COMPUTATION OF ELLIPSOIDAL
GRAVITY FIELD HARMONICS FOR
SMALL SOLAR SYSTEM BODIES

by
Dayvid J.-P. Dechambre

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Master of Science
(Electrical Engineering - Systems)
in The University of Michigan
2000

Master’s Thesis Committee:

Professor Daniel J. Scheeres, Chair
Professor Pierre T. Kabamba
Professor N. Harris McClamroch






Acknowledgments

To begin with I would like to express my gratitude to my advisor Professor
Daniel Scheeres for offering me the chance to work with him on the NASA
NEAR mission and introducing me to graduate research. I would also like to
express my appreciation for his continual support, guidance and availability. T
have been very pleased with this research work since it involved such a challeng-
ing mission as the NEAR mission, we achieved the goals that we had set and
it made my stay at the University of Michigan such a wonderful and valuable

experience.

I would like to thank Professor Pierre Kabamba and Professor Harris McClam-
roch for consenting to be on my thesis committee and expressing their interest
in the subject. I would also like to thank Heidi Di Virgilio and my office mates,
Alexander Roup, Harshad Sane, Daniel Scharf and Biju Thuruthimattam for

their help in my thesis research and writing.



Contents

Introduction

1 Theory of ellipsoidal harmonics expansion

1.1 Definition of the ellipsoidal coordinates. . . . . . . ... ... ..
1.2 Laplace’s equation in terms of the ellipsoidal coordinates . . . . .
1.3 Lamé’s functions of the first kind . . . . . .. ... .. ... ...
1.4 Lamé’s functions of the second kind . . . . .. .. ... .. ...
1.5 Normalized surface ellipsoidal harmonics . . . . . . ... ... ..

1.5.1 Orthogonalization property . . . .. .. ... . ... ...

1.5.2 Normalization constants v2 . . . . . . ... ... ... ..

1.5.3 Normalized surface ellipsoidal harmonics . . . . . . .. ..

2 From spherical harmonics to ellipsoidal harmonics

2.1 Harmonic expansions of the potential . . . . . . ... .. .. ...
2.1.1 Spherical harmonics expansion of the potential . . . . . .
2.1.2 Ellipsoidal harmonics expansion of the potential . . . . .
2.1.3 Analogies between the two types of expansions . . . . . .
2.2 Harmonic expansions of the acceleration . . . . ... . ... ...

2.2.1 Spherical harmonics expansion of the acceleration
2.2.2 Ellipsoidal harmonics expansion of the acceleration . . . .
2.3 Relation between the app and the (Cipy, Spm) - - - - - 0 o o o L.
2.3.1 A good use of the orthogonalization property . . . . ...
2.3.2 Symmetries . . .. ..o o
2.3.2.1 Example .. ... .. ... ... ..
2.3.2.2 Summary of results . . . . ... ...

2.3.3 The homogeneous triaxial ellipsoid . . . .. ... ... ..



2.4 Convergence considerations . . . . .. ... ... ... ... ... 27

3 Numerical methods 29
3.1 Computation of the ellipsoidal coordinates . . . . . . . . ... .. 29
3.2 Computation of the Lamé functions of the first kind . . . . . . . 30

3.2.1 Unnormalized Lamé functions of the first kind . . . . . . 30
3.2.2 Computation of the normalization constants 72 . . . . . . 32
3.3 Computation of the Lamé functions of the second kind . . . . . . 36
3.4 Numerical evaluation of the v . . . . . . 0 o 0 0 o000 36

4 Numerical results 38
4.1 Simulation setup . . . . . .. ... o 38
4.2 Numerical results for the potential . . . . . ... ... ... ... 39

4.2.1 External potential of Eros . . . . . . .. ... .. .. ... 40
4.2.2 External potential of Toutatis . . . . . ... ... ... .. 42
4.3 Interpretation . . . . . . . .. ... L L o 42

Conclusion 46

Appendix A: Lamé functions of the first kind of degree n <3 48

Appendix B: Normalization constants of degree n <3 49

Appendix C: Leading products 9, partials of (A1, A2, A\3) with re-
spect to (z,y,2) 51

Appendix D: Eigenvalue problem for the Lamé functions of the
first kind 53

Appendix E: Computation of the normalization constants % 55

Appendix F: Accuracy of the ellipsoidal harmonics expansion for

Eros 57



Introduction

Small solar system bodies like asteroids and comets have become the target
of current and forthcoming space missions. The NEAR Shoemaker spacecraft
has been in orbit around Asteroid 433 Eros since February 14th, 2000. The
MUSES-C mission is a joint effort of Japan’s Institute of Space and Astro-
nautical Sciences (ISAS) and NASA to explore Asteroid 1998 SF36 and return
samples from the asteroid surface to Earth. It is scheduled for launch in De-
cember 2002 and is expected to arrive on target in September 2005. Finally,
the ESA Rosetta mission’s main objective is to rendezvous with and make in-
situ measurements of comet 46 P/Wirtanen, in August 2011. These bodies are
known to have low gravity and irregular shapes which can cause severe problems

for predicting a spacecraft trajectory in their vicinity.

The classical approach for representing the gravitational field of an arbitrary
body is by expanding it’s gravitational potential into spherical harmonics. The
density and shape of the body is modeled by coefficients known as spherical har-
monic coefficients Cyy,, and Sy,,,. These coefficients can be determined with high
accuracy by evaluating the perturbations induced by the body on the spacecraft
trajectory. The advantage of this method is that it involves simple mathematics
and converges to the correct gravity field outside a circumscribing sphere. In
addition, finite truncation orders are often sufficient to match the “true poten-
tial” of the body with good accuracy. For Eros (of approximate size 33 km x
13 km x 13 km), a 16 degree and order expansion is used to model the grav-
itational potential at a radius of 35 km. One of the major drawback of the
spherical harmonics expansion is that it can exhibit severe divergence inside the
circumscribing sphere. Thus, spherical harmonics expansions of the potential

can not be used to model the asteroids’ gravity at close range.



Another approach consists of modeling the asteroid gravity field as a constant
density polyhedron. Small details of the asteroid surface can be included by
modeling these regions with high resolution. The main advantage of this method
is that the polyhedral potential is valid and exact for any given shape and den-
sity up to the surface of the body. Errors are thus reduced entirely to the errors
in the asteroid shape detemination and the level of discretization chosen for that
shape. For Asteroid 433 Eros, a polyhedron model with 8200 plates was used
for the purpose of close flybys of the surface. Despite the exactitude of the poly-
hedral potential, the constant density assumption can lead to erroneous gravity
computations at close range. Improvements to match the “true gravity field”

more closely can be made by simulating density variations within the asteroid.

