamics of argument of ascending node and

argument of perihelion remain mainly secular with a degree of dispersion because of the presence

of encounters. Note that the initial uncertainty on the orbit of (35107) 1991 VH is very small as

shown while demonstrating the chaotic dynamics nature in Figure 2.1 of the background section.

As it was observed in the detailed analysis of a shorter simulation in figure 2.7, the mean anomaly

at epoch changes completely with small changes in the semi-major axis. This fact reflects in the

long-term simulations as a complete uniformization after just a few centuries.

The binary (35107) 1991 VH currently presents a MOID that is decreasing. This means

that after a few millenia the probability of experiencing very close encounters increases. In the

statistical analysis, this probability shows in that a fraction of the fictitious asteroids experience

such encounters. We observe that towards the end of the simulation there is a large dispersion in

inclination and perihelion distance. By the end of the simulation, the angles Ω − ω are dispersed
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Figure 2.11 Semi-analytical propagation of asteroid Cases 1-5, (35107) 1991 VH, (175706) 1996
FG3 for 500,000 years.
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along a linear drift as caused by numerous close encounters that not only change these angles, but

modify the secular dynamic frequencies.

The long-term dynamics of 6 more examples are integrated for 500,000 years. These are the

Cases that we used to illustrate the long-term dynamics with initial conditions in Table B.1. The

case of the binary (175706) 1996 FG3 is also added to the discussion, as it is the other target of

exploration of the Janus mission [Scheeres et al., 2020]. The uncertainties of (175706) 1996 FG3

and (35107) 1991 VH are sampled based on their publicly available orbit solutions. In the case of

the fictitious asteroids we used an arbitrary distribution. Both approaches are explained in detail

in the appendix B.

The statistical distributions after 100,000 and 500,000 years are shown in Figure 2.11 as

histograms. The distributions in semi-major axis-eccentricity and semi-major axis-inclination are

shown at the initial times, after 50,000 yr and 500,000 yr in Figure 2.12. The 500 virtual asteroids

that are generated at the initial time per case are in the same bar of the histogram. The effect

of repeated encounters causes the distributions to spread along near-Earth space. This dispersion

is clearly shown in the perihelion distance in all cases, with a general trend of a decrease in the

distance. Figure 2.12 additionally shows this spread of all the cases together.

The presence of mean motion resonances in the inner Solar System can protect asteroids from

close encounters Milani et al. [1989]. In the semi-analytical propagation of near-Earth asteroids

the orbits may drift to these regions, as observed in Figure 2.12. The resonance regions are found

for semi-major axes larger than a = 1 au. In these cases encounters with the Earth stop occurring

for a period of time. However, this clustering of particles is not found in numerically integrated

populations or in the discovered population of near-Earth asteroids.

The process of obtaining the secular long-term perturbation eliminates the short-period per-

turbations. The latter perturbations cause an oscillation in the orbit elements of non-negligible

amplitude. In order to measure the influence of this effect, we included an analytical oscillation

in the semi-major axis with the frequency of the orbital period and an amplitude of the order of

0.01 au. This extension completely eliminates the artificial mean motion resonance regions. The
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Figure 2.12 Dispersion in the distributions of the asteroids in table B.1.

analytical characterization of the short-period perturbation is left as future work, as its contribu-

tion must be considered for the complete set of orbital elements and is not expected to significantly

modify the obtained distributions.

Statistical Models for the Long-term dynamics

The recorded number of encounters are shown in Figure 2.13 as the mean and standard

deviation of 500 particles. More details on the statistical distributions over time are shown in Figure

2.14. We show the standard deviation of semi-major axis, eccentricity, inclination as function of

the number of encounters and square root of time. In addition, we show the variation of the mean

semi-major axis, eccentricity and inclinations over time. Using this information we describe the

dynamical evolution of these test cases.
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Figure 2.13 Number of encounters experienced by the test cases in table B.1.

In general, we observe that asteroids encountering the planets more frequently disperse their

distributions faster. This is the case for the Janus targets and Case 1, that present the largest

standard deviations increase in the simulation time (Fig. 2.14). This dispersion is not only shown

in the elements, but also in the number of encounters (Fig. 2.13).

The evolution of the distribution as caused by encounters could be modelled as a random

walk. If this hypothesis is true, then the standard deviation in the population increases linearly

with the square root of time. Figure 2.14 tests graphically this hypothesis for semi-major axis,

eccentricity and inclination. Initially in all cases there is a fast increase in the standard deviations.

After the few first millennia, some of the distributions follow the hypothesis of the linear relationship

σ ∝
√
t, especially in the semi-major axis.

In eccentricity and inclination, we observe that there is a secular component in the evolution

of the distribution. The secular component is observed in both the evolution of the standard

deviation and the mean of the variations (Fig. 2.14). These are shown with respect to the initial

values to have a common reference in the comparison of cases.
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The dispersion in semi-major axis modifies the secular rates of the drift in argument if

perihelion and argument of the node. This effect combined with the direct variation of the angles

during planetary encounters leads to the uniformization of the distribution in ω,Ω. In the duration

of our simulations of 500,000 most cases approach this uniformization as we showed in figure 2.11.

Figure 2.14 Statistical evolution of the distributions of the test cases in table B.1.

We can compute more rigorously whether the distributions can be considered uniform by

conducting the chi-squared test on the longitude of perihelion ϖ = ω + Ω. Figure 2.15 shows the

result of the chi-squared test of a uniform distribution over the simulation time for all cases. If the

p-value is larger than our threshold of p = 0.05, we can consider that our null hypothesis of the

uniform distribution of ϖ is true. Cases 1, 3, 4, (175706) 1996 FG3 and (35107) 1991 VH reach this

threshold, while Cases 2 and 5 do not approach the significance by the end of the simulation time.
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It is interesting to show the evolution of the p-value compared to the mean number of encounters.

In figure 2.15 we show how the distribution of Case 3 tends to the uniformization in ϖ with less

encounters than other cases that achieve this distribution earlier in the simulation time. This is

expected since this case experiences more frequent encounters with the most massive planets and

with a slower relative velocity, which means that the impact of these encounters in the dispersion

of their distributions is larger.

From the general trends that we observed, the only case that is very different is Case 2,

that experiences much fewer encounters. As we illustrate in Figure 2.8, Case 2 experiences close

encounters much less frequently than the other cases. The relative velocity is also larger in this

case, which means that the effects of the encounters are not as strong. The case of (175706) 1996

FG3 is more difficult to fit in the general description of the dynamics, as the close encounters do

not cause such a fast dispersion of the distribution. This binary asteroid is studied in more detail

in section 3.2.

Figure 2.15 P-value of the chi-squared test of the uniform distribution of the longitude of perihelion
ϖ = ω +Ω for the 5 test cases given in table B.1.
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2.5 Discussion

The semi-analytical propagation tool shows the main dynamical effects observed in long-term

numerical integration of the inner Solar System. The secular drifts caused by Jupiter move the

asteroids between the vicinities of the different planets of the inner Solar System. This effect causes

a seasonal presence of strong close encounters that can disturb both the orbit of the asteroid and

its physical properties. While the time-scales of these events is of millions of years [Fang and

Margot, 2012], if we sample a large enough number of particles we can measure the probabilities

of collisions or the potential disruption of other physical properties of asteroids. The measurement

of the collision probabilities was outside the scope of this chapter, but in this work a few collisions

were detected in the uncertainty sampling of the asteroids.

The analytical modelling of the dynamics far from the planets was done using the Laplace-

Lagrange theory, which works well in a large fraction of the NEO population. For this reason we

defined a region in near-Earth space in which the secular model works best, as shown in Figure 2.4.

However, we could extend the modelling in the regions of large eccentricity and inclination. In the

previous section we describe the low frequency of encounters that is characteristic of asteroids with

high inclination, specifically with Case 2. An asteroid of these characteristics would be likely to be

dominated by the Lidov-Kozai effect, in which there is an exchange between high inclination-low

eccentricity periods and low inclination-high excentricity periods. This would mean that Case 2

evolves to become a case closer to Case 3, in which encounters are more frequent. The use of ana-

lytical models of the Lidov-Kozai model [Kinoshita and Nakai, 2007] for the perturbed propagation

is left for future work.

Using the semi-analytical propagation tool we observe the stochastic nature of the dynamics.

However, the effect is different on each of the elements. While in semi-major axis we observe what

could be described as a random-walk process, the angles Ω and ω become uniformly distributed.

Eccentricity and inclination show a mixed effect between a random-walk that adds dispersion to

the distribution and the oscillations driven by the secular theory.
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2.6 Conclusions

In this chapter we present a rapid semi-analytical propagation tool for asteroids in the inner

Solar System. The tool combines an analytical solution for the secular dynamics and the evaluation

of planetary encounters. The derived solution of planetary encounters proves to accurately model

the effect of the majority of flybys that asteroids experience in the inner Solar System.

The long-term effect of the perturbation by Jupiter is captured by the analytical secular

solutions in a large fraction of the NEO population. The combination with detection and evaluation

of close encounters recreates the full dynamics as we demonstrate for the case of (35107) 1991 VH.

The description of the orbits of NEOs in long-term timescales must be done statistically.

We showed how the different elements can be represented by different distributions, and how the

time it takes for the elements to become statistical depends on the frequency of close encounters.

Through the sampling of different NEO cases we inspect the stochastic models that represent the

long-term evolution of the orbital elements. The use of a fast semi-analytical propagation tool

allows an efficient study of the dynamics of asteroids.



Chapter 3

Binary Asteroids Excitation during Close Encounters

3.1 Introduction

The semi-analytical propagation allows us to track the encounters experienced by asteroids

in the inner Solar System, which can perturb the physical properties of asteroids. The orbits of

binary asteroids can be disrupted by a very close encounter [Meyer and Scheeres, 2021]. In this

Chapter we study the orbital history of the targets of the exploration mission Janus [Scheeres

et al., 2020]: the two binaries (35107) 1991 VH and (175706) 1996 FG3. The stochastic long-

term dynamics in the last million years are modeled in section 3.2 by sampling a large number

of particles from their current orbit uncertainties described in section B. We model the evolution

of these statistical distributions by a random walk in semi-major axis, eccentricity and inclination

and a uniform distribution in longitude of perihelion in section 3.2.1. Then, in section 3.2.2 we

compute the probability that (35107) 1991 VH and (175706) 1996 FG3 could have been potentially

disrupted by a close encounter in this period of a million years. We repeat this analysis for the

target of the NASA/APL mission DART target: the Didymos system in section 3.3.

3.2 Orbit histories of the Janus mission targets

The orbit time histories of (35107) 1991 VH and (175706) 1996 FG3 are shown respectively

in figure 3.1 and figure 3.2. We show the perihelion distance, eccentricity, inclination and argument

of the ascending nodes. For clarity, we show only a subset of the runs and the median of the full

distribution of 1000 runs. The minimum orbit intersection distance (MOID) is shown for the inner
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Figure 3.1 Orbit history of (35107) 1991 VH in the last million years.

Solar System planets Venus, Earth and Mars. These metrics show when close encounters with these

planets are possible. The presence of frequent close encounters causes the dispersion of the orbit

histories. This feature manifests in the orbit history of (175706) 1996 FG3, in which the period of

very low Venus MOID corresponds with a dispersion in the overall statistical representation of the

orbit.
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Figure 3.2 Orbit history of (175706) 1996 FG3 in the last million years.

Similarly to the long-term dynamics into the future studied in section 2.4, the initially very

close distribution becomes a wide statistical distribution when propagated far into the past. In

Figure 3.3 we show histograms of the orbit elements and the number of encounters recorded below

a closest approach distance threshold of 0.1 au. The orbit evolution of (35107) 1991 VH is mostly

a spread around the initial conditions. However, (175706) 1996 FG3 is in a particular initial orbit
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Figure 3.3 Histograms of the orbit history of (35107) 1991 VH and (175706) 1996 FG3 at the initial
time, 100,000 years ago and 1 Myr ago.

with low inclination. On average, the very low inclination and high eccentricities drift toward a

smaller eccentricity and higher inclination that are more frequent in the secular cycle. In both cases,

the longitude of the perihelion becomes uniformly distributed. In the next section we characterize

this uniformization process.

Table 3.1 Stochastic modelling of the long-term dynamics of the Janus targets

Target Name ka (au/
√
yr) ke (1/

√
yr) ki (deg/

√
yr) t (yr · 103) Ne < 0.1 au

(35107) 1991 VH 0.2661 ·10−3 0.1799 ·10−3 6.0055 ·10−3 -434 11800

(175706) 1996 FG3 0.3688 ·10−3 0.0944 ·10−3 11.598 ·10−3 -797 29800

3.2.1 Stochastic modelling of the long-term dynamics

In section 2.4 we show that we can model the long-term dynamics with a random walk in

semi-major axis, eccentricity and inclination. In addition, the latter two present also the influence

of the oscillations of the secular theory. We also want to study the uniformization in the longitude of

the perihelion, as this process occurs with time but also with a repeated number of close encounters.
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The random-walk model can be characterized by a linear increase in standard deviation

with the square root of time. Figure 3.4 shows the standard deviation of the 1000 Monte Carlo

experiment that we conducted into the past of the two Janus targets (35107) 1991 VH and (175706)

1996 FG3. We fit a linear model to the standard deviation evolution, and measure the slopes to

compare the evolution of the two targets. In the case of (35107) 1991 VH we avoid the use of

the full simulation time, as the standard deviation bends from the initial linear increase. The

slower increase after this period occurs when the distribution migrates from a configuration with

low velocity encounters. The opposite case occurs with inclinations, in which the rapid increase of

(175706) 1996 FG3 from the low-inclination initial regime slows down after the initial growth.

The measured slopes are reported in table 3.1, showing that the random walk of (175706) 1996

FG3 is faster in semi-major axis and inclination. However, because of the bends in the progression

after a few hundred thousand years, the final standard deviations are not substantially larger than

the ones of (35107) 1991 VH after the million years into the past in eccentricity and inclination.

Figure 3.4 Random walk statistical modelling of the evolution of semi-major axis, eccentricity,
inclination of (35107) 1991 VH and (175706) 1996 FG3.
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The process of uniformization of the longitude of perihelion is shown in figure 3.5. We

conduct the chi-squared test of the uniform distribution over the 1 Myr simulation, to find when

the hypothesis of the uniform distribution is significant. In table 3.1 we show the first time in which

this criterion is satisfied, both in time and mean number of encounters: -434,000 years and a mean

of 11800 encounters for (35107) 1991 VH, and -797,000 years and a mean of 29800 encounters for

(175706) 1996 FG3.

The uniformization of (35107) 1991 VH is faster than the uniformization of (35107) 1991

VH in both time and mean number of encounters. It is remarkable that (35107) 1991 VH takes a

much lower mean number of encounters. This is explained by the faster relative velocities of the

encounters of (175706) 1996 FG3 and a larger fraction occuring with Mars, a less massive planet.

The relative velocities of a few of the recorded flybys are shown in figures 3.6 and 3.7 in the context

of studying the probability that a close encounter could potentially disrupt the binaries.

The comparison between the two binary systems highlights how the effect of the encounters

depends on the relative velocities and the mass of the planets. In general, slow encounters and

with larger planets are more efficient at causing the distributions to become uniform. However,

depending on the heliocentric orbit these encounters may be more or less frequent. Thus, leveraging

both effects is required to obtain a stochastic representation of the long-term dynamics of NEOs

under frequent encounters.

3.2.2 Potentially disruptive planetary encounters

The two binary targets of the Janus mission present different relative orbits as observed by

radar and photometry [Pravec et al., 2016, Meyer et al., 2021], showing that (175706) 1996 FG3 is

in a stable orbital state and (35107) 1991 VH is in a chaotic state. The perturbed state of (35107)

1991 VH could be explained by a recent very close encounter with the inner Solar System planets

[Heggie and Rasio, 1996]. Thus, it is of interest to characterize the frequency of such encounters in

the orbital history of asteroid binaries.
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Figure 3.5 P-value of the chi-squared test of the uniform distribution of the longitude of perihelion
ϖ = ω +Ω of (35107) 1991 VH and (175706) 1996 FG3.

Using the semi-analytical propagation tool we obtain the history of flybys over a long time

period of time. The perturbation in the orbit of a binary system during a planetary close encounter

is studied in detail as described in [Meyer and Scheeres, 2021]. In this section we combine both

results to predict the frequency of a disrupting flyby.

The effect of the close encounter on the binary can be modelled as an impulsive variation

in the binary Keplerian elements. In Meyer and Scheeres [2021] the effect of close encounters

to singly synchronous binary asteroids is studied. The variation in semi-major axis, eccentricity,

and inclination obtained with numerical methods was compared to analytical expressions for the

impulsive variation in binary Keplerian elements [Fang and Margot, 2012]. We used these analytical

expressions as they provide an estimate of the variation as function of the relative velocity and

distance of closest approach.
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Figure 3.6 Potentially disruptive encounters recorded in the history of (35107) 1991 VH (NMC =
1000)

For every binary and encountered planet we can generate contours of the variation of the

eccentricity. In Figures 3.6 and 3.7 we show these contours respectively for (35107) 1991 VH and

(175706) 1996 FG3. In every figure we highlight two levels, a variation of 0.1 in eccentricity, and

a variation of 1, which would mean that the binary is completely separated. The probability of

disruption in the binary orbit increases as the relative velocity and closest approach distance are

reduced. For reference, the radius of the planet is shown as a dashed line.