Gravity field computations are practically computed by performing a transi-
tion from the spherical harmonics expansion model to the polyhedron model
as the spacecraft moves closer to the surface. The limitation due to the con-
stant density assumption to accurately compute the polyhedral potential at
close range motivated our work. The objective of this thesis is to develop a
method based on ellipsoidal harmonics that matches the “true gravity field”
in the vicinity of the asteroid’s surface. In the first Chapter, we first present
the theory of ellipsoidal harmonics expansion, introducing the ellipsoidal coor-
dinates system and the Lamé functions. This theory was first developed by
Hobson [9], MacMillan [11] and Byerly [3]. In Chapter 2, the focus is given to
a transformation from the spherical harmonics coefficients Cy,, and S;,,, to the
ellipsoidal harmonics coefficients a,,,. New results on the theory of ellipsoidal
harmonics are presented. Chapter 3 adresses the practical use of the ellipsoidal
harmonics describing numerical methods related to the mathematical concepts
of Chapters 1 and 2. Numerous references are made to Garmier [8] and Ritter
[14]. Finally, Chapter 4 is dedicated to some numerical computations of the
ellipsoidal harmonics expansion of the potential intented to validate the new

approach developed in Chapter 2.



Chapter 1

Theory of ellipsoidal

harmonics expansion

1.1 Definition of the ellipsoidal coordinates

Define the fundamental ellipsoid as

2 2 2
%+3;_2+Z_2:1 with a>b>¢>0, (1.1)

and any confocal quadric as
22 y? 22
+ = + - -
0/2 _+_92 b2_+_92 CZ_|_02

=1. (1.2)

Let us perform the following change of variables A2 = a? + 2 and define

h2 — 0,2 _ b2
k* =a®—c2. (13)
Then (1.2) becomes
72 y? 22

N T2 R T2 g2
For z, y and z fixed, the preceding equation has three roots A%, X2? and 3>
such that:

M2 > E > 07 >R > 07> 0.
The parameters (A1, A2, A3) are called the ellipsoidal coordinates. A; = constant
is the equation of a triaxial ellipsoid of semi-axes (A1, \/A? — h%,/A? — k2). For




agiven (h, k), the family of ellipsoids A\; = constant is homofocal to the reference
ellispoid (1.1). By analogy with spherical coordinates, A; is called the “elliptic
radius”.

One can relate the ellipsoidal coordinates to the cartesian coordinates as follows:

AZ A2 A2
= 22;2 2 (1.5)
N O et 9 10 Tt |l (16)
y - h2(k2 _ h2) '
2 EoRE - X - N wn
k2(k2 _ h2) ’

There are eight points corresponding to the same (A?);—1 2 3. These points are
at the intersection of the ellipsoid defined by A2, the hyperboloid of one sheet
defined by A% and the hyperboloid of two sheets defined by A2 (see Figures 1.1
and 1.2). In order that each point (z,y, z) may be expressed by a single set of

values (A1, A2, A3), we impose:

+ sign for z > 0

- A3 to be taken with the
— sign forx < 0

+ sign f >0
- /B2 X2 to be taken with the{ ' o O Y=
— sign fory <0

ign for z > 0
- k% — X2 to be taken with the +sign forz 2
— sign for z < 0

- A, VAT = B2 /A7 — k2, Mo, /A3 — B2, and /k2 — A2 to be taken always

with the + sign.



Figure 1.1: Intersection of the 3 surfaces defined by A2, A2 and A2

Figure 1.2: 4 of the 8 intersection points



1.2 Laplace’s equation in terms of the ellipsoidal

coordinates

In order to obtain solutions of Laplace’s equation

0%V N 0%V N o*V
0z? = 0y? = 022

=0 (1.8)

appropriate for spaces with boundaries of various forms, it is convenient to
transform the equation into a form in which the independent variables are the
parameters of three orthogonal sets of surfaces. In the following, we will rewrite

Laplace’s equation (1.8) in terms of the ellipsoidal coordinates.
The length of the elementary line joining the two points (z,y, z) and (z+dz,y+
dy, z + dz) is given by

(ds)? = (dz)? + (dy)? + (dz)*. (1.9)

Differentiating (1.5), (1.6) and (1.7), (ds)? can be expressed in terms of (A1, A2, A3).
This yields

(ds)? = Hilz(cul)2 + Hi%,(d&)2 + JLI%(dks)2 (1.10)

where
=
BE = = B
ayss

In the orthogonal ellipsoidal coordinates (A1, A2, A3), Laplace’s equation V2V =
0 takes the form

o ( Hy oV o ( Hy 0V o ( Hy oV _
_( _> _< _) (Hlea—Ag)_O' (1.14)

O\ \HoH3z 0\ Oy \H3Hy 0)s 03
Computing
H, _ 2 42 ( )()‘% )

)
H, o 05— 02 %)
mm, — M A3)\/ o =R ) g (O



Hy B 2 2 (h2 - A%)(kz — A%)
am - N A2’\/ OF = ) (N — R)(33 — h) (B2 —29)

(1.17)

and replacing the above expressions into (1.14), we obtain after multiplying
both sides by \/(A} — h2)(A? — k2)(A2 — h2) (k2 — A\3)(h2 — A\2) (k2 — \3):

0 ov
2 32 7 _ 7 _ 2 _ 2 _
08~ )/ 0T =207 = %) - (/0 = )08 = ) )
0 ov
2 _ 42 2 P 2 2 —
+02 = VIR = I =) 5 (Y3 —m) 02 ) 51-) =0,
0 ov
2 _ )2 2 2 2 2
HOF = )V =R =) 5= (V02 = M) (k2 = X)) -
(1.18)
We are looking for solutions of the form
V(A1, A2, A3) = R(A1)M(A2)N(A3). (1.19)

Such a V is called a normal solution. Laplace’s equation (1.18) can then be

rewritten as

(A3 = A3) o1 (M) + (A3 = AD) ¢2(X2) + (AT = A3) d3(A3) = 0 (1.20)

where
o) = YOI _5&(;% —F) d% (\/(A% ~R2)(A2 — k2) j—i> (1.21)
o) = - Y AR (g - g B ) a2
bs(0g) = YU _]\?(gigz —X) d% <\/(h2 CA2)(k2 - A2) Z—i\;) . (1.23)

Equation (1.20) holds for any (A1, A2, Az). Taking As = A3 first yields ¢2(A\2) =
$3(A2), then ¢1 (A1) = ¢2(A1) = d3(A1) = ¢(A1).

To determine the function ¢, take A; = 0 and rewrite (1.20) as

60) = 6(0) _ ¢0) — 6(0) (1.24)

AN

Since (1.24) holds for any Ay and As, it results that both sides of (1.24) have to

be constant. The function ¢ is then of the form

p(\;) = HN} — K (1.25)



where H and K are constants.