Using the semi-analytical propagation tool we track the close encounters below the threshold

of 0.003 au, above which the variation in the binary Keplerian elements becomes negligible. For

each binary we generate 1000 trajectories for a million years into the past. All the encounters that

are found in this threshold are plotted in figures 3.6 and 3.7 and separated by encountered planet.

The encounters potentially disruptive recorded for (35107) 1991 VH with Earth and Mars

are shown in figure 3.6. Less than 1% of the recorded encounters are with Venus so the map with

this planet is not included. The relative velocities of the flybys are mostly found between 5 and 15

km s−1. In the case of (175706) 1996 FG3 this range of possible relative velocities is larger in all
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the planets. In addition, many encounters are found with quite slower V∞, which means that even

if they are not as close, they can still potentially cause a disruption.

As we observed in figure 2.13, (175706) 1996 FG3 experiences more frequent encounters.

However, the regions in which the encounters are potentially disruptive depend on the current

orbital configurations of the binaries. In this case, (175706) 1996 FG3 requires closer and slower

encounters to obtain the same mean variation in binary elements.

Figure 3.7 Potentially disruptive encounters recorded in the history of (175706) 1996 FG3 (NMC =
1000)
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Considering the orbit history in a million years, a non-negligible probability exists that both

binaries have been potentially disrupted at some point. However, it is possible that the signature of

these potential disruptions vanishes if there is energy dissipation in the system. Thus it is relevant

to study the probability that the binary orbits have potentially been disrupted recently in the orbit

histories. We can study the first fraction of the long-term secular periods, in which the particles

still have not mixed.

Figure 3.8 shows the history of potentially disruptive encounters in the recent periods of

frequent encounters. The close encounters below the line of mean variation in binary eccentricity

of 0.1 are highlighted with a black circle and the dashed line marks the radius of Earth. The

probability of disruption is based on the number of encounters found below thresholds of mean

∆e = 0.1 for low disruption and ∆e = 1 for high disruption, with their corresponding confidence

intervals shown in dashed lines.

The last period of possible very close encounters that we find for (35107) 1991 VH starts

before the last 10,000 years. As determined by a mean variation in binary eccentricity of 0.1, we

find that 61 of the 1000 test runs experience a potential disruption in the period of time up until

the last 30,000 years. When we incorporate the next period of close encounters, the probability of

a potential disruption increases to 131 out of 1000 runs in the last 60,000 years.

Given the current orbit state of (175706) 1996 FG3, we find very close encounters with Venus

in the last millennia. Because of the more restrictive closest approach distance for a potential

disruption to happen, only 10 out of the 1000 test runs experienced this potential disruption in this

period of frequent encounters. If we consider the last 10,000 years, then the probability increases

to 54 cases in which at least one potentially disruptive encounter was found.

If we keep increasing the time in which we consider all the potentially disruptive encounters,

we can estimate the probability that a potentially disruptive encounter occurs. These probabil-

ities are shown in figure 3.8 with the corresponding 95% confidence intervals. The probability

of suffering a disruptive encounter of (175706) 1996 FG3 increases faster than the probability of

(35107) 1991 VH. This is explained by the significantly higher number of recorded close encounters.
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Figure 3.8 Recent potentially disruptive encounters and probability of disruption for the NASA
Janus targets.

Thus, it is not possible to explain the chaotic state of (35107) 1991 VH only from the long-term

probability of experiencing such encounters. However, a low probability in recent times combined

with the incapability to dissipate the perturbation in a long time could explain the chaotic state

of (35107) 1991 VH. Thus, future work will be done in the lines of characterizing the timescales of

the dissipation of perturbations due to close encounters.

3.3 Potentially disruptive encounters of the DART target

On September 26, 2022 the DART spacecraft impacted Dimorphos, the secondary of the 65803

Didymos binary asteroid system. The result was a reduction of the orbital period of Dimorphos

by 33.0 ± 1.0 minutes [Thomas et al., 2023]. Before the arrival of DART to the Didymos system

we explored whether or not planetary close encounters could explain any perturbations in the orbit
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of Dimorphos, as reported in Richardson et al. [2022]. Conversely, this analysis also shows if the

orbit of the Didymos system is exposed to frequent planetary close encounters that could perturb

the system.

We propagate 1000 virtual particles from the orbit solution of Didymos for 500,000 years into

the past. In order to verify that the secular rates are captured accurately we propagated the orbit

of Didymos for a shorter period of time using numerical integration. The initial conditions are in

table B.1, and the uncertainty covariance in table B.4. Note that we extracted the 6x6 subset from

the 7x7 matrix including the uncertainty in the non-gravitational acceleration A2.

With the pre-impact binary system model, we generate the same contours of the required

closest approach distance-relative velocity for significant excitation of the binary system. In Figure

3.9 we show these contours, together with all the close-slow flybys recorded in this period. In this

case, we show the Earth flybys in blue and Mars flybys in Red. We compute the probability of

excitation based in these thresholds as function of time. We find that there is less than a very small

probability that Didymos was excited by a flyby in the last 100,000 yr.

Figure 3.9 Recent potentially disruptive encounters and probability of disruption Didymos, the
NASA/APL DART target.
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3.4 Conclusions

We studied in detail the orbital histories of the Janus mission targets: (35107) 1991 VH and

(175706) 1996 FG3. We characterized the encounters that can cause a potentially disruption of the

binary orbits and computed the frequency of such encounters for the Janus targets as well as for the

DART target. Additional modeling of the effects of close encounters to other physical properties of

asteroids will allow the study of the frequency of disruptive events. These are just a few potential

examples of the benefits of a fast propagation tool for Solar System studies in the fashion of the

presented tool.



Chapter 4

Obliquity Evolution of NEAs

4.1 Introduction

The spin poles of asteroids evolve under thermal torques or YORP effect (Yarkovsky – O’Keefe

– Radzievskii – Paddack) [Vokrouhlický et al., 2015]. Analytical theories predict that the obliquity,

the angle between the orbit plane of the asteroid and the spin pole (See Figure 4.1), evolves to

equilibrium configurations of 0, 90 or 180 deg [Golubov et al., 2021]. However, in the inner solar

system only sometimes we find asteroids near these equilibria. In this chapter we leverage the

evolution of the heliocentric orbit in contrast to torques that drive the obliquity to these equilibria.

The observed spin poles in near-Earth relate to the sources of asteroids in the inner solar sys-

tem, with the Yarkovsky acceleration is considered to be one of the most important effects[Morbidelli

and Vokrouhlickỳ, 2003]. When obliquity > 90 deg, the resulting acceleration causes a decrease in

semi-major axis bringing the asteroids closer in turn to the ν6 resonance and then to the orbit of

the Earth [Vokrouhlický et al., 2015]. Thus, in the inner Solar System we expect more asteroids

with retrograde rotation than posigrade rotation.

NEA population models predicted the ratio between retrograde and prograde rotators to

be 2 ± 0.2 [Bottke et al., 2002], which was first measured by La Spina et al. [2004] to be 2+1
−0.7.

The measured Yarkovsky accelerations constrain the obliquities in agreement with the predicted

ratio [Tardioli et al., 2017]. Additional spin poles have been produced since and made available in

the Light-curve database [Warner et al., 2021] as shown in Figure 4.2. We then cross-matched the

information of the spin poles with the orbit elements as obtained from JPL’s Small-body Database,1
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showing a ratio of 2.1 ± 0.9. We find that there are 65 uniquely defined spin axes of NEOs. For

the rest, we show both solutions of the spin pole. Even if the error is significant, the databases

show consistency with the results in the literature.

Figure 4.1 Obliquity (ϵ) is the angle between the orbit normal plane (Ho) and rotational angular
momentum (Hr). Orbit normal plane is function of inclination (i) and ascending node (Ω).
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Figure 4.2 Obliquities of 85 near-Earth asteroids with spin pole solutions.

1 As extracted from JPL’s Small-body Database (Date accessed: 2023-05-05) - Available for query at: ssd.jpl.
nasa.gov/tools/sbdb_query.html

ssd.jpl.nasa.gov/tools/sbdb_query.html
ssd.jpl.nasa.gov/tools/sbdb_query.html
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Considering the evolution of the spin states to be uncoupled from the orbital dynamics, the

YORP effect drives the obliquities of asteroids to equilibrium states of 0, 90 or 180 degrees [Golubov

and Scheeres, 2019, Golubov et al., 2021]. The thermal torque caused by large-scale asymmetry of

the asteroid is referred as normal YORP. In addition, boulders in the surface of the asteroid with

thermal conductivity can cause a significant contribution called tangential YORP [Golubov et al.,

2014].

In chapter 2 we model the evolution of the heliocentric orbit of asteroids in the inner solar

system. In particular, the secular perturbation of Jupiter causes the ascending node Ω to drift

secularly and oscillations in the inclination i, which define the orbital plane. In addition, close

encounters cause the orbit to become stochastic in time scales comparable to the time scales of the

evolution under YORP. For this reason predicted obliquities far into the past or the future are also

stochastic. These effects have not been previously combined to model the long-term dynamics of

the obliquity. Vokrouhlickỳ et al. [2005] included spin-orbit resonances for the secular drift of the

orbit, but did not include YORP torques. Vokrouhlický et al. [2007] proposed a secular drift with

YORP torques. However, the heliocentric orbits were assumed constant, hence the orbit plane as

well as the intensity of the solar flux.

This chapter is structured as follows. In section 4.2 we keep the spin state constant, and

explore two models for the heliocentric orbit: a secular drift in section 4.2.1 and the stochastic

evolution with close encounters in section 4.2.2. These two scenarios show the timescales of the

orbit evolution and how that translates into the evolution of the obliquity. Then, in section 4.3

we include torques on the spin pole to investigate how the obliquity components of the torque can

affect the overall evolution of obliquity of near-Earth asteroids.
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4.2 Obliquity Evolution: Stationary Spin State

In this section we study the evolution of the obliquity if we keep the spin state of the asteroid

constant. First, as the underlying secular evolution from the perturbation of Jupiter. Then,

considering the stochastic orbit evolution under the presence of planetary close encounters.

4.2.1 Obliquity Evolution due Secular Orbit Drift

In section 2.3.2 we describe the secular model for the long-term dynamics assuming the

perturbation of Jupiter. Figure 4.3 shows how the secular drifts manifests into obliquity over time

for an asteroid of initial inclination i = 15 deg. We propagate the obliquity for the same heliocentric

orbit and 3 semi-major axes. The black vector corresponds to the initial Ĥo, which traces the black

line with the secular drift. We sample 5 different spin poles, shown in inertial space. From an

initial obliquity of 0, the spin poles are generated by shift the spin pole ∆ of ±5 deg and ±10 deg.

Given the precession of the orbit normal pole around the vertical axis, the shifts increasing the

latitude (∆ = +5,+10 deg) reduce the amplitude of the obliquity oscillations. On the other hand,

we find that reducing the latitude below the orbit angular momentum (∆ = −5,−10 deg) creates

an offset of the oscillations while roughly maintaining an amplitude of 2i. The right panels show

how different semi-major axis changes the fundamental frequency of the secular drift.

Figure 4.3 Evolution of obliquity as the orbit normal drifts secularly while the spin pole is kept
constant.
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The orbits of NEOs span a wide range of semi-major axes, eccentricities and inclinations,

as shown in Figure 4.2. Asteroids of high eccentricities and/or inclinations can be under the

Lidov-Kozai effect, in which periods of high eccentricity exchange periods of high inclination [P.

and Thomas, 1996]. The third-body perturbing potential of Jupiter can be expanded in orbit

elements to analytically find the secular frequencies of the drift in ascending node and argument

of perihelion [Kinoshita and Nakai, 1999, 2007]. These frequencies are very similar to the secular

frequencies of the Lagrange-Laplace cycle. If the asteroid is in this regime, then we would expect

higher amplitude of the oscillations of inclination, which would imply a larger amplitude of the

oscillations of obliquity. The oscillations in eccentricity can change the intensity of the YORP

effect, although the time average does not differ substantially from the original intensity.

4.2.2 Stochastic evolution under close encounters

The model used for the propagation of the orbit in the presence of close encounters is the

semi-analytical propagation tool developed in chapter 2. Figure 4.4 shows an example of a Monte

Carlo simulation of a fictitious near-Earth asteroid (Initial conditions: a = 1.4 au, e = 0.3, i=15

deg, Ω=90 deg, ϖ=180 deg, σ=90 deg). A small uncertainty of 10−6 is chosen for semi-major axis

(au), eccentricity; inclination, argument of the node, argument of perihelion, and mean anomaly

at epoch in radians. Figure 4.4 shows how the presence of encounters causes a rapid increase in

the uncertainty of the distribution. In chapter 2 we show how this dispersion can be modeled as a

random walk in a-e-i [Froeschle et al., 1995]. The parameter r̄ = a(1− e2)1/4 is a typical scaling

factor for the magnitude of thermal forces and torques, usually with ∝ r̄−2. We can see how this

factor also becomes stochastic after a few thousands of years.

Considering the stochastic evolution of the heliocentric orbit we find significant variations in

asteroid obliquity. In the example of Figure 4.4 we can see how the range of possible obliquities

is between 165 and 180 degrees in timescales of 104 − 105 years. Not only there is a significant

growth in the uncertainty of the predictions, but also each individual run experiences oscillations

in obliquity.
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Figure 4.4 Evolution of obliquity after semi-analytical propagation of the asteroid orbit and constant
spin state.

4.3 Obliquity Evolution: Torques and Orbit evolution

The rotational and orbital dynamics of NEOs are coupled through multiple effects. Obliq-

uity is one of the parameters that defines the Yarkovsky acceleration, which influences the orbit

evolution. However, in long time-scales this effect is shadowed by the growth in uncertainty due

to the presence of planetary close encounters, as discussed in Section 2.2.1. In this chapter we will

assume that this acceleration is negligible and proceed to compute the orbit evolution as decoupled

form the rotational dynamics. On the other hand, we will consider the effect of the position of the

NEO in the torques applied to the spin state.

Modeling YORP torques is challenging due to the dependency on the morphology of the

surface of the asteroid. Large boulders in the surface all the way to the regolith can make a

significant contribution to the spin rates [Golubov and Lipatova, 2022]. The limiting behaviors are

believed to be certain equilibrium spin rates at the equilibrium obliquities of 0, 90 or 180 deg. In

this study we focus on the obliquities of NEOs. Thus, in order to reduce the complexity of the

analysis, we will only consider the obliquity components of the torques: the ones that modify the

spin pole of the asteroid but not the spin rate.
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We consider YORP-like torques with the same dependencies on the orbit but only the obliq-

uity component torque. Thermal torques are scaled with the orbit, proportional to r̄−2. The

torque applied on the asteorid will depend on a time-varying obliquity, which is function of the

orbit normal.

In this section we describe the model for implicit dependency of the external torques on

the orbit. The methodology for the propagation of the obliquity consists in two steps: after pre-

computing the orbit history, we use it as the parameters that drive the external torques acting

on the asteroid. Then, we propagate the angular momentum under these torques. This includes

the mentioned assumption that the orbit propagation is uncoupled from the obliquity because of

neglecting the Yarkovsky acceleration.

4.3.1 Rotational Dynamics under Obliquity Component Torques

The main assumption of this model is that the asteroid is in principal axis rotation about

the short axis. Thus, the angular momentum can be expressed as Hr = Izωω̂, so that the direction

of the rotational angular momentum Ĥr and spin pole ω̂ are always parallel. Even though in some

occasions asteroids experience tumbling, it is found that tumbling may not weaken the YORP effect

[Vokrouhlický et al., 2015].

We model the change in angular momentum under the only external torque of an obliquity-

YORP-like and conservation of rotational angular momentum dHr
dt = T , the inertial derivative of

Hr integrated in inertial J2000 Ecliptic Frame. We use analytical models of the magnitude of the

normal YORP that depend on the obliquity ϵ and the intensity of the solar flux. Both parameters

can be computed over time from the instantaneous orbit elements, which are obtained from the

orbit propagation described in section 4.2.2. The YORP torque can be split into a component in

the direction of the spin pole Tz and an obliquity component Tϵ:

Tz = T · ω̂ (4.1)
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Tϵ = T · ω̂⊥1 (4.2)

where T is the torque, we assume Tz = 0, and ω̂⊥1 is the component of the spin vector in the

obliquity direction. This direction is defined as:

ω̂⊥1 =
ω̂ cos ϵ− Ĥo

sin ϵ
(4.3)

where the orbital plane normal vector Ĥo can be directly computed from the osculating orbit

elements. The rotational dynamics become:

dHr

dt
= Tzω̂ + Tϵω̂⊥1 = Tϵω̂⊥1 (4.4)

Under normal YORP the dependency of the obliquity torque can be modeled as a function

of the coefficient Cϵ:

Tϵ =
ΦR3

c
Cϵ sin 2ϵ (4.5)

The scaling factor ΦR3

c is function of the solar energy flux Φ, the asteroid’s mean radius R,

and the speed of light c. The solar energy flux is scaled by a radius squared law obtained when

averaging the torques, r̄, derived in detail in Scheeres et al. [2007]. This model of the obliquity

dependence holds the correct symmetry properties and is a valid general approximation [Rubincam,

2000, Vokrouhlický and Čapek, 2002, Golubov and Scheeres, 2019]

The YORP coefficients {Cϵ, Cz, β} are dimensionless parameters that depend on the asteroid

shape. These coefficients result from the computation of the torques as the integral along the surface

of the asteroid. Golubov and Scheeres [2019] include an appendix with the Taylor expansion of

the torque elements that leads to the relationship between the spin rate and obliquity component

α = Cϵ/Cz = 2/3 and β = 1/3. Under these torques the obliquities tend to a few asymptotic

or equilibrium values. For Cz, Cϵ > 0, the equilibrium obliquity is 90 deg. If Cz, Cϵ < 0, the

equilibrium obliquity is either 0 or 180 deg.
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Figure 4.5 Latitude and longitude of spin poles and orbit normal under secular orbit and obliquity
component torque.