Replacing ¢ into (1.21) yields Lamé’s equation

d dR
2 p2\()\2 _ 2y 2_p2)()\2 _2) 2 ) — 2_
Vor=mos-) - (Vor-mng - 55 ) = - oren), (.20
that can be rewritten as
2
(A%—hz)(Af—/&’)@ + A\ (2Xf’—h2—k2)ﬁ +(K—HX)R=0. (1.27)
dX\2 d\

M and N satisfy exactly the same type of equation as R replacing A; respectively
by A2 and )\32

d>M dM

A —h) (A3 —k) =5 + AN —h*—k*)—— + (K—HM)M =0 (1.28)
dX\2 d)a
N N

(/\g—hQ)(Ag—k?)d—2 + ,\3(2A§—h2—k2)d— +(K—HX)N =0. (1.29)
d\2 dXs

Note that H and K remain the same as for R.

1.3 Lamé’s functions of the first kind

Lamé’s equation has the general form:
d?E(\;)
d\?

dE(\;)
d\;

H and K are called the separation parameters and can be chosen so that the

(AF=h*) (X =k?)

F A (2X2-h2—k?)

+(K—HX)E()\;) = 0. (1.30)

solutions of (1.30) are of four different types:

vy i
KP(\) = agp\l+agp\t 2 4.+ for  onmeven (1.31)
aspA; for n odd

(N = /N —h?

H

br—o—1.p\; T
x [bgp/\?1+b1p>\?3+...+ LpAi O T EVER } (1.32)
bp—g—1,p for n odd
M) = /2R
n—o— >\z f
x| copAt Loy A3 g oAl TORIVEVERL g gq
P P c for n odd
n—o—1,p
NZ(A) = 102 —h2) (2 —82)]
I nod dy—1,p, forn even
X | dopA] T HdipA T+ + p A for m odd (1.34)
o—1,pN\i

10



with
n for n even,

1.35
s(n—1) for n odd. (1.35)

-

The functions above are called Lamé’s functions of the first kind, of degree n

D= D=

and order p, and are denoted E?. For a given n, the EF are shared as follows:
- (c+1)areof type K,p=1,...,(c +1)
- (n—o)areoftype L,p=(0+2),...,(n+1)
-(n—o)oftype M,p=(n+2),...,2n -0 +1)
-ooftype Nyp=02n—0+2),...,2n+1).

In total, there are (2n 4+ 1) Lamé’s functions of the first kind.

The Lamé product EP(A;)EE(A2)EE(A3) is a normal solution (e.g. (1.19)) to

Laplace’s equation (1.18) and is continuous within any ellipsoid A, = A7/, It

is then possible to define the potential for the interior space of the ellipsoid
_ yref

A=A as

oo 2n+1

VLA, X)=p Y Y a anp /\ref)E P(A\)EP(Ns), A <A (1.36)
n=0 p=1

where the a,, are constants. The purpose of the division by EP(\'T) will be

explained in section 1.4.

1.4 Lamé’s functions of the second kind

The Lamé product EP(A)E?(X)EP()s) is however unbounded for A; > A7/
because EE (A1) = oo when Ay — oo. The Lamé product EP (A1) EE(A2)EE(A3)
is thus not acceptable to describe the potential for the exterior space of the
ellipsoid \; = /\fef . A feasible normal solution to Laplace’s equation should

vanish when A\; — oo.

Let F?(A1) be a solution to Lamé’s equation (1.26) that vanishes when A; — oo
so that the normal solution V = FF(A\)EP(X2)EP(A3) is acceptable for the

11



potential. Following Hobson’s development (see [9]), E?(A1) and FP(A1) both
satisfy equation (1.26). Thus

R z/\l) iww_hz)“% )dET(fl)) B
F5(1>\1) dil W (AT =h2) (A7 =) dFdA(i 1)> ’ (137

which is equivalent to

2| Vor=moi=) (rron TR o) TEA) 0. 3s)

Thus

dEL (M)
d\

dFP(\1) c

B0 R

- E5 (M)

(1.39)

where C is a constant. Integrating between A; and oo and choosing F? such
that FP(co) = 0 yields:

Frlz)(/\l) _ o du
E'rpi()\l) - C/>\1 (Eg(/\l))z \/(uz_kZ)(uz_hz)- (1.40)

Hobson chooses C' = (2n + 1) so that

Frw) _ 1

O W when )\ is very large. (1.41)
With this choice of C', we finally get
F2Ow) = @+ DI [ du (1.42)
yo (ER(w)? /(u? = k) (u? — h?)

which is the required Lamé’s function of the second kind of degree n and order p.

The Lamé product FP(A1)EE(A\2)EE()\3) is a normal solution to Laplace’s equa-
tion (1.18). In addition, it is continuous for A; > AT/ and it vanishes when
A1 — oo. It is then possible to define the potential outside the ellipsoid
A = )\Ief as

oo 2n+1

VLA ) =pY Y a onp x‘ef) EP(A)EP(Ns), A > A (1.43)
n=0 p=1

On the ellipsoid A; = )\Ief, (1.36) and (1.43) have identical expressions so that
the overall potential (\; < X7 and A; > AT*%) is continuous.

12



1.5 Normalized surface ellipsoidal harmonics

1.5.1 Orthogonalization property

Theorem 1 (Green) Let S be any closed surface, and U; and Uy any two

harmonic functions. Then by Green’s theorem,

ou, . OUb\ .
/S (Uga—n — Ula—n> dS =0

0
where o is the normal derivative.
n

Let us consider the ellipsoid E),. The normal elementary displacement to the

surface of the ellipsoid is )
dn = Ed)\l. (1.44)

Applying Green’s theorem to the two harmonic functions

U = FE(M)EL(A2)EE(Xs) (1.45)
Us = F%(M)E%(A)E" () (1.46)

on the surface of the ellipsoid yields:

JOR ) 0 —) (F’?:(Al)dizgix(fﬂjgw%>

P P v’ 4
o [ ERODERO)EL Qo) Bw () go g 47

By VT =) - X))

Then, whether

dF? ()
- pron Tl o, (1.43)

' dFP(\
F () A

or
FR(0) BA ) S () Bl (%)

= 0. (1.49)
By VT =B - A9)
Equation (1.48) is equivalent to
FP(\
n(h) C, (1.50)
Fr (M)

where C' is a constant. It arises if and only if n =n' and p = p'.

13



Hence,

B2 () B () By (A2 Bry (%a)
By VTR0 =X

If n =n' and p = p', denote by 42 the normalization constant:

n#n orp#£p = S=0. (1.51)

o [ BB
" e, VRN

(1.52)

1.5.2 Normalization constants +?

The surface element dS of the ellipsoid Ey, can be expressed in terms of ellip-

soidal coordinates as follows:

s — (A3 =MV =) - X)) Ay dAs (1.53)
V2 =X3) (03 = 1) (h* = X3) (k2 = X3)

In the expression of dS, the quantities \/k2 — X3 and /h? — A3 are always
positive wherever we are in space so that the coefficient in front of dAs d\s is

always positive.

Proposition 1 The integral of any function of A2 and A3 over the ellipsoid Ey,

18:
/ FOa,As) dS =
E>‘1

hook
/—h/h [f1(A2,03) + f2(A2, As) + f3(X2, As) + fa(A2, As)]

(A3 = VT = )] - A
VE = X3) (A3 = h2)(h? = ) (k2 = X3)

dd\s  (1.54)

where f1(A2,A3), fa(A2,A3), f3(A2,A3) and f1(Aa, A3) are the values of the given
function f(A2,A3) on the four quarters of the ellipsoid into which it is divided
by the planes (XY) and (XZ).

Apply the preceding result to

(E2(X2)EE(X3))?
Ay, As) = 1.55
IO )= S Spor - (1:5)
so that
F(X2,A3)dS =~F. (1.56)
E>‘1

14



When we move from one of the four regions (Y >0,Z>0), (Y >0,2<0), (Y <

0,Z>0), (Y <0,Z<0) to another, only the signs of \/k2 — A2 and /A% — A2
may change in the expression of E2(A2)EP(A3). Since f(A2,A3) is a function
of (EP(A2)EE(X3))?, we have: f1(A2,A3) = f2(A2,A3) = f3(A2,A3) = fa(Xa, A3)
and then:
. / / A?)(E:;(&)Emg))z Do (15D
N = —I) I — A — D)
Finally, since E2(—\3) = iEp()\3) dependlng on the Lamé’s function EP, equa-

tion (1.57) can be rewritten as:

= A2)(J535’L(A2)E£';(A3))2
- / / \/ — h2)(h? — \2)(k2 — )\g)dk2d>\3- (1.58)

1.5.3 Normalized surface ellipsoidal harmonics

Once the normalization constant is computed, we define a normalized surface

ellipsoidal harmonic as:

—, . = EP(A2)EP(A
B () B () = 20 Bal0), (1.59)
Tn
and a normalized ellipsoidal harmonic coefficient as:
np = Qnp VVh- (1.60)

The solution of Laplace’s equation (1.18) can then be rewritten in terms of the
normalized surface ellipsoidal harmonics and the normalized ellipsoidal harmon-

ics coefficients:
oo 2n+1

VLA ) = 1Y > @y Tef E_(A JER(Xs), AL < AT, (1.61)
n=0 p=1 Ep >‘ )
oo 2n+1 o

VOLAsAs) = 1) > @y v AM)E ) ER(Ns), A > AL (1.62)
n=0 p=1

The interest of the normalized surface ellipsoidal harmonics is that the orthog-
onalization property seen in section 1.5.1 takes the simple form:
/ ER () Ea() By 0) By (0a) |
By VT =28 - A9

S =smr (1.63)

with

5"”— 1 ifn=n"andp=yp
P 0 else.

This formula is to be used in Chapter 2.

15



Chapter 2

From spherical harmonics

to ellipsoidal harmonics

In this chapter, we want to relate ellipsoidal harmonics to spherical harmonics.
Spherical harmonics are widely used because not only are they well understood
but we also have the capability to estimate the corresponding coefficients of a
gravity field, Cy,, and Sy, up to high degrees and orders. Our approach is to
take advantage of this knowledge to compute the ellipsoidal harmonics, which
are much more suitable to model the force environment of irregularly shaped
attracting bodies as we will see in Section 2.4. We will first compare these
two types of expansion in terms of their mathematical expressions and regions
of convergence. Then we will formulate how one can express the ellipsoidal
harmonic coefficients, a,,,, as linear combinations of the spherical harmonics

coefficients, Cp,,, and Syp,.

In all the following, we consider an attracting body that is best approximated
by an ellipsoid Ep of semi-axes a > b > ¢ > 0. Ep is called the Brillouin ellip-
soid and is defined as the smallest ellipsoid that encloses the body. Similarly,
one can define the Brillouin sphere, Sg, as the smallest sphere that encloses the
body. Generally, the centers of the Brillouin ellipsoid and the Brillouin sphere

do not coincide.

16



2.1 Harmonic expansions of the potential

2.1.1 Spherical harmonics expansion of the potential

One way to express the gravitational potential V as a spherical harmonics ex-

pansion is:

V(r,0,\) =pu Z Z = Pim (sin 6) [Cy, cos(mA) + Sy sin(mA)] (2.1)

lOmO

where

-1r>0,6 € [-%,%], A €[0,2n] are the usual spherical coordinates,

- Py, are the associated Legendre’s polynomials and have the general ex-
pression

|5

5 i (9]—9 ‘
P (siné) = (cosd)™ Z El—lz)) ((2ll—n21 ) 21 (sin0)I=m=2 (2.2)
i=0

- the Cj,, and S, have the dimension of a distance to the power [.

2.1.2 Ellipsoidal harmonics expansion of the potential

In section 1.5.3, we expressed the external gravitational potential in terms of
normalized ellipsoidal harmonics. If we choose )\Ief =a so that E\.; coincides
1

with the Brillouin ellipsoid and rewrite equation (1.62), we have:

oo 2n+1
V(A1) A2, Az) NZZ g Fp((Al))E”(&) P(Xs), AL>a. (2.3)

2.1.3 Analogies between the two types of expansions

The indices (I, m) and (n, p) are called degree and order of the spherical harmon-
ics expansion, respectively ellipsoidal harmonics expansion. For a given degree
I = n, there are as many spherical harmonics (2] + 1) as ellipsoidal harmonics
(2n + 1). Furthermore, there is a strong analogy in the expressions of the har-

monics themselves that we will discuss in the followings.

In section 1.4, we have seen that

ER(\)

FP(\) = 2t when )\ is very large. (2.4)
1

17



In addition E2(A1) ~ co AT, Ay — 00, so that

Co

Fp (M) = e A oo, (2.5)
1

is the analogous of the term in the spherical harmonic expansion.

RN
Similarly, one can relate the terms

cos(m\)

sin(m) and  EL(\2)EE(N3) (2.6)

Py, sin(9) {
to one another since they are functions of the analogous sets of variables (4, A)

and (A2, Az) respectively.

The explicit parallelism between both expansions leads us to investigate any
relation between the ellipsoidal harmonics coefficients, af, and the spherical

harmonics coefficients, Cj,, and Sj,,. This will be the object of Section 2.3.

2.2 Harmonic expansions of the acceleration

When studying the dynamics of a spacecraft, we are more interested in evalu-

ating the acceleration than the potential. In the following, we will derive the
oV oV oV
Oz’ Oy’ Oz
two types of expansion.

acceleration vector ( ) from the expression of the potential V for the

2.2.1 Spherical harmonics expansion of the acceleration

For the spherical harmonics expansion the potential V' is a function of (r,d, ).

Thus, according to the chain rule, —x can be expressed as

ov._ovor o0VOs OV O

9 —oros T acor T ooz (2.7)

and similarly for BV and 8V.