Figure 4.5 shows an example of the propagation of the obliquity using the secular model of

section 2.3.2 for the evolution of the orbit plane. In order to understand the effect of the torques

we show the spin poles and orbit plane normal in latitude and longitude. We generate 5 different

initial obliquities and propagate them for 80,000 years. We choose a significantly inclined orbit to

illustrate the typical dynamical effects. The initial conditions are set as in Figure 4.4, except for

i=30 deg and the physical parameters are D =300 m, density ρ =1,200 kg/m3, and the YORP

parameter was set as Cϵ = −0.005.

The orbit plane is roughly tracing a cone by drifting in longitude and small variations in

latitude, which is consistent with the effects on Ω, i. The spin poles are torqued into inside this

cone, as shown by a latitude larger than that of the orbit plane. Then, it follows the orbit normal,

as shown by the very similar rate of longitude. Regardless of the initial obliquity, we find the same

terminal behavior: an offset from the 0 obliquity. Once we include planetary close encounters in the

orbit propagation there will be stochastic changes in the orbit normal. All the physical parameters

play a role in the offset from equilibrium, which we explore in the next section.

4.3.2 Obliquity Propagation

The physical parameters of the asteroid can be grouped in the following way. Equation 4.5

shows the ∝ R3 dependency of the torque. We can re-write our dynamics using equations 4.5 and
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4.4:

Izω
d

dt
(ω̂) =

(
ΦR3

c
Cϵ sin 2ϵ

)
ω̂⊥1 (4.6)

If we take the norm of equation 4.6 we can rearrange the parameters of the problem into the

rate of change of the spin pole ˙̂ω = ∥ d
dt (ω̂) ∥:

˙̂ω =
ΦR3

cIzω
|Cϵ| sin 2ϵ (4.7)

The dependency on the asteroid size can be more explicitly shown by expanding on the

inertia. Assuming a spherical asteroid of a given radius and constant density:

Iz =
2

5
MR2 = ρ

8

15
πR5 (4.8)

In addition, we compute the spin pole rate at sin 2ϵ = 1 such that it becomes:

˙̂ω =
15

8π

Φ

cρR2ω
|Cϵ| (4.9)

which groups all the relevant parameters of the problem. The rate of change of the spin pole is

larger the closer to the sun, less dense and/or smaller the asteroid, slower the rotation period,

and more asymmetric. More importantly for the discussion, one can obtain the same dynamical

behavior from a combination of these factors.

In Figure 4.6 we show the behavior of obliquity for ˙̂ω of 3 different orders of magnitude and

2 different orbits and spin poles. We initially set the obliquity quite offset from the equilibrium of

0 degrees. The two orbits are initially set to Ω=90 deg, ϖ=180 deg, σ=90 deg, and a− e− i as in

Table 4.1. We generate a Monte Carlo propagation of 100 samples using an uncertainty in 10−6 in

all orbit elements in au, (-), radians.
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Table 4.1 Initial conditions of the orbit histories for obliquity propagation

Case a(au) e i (deg)

1 1.1 0.15 15

2 1.4 0.30 5

Because of the stochastic variations in the orbit, we find that the obliquities become a statis-

tical distribution. This distribution seems to converge to a distribution offset from 0 with a certain

amplitude. The two orbit cases have similar initial obliquities far from equilibrium, but the time

it takes to reach the terminal or steady state distributions changes significantly between the two

examples. Given the same spin pole rate, this must be due to the difference in the orbits. The

faster orbit normal (larger semi-major axis) causes a slower drift into the final offset distribution.

The lower torque case also shows the oscillations that are predicted by the secular theory. Even if

slowly drifted into a final distribution.

Figure 4.6 Obliquity propagation under different spin pole rates for two stochastic orbit Monte
Carlo propagations. Left column shows Case 1, Right column shows Case 2.



76

4.4 Discussion

In order to better understand the dependency of the obliquity dynamics with these torques,

we explore the influence of the spin pole rate parameter. In Figure 4.7 we sweep over ˙̂ω for the same

orbit elements cases of table 4.1. For each value of ˙̂ω we propagate the obliquity for 20 randomly

picked trajectories out of the N=100 particle Monte Carlo experiments. The reference time-scale

for this analysis is 100,000 years, which is the same order of magnitude as the secular periods of the

orbits. We run simulations between ˙̂ω = 1 · 10−3 yr−2, which causes all the distribution to quickly

converge to almost the equilibrium obliquity; to ˙̂ω = 1 · 10−7 yr−2, which differs very little from

the distributions without torques.

We show two different snapshots of the distributions, after 100,000 and 500,000 yr. For very

small or very large ˙̂ω, the offsets from equilibrium are similar between the two snapshots. In the

case of small ˙̂ω, there is a small movement of the mean of the distribution and a significant increase

in the width. This increase is maintained at intermediate values of ˙̂ω, but there is a large change in

the mean obliquity. This means that the timescales to equilibrium between 1 ·10−5 and 1 ·10−6 yr−2

correspond to the simulation timescales of ∼100,000 years. In the case of larger ˙̂ω, the timescales

are much faster, and by the 100,000 yr mark the distributions are already at the steady state offset,

as the mean obliquity value does not change after 500,000 yr. The difference between snapshots

is only an increase in the width in the distribution in the order of degrees. Here we also find a

difference in the offsets from 0 between the two orbit simulations. Case 1, with a higher inclination,

shows a larger offset from 0. The very large ˙̂ω implies that the obliquity distribution collapses

to 0. This is the extreme case for a general trend that the width of the distributions decreases

significantly with ˙̂ω.

Note that for Cϵ < 0, the same analysis could be done around 180 deg. For the clarification

of this discussion we chose initial obliquities closer to the equilibrium point of 0 obliquity. However,

as shown in section 4.1, among the NEO population it is more common to find obliquities near 180

deg.
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To put the magnitudes of ˙̂ω in perspective, we can compare to these expected values for

a few asteroids. If we include the results for 433 Eros, the computed ˙̂ω = 5 · 10−9 yr−2. As

expected, a tens of km-sized NEO is not expected to be under significant thermal torques. On the

other hand, if we take the physical properties of 101955 Bennu, we compute ˙̂ω somewhere between

3 · 10−6 − 1 · 10−5 yr−2 for Cϵ = 0.001 − 0.005, which are typical values of this YORP coefficient

[Golubov and Scheeres, 2019]. 101955 Bennu’s current obliquity is of 177.6 deg, a typical offset

form the neighboring obliquity configuration of 180 deg. This result is consistent with its lifetime of

1.75 million years according to the cratering history [Ballouz et al., 2020]. The physical properties

of these comparisons are retrieved from NASA JPL’s SBDB Lookup platform, Cϵ from Golubov

and Scheeres [2019].

Figure 4.7 Distributions of obliquities at t = 1 · 105 yr and t = 5 · 105 yr as function of the spin pole
rate ˙̂ω for the two orbits. Top row shows Case 1, Bottom row shows Case 2.
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The spin poles observed for near-Earth asteroids have a preference for the equilibrium obliq-

uities predicted by YORP theory, but are not strongly clustered around these values. Full thermal

and rotational modeling of the asteroid dynamics requires a large amount of measurements. We

investigated the contribution of the evolution of the heliocentric orbit and show how in many cases

it is not possible to maintain the equilibrium obliquities due to the oscillations of the orbital plane,

due to secular effects and in the presence of planetary close encounters. In the observed population

shown in Figure 4.2 there are bins around 60 and 120 deg of obliquity that could be explained by

these oscillations in obliquity that increase the timescales to reach equilibrium.



Chapter 5

Hazard characterization by MOID propagation

5.1 Introduction

Asteroid impacts are one of the few natural disasters that can be prevented through human

action. The main planetary defense efforts consist of observations, orbit determination and impact

hazard assessment, and deflection/in-situ characterization. The near-Earth asteroid catalog is being

completed by current and proposed surveys, providing new candidates of a future collision to study

in more detail. In this chapter and chapter 6 we model the evolution of the MOID for impact

hazard assessment, as a small MOID is required for a potential impact.

In 1998 the congress of the US requested NASA to detect and catalog 90% of the km-sized

NEO population.1 As of 2023-02-08, the catalog is around 95% complete, with an estimated

population of 962+52
−56 [Granvik et al., 2018]. Impact monitoring systems estimate the orbits of

newly discovered objects and compute any impact probabilities in future close encounters. Using

the observational data available for a given object, the orbit is statistically estimated within an

uncertainty region. This uncertainty region is efficiently sampled using various techniques to assess

impact probabilities.

The first generation impact monitoring system relied on the Line of Variations technique

[Milani et al., 2005], sampling a suitably chosen direction of the uncertainty region. More recently,

Roa et al. [2021] describe a different approach that samples the full N-dimensional uncertainty

1 More details on the historical efforts of the U.S. Government to track and mitigate asteroids were given in two
parts of a hearing before the Committee on Science, Space and Technology of Congress in March 19, 2013 and April 10,
2013. Full hearing statements accessible at https://www.govinfo.gov/content/pkg/CHRG-113hhrg80552/pdf/CHRG-
113hhrg80552.pdf
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region and identifies virtual impactors by using the impact condition as an observable. This latter

approach is used by JPL’s Sentry-II system.2

In this chapter we investigate the potential impact risk over an order of magnitude larger

timescales, in the next thousand years. To do this we review the two conditions required for an

impact to occur [Valsecchi et al., 2003], and how the growth in orbit uncertainty affects them. The

first one is that the Minimum Orbit Intersection Distance (MOID) has to be smaller than the com-

bined radii of the two bodies, taking into account the gravitational focusing factor. This condition

motivates the orbit condition for the definition of a Potentially Hazardous Asteroid (PHA): having

an Earth MOID < 0.05 au [Bowell and Muinonen, 1994]. Similarly, the MOID can be used to rule

out NEOs for further potential impact analysis. The MOID is found as a function of the orbit

elements of the Earth and those of the NEO, but does not directly depend on the position along

the orbit [Gronchi, 2005]. The uncertainty in these elements does not grow as fast as in mean

anomaly, which allows us to propagate it confidently in longer timescales. Previous works studied

the models required to propagate the MOID [Gronchi and Tardioli, 2013], including the applicabil-

ity of the 3-body problem. In the presence of planetary encounters and complex long-term secular

interactions, we must use numerical integration to propagate the orbits.

The second condition is on the timing of the flyby: the two bodies must be at the same

time in the region in which their relative distance allows for a collision [Valsecchi et al., 2003].

Uncertainty in the asteroids position grows faster in the direction of motion, limiting the assessment

of future impacts. After a few centuries the uncertainty in mean anomaly can cover the whole orbit.

This phenomenon is used as an assumption of analytical theories of impact rates in timescales of

millions of years [Öpik, 1951, Wetherill, 1967]. In this work we keep track of the uncertainty in

mean anomaly and use this assumption when the MOID condition is met. Previous works combine

these assumptions in hundreds of thousands of years timescales [Vokrouhlický et al., 2012, Pokorný

and Vokrouhlický, 2013], using analytical models of the long-term dynamics. In these much longer

timescales the uncertainty in NEO orbits grows large enough that lower fidelity models of the long-

2 https://cneos.jpl.nasa.gov/sentry/
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term dynamics provide good estimates of the frequency of close encounters, such as the methods

in chapter 2. Thus, in the thousands of years timescales considered in this chapter, we propose the

combination of the two conditions although we propagate the orbits of the NEOs numerically.

In this chapter we investigate the long-term MOID dynamics as a tool for long-term hazard

characterization. In section 5.2 we provide insight of the orbital dynamics for km-sized NEOs. We

propose an estimation of the probability of a deep encounter in section 5.2.3. Then, we inspect

the km-sized population of NEOs. First, identifying the km-sized NEOs that are frequently in the

neighborhood of Earth in section 5.3.1. Then, in section 5.3.2 we keep track of the uncertainty

in mean anomalies during those low-MOID periods. The proposed metric allows us to rank the

km-sized NEO population, highlighting a few km-sized NEOs for further detailed analysis in section

5.4. In section 5.5 we inspect the PHA population and highlight the evolution of the MOID for

this population that already has a small MOID. We conclude with the main findings for these two

populations of NEOs.

5.2 Long-term NEO Hazard characterization

In this section we describe the tools and methods used to analyze the long-term dynamics

of the km-sized NEO population and the estimation of their potential impact hazard. The MOID

time histories are obtained following the propagation of the orbit. Hence, we first describe the

orbit propagator as motivated by the NEO long-term dynamics and then the MOID algorithm and

dynamics. Last, we introduce the long-term collision hazard metric that is used to rank the selected

group of near-Earth objects.

5.2.1 Orbit propagation

The orbits of the NEOs are propagated using the JPL small-body integrator which is based on

an N-body model that includes Sun, planets, Pluto, Moon and small-body perturbers [Farnocchia

et al., 2015]. When the Yarkovsky effect was detected from astrometric data [Farnocchia et al.,

2013b], we added it to the force model. The ephemeris models used in the integration are DE441
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Figure 5.1 Numerical propagation of the orbit of 2015 FP332, a km-sized NEO.

[Park et al., 2021] for the planets and SB441-N16 for the largest main-belt bodies.3

Figure 5.1 shows the propagation of the orbit of 2015 FP332, which reveals the relevant

dynamical effects to the long-term dynamics of near-Earth objects. The trajectories are shown using

the Keplerian elements semi-major axis, eccentricity, inclination, longitude of the ascending node,

argument of perihelion and mean anomaly with respect to the nominal propagation. Individual

Monte-Carlo runs (N=21) are shown in colors, the nominal trajectory is shown in a black line. The

bottom rows show the propagation of Earth and Venus MOID. 2015 FP332 is in a Lidov-Kozai

cycle [Lidov, 1962, Kozai, 1962], in which periods of high eccentricity are exchanged with periods of

high inclination. In this case, both longitude of the node and argument of perihelion drift secularly.

3 Available at: ftp://ssd.jpl.nasa.gov/pub//eph/small_bodies/asteroids_de441/SB441_IOM392R-21-005_

perturbers.pdf

ftp://ssd.jpl.nasa.gov/pub//eph/small_bodies/asteroids_de441/SB441_IOM392R-21-005_perturbers.pdf
ftp://ssd.jpl.nasa.gov/pub//eph/small_bodies/asteroids_de441/SB441_IOM392R-21-005_perturbers.pdf
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Planetary encounters can cause the exponential growth of the distance between initially

neighboring trajectories, a necessary condition for chaos [Tancredi, 1998]. Neighboring trajectories

of near-Earth asteroids can diverge in timescales ranging from decades, such as 99942 Apophis

[Farnocchia et al., 2013a]; to hundreds of years, such as 29075 (1950 DA) [Farnocchia and Chesley,

2014]; to tens of thousands of years, such as 433 Eros [Michel et al., 1996a]. In this process the

linear approximation of the state uncertainty can quickly become inaccurate.

Figure 5.1 shows the propagation of the multiple samples or virtual asteroids of the orbit of

2015 FP332. In this example, the nominal trajectory of 2015 FP332 experiences a very close Venus

encounter that causes the rapid increase in semi-major axis. Once each initially neighboring virtual

asteroid diverges to a different trajectory it experiences a unique sequence of close encounters. This

effect motivates the use of the MOID to estimate long-term probabilities of collision. The resulting

dynamics under these encounters are very nonlinear, and the orbits of near-Earth objects in these

timescales become stochastic. For this reason, we sample the uncertainty in the orbits of NEOs

and propagate them in a Monte Carlo simulation. The detection of potential impactors of small

probabilities is out of the scope of this work, in which the main metric of interest is the MOID. For

this reason we run a limited number of Monte Carlo samples (N=21), which allows us to distinguish

the main dynamical effects as well as the uncertainty in mean anomaly.

The presence of close encounters is expected if the near-Earth object has a small MOID

with any of the planets. Thus, tracking the evolution of the MOID is not only relevant for the

evaluation of the probability of collision with Earth but to understand when the dynamics are

subject to nonlinear stochastic variations. The evolution of the orbit of 2015 FP332 in Figure 5.1

shows the effect of a low-MOID period in the long-term prediction. A Venus low-MOID enables

close approaches that cause the rapid expansion of the distribution of orbits and mean anomaly to

become unknown.



84

5.2.2 MOID algorithm and dynamics

The MOID is the result of the optimization of the relative distance between two bodies

over their respective fast angles. There are multiple algorithms to compute the MOID in the

literature, including analytical methods [Gronchi, 2005] and numerical methods such as Wísniowski

and Rickman [2013] or Hedo et al. [2018], which is used in this work. The MOID, a function of

the osculating orbit elements, is then computed when post-processing the numerically integrated

trajectory.
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Figure 5.2 Propagation of the Earth MOID of a few selected examples of km-sized near-Earth
objects.