The terms (%—V, % %) are obtained by differentiating equation (2.1):

oo I
(1+1) .
—=—pu Z Z le (sind) [Cym cos(mA) + Sp sin(mA)],  (2.8)

Tz
[=0 m=0

oo 1
95 M Z Z : M [Cm cos(mA) + Sy sin(mA)], (2.9)

rl+1
(=0 m=0
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i Z T Pi (sin 8) [=mClyy, sin(mA) + mSim cos(mA)],(2.10)

=0 m= 0
with P (sins
% = —in(tan 6) P (510 6) + Pyg1) (5in ). (2.11)

One can then relate the spherical acceleration vector (%, %, %) to the carte-
sian acceleration vector (%, %, %);

v z —rz —y v

Oz ror2/et+y? w+y? or

6_V I —yz z a_v (212)

oy | “ | v 2 e2ry? 2Pty 0 :

i O s T A U

0z r 2 N

2.2.2 Ellipsoidal harmonics expansion of the acceleration

Consider the ellipsoidal harmonics expansion of the potential (2.3) and let us
first rewrite the Lamé functions of the first kind, E%()), in a more suitable form

for the following derivations.

In section 1.3, we defined four types of Lamé functions of the first kind, K,

L, M and N. These functions can be rewritten as:

ER(N) =9h(N) PRV, (2.13)
with
=Y Bi(l- ) (2.14)
=0
The leading products 92 (A) are of the form
AN R VN = R (2.15)

with u,v,w € {0,1}. They are determined according to the type of the Lamé
function (K,L,M,N) and the parity of n (see Appendix C). The degree m of

P2(X) in A? is then equal tom = 3 (n —u — v — w).

The ellipsoidal harmonics expansion of the potential then takes the form:

oo 2n+1

VOu ) =30 Y 0 0PI PO, >

n=0 p=1
(2.16)
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The term 9P (A2)9P (A3) can be expressed as a function of A\; and the cartesian
coordinates (z,y,z) (see Appendix C) by using the ellipsoidal-to-cartesian co-
ordinates transformation seen in section 1.1. This is particularly useful when

differentiating (2.16) with respect to z, y and z.

For the differentiation of (2.16), we proceed as follows:

6V oo 2n+1 Oé—np
(61‘i)mi:x,y,z - ’unz::o pzz:l Fﬁ(a)

D (N2) ¢k (As) [pg(A2)p5(A3)aL(A1)aA1

o\ Ox;
OPR(A2) OAs OPP(\3) OAs
FR WP () —5=2 5 + FROW PR Ow) — = 5=
HER (M) PR (A2) P () ai» (z/;g(Az))z/;g(Ag))l : (2.17)

In the above expressions, most of the terms are perfectly defined, exept for

%ﬁf‘l) and (%—;‘1, g—;‘j, g—;‘j) that still need to be determined.
Differentiating equation (1.42), one can show that

aFP(\) 1 ooy VOEE(M) 2n + 1
O\t EZ(\1) Fi(h)

(2.18)

A VT -R)( - k?)]'
O DN Oha
Oz;’ Ox; ' Ox;
coordinates equations (1.5), (1.6) and (1.7) with respect to x; yields a linear sys-

8)\1 8)\2 8)\3 8)\1 8)\2 8)\3
8.ti ? Biti ) Biti Biti ) Biti ) Biti

in Appendix C.

For the computation of ( ), differentiating the ellipsoidal-to-cartesian

tem in that can easily been solved. The are given
( ) y g

2.3 Relation between the «a,, and the (Cj,, Sin)

In the following, we want to express the normalized ellipsoidal harmonics coef-
ficients, @y, (or equivalently the ay,)p), as a function of the spherical harmonics
coefficients Cy,,, and Sj,,,. The orthogonalization property seen in Section 1.5.3

will be useful insofar as it will allow us isolate one 0.
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2.3.1 A good use of the orthogonalization property
Applying the orthogonalization property (1.63) to both sides of (2.3) yields:

Ey Al ER(2) ER(As)
N //EM (A1, A2, A3) N ESRIvESY, ds (2.19)

and thus one can isolate ag,, as

7 = Fp >\1,>\2,>\3) ER(X)ER(Xs)
Ty = //E VOO N

Finally, replacing the potential V' by its spherical harmonics expansion (2.1),

one can express G, as a linear transformation of the Cj,,, and Sy,:

o0 l
Top = > (A Cim + Byiy - Sim) (2.21)

=0 m=0

with A" and B[ coefficients defined by

im _ FE(a) // ds : TP\ N\
A = F ) Mgy, i Jor o ey (i) costmA) En(Ra) Br(4s)

(2.22)

m _ Fale) ds sin d) sin(m EP
Bnp _FT[L)()\I) //E‘MT’HA\/()\%—/\g)()\%—/\z)ﬂm( 5) ( /\)E ()\Q)En(/\g)
(2.23)

Some precautions have to be taken for the choice of the ellipsoid Fy,. This will

be developped in section 2.4 Considerations on convergence.

2.3.2 Symmetries

Consider the term

ds
O = ) (N - A9)
in equations (2.22) and (2.23). We have seen in Section 1.1 that there are eight

(2.24)

points on the surface of the ellipsoid E), coresponding to the same (/\12),':1,2,3.
Let denote these points by (Pj);=1,....s. According to equations (1.5), (1.6) and

(1.7), the P;’s also have identical values for 2%, 2, and 22. Therefore:
e they have the same spherical radius r,

e their latitude is +4,
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e their longitude is A\, # — A\, m + X or 2w — .

dS . . . AW
Consequently, the term T T 0T is identical for all the (P});=1,...

as long as we choose identical elementary surface area dS.

Consider now the other term,

cos(m)

sin(m\)

P (sin 0) { } EE(A)EE(X3). (2.25)

It has the same norm for each of the (P;);=1,...s. By arguing on its sign, one
can then deduce some interesting properties for the @,,. Especially, we will see
in the following that the coefficients Al and Bl may vanish depending on the

parity of n, p, [ and m.

We will treat as an example the case where n is even, 1 < p < (¢ + 1). For all

the other cases, we will summarize the results in a table.

2.3.2.1 Example

Fornevenand 1 <p < (o+1) = (5 +1), that is EP? is of type K and thus it is
an even polynomial in A. Therefore, the sign of E%(\;)EE ()s) is identical for all
the (P})j=1,...s. We then only need to argue on the sign of Fj,(sin d) cos(m)

and Pjp,(sin d) sin(mA). Let us distinguish the four cases:
e [ and m even:

— Py, is an even polynomial in sin §.