Depending on the dynamical effects on the asteroid described in the previous section we find a

variety of MOID long-term dynamics trajectories. Figure 5.2 shows a few examples of the dynamics

of the propagation of the MOID for four km-sized NEOs, the 21 Monte Carlo simulations in colors

and the nominal in black, continuous lines. 2021 UY9 represents the simplest case, in which the

MOID does not become small throughout the simulation time therefore making Earth impacts

impossible. The uncertainty in the orbit of 2021 UY9 remains small throughout the propagation.

The case of 29075 (1950 DA) is the very common case for NEOs, in which the MOID drifts secularly

until a future zero crossing that lasts a short period of time, of about a century. The example of

136618 (1994 CN2) is similar to the case of 2015 FP332 in Figure 5.1, in which the date in which
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the MOID becomes small for the first time is uncertain. After a low-MOID period the trajectory

becomes more uncertain. The last example, 2329 Orthos (1976 WA), illustrates the scenario of an

extended period of time with a low Earth MOID. This is caused by the combination of two effects,

a large amplitude of short-period oscillations and a favorable phasing of the secular cycle.

The examples of Figure 5.2 are also representative of the growth in uncertainty of the MOID.

In the two top cases the uncertainty remains small for thousands of years. The km-sized NEA

population have well defined orbits and their Earth MOIDs remain well known for hundreds of

years. Previous works focus on mapping the orbit covariance into a confidence region of the MOID

[Gronchi and Tommei, 2007]. However, the uncertainty in the orbit can become far from Gaussian in

long-term orbit propagations. Thus, we use statistics of the Monte Carlo propagation as indicators

of the spread of the distribution as well as the confidence in our predictions.

5.2.3 Long-term impact probability estimation

The complexity in long-term MOID dynamics that we showed in the previous section mo-

tivates the development of a systematic method to quantify the long-term Earth impact hazard

of NEOs. We propose a novel metric to characterize the potential impact hazard that consists in

an estimated probability of collision between a planet and a NEO. The probability of collision is

a problem primarily studied in two major timescales. The fundamental problem of impact hazard

assumes the position of the asteroid within its orbit is reasonably well determined and it is possible

to precisely determine the geometry of the subsequent close encounters. In the case of potentially

hazardous asteroids, this analysis can typically be completed for one or two centuries [Chamberlin

et al., 2001, Roa et al., 2021]. In these timescales the uncertainty in the orbit of many NEOs starts

to grow large enough that the position within the orbit can become unknown. This effect motivates

the statistical assumption of a uniformly distributed mean anomaly.

Traditional impact probability theories assume that the orbit elements of the two objects

involved are constant and have one intersection point [Öpik, 1951, Wetherill, 1967]. Then, the

probability depends on the timing of the orbits, which is when the mean anomalies are assumed
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uniformly distributed. This timing probability, here PMA, is the probability that both bodies are

in the right time at the right place, i.e., the range of mean anomalies that corresponds to a collision

or flyby within a small distance.

There are a few options for the timing probability in the literature. In the most simplified

case, we can assume the planet’s orbit to be circular with Öpik’s formula [Öpik, 1951], in which

the probability is function of the Keplerian elements of the asteroid a-e-i. Wetherill [1967] then

derived an expression for an elliptic orbit of the planet, with the problem of being singular at zero

inclination. In this work we use this expression as re-derived recently in JeongAhn and Malhotra

[2017] for regular non-tangential encounters. In particular, we use the extended expression for the

case in which the two objects do not exactly intersect. That means that the MOID is a positive value

between 0 and the distance threshold for the close encounters of interest d. Thus, the probability

that two objects have a close encounter with closest approach distance smaller than d is:

PMA =
2Ud

TpTNEO|vp × vNEO|

√
1− MOID2

d2
(5.1)

where vp and vNEO are the velocities of the planet and the asteroid at the point that defines the

MOID, U is the relative velocity at the same point, and Tp, TNEO are the respective orbit periods.

The square root term of equation 5.1 adjusts the probability for a non-zero MOID. If MOID > d,

the probability is assumed to be zero. This expression can be averaged for a MOID uniformly

distributed between 0 and d. However, in this work we do not need to make this assumption as

we keep track of the MOID throughout our long-term propagation and the distribution can be far

from uniform in the range 0 <MOID≤ d.

Once we allow the orbit of the NEO to be time-varying, we can obtain the probability of

collision as the combination of two terms: the probability that there is an intersection between the

planet and near-Earth object and PMA. If we investigate a potential Earth collision, the condition is

that the Earth MOID is smaller than the combined radii of the two bodies considering gravitational

focusing as required. The gravitational focusing factor virtually extends the radius of the planet to
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account for trajectories that lead to a collision due to the planet’s gravity, and is a function of the

incoming velocity of the asteroid V∞ and the mass and radius of the planet Mp, Rp:

γ =

√
1 +

2GMp

RpV 2
∞

(5.2)

This approach has been used in the past to obtain the probability of collision for asteroids

under the Lidov-Kozai cycle [Vokrouhlický et al., 2012, Pokorný and Vokrouhlický, 2013]. In

that case, the generalized probability of collision is obtained as the sum over all the crossing

configurations (noted with *) of the fraction of time that the NEO spends withing the distance

threshold times the timing probability:

P =
∑
∗

(
∆tMOID<d

Tsec

)∗
PMA(d,K

∗
p ,K

∗
NEO) (5.3)

where KP ,KNEO are the Keplerian elements of the planet and the NEO and ∆tMOID<d is the

amount of time that the NEO spends within the distance threshold d. Vokrouhlický et al. [2012]

and [Pokorný and Vokrouhlický, 2013] model the long-term asteroid dynamics with an analytical

solution of the Lidov-Kozai cycle of the Jupiter perturbation, which defines the secular period

Tsec as the Lidov-Kozai period. As a result, the fraction ∆t and intersection configurations are

computed analytically. As we show in the previous section, defining the times in which the MOID

is small can be a complex problem under a wide range of dynamical contributions. In this work

we propagate the orbit numerically to find the low-MOID periods. Because there is not a small

discrete number of crossings along the long-term dynamics of the NEO, we estimate the probability

as the average throughout the propagation time T using equation 5.4.

P =
1

T

∫
T
κPMA(d,Kp,KNEO)dt (5.4)

This integral is computed numerically using the numerically integrated trajectories. The

factor κ is introduced so we can null the contribution of the trajectory in which the position of the

object is deterministic within its orbit, i.e., when the uncertainty in mean anomaly is small. κ is
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set to 0 before the first date in which we find that the standard deviation in mean anomalies is

larger than 10 degrees, and set to 1 elsewhere. This distinction allows us to rule out the associated

risk of objects that currently have a very low MOID but their position is properly constrained for

the duration of their visit to the planet’s vicinity. In addition, we check the close encounters that

were recorded in the propagation before we can use the analytical expression for PMA in equation

5.1.

5.3 KM-sized NEO population long-term characterization

We analyze the potential impact hazard of the km-sized NEO population in the next millen-

nium. Using the very low-MOID necessary condition for a potential collision, we can rule out the

collision hazard when this condition is not met. Then, considering the statistical evolution of the

mean anomalies, we rank this group of NEOs depending on their long-term implicit impact hazard.

5.3.1 NEOs frequently in Low-MOID regions

The orbits of the known km-sized NEO population are propagated starting from their orbit

solutions in JPL’s Small-body Database as of 2022-09-15.4 For each NEO we find the first date

at which a low-MOID period is found between all of the Monte Carlo samples, with a threshold

defined as MOID < 0.01 au (235 Earth Radii or 3.89 Lunar Distances). At this threshold, the

incoming velocity V∞ required for a collision is of 0.05 km s−1 or less, from solving equation 5.2.

From a statistical point of view, this relative velocity is extremely unlikely[Farnocchia and Chodas,

2021, Harris and Chodas, 2021].

The first question we answer is how many km-sized NEOs currently have a MOID < 0.01

au, and how will this number evolve in the next 1000 years. As of the time in which the JPL’s

SBDB was queried, there are 40 NEOs that fulfill this condition. The evolution of this estimated

number of NEOs is shown in Figure 5.3. The minimum number of NEOs is estimated by NEOs in

which there was an agreement between all Monte Carlo runs. The maximum number of NEOs is

4 Small-body Database available for query at: ssd.jpl.nasa.gov/tools/sbdb_query.html

ssd.jpl.nasa.gov/tools/sbdb_query.html
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estimated by at least one Monte Carlo run fulfilling the low-MOID condition. As the uncertainty

in the orbits of the NEOs grows into the future, only some of the MC samples may have MOID

< 0.01 au. This phenomenon is shown in more detail in Figure 5.4, which shows the estimated

range of km-sized NEOs with MOID < 0.01 au based in the Monte Carlo samples. The uncertainty

remains very small (±1 body) throughout the next 500 years. By the end of the millennium, this

number is in the range of 26-72 km-sized NEOs. As mentioned earlier, none of these objects pose

a collision threat to Earth in the next 100 years.
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Figure 5.3 Number of km-sized NEOs that present an Earth MOID <0.01 au throughout the next
1000 years.

Individual results of the MOID propagation are shown in Figure 5.4. We sorted the km-sized

NEOs by the date in which they meet the MOID < 0.01 au condition. The color code indicates

the number of Monte-Carlo samples that show a MOID < 0.01 au at the given date. Black means

an agreement between all Monte Carlo runs to show a low-MOID. The NEOs are sorted by the

first date in which they meet the MOID < 0.01 au condition. As defined by the length of their

low-MOID periods, we show NEOs that are expected to be continuously in the vicinity of Earth

as opposite to the ones that are for a brief period of time. We observe that even if the number of

NEOs will never exceed an average value of 40-45 NEOs, the total number of unique low-MOID

NEOs in the next 1000 years is of almost 150.

We list the km-sized NEOs that frequently experience MOID < 0.01 au in Table 5.3.1 based

in the fraction of the next 1000 years that they meet the condition. The time fraction indicates the

average fraction of time with MOID < 0.01 au among the Monte Carlo experiments. The first date

of standard deviation in Mean Anomaly > 10◦ is shown with initial orbit elements at the ephemeris
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2000 2200 2400 2600 2800 3000

  1981 Midas (1973 EA)
  2201 Oljato (1947 XC)

  4179 Toutatis (1989 AC)
  5693 (1993 EA)

  7482 (1994 PC1)
 31669 (1999 JT6)

 35396 (1997 XF11)
 68950 (2002 QF15)

 69230 Hermes (1937 UB)
 85713 (1998 SS49)
 89958 (2002 LY45)
 89959 (2002 NT7)

143649 (2003 QQ47)
143651 (2003 QO104)

144332 (2004 DV24)
154276 (2002 SY50)

163243 (2002 FB3)
164121 (2003 YT1)

177614 (2004 HK33)
197588 (2004 HE12)
231937 (2001 FO32)
242216 (2003 RN10)

242643 (2005 NZ6)
297274 (1996 SK)

374038 (2004 HW)
414287 (2008 OB9)

435159 (2007 LQ19)
481482 (2007 CA19)
533671 (2014 LJ21)

       (1999 XS35)
422787 (2001 WS1)

       (2016 CB194)
385343 (2002 LV)

253841 (2003 YG118)
374851 (2006 VV2)
 52768 (1998 OR2)

       (2004 UV1)
 85182 (1991 AQ)
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428223 (2006 WW)
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 17181 (1999 UM3)
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189008 (1996 FR3)

  1566 Icarus (1949 MA)
322966 (2002 KF4)

  4015 Wilson-Harrington (1979 VA)
 88959 (2001 TZ44)

       (2000 KE41)
       (2022 KL8)

488450 (1994 JX)
       (2015 HY116)
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Figure 5.4 Km-sized NEOs that meet the MOID < 0.01 au condition in the next 1000 years.

retrieval date, 2022-09-15. V∞ is the relative velocity at the first time that MOID < 1 LD of the

nominal solution. Their implicit probability of collision is assessed in the next section. There are

4 objects whose MOID remains lower than 0.01 au throughout this millennium: 7482 (1994 PC1),

68950 (2002 QF15), 164121 (2003 YT1), 144332 (2004 DV24). In the second and third case, the

mean anomaly remains well defined throughout the millennium.

The propagation of the MOID of a few of the top-ranked NEOs is shown in Figure 5.5, as

shown in Table 5.3.1. Individual Monte-Carlo runs are shown in colors, black continuous line shows

the nominal trajectory. The dashed red line indicates the first date in which the standard deviation
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in mean anomaly was found greater than 10 degrees, which does not happen for 68950 (2002

QF15). Most remarkably, we can see how low the MOID of 7482 (1994 PC1) persists throughout

the next 1000 years. In 68950 (2002 QF15) and 164121 (2003 YT1) we observe a secular drift in

the MOID. In the case of 68950 (2002 QF15), this secular drift predicts a near-zero MOID around

year 2500. In the case of 164121 (2003 YT1), the MOID is increasing at a relatively slow rate.

The last example, 143651 (2003 QO104), shows a large amplitude of the MOID around zero, which

motivates additional analysis of the long-term hazard.

Table 5.1 10 km-sized NEOs with the largest fraction of time with low MOID over the next 1000.

NEO ∆t/T TS>10◦ a (au) e i (deg) V∞ (km s−1)

7482 (1994 PC1) 1.000 2541 1.349 0.330 33.47 19.68

68950 (2002 QF15) 1.000 3288 1.057 0.344 25.15 16.06

144332 (2004 DV24) 1.000 3285 1.423 0.290 55.90 29.83

164121 (2003 YT1) 1.000 2341 1.110 0.292 44.06 23.71

143651 (2003 QO104) 0.945 2297 2.136 0.524 11.61 9.72

4179 Toutatis (1989 AC) 0.927 2516 2.545 0.625 0.45 12.19

314082 Dryope (2005 CZ36) 0.750 2352 2.238 0.575 16.14 14.05

86819 (2000 GK137) 0.744 2565 1.996 0.506 10.06 10.07

385343 (2002 LV) 0.740 2960 2.315 0.605 29.53 20.14

177614 (2004 HK33) 0.702 3507 1.888 0.521 5.44 11.37
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Figure 5.5 Propagation of the Earth MOID of km-sized NEOs with a low-MOID for a large fraction
of the next 1000 years.
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5.3.2 Upcoming hazardous km-sized NEOs

In the previous section we inspected the necessary condition for very close encounters to occur:

a MOID < 0.01 au. The next step is to estimate the collision probability by making assumptions on

their mean anomalies. The method to compute this timing probability once the MOID is low was

described in section 5.2.3. To study the potential impact hazard we set a smaller close approach

threshold (1 LD) and take into account the deterministic parts of the NEO position during the

orbit propagation. In addition, we study the list of close approaches generated in the Monte Carlo

experiment to validate our predictions.

The analytical expressions for the probability of collision assume uniformly distributed mean

anomalies of the bodies. The initial conditions of the propagation start from a well defined mean

anomaly of the NEOs. Thus, we need to track the evolution of the uncertainty in mean anomaly

to know when we can start using the analytical estimates. Using our Monte Carlo experiments we

compute the standard deviation in mean anomaly separation from the nominal trajectory.

We propagate the orbits of the km-sized NEO population for 1000 years and study when the

MOID is smaller than a Lunar Distance (1 LD). When the standard deviation in mean anomaly

is large, we estimate the probability of close encounters. In Figure 5.6 we list the km-sized NEOs

showing the dates in which we found a low-MOID and sorted by their estimated probability of close

encounters. The low-MOID regions are color coded with the standard deviation in mean anomaly

S(MA), shown only in dates in which MOID < 0.01 au. The combination of this information

highlights the future periods of time in which the position of the NEOs is unknown.

Among the 40 km-sized NEOs currently with an Earth MOID < 0.01 au, we find that their

mean anomalies remain well defined typically for at least 200 years, and in some cases for thousands

of years. On the other hand, there are a few examples of growth in mean anomaly uncertainty after

2200, such as 35396 (1997 XF11). Because the MOID becomes greater than 1 LD by the time the

uncertainty in mean anomaly is large, the estimated probability for this NEO is zero.

The objects with the highest estimated probability are shown in Figure 5.6 and listed in Table
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Figure 5.6 Km-sized NEOs with non-zero estimated probability of encounters closer than 1 LD.

5.3.2. In this table the time fraction indicates the average fraction of time with MOID < 1 LD

among the Monte Carlo experiments, and V∞ is the relative velocity at the first time that MOID

< 1 LD of the nominal solution. The asteroid with the largest estimated probability of a deep close

encounter is 7482 (1994 PC1). This result is to be expected, as in section 5.3.1 and Figure 5.5 we

show that 7482 (1991 PC1) has a continuous low MOID. In this analysis we find that 7482 spends

about 98% of this millennium with an Earth MOID <1 LD. During this unusually lasting MOID

<1 LD period the position is well determined until approximately year 2500.

The propagation of the MOID for the other km-sized NEOs on top of the list is shown in

Figure 5.7. Close encounters are indicated with circles in colors and close encounters of the nominal

trajectory are shown as vertical black nodes. The encounters of closest approach distance < 1LD

(0.0026 au) are highlighted with a larger red circle. We find that either the Earth MOID of these

bodies is secularly drifting to zero, or that the current low-MOID oscillates around zero for a longer

period of time. The latter case was observed for 7482 (1994 PC1), but additionally 4179 Toutatis

(1989 AC) and 314082 Dryope (2005 CZ36) are in similar situations. Figure 5.7 shows that deep

encounters are expected for these bodies, both in a low-MOID format and as the result of the

Monte Carlo experiment.
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Figure 5.7 Propagation of the Earth MOID of km-sized NEOs with a non-zero probability of having
an encounter closer than 1 LD by year 3000.
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Table 5.2 28 km-sized NEOs with non-zero estimated probability of a deep encounter (dCA <1
LD) in the next 1000 years.

NEO P(yr−1) ∆t/T tS>10◦ a (au) e i (deg) V∞ (kms−1)

7482 (1994 PC1) 1.51e-04 0.978 2541 1.349 0.330 33.47 19.68
4179 Toutatis 5.19e-05 0.336 2516 2.545 0.625 0.45 12.19
314082 Dryope 4.88e-05 0.312 2371 2.238 0.575 16.14 14.05

86819 (2000 GK137) 4.44e-05 0.229 2563 1.996 0.506 10.06 10.07
143651 (2003 QO104) 3.84e-05 0.306 2308 2.136 0.524 11.61 9.72

5011 Ptah 3.68e-05 0.152 2626 1.636 0.500 7.41 12.50
220839 (2004 VA) 3.05e-05 0.172 2856 1.902 0.595 3.69 14.88
66391 Moshup 1.59e-05 0.045 2987 0.642 0.688 38.88 21.08

143404 (2003 BD44) 1.45e-05 0.153 2587 1.968 0.606 2.66 15.93
190135 (2005 QE30) 1.43e-05 0.074 2899 2.019 0.688 6.22 19.14
276732 (2004 EV9) 1.07e-05 0.038 2809 1.471 0.781 40.83 32.09
20236 (1998 BZ7) 1.04e-05 0.087 2817 2.036 0.559 6.50 12.52

4183 Cuno 7.37e-06 0.123 2913 1.982 0.636 6.67 17.01
387793 (2003 WL25) 4.46e-06 0.030 2880 2.395 0.742 23.76 25.34
29075 (1950 DA) 4.22e-06 0.104 2913 1.698 0.508 12.17 14.09
214869 (2007 PA8) 3.43e-06 0.091 2762 2.848 0.653 2.00 12.46
175114 (2004 QQ) 2.30e-06 0.045 2648 2.249 0.664 5.72 19.74
(2016 CB194) 2.27e-06 0.039 2897 2.512 0.632 9.88 12.81
7092 Cadmus 1.99e-06 0.046 2680 2.542 0.695 17.77 19.74

90075 (2002 VU94) 1.95e-06 0.082 2606 2.134 0.576 8.91 12.81
(2019 HC) 1.78e-06 0.015 2883 2.670 0.551 35.32 19.48

322966 (2002 KF4) 1.64e-06 0.022 2960 2.903 0.577 37.02 19.43
5143 Heracles 1.38e-06 0.032 2998 1.834 0.772 9.03 25.78

529718 (2010 KY127) 1.32e-06 0.011 2908 2.489 0.883 60.84 39.67
508997 (2005 FL4) 1.07e-06 0.012 2823 2.651 0.721 28.43 24.40

(1999 XS35) 5.39e-07 0.148 2409 17.780 0.948 19.62 18.28
248590 (2006 CS) 5.34e-07 0.005 2617 2.914 0.697 52.31 31.61
1620 Geographos 4.47e-07 0.002 2861 1.246 0.335 13.34 11.88

The fact that the position is well determined allows us to determine the geometry of the

subsequent close encounters, until the uncertainty grows too large. This assumption leaves a brief

period of time between a very well constrained position and the range of validity of the uniformly

distributed mean anomaly assumption. For this reason we check if there were actually such very

close encounters among the low-MOID NEOs that we found earlier. In general, no close encounters

within the Lunar Distance were found in the deterministic part of the trajectories.
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There are a few exceptions that should be mentioned: 4179 Toutatis (1989 AC), 220839 (2004

VA) (Both in Figure 5.7), 20236 (1998 BZ7), 214869 (2007 PA8) and 175114 (2004 QQ) experience

close encounters right before or right after the date in which S(MA) > 10◦. In all of these cases,

the MOID tends to zero around the dates in which a deep encounter is expected. In some cases,

uncertainty in the position grows largely due to preceding close encounters. In general, we find

that the Monte Carlo experiment agrees in finding deep encounters. Thus, the current method is

successful in identifying their potential for very deep encounters within the next millennium.

5.4 Individual KM-sized NEOs Hazard Analyses

In this section we describe in more detail the hazardous nature of a few km-sized NEOs

that were previously analyzed. We show the evolution of the MOID as well as the recorded track

of close encounters in Figures 5.8-5.12. In addition, we show the sequence of close encounters

that precedes the growth in uncertainty and limits the accuracy of the prediction of the position

of the NEO. We study their orbital dynamics to provide context of the MOID evolution using

the Keplerian elements semi-major axis, eccentricity, inclination, longitude of the ascending node,

argument of perihelion and mean anomaly with respect to the nominal propagation. As shown

earlier, individual Monte-Carlo runs (N=21) are shown in colors, the nominal trajectory is shown

in a continuous black line.

5.4.1 Asteroid 7482 (1994 PC1)

7482 (1994 PC1) has been highlighted in every section of this work because of its remarkable

MOID evolution. Its Earth MOID is currently 6.09 · 10−4 au (0.237 LD), has been near zero for

centuries and will remain very low for at least another 1000 years as shown in section 5.3.1. This

condition is the reason why it is ranked as the most hazardous NEO in the list of Table 5.3.2.

The orbit elements of 7482 (1994 PC1) are shown for reference in figure 5.8. During the

period in which the Earth MOID remains small there are close encounters that cause significant

variations semi-major axis and eccentricity. However, arguments of node and perihelion follow a
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secular drift. In its current orbit within the inner solar system, there is not a large amplitude of

short-period oscillations that could disperse the distributions further. However, it is important to

highlight that after 500 years the mean anomalies become uncertain.

Figure 5.8 shows the sequence of close encounters that are recorded in the Monte Carlo

numerical propagation. It appears that the uncertainty in the encounter of 2525 is large enough

that the range of possible closest approach distances is between 0 and 0.04 au. Right after the

2525 encounter the standard deviation in mean anomaly increases beyond 10 degrees, and we start

estimating its probability of collision using the methods of section 5.2.3. Encounters below the

Lunar Distance were found after this period, which is consistent with the higher probability that

we previously estimated.
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Figure 5.8 Earth close encounters and orbit elements of 7482 (1994 PC1).
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5.4.2 Asteroid 143651 (2003 QO104)

The km-sized NEO with the shortest deterministic horizon is 143651 (2003 QO104), which

was also previously introduced in Figure 5.6. The orbit solution of 143651 (2003 QO104) has

an observation arc of decades, including light-curve observations [Birtwhistle, 2009] and radar

astrometry [Warner et al., 2009]. Thus, we believe that the rapid increase in uncertainty is a

dynamical effect of its orbit.
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Figure 5.9 Earth close encounters and orbit elements of 143651 (2003 QO104).

Among the list of NEOs in Table 5.3.2 with non-zero estimated probability of having en-

counters below the Lunar Distance, 143651 (2003 QO104) has the slowest close encounters. These

relative velocities imply larger scatter during close encounters, including a rapid increase in mean

anomaly uncertainty. As shown in Figure 5.9, there is a close encounter in 2220 after which the

sequence of encounters becomes unique for each Monte Carlo run.
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Figure 5.9 shows the evolution of the orbital elements. By the end of the millennium there

is a wide variety of orbits in which 143651 (2003 QO104), product of an undetermined sequence of

both close and slow Earth close encounters.

5.4.3 Asteroid 66391 Moshup (1999 KW4)

The binary asteroid 66391 Moshup (1999 KW4) has been the object multiple studies relative

to its binary system condition. It consists of a primary and secondary of respectively 1.317 km and

0.59 km of diameter [Ostro et al., 2006, Scheirich et al., 2021]. Its rotation states suggest that it is

a product of YORP spin-up and disruption [Scheeres et al., 2006, Davis and Scheeres, 2020], and

its orbit is expanding in time due to the BYORP effect [Scheirich et al., 2021].
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Figure 5.10 Earth close encounters and orbit elements of 66391 Moshup (1999 KW4).
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The heliocentric orbit of 66391 Moshup (1999 KW4) is in resonance with the Earth, as

it experiences resonant close encounters every 17 or 18 years. The apparition of 2019 allowed

observations from multiple observatories, during the 0.0346 au encounter [Scheirich et al., 2021].

The next close encounter will be in May 2036, with a closest distance of 0.0155 au, much closer

than the first radar observations obtained using the Goldstone and Arecibo radar systems in May

of 2001 [Ostro et al., 2006]. When the MOID becomes small, which is expected to happen slightly

before year 3000, many close encounters below the Lunar Distance are recorded in our Monte Carlo

analysis. These will cause a large scattering of the orbit as shown in Figure 5.10. Because of how

relatively late in the millennium the MOID <1LD condition is held, 66391 Moshup (1999 KW4) is

not ranked higher in the list of Table 5.3.2.

5.4.4 Asteroid 29075 (1950 AD)

Asteroid 29075 (1950 AD) is representative example of impact probability studies. After it

was discovered and tracked for 17 days in 1950 [Wirtanen, 1950], it was lost for 50 years until re-

discovered on 2000-12-31. Giorgini et al. [2002] found a close approach in 2880 with the possibility

of an impact. Farnocchia and Chesley [2014] modeled the Yarkovsky effect on 29075 (1950 AD)

and estimated an impact probability of 2.5 · 10−4.

The example of 29075 (1950 AD) is paradigmatic in MOID evolution of NEOs. As shown in

Figure 5.2, its Earth MOID is secularly drifting to zero. During the decades that this condition

is maintained, the probability of experiencing a deep encounter is non-zero. 29075 (1950 AD) was

found among the list of km-sized NEOs for which we estimated this probability. As we show in

Figure 5.11, the encounters of 2860 and 2880 will occur although with an uncertain closest approach

distance.
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Figure 5.11 Earth close encounters and orbit elements of 29075 (1950 AD).

5.4.5 Asteroid 2022 AP7

The km-sized 2022 AP7 is one of the largest PHAs recently discovered [Sheppard et al., 2022].

The orbit of 2022 AP7 is in near-resonance with the orbit of the Earth, meaning that even if its

MOID will become small in the next hundreds of years, almost no close encounters are expected

in this period of time. The only likely exception is a close encounter in 2363 which will probably

to be at a closest approach distance larger than 0.05 au. An interesting finding is that 2022 AP7

comes from a sequence of resonant encounters every 5 years during the 19th century.
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Figure 5.12 Earth close encounters and orbit elements of 2022 AP7.

5.5 PHA population evolution by MOID propagation

Another relevant population to understand the background impact hazard is the PHA popu-

lation. Defined as large enough to cause regional damage (H < 22) and currently an Earth MOID

< 0.05 au, their time-varying nature of the MOID has not been analyzed. We propagate the Earth

MOID for a few millennia to determine if the asteroid in question will be hazardous or not over this

time-scale, accounting for the stochastic nature of the orbit evolution. This allows us to categorize

the orbits of NEOs in groups depending on whether the MOID is secularly increasing/decreasing

or they stay in the vicinity of Earth.



103

Figure 5.13 Current population of Potentially Hazardous Asteroids by semi-major axis, eccentricity
and inclination.

There are currently 2235 PHAs, which represent 7.8% of the discovered NEO population.5

The population of PHAs is shown in Figure 5.13. We computed their MOIDs with Earth at the

reference epoch for the elements of the asteroids. Even if this information is already available,

by computing the MOID we can reconstruct the relative geometry at the closest possible flyby,

leading to the relative velocities shown in the figure. The relative velocity is a relevant parameter

as it drives how energetic the planetary encounters are, influencing the variations in the orbit and

physical properties of asteroids.

The influence of eccentricity and inclination can be understood from a geometric point of view,

and the ranges of values for PHAs shown in Figure 5.13. The faster the encounter, the smaller

is the effect of the flyby on the orbit of the NEO. This means that its long-term orbit is more

predictable, since more encounters are required to build-up a significant perturbation. Moreover,

on average the NEO spends less time in the vicinity of Earth in which very close encounters can

occur.

The other important parameter for the effects of flybys is the closest approach distance, which

has an approximate minimum defined by the MOID. This boundary is only surpassed if the exact

timing is given and especially in very slow flybys. The condition of being a PHA is already a small

MOID, less than 0.05 au. However, this threshold is already large enough such that it can take

5 As extracted from JPL’s Small-body Database (Date accessed: 2022-02-24) - Available for query at: ssd.jpl.
nasa.gov/tools/sbdb_query.html

ssd.jpl.nasa.gov/tools/sbdb_query.html
ssd.jpl.nasa.gov/tools/sbdb_query.html
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hundreds or thousands of years for the asteroid to reach the vicinity of Earth.

The numerical integration tool used in this section consists in the integration in Cartesian

space of the trajectory of the asteroid with the 8 planets as third-body perturbers. The orbits of

the planets are modelled with an individual set of heliocentric elements, propagated over time with

the Laplace-Lagrange secular solutions of section 2.3.1. In particular, we propagate numerically the

nominal orbits of the PHA population until we observe the trends in the variation of the MOID.

With this result we can already separate the PHAs that pose no threat to Earth in the next few

thousands of years and the ones that require deeper study. As we have shown earlier, it is important

to identify the next period of very low MOID for each NEO with a decreasing MOID evolution.

In Figure 5.14 we show a few examples of the numerical propagation of the Earth MOID

of PHAs over 10,000 years. The PHAs were chosen as the closest to a grid uniformly spaced in

semi-major axis and inclination, as shown in Figure 5.14. Because of the NEO and PHA conditions,

eccentricity and argument of perihelion are constrained.

With this information we can develop new metrics to identify the current PHAs that pose

the highest collision hazard with Earth. For this reason, in addition to the time when the MOID

crosses a certain distance threshold, we will also measure the amount of time that the NEO spends

under said threshold. This information allows us to distinguish between cases in an extended low

MOID period and asteroids that are briefly in the vicinity of Earth, and how briefly.

Figure 5.15 shows the results of the propagation of the MOID for 20 examples of PHAs and

histograms for the PHA population over 2000 years. We can see how a few PHAs are drifting away

from the region, while others remain in Earth’s vicinity. It is also remarkable that the dynamics of

some of them are purely secular while others have an oscillatory behavior. The initial population

was approximately uniformly distributed in MOID from 0 to the definition threshold of 0.05. After

2000 years there is already a significant decay of the number of PHAs in this threshold, about 45%

of the current population. Note that from the overall NEO population there will be additional

asteroids falling in the category too, but this gives us an idea of the asteroids currently flagged as

PHAs that may leave this category.
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Figure 5.14 10,000 numerical propagation of the MOID of 12 PHAs. The initial conditions of the
PHAs are labeled and shown together in the bottom scatter as red crosses.

The dates in which the MOID of every PHA becomes smaller than a Lunar Distance are

shown in Figure 5.16. About 6% of the current PHA population have a MOID smaller than

a Lunar Distance. After 2000 years, more than 60% of the PHAs have crossed this threshold.

Another relevant result is that at all times there are about a hundred PHAs below this threshold.

This is important because then the uncertainty in their orbits is more likely to rapidly increase

from the presence of close encounters.
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Figure 5.15 Propagation of the MOID of the PHA population. The time history is shown for 20
examples over 2000 years. The left histogram shows the current MOID of the PHA population, the
right histogram shows the MOID of the original PHA population after 2000 years.

Figure 5.16 Histogram of first date of MOID< 1 LD and number of PHAs with MOID< 1 LD over
time.

In this section we propagate the orbits of PHAs once. Thus, the metric for the hazard

characterization of equation 5.3 is reduced to the following expression:

P (d, T ) =
∆tMOID<d

T
PMA(d,KEarth,KPHA) (5.5)

In this section we chose T=1000 years, as a period of time in which the mean anomaly of the

asteroid already becomes unknown but not far enough such that the orbit itself is also completely

unknown. The distance threshold chosen is a Lunar Distance.
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Table 5.3 Top 10 hazardous asteroids according to P (d, T ) for distance threshold of 1 LD and 1000
years.

PHA P (LD,1000) PMA ∆t/T V (kms−1) a (au) e i (deg)

(2021 MU2) 1.211e-03 4.484e-03 0.27 11.98 0.631 0.621 8.56
509352 (2007 AG) 9.456e-04 1.576e-03 0.60 8.83 0.721 0.374 11.95

(2002 AY1) 5.946e-04 1.101e-03 0.54 17.91 0.779 0.437 29.89
(2009 BE58) 5.141e-04 7.345e-04 0.70 17.67 0.937 0.560 1.86
(2021 MK1) 5.042e-04 1.050e-03 0.48 10.54 0.808 0.288 19.24

416195 (2002 TR190) 4.736e-04 5.776e-04 0.82 14.54 1.077 0.160 26.92
415713 (1998 XX2) 4.628e-04 1.543e-03 0.30 7.93 0.741 0.368 6.97
164121 (2003 YT1) 4.535e-04 5.890e-04 0.77 23.71 1.110 0.292 44.06
468468 (2004 KH17) 4.380e-04 1.460e-03 0.30 14.13 0.712 0.498 22.12
469445 (2002 LT24) 4.338e-04 1.668e-03 0.26 10.23 0.720 0.496 0.76

Table 5.5 shows the top 10 PHAs with the highest probability P (LD, 1000) with the inter-

mediate values, relative velocity at the points that define the MOID and initial orbit elements. The

probabilities P and PMA are per year (yr−1). We compute the relative velocity Vinf at the points

that define the Earth MOID. Because the probability PMA increases when the relative velocity of

the encounters is smaller, this contribution increases for asteroids with a smaller semi-major axis

and inclination. It is important to note that the probabilities in the table are not the absolute

probabilities of collision as the threshold radius is not the Earth radius.