— Arguments of symetry for the sign of cos(mA), sin(mA) and Py, (sin §):

P 46 A cos(mA) | sin(mA) | Py (sind) | + | +
Py,| 6 | m=X | cos(mA) | —sin(mA) | Py, (sind) | + | —
Py| 6 | 74+ X | cos(mA) | sin(mA) | Pu(sind) | + | +
Py| 6 | 20— A | cos(mA) | —sin(mA) | Py, (sind) | + | —
P | -0 A cos(mA) | sin(mA) | Py (sind) | + | +
Py | =6 | m—=X | cos(mA) | —sin(mA) | Py, (sind) | + | —
Py | =6 | w4+ A | cos(mA) | sin(mA) | P, (sind) | + | +
Py | =6 | 2r— A | cos(mA) | —sin(mA) | P (sind) | + | —
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The last two columns of the table represent the sign of the terms

Py, (sind) cos
Py, (sind) sin

(m/\)@()\z)@(%)
(mA)ER (X2) ER(Xs)

for each of the P;’s. Since both of these terms have respectively constant
norms over all the P;’s, the AY™ are a priori non zero whereas the B!

are zero. More specifically, the AZZ can be rewritten as

// Py (sin 8) cos(mA) EB (A
Bt IV OT-X) (N -

denotes the octant of the ellipsoid E), corresponding to

im _ 8 )E_g(Aif)
np p
Fa( A3)

s, (2.26)

where (Ey, )"
(X>0Y>0,Z>0).

vanish for some n, p, [ and m.

This integral is a priori non zero, however it may

e [ and m odd:

— Py, is an even polynomial in sin §.

— Arguments of symetry for the sign of cos(mA) and sin(m):

P 46 A cos(m) sin(mMA) | Py(sind) | + | +
P, 6 | m=X | —cos(m)) | sin(mA) | Py,(sind) | — | +
Py| 6 | 74+ X | —cos(mA) | —sin(mA) | Pyy(sind) | — | —
Py| 6 | 2r—A| cos(m\) | —sin(mA) | By,(sind) | + | —
P | -0 A cos(m\) sin(mA) | Py(sind) | + | +
Ps| =6 | m—=X | —cos(mA) | sin(mA) | Pyu(sind) | — | +
P | =6 | w4+ X | —cos(mA) | —sin(mA) | By,(sind) | — | —
Py | =6 | 2r— A | cos(m\) | —sin(mA) | Pyy(sind) | + | —
Then A = Blm = 0.

e [ even and m odd:

— Py, is an odd polynomial in sin 4.

— Arguments of symmetry for the sign of cos(m), sin(m\) and Py, (sind):
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P 46 A cos(m) sin(m\) Ppp(sind) | + | +
Py| 6 | m—=X | —cos(mA) | sin(m)) Py (sind) | — | +
P;| 6 | m4+ X | —cos(mA) | —sin(mA) | Pyp(sind) | — | —
Py| 6 | 2r—A| cos(m\) | —sin(mA) | Pyu(sind) | + | —
P | -0 A cos(m\) sin(mA) | =Py, (sind) | — | —
Ps| =6 | m—X | —cos(mA) | sin(mA) | —Pyy(sind) | + | —
Py | =6 | w4+ X | —cos(mA) | —sin(mA) | =B, (sind) | + | +
Py | =6 | 2r—A| cos(m)) | —sin(m)) | —Fyy(sind) | — | +

Then A" = BI™ = 0.

e [ odd and m even:

— Py, is an odd polynomial in sin 4.

— Arguments of symmetry for the sign of cos(m), sin(m\) and Py, (sind):

P | 4 A cos(mA) | sin(mA) Py, (sind) | +
Py| 6 | m=X | cos(mA) | —sin(mA) | P, (sind) | +
Ps| 6§ | m+ X | cos(m)) | sin(m) Py (sind) | +
Py| 6 | 20— A | cos(mA) | —sin(mA) | P, (sind) | +
P | -0 A cos(mA) | sin(mA) | —Py,(sind) | —
Py | =6 | m—=X | cos(mA) | —sin(mA) | =P, (sind) | —
Py | =6 | 74+ X | cos(mA) | sin(mA) | —Pu,(sind) | —
Py | =6 | 2r — A | cos(mA) | —sin(mA) | =Py, (sind) | —

Then A" = Bl = 0.

2.3.2.2 Summary of results

By going through all the cases individually, we obtain the following tables for

the Aln’z and Bﬁ[g. As a reminder, one can relate the value of p to the type of

the Lamé function E_ﬁz

-if1<p<(o+1), EY is of type K,

- if(a+2)Spg(n+1),E_ﬁisoftypeL,

- if(n+2)§p§(2n—a+1),E_ﬁisoftypeM,
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-if 2n—0+2) <p< (2n+1), EL is of type N.

Al
type n even n odd
of l even l odd [ even [ odd
E_ﬁ meven | modd | meven | modd || meven | m odd | m even | m odd
K X 0 0 0 0 0 0 X
L 0 0 0 0 0 0 0 0
M 0 0 0 0 0 X 0
N 0 0 0 0 0 0 0 0
Table 2.1:
Bim
type n even n odd
of l even l odd [ even [l odd
E_ﬁ meven | modd | meven | modd || meven | modd | m even | m odd
K 0 0 0 0 0 0 0 0
L X 0 0 0 0 0 0 X
M 0 0 0 0 0 0 0 0
N 0 X 0 0 0 0 X 0
Table 2.2:

Using the tables above, the relation between ellipsoidal harmonics coeffi-
cients and spherical harmonics coefficients can be simplified. Depending on the

values of the degree n and the order p, equation (2.21) reduces to:

e For n even,

—for 1 <p <232,

Ty =Y Y ANP™ - Ot o, (2.27)
l m

—for 2 <p<(n+1),
Tp =Y BI™ - Sy o, (2.28)
I m

—for (n+2) <p < 2,
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a—np = Z Z AZZ 2m+1 OZ!,2m+1; (229)

—for 3%t < p < (2n +1),

Qnp = Z Z B2 8ot o - (2.30)
e For n odd,

~for 1 <p< 2,

Qnp = Z Z A2l+1 2 Corer 2me1s (2.31)
~for 22 <p < (n+1),

Ty = Z Z B2LFL2mAL G s (2.32)
—for (n +2) < p < k2,

Qnp = Z Z AZEL2M o) o, (2.33)
—for 3285 < p < (2n +1),

Ty = Z Z BZLEL2M . Soit . (2.34)

2.3.3 The homogeneous triaxial ellipsoid

Consider now the special case where the attracting body is a homogeneous
triaxial ellipsoid. Balmino (see [2]) states that the spherical harmonics expansion
of the gravitational potential involves only the Cy; »p,. Then, according to the

result (2.21), one have:
Top = D > AT Coy o (2.35)
I m

In section (2.3.2.2), we have seen that:

(2.36)

42b2m _ g when 7 is even and (5 +2) <p < (2n + 1),
when n is odd.