In this list we find bodies with a significant fraction of time below the Lunar Distance thresh-

old. If we observe the MOID evolution of the top 4 bodies in Figure 5.17 we notice that all of them

currently have a MOID <0.01 au and drift towards the zero MOID configuration within the next

thousand years. This characteristic is undoubtedly an indication of a potential collision hazard,

and was captured by the proposed metric.



108

Figure 5.17 Propagation of the MOID of the 4 PHAs with the hightest P (1 LD,1000 yr) as given
by equation 5.5. The d = 1 LD threshold is shown in discontinuous red.

5.6 Conclusions

We characterized the long-term collision hazard of NEOs by the evolution of the MOID. The

main advantage is that the MOID can be accurately propagated beyond the dates in which the

position within the orbit becomes unknown for certain NEOs. In this chapter we push past the

typical horizon for impact hazard assessment. Long-term impact hazard assessment can be limited

by naturally chaotic dynamics. For example, the orbit of 143651 (2003 QO104) is scattered after a

sequence of close encounters. However, in the cases in which the MOID can indeed be propagated

confidently for thousands of years, we can point to the dates of interest for hazard characterization

or rule out their risk.

Km-sized NEOs

We first showed the km-sized NEOs with an Earth MOID < 0.01 au of the next centuries.

This classification already allowed us to rule out impacts for the majority of the population in

the next 1000 years. When the position within the orbit is unknown and the MOID is small, we

used an analytical estimation of the impact probability. We used this method to rank the km-sized

population by the estimated probability of an Earth encounter of dCA < 1 LD. We found that there

are a few km-sized near-Earth asteroids whose Earth MOID remains < 0.01 au for thousands of

years, such as 7482 (1994 PC1), 314082 Dryope (2005 CZ36), or 143651 (2003 QO104).
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As we propagate for longer time intervals, it would be possible to simplify further our dy-

namics and use analytical [Vokrouhlický et al., 2012] or semi-analytical tools that accounted for

the growth in uncertainty due close encounters such as derived in chapter 2. The timescales of this

study are long enough that the position is stochastic, but short enough that the precise modeling

of the long-term effects is required. The range of orbits of the km-sized population allows widely

different dynamical regimes. For these reasons, the use of numerical integration is left as the most

reliable option.

The metric derived in section 5.2.3 uses an analytical expression that assumes that the mean

anomalies are uniformly distributed. This assumption holds when the uncertainty in mean anomaly

is large, yet the transition between the deterministic part of the trajectory and this regime must

be carefully analyzed. In some cases, these dates contribute the most to the probability of collision

of the low-MOID period, as seen in the case of 29075 (1950 AD). We manually checked all the

top-ranked asteroids for the presence encounters in this period of time, and displayed some of these

examples in section 5.4. The measure of the uncertainty in mean anomaly proves to be useful not

only to validate the uniform distribution assumption, but to highlight dates of interest for hazard

characterization. With this purpose in mind we find no need to increase the number of Monte

Carlo samples to increase the accuracy in our predictions. The present work provides a list of

asteroids and dates in which impact monitoring tools can be used to more accurately determine

impact probabilities far beyond the default dates reported by impact monitoring systems.

Natural extensions of this work would be to broaden the selected group of asteroids from the

km-sized population to PHAs or the whole NEO population. The MOID evolution as characterized

in this work suggests a significant flux in and out of Earth’s vicinity, implying the flux in and out of

the PHA category in timescales of decades to centuries shown in section 5.5. The long-term hazard

ranking could be made available to the planetary defense community, as the most hazardous NEOs

should be objects of interest for more detailed observations and future exploration missions.
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PHA population

In this section we study the PHA population to asses their collision risk in timescales of

millennia. We characterized when the PHA reaches the vicinity of Earth, and if it does, for how

long it stays in this region. This information allows us to classify the asteroids currently in the

PHA category, to find that at least 40% of them never come to the vicinity of Earth and so forth

they pose no collision hazard to Earth. Similarly, we can identify the PHAs with an upcoming low

MOID period as targets of interest. We developed a new metric that allows us to combine this fact

with the probability that Earth and the asteroid are in the ranges of mean anomalies compatible

with a collision. We ranked this list to point to the PHAs with the higher probability of collision

in the next 1000 years.

We studed the asteroids currently identified as Potentially Hazardous, as we want to under-

stand the type of hazard they represent based on their orbit evolution in the next thousands of

years. A different question that is left for future work is about the hazard of the NEO population

in general, as both of the PHA and NEO catalogs have observational biases. We acknowledge this

bias and limit ourselves to solve the initial question, as it already sheds insight into the dynamics

of the MOID in the inner Solar System and its relevance to the characterization of the hazard of

NEOs.

An exact measurement of the probability of collision requires a large scale Monte Carlo

simulation of each of the asteroids. However, including the propagation of the uncertainty in the

orbits of the asteroids gives us the uncertainties in our characterization of the upcoming low MOID

period. A generalized way to study the whole NEO population is left as future work, as it is

challenged by a diversity in the quality of the available orbit solutions.



Chapter 6

MOID evolution in Analytical Resonant Encounters

6.1 Introduction

Computing the risk of an Earth collision of near-Earth Asteroids (NEAs) is one of the main

planetary defense efforts. During a close encounter it is necessary to address whether or not the

asteroid will cross a keyhole that leads to a collision in the future. In this chapter we aim to provide

tools to better characterize the locations of keyholes in the B-plane, which is assessed throughout

the B-plane in preliminary collision hazard analysis. If instead of the radius of the planet we define

a larger closest approach distance threshold, the keyholes can refer to the paths to a deep encounter,

which also requires future detailed analysis for hazard characterization.

In rare occasions, high-fidelity models of the asteroids are available, which allow for a detailed

keyhole analysis for more than 100 years. An example is the analysis of Bennu in Farnocchia et al.

[2021], which used OSIRIS-REx data to incorporate high-fidelity dynamics including Yarkovsky

effect, solar radiation pressure, and Poynting–Robertson drag. They were able to refine the impact

hazard assessment and identified keyholes that persist or else should be ruled out. These results

show how sensitive keyholes are to changes in dynamics and the importance to improve the current

models. The context of this work is preliminary analysis, such as that performed soon after the

discovery of an asteroid, in which we need to study a large region of the B-plane and the trade-off

between models of variable fidelity.

The analytical methods to solve for the outcome of planetary close encounters are referred

as Öpik theory [Öpik, 1976], which was extended analytically to the full set of Keplerian elements
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as extended Öpik theory [Valsecchi et al., 2003]. One of their main outcomes of the theory is the

computation of resonant circles (referred to as Valsecchi circles). Valsecchi circles are the locus

of points such that a subsequent encounter occurs after k planet periods and h asteroid periods

[Valsecchi et al., 2003, 2015]. Within the resonant circles they identify the regions where keyholes

exist. However, they assume that the asteroid undergoes Keplerian motion between resonant en-

counters. i.e., the MOID is assumed constant between close encounters. This assumption can

become an important limitation in the frequent case that other bodies perturb the orbit of the as-

teroid. In some of these works, the authors already discussed that the non-Keplerian MOID effect is

important and needs to be included. In particular, they recognize that the MOID evolves according

to secular and short-periodic effects between encounters. The short-periodic effects, which are hard

to model through an analytical theory, are often of the order of several Earth radii, which limits

the application of analytical theories.

In the B-plane and assuming a circular orbit for the planet, the ξ coordinate corresponds to

the minimum orbit intersection distance (MOID) [Valsecchi et al., 2003, 2015]. In this chapter we

analyze the effects of non-Keplerian dynamics of the MOID between encounters to find the modified

location of keyholes or modified keyholes. Milani et al. [2005] assume Keplerian motion between

encounters, hence a constant MOID. Gronchi and Tardioli [2013] developed a piecewise continuous

averaged solution for the dynamics in the Sun-Earth-asteroid restricted three-body problem based

on an averaged treatment for Earth-crossing orbits in Delaunay elements [Gronchi and Milani,

1998, Gronchi, 2002]. They introduce a signed orbit distance that does not present singularities

at encounters, and they apply this to estimate crossing times (and thus potential close encounter

epochs) of near-Earth asteroids.

Our goal in this chapter is to improve the computation of keyholes by using more realistic

dynamics for the trajectory propagation of the asteroid while leveraging the decreased computa-

tional time afforded by an analytical theory. Furthermore, in this work we assess the effect of

the non-Keplerian MOID evolution on the computation of keyholes. We compute the evolution

of the MOID as a result of the analytical secular propagation of the heliocentric orbit considering
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the perturbation of Jupiter. This effect drives the long-term evolution of the heliocentric orbit of

asteroids, as shown in Chapter 2. Given significant contributions of the shallow encounters between

the deep resonant encounters, we also use the semi-analytical propagation tool to rapidly propagate

the orbits of the asteroids. Numerical results are provided for each method. We use asteroids 99942

Apophis and 2006 MB14 as benchmarks, in their respective Earth encounters of April 2029 and

June of 1985.

We present this chapter as follows: A brief introduction on how to model close encounters

in section 6.2, along with relevant tools and definitions. In section 6.3 we describe the different

propagation methods used for the MOID between close encounters. Next, in section 6.4, we quantify

the amplitudes of the short-period components on the MOID evolution along with their impact

on the keyhole locations. Last, after presenting the techniques and theoretical background, we

describe the keyhole computation criterion in section 6.5 for both Keplerian and non-Keplerian

motion assumptions.

6.2 Close encounters and the B-plane

Planetary encounters cause the orbits of near-Earth objects to abruptly change in very short

time scales. This change in heliocentric elements is very sensitive to the initial conditions of the

flyby. In this section we define in detail the process of extraction of ephemeris, frame transforma-

tions and evaluation of the encounter.

We map the heliocentric coordinates of the NEO to the B-plane, a planetocentric reference

frame to used analyze the encounter [Farnocchia et al., 2019]. The modified target plane (MTP)

allows to uniquely define the flyby using the coordinates at periapses. Hence, we use it to define

the encounter coordinates. Then, we solve the encounter and obtain the new set of heliocentric

elements.
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6.2.1 The B-plane

First, we obtain the heliocentric Cartesian coordinates of asteroid and planet when the as-

teroid is in the vicinity of the planet. The orbit of the planet is assumed circular in consistency

with the general Öpik theory [Valsecchi et al., 2003]. We map the heliocentric coordinates to a

planetocentric frame defined as follows: centered at the planet, Y-axis aligned with the direction

of the planet motion, Z-axis parallel to the angular momentum vector of the planet, and X-axis

completing the frame. The B-plane orientation is normal to the relative asymptotic velocity U in

the planetocentric frame [Greenberg et al., 1988]. Using the vector components of U we obtain the

angles θ, ϕ: 
Ux

Uy

Uz

 =


U sin θ sinϕ

U cos θ

U sin θ cosϕ

 (6.1)

The angles θ, ϕ map the relative position to the B-plane coordinates ξ − η − ζ as the con-

secutive following rotations: a rotation of −ϕ about Y and a rotation of −θ about ξ -positive

counterclockwise. This rotation can be applied at any time during the planetary flyby, most com-

monly when the asteroid crosses the sphere of influence of the planet. In this work, we apply this

rotation at the time of periapsis passage of the flyby as explained in the next section.

6.2.2 The Modified Target Plane

In the definition of the B-plane coordinates the time to switch to the planetocentric frame is a

free parameter. Using the modified target plane (MTP) this time is uniquely defined as the time of

periapsis tp [Tommei, 2002]. We transform the MTP coordinates to the B-plane using conservation

of energy and angular momentum. Figure 6.1 shows the two reference planes. Then, we use the

B-plane coordinates to obtain the coordinates after the encounter.

The process to obtain these elements follows the extended Öpik theory: we convert the

relative Cartesian coordinates to planetocentric Keplerian elements, to obtain the time of perapsis

tp. From that time we generate the set of planetocentric coordinates at the time of periapsis. We
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denote variables at periapses with the subindex p. Using the relative velocity at periapsis vp we

obtain the angles θp, ϕp from equation 6.1:

cos θp
tanϕp

 =

 vp,y/vp
vp,x/vp,z

 (6.2)

Using these angles we obtain the position in the modified target plane (ξp, ζp) from the

planetocentric coordinates rp = (Xp, Yp, Zp)
T :


ξp

ηp

ζp

 = R̂ξp(−θp)R̂Yp(−ϕp)


Xp

Yp

Zp

 (6.3)

From these coordinates we obtain the B-plane coordinates using conservation of energy and

angular momentum:

U2 = 2
GMp

rp
+ v2p (6.4)

rpvp = bU (6.5)

ζ =
(vp
U

)
ζp

ξ =
(vp
U

)
ξp

(6.6)

We rotate the relative velocity at perigee by an angle γ/2 about the angular momentum

vector of the hyperbola, where γ corresponds to the deflection angle (Eq. 6.7). The deflection

angle is defined as a function of the relative velocity U and the mass of the planet m, which is

expressed in Sun mass units.

U = UR̂h

(
−γ
2

)
v̂p (6.7)

tan
γ

2
=

m

bU2
=
c

b
(6.8)
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where c = m/U2. The rotated relative velocity defines the orientation of the B-plane θ, ϕ. These

B-plane coordinates define the effect of the close encounter as explained in detail in the following

section.

6.2.3 Encounter solution

In Figure 6.1 we introduce the target and modified target planes, as related by equation

6.8. These planes are related by the deflection angle between the relative velocity and velocity at

periapses.

Figure 6.1 Planetary flyby target plane (TP) and modified target plane (MTP).

The effect of the planetary encounter is a rotation of the relative velocity by a deflection

angle γ. The post-encounter B-plane rotates with the relative velocity. Thus, we solve for the

post-encounter B-plane coordinates with a rotation of the deflection angle γ:

U ′ = R̂h(γ)U (6.9)

b′ = R̂h(γ)b (6.10)
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The solution of the encounter in vectorial equations is referred as pseudo-Öpik theory [Green-

berg et al., 1988]. These equations can be rewritten into scalar components for each of the post-

encounter coordinates [Valsecchi et al., 2003]. Valsecchi et al. [2015] show how the post-encounter

heliocentric elements are obtained from the direct mapping of B-plane coordinates to Keplerian

elements. In some cases the scalar equations become singular and pseudo-Öpik theory must be

used to robustly compute the outcome of the encounter. The encounters analyzed in this work

satisfy the assumptions of the extended Öpik theory and only small regions of the B-plane near the

collision singularity require the use of pseudo-Öpik theory.

6.2.4 Resonant returns

The condition for a resonant encounter is that the post-encounter semi-major axis a′ results

in a commensurability between the orbital periods of the planet and the asteroid. In this situation

the resonant encounter occurs after k planet periods and h asteroid periods. The condition on the

semi-major axis becomes:

a′R
3
= a3p

k2

h2
(6.11)

The locus of points in the B-plane that fulfill the condition of a resonant semi-major axis a′

is a resonant circle of radius R centered in (0, D) with parameters R,D [Valsecchi et al., 2003]:

R =

∣∣∣∣ c sin θ′R
cos θ′R − cos θ

∣∣∣∣ (6.12)

D =
c sin θ

cos θ′R − cos θ
(6.13)

where

cos θ′R =
1− U2 − 1/a′R

2U
(6.14)

Figure 6.2 shows the resonant circles of the 1985 flyby of 2006 MB14 for up to k = 20 Earth

revolutions. The white circle represents the Earth radius with its gravitational focusing factor and
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physical radius. If unperturbed Keplerian motion is assumed between encounters, no change in

geometry happens for the next encounter. Therefore, we can state:

U ′′ = U ′ = U, θ′′ = θ′, ϕ′′ = ϕ′ (6.15)

Assuming the planet is in a circular orbit, the B-plane coordinate ξ is the MOID between

the asteroid and the planet. Based on the previous assumptions, ξ remains constant between

encounters, thus:

ξ′′ = ξ′ (6.16)

and the timing component of the flyby ζ ′′ becomes:

ζ ′′ = ζ ′ − [mod(h · 2πa′3/2 + π, 2π)− π] sin θ′ (6.17)

Based on the assumption of equation 6.16, the keyholes in the B-plane are located in the

pre-encounter coordinates that lead to a post-encounter |ξ′| < γRE . Thus, they are in the band

around ξ = 0 that is shown in the right panel of Figure 6.2.

Figure 6.2 Resonant circles and keyholes of the Earth flyby of asteroid 2006 MB14.

6.3 MOID propagation

The Minimum Orbit Intersection Distance (MOID) is defined as the minimum distance be-

tween any two points in the orbits of the two bodies at a given instant of time. In Öpik theory the

coordinates in the B-plane are ξ−ζ, which correspond to the signed MOID and a timing condition.
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Thus, a MOID smaller than the collision radius is a necessary condition for a collision. The collision

radius is the radius of the planet with a gravitational focusing factor. To compute the MOID we

implemented the algorithm proposed by Wísniowski and Rickman [2013].

The initial conditions for the propagation using either of the models are extracted from the

incoming hyperbolic asymptote of the flyby during the respective Earth close encounters. The tra-

jectory of the asteroid is extracted from JPL’s SSD HORIZONS system.1 Then, these coordinates

are transformed to the MTP as defined in section 6.2.2. In the case of 2006 MB14, the nominal

closest approach date of the encounter is 1985-Jun-28 00:40 TDB, whereas for 99942 Apophis, the

closest approach date is 2029-Apr-13 21:46 TDB.

6.3.1 MOID propagation by Secular Model

We can also propagate the MOID using the secular solution of the perturbation from Jupiter

of equations 2.12. In order to compute the MOID at a future time, we compute the orbit at the

desired time and use the regular MOID algorithm.

In the case of 2006 MB14, we find that the post-encounter secular rates of the MOID are

in the range of ∼0.05-0.3 RE/yr, which correspond roughly to the maximum and minimum semi-

major axes resulting from the encounter at any resonant circle. In the case of Apophis, the rate

goes up to 0.1 RE/yr, in general smaller than this value.

6.3.2 MOID semi-analytical propagation

In addition to the purely analytical secular propagation of the orbit, we can use the semi-

analytical tool of section 2.4 that includes the evaluation of close encounters. The main difference

form the usage in chapter 2 is that we increase the threshold of the closest approach distance to

0.15 or 0.2 au so that we include smaller effects, since these can already be in orders of magnitude

of a few Earth radii.

1 Publicly available at: https://ssd.jpl.nasa.gov/horizons/

https://ssd.jpl.nasa.gov/horizons/
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6.3.3 MOID propagation by Numerical integration of n-3BP

In this approach, we propagate the heliocentric orbit of the asteroid numerically under the

influence of gravitational perturbations from all planets. We account for all the planets of the solar

system and work under the assumption that they follow Keplerian orbits. This choice is made so

that we maintain the encounters as well as capture long and short-term perturbations effects over

time. In this case we are not solving for the gravitational interactions between the planets. Thus,

the model includes the perturbation of n third-body perturbers (n-3BP).

The perturbing force contribution to the equations of motion for np bodies is:

f3B =

np∑
j=3

GMj

(
r2j
r32j

− r1j
r31j

)
(6.18)

where the subscript j refers to each body. In this case, j = 1 refers to the central body (Sun) and

j = 2 to the asteroid. Thus, r1j is the position vector of body Mj with respect to the Sun and r2j

with respect to the asteroid. The elements of the planets are constant and extracted from planetary

ephemeris [Folkner et al., 2014] at the same date that the asteroid ephemeris was retrieved.

We integrate these equations using MATLAB’s ode113 numerical integrator. ode113 is a

variable-step, variable-order (VSVO) Adams-Bashforth-Moulton PECE solver of orders 1 to 13.

The highest order used for the integration is 12, whereas the 13th order is used for the error

estimate [Shampine and Reichelt, 1997].

In figure 6.3 we demonstrate all of the previously described models of the propagation of the

MOID. Asteroid 2006 MB14 is a good example of a MOID evolution dominated by the secular drift.

The case of 99942 Apophis is more difficult to model, as there are frequent shallow encounters with

the Earth or other inner solar system planets. In both cases the MOID shows perturbations of

short period that can be of the order of a few Earth radii.
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Figure 6.3 Examples of the Earth MOID (RE) of 2006 MB14 and 99942 Apophis after crossing the
B-plane.

6.4 Short-period component characterization

As we presented in the previous section, the propagation of the MOID in the absence of close

encounters has a secular component and a short-period oscillation. Quantifying this amplitude we

can define a bound around the secular propagation in which we would expect to find the MOID

in the future. Figure 6.3 shows the propagation of the MOID with the bounds defined around

the secular component of the MOID (magenta, dashed) and the previously described models. In

the example of 2006 MB14, the secular bounds capture most of the evolution of the MOID. These

bounds are computed using the method below. Other cases such as 99942 Apophis experience

larger perturbations such that the numerically propagated MOID is captured by the bounds for a

limited amount of time.

The amplitude of the short-period component ∆SP can be obtained semi-analytically, from
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the difference between the perturbing potential in equation 2.1 and the analytical expression of the

averaged potential in equation 2.3 [Scheeres, 2016]. However, we find that the computational cost of

the quadrature of the Lagrange Planetary Equations is comparable to a few numerical propagations

of the MOID. For this reason and to investigate a wide variety of post-encounter orbits, we compute

this amplitude for a grid of points in the B-plane.

The amplitude is approximated by the difference between the maximum and minimum ξ:

∆SP = max(ξ(t))−min(ξ(t)) (6.19)

This estimation doubles the typical definition of a sinusoidal oscillation. Thus, we are making

a conservative estimation of this amplitude. In the examples of this work we propagate the orbit

for 10 years, which accounts for a few orbital periods. In this timescale very close encounters were

not found among the post-encounter trajectories and the secular contribution is small.

Next, we investigate whether or not the short-period amplitude of the MOID remains constant

among the post-encounter trajectories, and its potential use to predict the overall evolution. To

do this, we propagate the MOID numerically among a fine grid of points of the B-plane. Figure

6.4 shows that along the B-plane, most post-encounter trajectories have a similar amplitude of

the short-period component. This result motivates the use of a unique amplitude value for the

propagation of the MOID.

Another result of the numerical propagation of the MOID along the B-plane is the minimum

MOID throughout the 100 years, also shown in Figure 6.4. The secular component of the MOID

evolution is clearly distinguished: in the region with a negative MOID trend (either ±ξ) there is

at least one future zero-MOID crossing. On the other semi-plane of the B-plane the MOID grows

secularly, which implies that keyholes are less likely to be found. In the next section we sample

points among resonant circles, and we find that it is indeed possible to have future low-MOID

configurations in the semi-plane of the B-plane with secularly increasing MOID.

The analytical and semi-analytical propagation models can be compared to the numerical
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Figure 6.4 Amplitude of short-period component of MOID and minimum MOID over 100 years.

propagation taking into account the short-period component amplitude as conservative bounds.

Thus, we can test if the numerical propagation remains within these bounds. The amplitude of the

short-period component is found to be of 5.05 RE for 99942 Apophis and of 6.77 RE for 2006 MB14.

We extend these bounds by the Earth radius expanded with the corresponding focusing factor for

consistency with the computation of keyholes in the next section. The result after propagating

the MOID for 50 years is that the estimated bounds around the secular model only capture the

trajectories for 89% of the time for 2006 MB14, and only 35% for Apophis.

When the MOID obtained numerically is out of the defined bounds we can measure how far

it is from this expected region. In the 100 years propagated, maximum deviation from the bounds

for 2006 MB14 was of 12 Earth radii, on average in the B-plane. For 99942 Apophis, this maximum

deviation is between 25 and 64 Earth Radii. This means that the combined secular and short-period
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bounds approach for 99942 Apophis does not consistently capture the long-term dynamics of the

MOID.

6.5 Modified keyhole computation

A keyhole is the locus of points on the B-plane leading to a collision at a subsequent encounter;

i.e., it is the pre-image of the Earth on the B-plane of the first encounter. In order to find keyholes

we test multiple points along the resonant circles. The concept of keyhole can be generalized to

distance threshold larger than the focusing factor radius, highlighting deep encounters that do not

necessarily correspond to a collision. We describe the conditions for a point to be a keyhole and

how these are modified by a time-varying MOID.

If we assume that the heliocentric post-encounter Keplerian elements remain constant be-

tween encounters, the ξ coordinate that represents the MOID also remains constant. However,

using the MOID propagation methods we can model different perturbing effects and include them

in the computation of keyholes. As an extension of this theory we define the modified keyholes as

the points that fulfil the keyhole conditions accounting for the MOID variation between encoun-

ters. First, we detail the method of Valsecchi et al. [2003] for the computation of keyholes under

unperturbed MOID. Then, we show the derived modification to obtain the new keyhole regions

and the application to the Earth flybys of asteroid 2006 MB14 and 99942 Apophis.

We sample points among the resonant circles, which are virtual asteroids that will experience a

subsequent encounter. We propagate the virtual asteroids from the post-encounter elements using

the three models described above for the corresponding h asteroid periods or k Earth periods.

As an example of this propagation, we show a virtual Apophis that crosses the resonant circle

{k = 5, h = 7} and assuming the Earth is in a circular-ecliptic orbit.

In Figure 6.5 we show the distance between the asteroid and the Earth recorded with the three

approaches used and constant elements: Keplerian propagation, secular model, semi-analytical

propagation and n-3BP model. For context we show the MOID evolution in this time frame as well

as the distance in detail at the resonant encounter after 5 years. The differences between Earth-
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asteroid distance models are in the order of Earth Radii, and the difference becomes apparent at

the resonant encounter date. The propagated MOID defines whether a collision is possible at the

time of the resonant encounter. Thus, we consider the variation of the MOID in the definition of

the modified keyholes.
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Figure 6.5 Distance between Earth and 2006 MB14 after it crosses the resonant circle {k = 5, h = 7}
and MOID evolution.

6.5.1 Constant elements between encounters

We find the keyholes coordinates (ξK , ζK) using the following method. The condition for

a collision in the subsequent resonant encounter (′′) is that the MOID |ξ′′| is smaller or equal to

the radius of collision bp. Under the assumption that the MOID is unchanged by the Keplerian

propagation (ξ′′ = ξ′), we can define the necessary condition for a given (ξK , ζK) to belong to a

keyhole as:

|ξ′′K | = |ξ′K | = |ξ′(U, θ, ξK , ζK)| ≤ Rc (6.20)
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where Rc is the planet radius extended by the gravitational focusing factor:

Rc = RP

√
1 +

2GMP

RpU2
(6.21)

where RP and MP are the planet’s physical radius and mass, respectively. If the above condition is

satisfied, we use a root-finding algorithm to find the value ζK,0 that corresponds to a direct impact

with Earth,

ζ ′′K,0 = ζ ′′(U, θ, ξK , ζK,0) = 0 (6.22)

where the function ζ ′′ is obtained from the solution of the encounter as described in section 6.2.3.

Thus, using the approximation in ζ”:

ζ
′′ ≈ ∂ζ ′′

∂ζ
|ζ=ζK,0

(ζ − ζK,0) (6.23)

the upper and lower bounds of the keyhole are:

ζK,u = ζK,0 +

√
b2P − ξ′′K

2

(∂ζ ′′/∂ζ)ζ=ζK,0

(6.24)

ζK,l = ζK,0 −

√
b2P − ξ′′K

2

(∂ζ ′′/∂ζ)ζ=ζK,0

(6.25)

where the derivative (∂ζ ′′/∂ζ)ζ=ζK,0
is

∂ζ ′′

∂ζ
= hs(U ′, θ′)

∂ cos θ′

∂ζ
+
∂ζ ′

∂ζ
(6.26)

The expressions to find the factor s(U ′, θ′) and ∂ζ′

∂ζ are reported in Valsecchi et al. [2003].

The keyhole is constructed by repeating this procedure for each (ξk, ηk) on k: h resonant circle.
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6.5.2 Modified keyholes by propagation of the MOID

We propose the modification of the keyhole criterion on ξK by including the time propagated

variation ∆ξ. The modified keyholes are the regions that fulfill the new keyhole conditions, having

considered the ∆ξ. We estimate ∆ξ computing the MOID both at the initial and subsequent

encounter, such that:

∆MOID = ∆ξ = ξ′′ − ξ′ (6.27)

We follow two different approaches to compute the MOID as presented in Section 6.3: a

semi-analytical propagation and the numerical integration including np third-body perturbers. In

addition, we observed how the MOID has a short-period component of the same order of magnitude

of ∆ξ. For this reason we include the amplitude in the MOID threshold and search for deep

encounters within this distance. The criteria to determine if a point of the B-plane (ξ, ζ) is part of

the keyhole is obtained similarly: An updated necessary condition on ξ and the same computation

of the timing component ζ as in Section 6.5.1. The necessary condition on ξ becomes:

|ξ′′| = |ξ′ +∆ξ| ≤ Rc +∆SP (6.28)

Along the resonant circle the post-encounter semi-major axis remains constant (See eq. 6.11).

However, the rest of post-encounters elements depend on the location of the pre-image within the

resonant circle. Figure 6.6 shows the variation ∆ξ along two resonant circles using the two propa-

gation methods. Within the circle there are regions clearly distinguishable by having similar values

of ∆ξ. This observation could allow the reduction of the computational burden of propagating

numerous trajectories in these regions of the resonant circle.

The short-period perturbations have a very important role in the propagation of the MOID,

as described in section 6.4. We show this effect in Figure 6.3, where we observe the propagation in

time for a single point of the resonant circle. However, within the same resonant encounter circle,

it is possible to find a certain agreement between both theories. We further observe this in Figure
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Figure 6.6 Variation of the MOID (RE) at the 2029 encounter of Apophis around the resonant
circles {k = 11, h = 15} (top) and {k = 12, h = 13} (bottom), using semi-analytical propagation
(left) and numerical integration (right).

6.6, where the variation of the MOID ∆ξ is computed using both methods. In some regions of

the circle the semi-analytical propagation matches the variation obtained numerically. In other

regions the variation obtained numerically is larger than predicted. Note that the amplitude of the

short-period component should include the variations found within this resonant circle.

These results show the potential of the semi-analytical secular model to be used for prelim-

inary analysis. However, this agreement needs to be taken carefully since it depends on the flyby

geometry and on the resonant circle.

The variation ∆ξ is computed in every point of the resonant circle to determine the modified

keyholes. Figure 6.7 shows the modified keyholes computing the variation ∆ξ with the semi-

analytical model and the amplitude of the short-period as margin, and numerical integration. A

large fraction of the keyholes that were obtained assuming constant heliocentric elements between
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Figure 6.7 Modified keyholes of the Earth flyby of 99942 Apophis and 2006 MB14.

Figure 6.8 Success finding numerical keyholes by propagating the MOID between encounters semi-
analytically for 99942 Apophis and 2006 MB14.
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encounters disappear or are translated to a different region of the B-plane.

When we set up the threshold distance to a deep encounter (as given by equation 6.28), we

generate additional keyhole regions further from the planet, which is a more conservative estimate.

Thus, in both examples we find that the semi-analytical method accounting for the short-period

amplitude highlights more regions.

Figure 6.8 shows the keyholes found numerically color coded by whether or not the semi-

analytical propagation tool actually found them. We can see how the case of 2006 MB14, with a

MOID evolution dominated by the secular drift is better captured by the semi-analytical propaga-

tion tool.

6.5.3 Computational speed-up

The secular propagation represents a significant speed-up as opposite to computing ∆ξ nu-

merically. The computation of the modified keyholes requires the propagation of a grid of points

among each of the resonant circles for k Earth periods. In this work we discretize the resonant cir-

cles in 100 points. For up to k = 20 Earth periods, we find 226 and 393 resonant circles respectively

for 99942 Apophis and 2006 MB14.

We computed the modified keyholes using the two methods with the same 2.5GHz Intel Core

i7 processor. In comparison, computing the modified keyholes of 2006 MB14 with the secular

method was 600x faster. In the case of 99942 Apophis, the speed-up was of 540x. Thus, from

the computational cost standpoint the secular model is significantly superior. Using the semi-

analytical propagation tool, which takes into account the close encounters, the speed-up is about

x150, a considerable speed-up compared to numerical integration.
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6.6 Conclusions

The extended Öpik theory of close encounters assumes that the orbit elements of the asteroid

remain constant between close encounters. We show how the variation in the orbit elements between

encounters projected to the MOID is of the order of magnitude of several Earth radii. This finding

motivates the modelling of non-Keplerian effects in the heliocentric orbit of the asteroid in the

preliminary analysis of keyholes. We propose three propagation methods to model these effects: a

secular analytical model, semi-analytical propagation considering planetary close encounters, and

numerical integration. Through this propagation we model the variation of the MOID to obtain

a modified location of the keyholes in the B-plane of the asteroid initial close encounter. We find

significant displacements of the keyholes, with new sections of the B-plane for further study and

regions absent of keyholes.

We model two asteroid flybys: the 2029 encounter of 99942 Apophis and the 1985 encounter

of 2006 MB14. In both cases the Earth MOID has a short-period oscillation amplitude of a few

Earth Radii. In the case of 99942 Apophis, the perturbations between resonant encounters cause

significantly larger variations in the Earth MOID, challenging the applicability of the lower fidelity

models.

On the other hand, in order to reduce the computational cost of the numerical approach,

propagating only selected points in the resonant circles could help reduce the required time signif-

icantly. The presented approach is to uniformly distribute in space the points of the circle so that

we can still capture regional behaviors. A direct application would be to make the selection based

on the flyby uncertainty if available. In such case, the search for modified keyholes could be based

on the intersections between the known line of variations and the resonant circles.