Thus, o, is zero for the same n and p. In the ellispoidal harmonics expansion

of the potential, a lot of terms are removed and it remains:

V= (o SOV B B ()
v OB 0B 0) + o RO B )
+ (terms of degree 4, 6, 8, ...) ) (2.37)
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A similar result has already been proved by Garmier (see [8]), the approach
however is different. Garmier uses Ivory’s Method (see [11]) and shows that we
only need three coefficients, a1, a1 and ass, to represent the potential of an

homogeneous triaxial ellipsoid.

2.4 Convergence considerations

The use of spherical harmonics is well suited to planets with a high degree of
spherical symmetry. Indeed spherical harmonics expansions of the potential
and the acceleration are convergent outside the Brillouin sphere. Inside the
Brillouin sphere however, severe divergence may occur. Moreover, the deeper is
the evaluation point inside the Brillouin sphere, the stronger is the divergence.
For Earth-like bodies, the Brillouin sphere has a good match with the surface
of the body and thus spherical harmonics are a good choice. If now, we con-
sider bodies such as asteroids or comets, the volume between the surface of the
body and the Brillouin sphere, where divergences of the spherical harmonics
expansion may occur, can be very large. This may be a serious problem when
evaluating the potential and the acceleration at close range. For such bodies,
ellipsoidal coordinates are much more appropriate to describe the surface of
the body. Solving Laplace’s equation in terms of ellipsoidal coordinates gives
rise to ellipsoidal harmonics expansion for the potential and the acceleration
which are convergent in all space external to the Brillouin ellipsoid. This type
of expansion has the advantage of considerably reducing the region of possible
divergence since an irregularly shaped body is better fit by an ellipsoid than by
a sphere (see Figure 2.1).

In section 2.3.1, the linear transformation,

np = f(Cim; Sim), (2.38)

has been established by replacing the potential V' by its spherical harmonic

expansion into

>\1,>\2,>\3) ER(X\2)ER(Xs)
By, VI =) - A))

Because the spherical harmonics expansion is convergent outside the Brillouin

ds. (2.39)

Q

sphere and can exhibit severe divergences elsewhere, we have to take some pre-
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Brillouin ellipsoid E

Figure 2.1: Brillouin sphere S and Brillouin ellipsoid Ej

cautions for the choice of Ey, on which the potential V' needs to be evaluated.
The ellipsoid Ey, has to be chosen such that it encloses the Brillouin sphere,
that is its semi-minor axis must be greater than the radius rz of the Brillouin
sphere:

M-k >rg (2.40)
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Chapter 3

Numerical methods

Ellipsoidal harmonics are much more appropriate than spherical harmonics to
represent the gravity of irregularly shaped attracting bodies. However, their
expression is much more complex. Spherical harmonics are defined in terms of
the associated Legendre polynomials that are known for any degree and order.
On the contrary, ellipsoidal coordinates and Lamé functions can not be as easily

handled. In this chapter, we will develop some useful numerical methods
e to compute the ellipsoidal coordinates of any point in space,

e to express Lamé functions of the first kind for high degrees and orders and

compute the corresponding normalization constants,
e finally, to compute Lamé functions of the second kind.

In the second part of this chapter, we will focus on the numerical evaluation of

the ellipsoidal harmonics coefficients, au,yp.

3.1 Computation of the ellipsoidal coordinates

The ellipsoidal coordinates (A1, A2, A\3) are originally defined as solutions of

1.2 y2 22

iy _pte_e=h 3.1)

which can be rewritten as a third order equation in A2

N + a; A + as A2 + a3 =0, (32)
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with
a; = —(z2 +y? + 22 + h? + k?),

as= (h®> +k*) 22 + k2 y2 + h% 2% + h2 k2, (3.3)
= —h?k? 2.

Explicit solutions of (3.2) are given in [8]:
z =2 cos(8) - &,
A3 =2Q cos(§ +45) — @, (3.4)
A3 =2Q cos(§ + 28) — @,

with

2 3
ai — 3as 9ai as — 27a3 — 2a;j R
@ 9 54 T

Instead of using directly these formulas to compute (A1, A2, A3) in terms of
(z,y, z), we will rather solve equation (3.1) numerically using a false position
method (see [13]). Given z; and z2, the false position method returns the root

of f(z) = 0 known to lie in [z, z2]. In our case, we choose our initial guesses

-2
o © (3.5)
s = A2 + €,

as follows:

where A\? (i = 1,2,3) is given by (3.4). € has to be carefully chosen so that
f(z1) - f(z2) < 0 and it is small enough to warranty a rapid convergence to the
desired root. From the A? (i = 1,2,3), (A1, A2, A3) are determined according to

the signs of (z,y, z) as mentioned in Chapter 1.

3.2 Computation of the Lamé functions of the
first kind

In this section, we focus on the numerical computation of Lamé functions for
high degrees and orders. Explicit expressions for the EP(z) exist up to n = 3
(see Appendix A). For n > 3, we will use the work of S. Ritter and H.-J. Dobner.
(see [14] and [6]).

3.2.1 Unnormalized Lamé functions of the first kind

In section 2.2.2, Lamé functions have been rewritten in the general form:

ERN) =9r(0) BN, (3.6)
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with
2

PN =Y Bi(1- )" (37)
i=0

The leading products ¥ (\) are well known and are listed in Appendix C. We

then only need to compute the coefficients B;, ¢ =0,...,m.

If we substitute (3.6) into Lamé equation (1.30), we obtain a three-term re-

currence relation for the B;’s,
a;B;_1 + (bz — K) B; +¢; Bi+1 =0, (38)

fori =0,...,m with B_y = B,,31 = 0. The parameter K is the same as the
one in Lamé equation (1.30). Concerning the other separation parameter H, the
substitution yields H = n(n + 1).

The problem of the determination of the Bs is then reduced to the eigenvalue

problem
AV=KYV, (3.9)
bg Co 0 --- 0 BO
al b1 C1 Bl
with A = 0ay by - 0 and V=| B2
: . - Cm—1
00 am bm B

The coefficients a;, b;, ¢; depend on the parity of n and on the type of the Lamé
function. They are listed in Appendix D.

The matrix A is similar to a symmetric tridiagonal matrix A’. Let S =
diag(sy), k=0,1,...,m, with:

So = 1
(3.10)

Ck
Skl = o 1sk for k=0,...,m—1.
e+
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Then A’ =S A S~ yields

bod 0 - 0
dy by dy
A'=[0d0 .0 (3.11)
: o dp
0 0 dp b
with
dy, = ax —ep 2L k=1,...,m. (3.12)
Sk—1 Sk

The eigenvalues of A and A’ are identical. If K and W repectively define an

eigenvalue and an eigenvector of A’, then
AW =KW & AS™'W) =K (S'W). (3.13)

To determine the eigenvalues K and eigenvectors W of A'; we use a QR-

algorithm. The corresponding eigenvectors V' of A are then obtained by:
V=S1'w. (3.14)

To have a unique set of B;’s, we impose B, = 1.