These results encourage the study of additional asteroids to explore the potential of finding

modified keyholes without the use of large scale Monte Carlo simulations. We prove that the

changes in ∆ξ can be significant and that an analytical secular model can partially capture the

dynamics of the MOID, especially after quantifying the amplitude of the short-period oscillations.
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The shallow close encounters between encounters can also contribute significantly to the overall

MOID evolution and the keyholes during close encounters.

The proposed methodology leaves room to improve our dynamics models to ensure higher

fidelity of the results. For example, the effect of Earth eccentricity in the MOID propagation is left

outside the scope of the present work. Further, the analytical condition on ζ ′′ for a keyhole could

be corrected by the variation in elements between encounters. Here we mention a few possible

improvements of the dynamical models. Most importantly, we show the challenging topology of

the ∆ξ variations among the B-plane, which should be addressed in future work.



Chapter 7

Conclusions

This dissertation explored semi-analytical methods to analyze the orbits of near-Earth aster-

oids. The motion of NEOs in the inner solar system is characterized by the presence of planetary

close encounters, with a range of implications on the orbit and the physical properties of the as-

teroid. We developed a rapid propagation tool consisting in using an analytical solution for the

100,000-year timescale secular effect from Jupiter. Then, we use a numerical scheme for the eval-

uation of planetary close encounters, with significant effects in timescales of days. This allows an

overall fast propagation while gathering statistics of close encounters and the growth in uncertainty.

Chapter 2 elaborates on the methodology and long-term stochastic characterization of near-

Earth asteroids. The solution of the long-term perturbation that we modeled is valid in a range

of semi-major axes, eccentricity and inclination that we defined by having a small error in the

secular frequencies. A natural extension of this dissertation would be to broaden this range, for

example, by including other analytical solutions for different regions of near-Earth space such as

the Lidov-Kozai effect.

As soon as we consider time-scales beyond the hundreds-to-thousands of years, we can utilize

the fact that the MOID must be small for deep close encounters to be possible. Depending on the

application we can use different methods to estimate the probability of such encounters to occur.

First, we can sample many particles and propagate them in a Monte Carlo simulation, for which a

rapid tool such as the one developed in this dissertation becomes a powerful tool. If the orbit must

be propagated numerically, we can use analytical approximations of the probability that exploit
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the fact that the orbit eventually becomes stochastic.

In chapter 3 we estimate the probability of experiencing a disruptive close encounter by the

Janus and DART mission targets. This analysis was a contribution to the overall understanding of

the dynamics of binary asteroids, in which we quantify the frequency of this perturbation. Within

the context of the evolution of binary asteroid systems, these should be leveraged with other effects

such as dissipation or binary YORP. In the meantime, the prediction of recent low-MOID windows

for close encounters can inform whether or not planetary close encounters are a plausible explanation

for the chaotic state of binary asteroid orbits.

Another dynamic physical property observed in nature that we contributed to explain is the

distribution of obliquities of asteroids, as analyzed in chapter 4. Near-Earth space is a natural

benchmark for the understanding of thermal torques. Near Earth we are able to observe more

smaller objects, which experience a stronger effect by stronger torques and smaller inertias. The

small asteroids that have been explored are not exactly in the equilibrium configurations predicted

by YORP theories. We show how the fact that the orbit is experiencing planetary close encounters

could be a reason why this is. This step in the understanding of the rotational dynamics of NEOs

should be combined with models for the evolution of the spin rate. For example, considering Tan-

gential YORP, which in come cases is expected to be dominant and bring asteroids to equilibrium

rotation periods.

The last chapters of this dissertation continue to characterize the frequency of planetary close

encounters. In chapters 5 and 6, the analysis is done for planetary defense. We exploit the fact

that a low Earth MOID is a necessary condition for a collision. In chapter 5 we use it to push

further than typical impact hazard analyses. While this approach is not as rigorous as the direct

computation of the probability of collision, it allowed us to rule out the risk of large fractions

of the km-sized and PHA population for an order of magnitude longer than previously analyzed.

Future work should address the smaller asteroid populations with a higher uncertainty in their

orbit solutions.
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In chapter 6 we aim to contribute to the understanding of NEO orbital dynamics for impact

hazard assessment. We develop a correction to the analytical extended Öpik theory to find key-

holes by modeling the evolution of the MOID between close encounters. We find that additional

complexity should be added to the lower fidelity models to fully recreate the dynamical landscape

of the search for keyholes in the B-plane.

Overall, throughout this dissertation we explored the potential of analytical, semi-analytical

and numerical methods to model a few of the dynamical properties of NEOs. Even in the era of

exponential growth of computational power, the exploration of these lower-fidelity theories continues

to provide valuable insight of the underlying dynamics. Our improved understanding will continue

to ease the analysis of large populations and databases. Especially, as we continue to survey the

Solar System looking for answers to our most fundamental questions.
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Levison, M. Bailey, and M. Duncan. Dynamical lifetimes of objects injected into asteroid belt
resonances. Science, 277(5323):197–201, 1997. ISSN 00368075. doi: 10.1126/science.277.5323.197.

https://www.sciencedirect.com/science/article/pii/S0019103585711414
https://www.sciencedirect.com/science/article/pii/S0019103585711414
https://doi.org/10.2514/6.2020-0464
https://doi.org/10.2514/6.2020-0464
https://iopscience.iop.org/article/10.3847/PSJ/ac83c6
https://dx.doi.org/10.3847/1538-3881/acd378
https://www.science.org/doi/abs/10.1126/science.1068191
http://ssd.jpl.nasa.gov/?horizons


139

O. Golubov and V. Lipatova. Analytic theory for the tangential YORP produced by the asteroid
regolith. Astronomy & Astrophysics, 666:A146, 2022.

O. Golubov and D. J Scheeres. Systematic structure and sinks in the YORP effect. The
Astronomical Journal, 157(3):105, 2019.

O. Golubov, D. J. Scheeres, and Y. N. Krugly. A three-dimensional model of tangential YORP.
The Astrophysical Journal, 794:22, 9 2014. ISSN 1538-4357. doi: 10.1088/0004-637X/794/1/22.
URL https://iopscience.iop.org/article/10.1088/0004-637X/794/1/22.

O. Golubov, V. Unukovych, and D. J. Scheeres. Limiting behavior of asteroid obliquity and spin
using a semi-analytic thermal model of the YORP effect. The Astronomical Journal, 162(1):8,
2021.

M. Granvik, A. Morbidelli, R. Jedicke, B. Bolin, W. F. Bottke, E. Beshore, D. Vokrouhlický,
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A. Milani and Z. Knežević. Secular perturbation theory and computation of asteroid proper ele-
ments. Celestial Mechanics and Dynamical AStronomy, 49:347–411, 1990. ISSN 15729478. doi:
10.1007/BF00049444.

A. Milani, M. Carpino, G. Hahn, and A. M. Nobili. Dynamics of planet-crossing asteroids: Classes
of orbital behavior. Project SPACEGUARD. Icarus, 78(2):212–269, 1989. ISSN 10902643. doi:
10.1016/0019-1035(89)90174-7.

A. Milani, S. R. Chesley, M. E. Sansaturio, G. Tommei, and G. B. Valsecchi. Nonlinear impact
monitoring: Line of variation searches for impactors. Icarus, 2005. ISSN 00191035. doi: 10.1016/
j.icarus.2004.09.002.
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M. Hirabayashi, Ö. Karatekin, J. McMahon, et al. Predictions for the Dynamical States of the
Didymos System before and after the Planned DART Impact. The Planetary Science Journal, 3
(7):157, jul 2022. doi: 10.3847/PSJ/ac76c9. URL https://dx.doi.org/10.3847/PSJ/ac76c9.

A. S. Rivkin and A. F. Cheng. Planetary defense with the Double Asteroid Redirection Test
(DART) mission and prospects. nature communications, 14(1):1003, 2023.

J. Roa, D. Farnocchia, and S. R. Chesley. A Novel Approach to Asteroid Impact Monitoring. The
Astronomical Journal, 162(6):277, 2021. ISSN 1538-3881. doi: 10.3847/1538-3881/ac193f. URL
https://doi.org/10.3847/1538-3881/ac193f.

A Roy. Orbital Motion, Fourth Edition. Routledge, 2004. doi: 10.1201/9781420056884.

D. P. Rubincam. Radiative spin-up and spin-down of small asteroids. Icarus, 148(1):2–11, 2000.

P. Sánchez and D. J. Scheeres. Disruption patterns of rotating self-gravitating aggregates: A survey
on angle of friction and tensile strength. Icarus, 271:453–471, 2016.

D. J. Scheeres. Rotational fission of contact binary asteroids. Icarus, 189(2):370–385, 2007.

D. J. Scheeres. Orbital motion in strongly perturbed environments: applications to asteroid, comet
and planetary satellite orbiters. Springer, 2016.

https://books.google.com/books?id=-HXvAAAAMAAJ
https://books.google.com/books?id=-HXvAAAAMAAJ
https://www.science.org/doi/abs/10.1126/science.1133622
https://www.science.org/doi/abs/10.1126/science.1133622
https://dx.doi.org/10.3847/PSJ/ac76c9
https://doi.org/10.3847/1538-3881/ac193f


143

D. J. Scheeres, E. G. Fahnestock, S. J. Ostro, J.-L. Margot, L. A. M. Benner, S. B. Broschart,
J. Bellerose, J. D. Giorgini, M. C. Nolan, C. Magri, P. Pravec, P. Scheirich, R. Rose, R. F.
Jurgens, E. M. De Jong, and S. Suzuki. Dynamical Configuration of Binary Near-Earth Asteroid
(66391) 1999 KW4. Science, 314(5803):1280–1283, 2006. doi: 10.1126/science.1133599. URL
https://www.science.org/doi/abs/10.1126/science.1133599.

D.J. Scheeres and R.W. Gaskell. Effect of density inhomogeneity on YORP: The case of Itokawa.
Icarus, 198(1):125–129, 2008.

D.J. Scheeres, M. Abe, M. Yoshikawa, R. Nakamura, R.W. Gaskell, and P.A. Abell. The effect of
YORP on Itokawa. Icarus, 188(2):425–429, 2007.

D.J. Scheeres, J.W. McMahon, E. Bierhaus, J. Wood, L. Benner, C. Hartzell, P. Hayne, J. Hopkins,
R. Jedicke, L. Le Corre, A. Meyer, S. Naidu, P. Pravec, M. Ravine, and K. Sorli. Janus: A NASA
SIMPLEx mission to explore two NEO Binary Asteroids. Bulletin of the AAS, 52(6), 10 2020.
URL https://baas.aas.org/pub/2020n6i217p06. https://baas.aas.org/pub/2020n6i217p06.
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Appendix A

Computation of Laplace coefficients

The expansion of the potential requires the computation of Laplace coefficients, as introduced

by Laplace (1798). Brouwer and Clemence [1961], Murray and Dermott [2000] detail both the

expansion and computation of coefficients. In the case of the expansion in equation 2.4:

⟨Rj⟩ = nja
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j
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j +
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The definition of Laplace coefficient is:

1

2
b(k)s (α) =

1

2π

∫ 2π

0

cos (kψ)dψ

(1− 2α cosψ + α2)s
(A.5)

This integral can be rewritten in a series expansion that simplifies the computation of the

Laplace coefficients numerically as function of the rising factorial or Pochhammer symbol. However,
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it is found to be computationally more efficient to compute the quadrature integral above. There are

many recursion and derivative rules that avoid computing the coefficients based on the definition.

These expressions use the nomenclature of D being the derivative operator d
dα .
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Appendix B

Initial Conditions and uncertainties

The initial conditions of the cases represented in this chapter and chapter 3 are found in table

B.1. The elements of asteroids 1991 VH and 1996 FG3 were retrieved from HORIZONS [Giorgini

and JPL Solar System Dynamics, 2021]. Using DE431 and SB431-N16. Orbit solution dates for

real asteroids are respectively 2021 April 15, 2021 April 26 and 2021 July 1.

The statistical representation of the uncertainty in the orbit solutions can be done using

the covariance matrix. This information is available for multiple asteroids in JPL’s SBDB.1 The

covariance matrices for (35107) 1991 VH, (175706) 1996 FG3 and (65803) Didymos that are used

in this work are found in tables B.2,B.3 and B.4.

1 As extracted from JPL’s Small-body Database Lookup (Date accessed: 2021-04-25) - Available for query at:
ssd.jpl.nasa.gov/tools/sbdb_lookup.html

ssd.jpl.nasa.gov/tools/sbdb_lookup.html
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In the case of the artificial cases used to illustrate the long-term dynamics, we set the co-

variance matrix to be a diagonal matrix of 1e-6 in the Keplerian set {a, e, i,Ω, ω, σ}. While this

is orders of magnitude larger than the uncertainties of (175706) 1996 FG3 and (35107) 1991 VH,

the uncertainty without further observations increases exponentially after only tens of encounters.

Thus, it is adequate for the studies in long-term simulations of this work. The individual particles

are sampled considering a multidimensional normal distribution centered around the nominal val-

ues shown in Table B.1. Then, we use the Cholesky factorization of the covariance matrices to add

the corresponding perturbation from the nominal.

Table B.1 Near-Earth objects used as example cases for the demonstration of the semi-analytical
propagation tool.

Asteroid a(au) e i (deg) Ω (deg) ω (deg) M0 (deg) JD (TBD)

Case 1 1.1 0.15 10 90 90 90 2451545.0

Case 2 1.2 0.35 40 90 90 90 2451545.0

Case 3 1.3 0.5 10 90 270 90 2451545.0

Case 4 0.95 0.07 20 90 90 90 2451545.0

Case 5 0.9 0.25 15 90 90 90 2451545.0

1991 VH 1.1373 0.14426 13.912 139.37 206.88 302.39 2456902.5

1996 FG3 1.0543 0.34987 1.9903 299.88 23.930 147.277 2454796.5

Didymos 1.6444 0.38370 3.4077 73.199 319.32 298.33 2459396.5

Table B.2 Initial covariance of the orbit of NEO binary (35107) 1991 VH [SSD/CNEOS API Service,
2021]. Using DE431 and SB431-N16 (Sol. Date: 2021 April 26)

1991 VH e q (au) tp (TDB) Ω (deg) ω (deg) i (deg)

e 3.0691e-16 -3.5095e-16 -8.8918e-14 -7.2651e-15 -5.2217e-14 3.6255e-15

q (au) -3.5095e-16 4.0175e-16 1.0484e-13 8.2268e-15 6.1722e-14 -4.1006e-15

tp (TDB) -8.8918e-14 1.0484e-13 7.5479e-11 -7.8662e-12 6.4146e-11 -3.8102e-12

Ω (deg) -7.2651e-15 8.2268e-15 -7.8662e-12 3.104e-11 -3.4282e-11 -4.876e-12

ω (deg) -5.2217e-14 6.1722e-14 6.4146e-11 -3.4282e-11 8.1951e-11 1.9766e-12

i (deg) 3.6255e-15 -4.1006e-15 -3.8102e-12 -4.876e-12 1.9766e-12 8.4244e-12
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Table B.3 Initial covariance of the orbit of NEO binary (175706) 1996 FG3 [SSD/CNEOS API
Service, 2021]. Using DE431 and SB431-N16 (Sol. Date: 2021 April 26)

1996 FG3 e q (au) tp (TDB) Ω (deg) ω (deg) i (deg)

e 1.2362e-16 -1.3026e-16 7.9966e-15 -4.1649e-14 3.9787e-14 -2.3726e-14

q (au) -1.3026e-16 1.3752e-16 -9.0726e-15 4.7436e-14 -4.5397e-14 2.5036e-14

tp (TDB) 7.9966e-15 -9.0726e-15 2.9877e-12 6.6638e-11 -6.6225e-11 -2.4698e-12

Ω (deg) -4.1649e-14 4.7436e-14 6.6638e-11 7.0256e-09 -6.9647e-09 -6.8055e-11

ω (deg) 3.9787e-14 -4.5397e-14 -6.6225e-11 -6.9647e-09 6.9046e-09 6.7284e-11

i (deg) -2.3726e-14 2.5036e-14 -2.4698e-12 -6.8055e-11 6.7284e-11 6.7136e-12

i (deg) 3.6255e-15 -4.1006e-15 -3.8102e-12 -4.876e-12 1.9766e-12 8.4244e-12

Table B.4 Initial covariance of the orbit of NEO binary (65803) Didymos [SSD/CNEOS API Service,
2021]. Using DE431 and SB431-N16 (Sol. Date: 2021 July 1)

1991 VH e q (au) tp (TDB) Ω (deg) ω (deg) i (deg)

e 7.5835e-18 -1.3289e-17 -6.9723e-15 2.2832e-14 -2.6868e-14 -2.6164e-15

q (au) -1.3289e-17 2.4125e-17 1.3904e-14 -3.9510e-14 4.6506e-14 4.5567e-15

tp (TDB) -6.9723e-15 1.3904e-14 3.6196e-11 -2.9160e-11 3.5176e-11 3.4930e-12

Ω (deg) 2.2832e-14 -3.9510e-14 -2.9160e-11 9.3506e-11 -1.0600e-10 -1.1732e-11

ω (deg) -2.6868e-14 4.6506e-14 3.5176e-11 -1.0600e-10 1.2093e-10 1.3246e-11

i (deg) -2.6164e-15 4.5567e-15 3.4930e-12 -1.1732e-11 1.3246e-11 1.7622e-12
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