3.2.2 Computation of the normalization constants %

Normalized surface ellipsoidal harmonics have been defined in section 1.5 and
used in Chapter 2 to relate the ay, to the Cj,, and Sjy,,. The numerical method
above returns unnormalized Lamé functions of the first kind. In the following,
we describe a numerical method to compute the normalization constants v2 as-

sociated with the “unnormalized” Lamé functions of the first kind.

We have seen in section 1.5.2 that

P =8x ] (3.15)
with
_ "/ (02 = X)(ER(\a) E2(\))?
= /0 /h V(E2 = X2)(A3 — h2)(h2 = \2)(k2 — )\g)dAQd)‘& (3.16)
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Define

dSs = 02 dSs = 02
o LT VR E )

VA3 = ) (k2 = X3)

and
k k
h=/<%@mw&, az/(w@mmw&,
h h

h h
= [ @y, 1= [ @) s,
0 0
J can then be rewritten as

J=LI—1II,. (3.17)

Expressing I, I>, I3 and I, in terms of 2 basic elliptic integrals:
Consider the following change of variable

/\2
A= h2, AE {Az,Ag} (318)

We have seen in section 2.2.2 that the EZ()) are of the form:

EP(\) = Z B; A, (3.19)

1/12(/\):/\“\/|)\2 h2| \/|/\2 k‘2| , (u,v,w) € {0, 1},
with
m=3n-—u—v—w).

Since ,
(ZBi Ai)2 =Y DN, (3.20)
i=0 =0

min(j,m)

with D; = > BiBj, (3.21)

k=maz(j—m,0)

the (EP(\))? can be rewritten as a polynomial in A:

(mwfzfymv (3.22)
j=0

The expression of the C}’s in terms of the D;’s is detailed in Appendix E. The

integrals I, I», I3 and I, are then elliptic integrals.
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Now define

dAs
A% = 3.23
SR ey W/ 2wy -y sy (3.23)
and A
d%s > (3.24)

T VI A VIZAs B2 2 Ay
A change of variable from A to A in the expressions of dS; and dS3 yields

Sy = — (%) S, (3.25)
dSs = — (%) S, (3.26)

and substituting (3.22), (3.25) and (3.26) into the expression of I, I, Is and

14, we obtain:

j=0 j=0
f ——(h—Q)C K, +zn:_(h_2)(c Ci_) K +( 2)0 K
n N 2 0o = J j=1) By n i1
n+1
=2 LikK; (3.28)
§=0
where
b A]
Kia) = ’ A\, i€{2,3).  (3.29
]( ) /‘1\/1_Al\/h2Az+k2—h2\/:FAl ¢ { } ( )

2

k
For I and I, a=1— 72 b=0 and we take v/—A in the expression of K.

For Is and Iy, a=0, b=1 and we take v/A in the expression of K;.

By differentiating A7 /1T — AVh2A + k2 — h2\/FA and reintegrating between a

and b, we come up with the following recurrence relation on the Kj:
.3 . o1
(J+ 5) W Kjpo— (G +1)(2h° —k*) Kj1 — ( + 5) (k* —h*)K; =0. (3.30)

Using this recurrence formula, one can expressed the integrals Iy, I, I3 and I

in terms of Ky and Kj:

I :OéK()(AQ)-FﬂKl()\Q), (331)
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I3 :CKK()(/\?,)-FﬂKl()\g), (332)
L= AKo(\) + BE1(A), (3.33)
n :AKO(>\3)+BK1()\3). (334)

Clenshaw’s Recurrence Algorithm:

To determine the coefficients «, 3, A and B, we use the Clenshaw’s Recurrence

Formula referenced in [13]. The recurrence relation (3.30) can be rewritten as:

Ky = a(j) K; + 8(j) Kj—1 (3.35)
27 k2 2i —1 k2
with - a(j) = 11(2_ﬁ)’ ﬁ(j):2j+1(ﬁ_l)‘

J
Define the quantities y; (j =n,n—1,...,0) and §; (j =n +1,n,...,0) by:

Ynt2 = Yn+1 = 0,
(3.36)
y]:a(.])y]+1+ﬂ(.]+1)yj+2+rja j:nan_la"'ao'
gn+3 = gn+2 =0,
y (3.37)
g]:a(])gj]+1+ﬁ(]+1)g]3+2+f‘], J:n+17n)70
Clenshaw’s recurrence algorithm yields:
L
I = (yo — a(0) y1) Ko + y1 K1, (3.38)
3
I, N - N
I = (o — a(0) §1) Ko + g1 K1. (3.39)
4
Then J = I, I3 — I I4 can be rewritten as
J = (AB — aB) (KO(AQ) K1) — K1 () Ko()\g)) (3.40)
= oy — Yo 1) (KO(AQ) Ki(A3) — K1(A2) KOOB)) (3.41)

Finally (KO()\Q) Ki(A3) — K1(A2) KO()\3)) can be rewritten in terms of a basic

elliptic integral:

h k
K0<A2>K1<A3>—m(&)m%):% /0 /h (A2 — A2) dS, dS,s

2w

=3 (3.42)
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so that
27

= (3.43)

J=(Joyr — Yo U1)

3.3 Computation of the Lamé functions of the

second kind

Lamé functions of the second kind have been defined in section 1.4 by

Fﬁ(/\l):(2n+1)Eg(,\l)/oo du

. . (3.44)
n (Bhw)’ aE— k2 1)

Denote by I?(A1),

/ h M . (3.45)
n (BL) e ) =)

The evaluation of IP();) will be performed by a numerical integration. IP(\;)
can be rewritten as an integral with finite bounds. By changing the variable u

to s = <, one have:

» _ /2 ds
A= (B2h)) VAP - 79 o

The integrand is smooth, in the sense of being “well-approximated by a poly-
nomial” over the interval [0,1/A;]. Thus a Gauss-Legendre quadrature is very
suitable to obtain an accurate estimate of I2(A;). The Gauss-Legendre quadra-

ture routine calculates a set of absissas xz; and weights w; such that
1
vy’ 2 N
(BR () /0 - Rad) (1 - wa?)

A numerical method for the evaluation of the E? has been given in section 3.2.1.

(3.47)

N
)~ Y w;
j=1

The FP? are then easily accessible from equations (3.44) and (3.47).

3.4 Numerical evaluation of the o,

We have seen in Chapter 2 that the ellipsoidal harmonic coefficients a,,, can

be expressed as a linear combination of the spherical harmonic coefficients Cj,,
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and Sp,:

[e's] l
Tnp = > (A Cioy + B - Sim). (3.48)
=0 m=0

The expressions of A and B involve an integral over the surface of an ellip-
soid that vanish in many cases because of symmetries. However, when a priori
non zero, the integrals can not be computed analyticaly. The main problem that
arises in its analytical evaluation is that it involves both types of coordinates,

spherical and ellipsoidal, with no simple relations between them.

Once more, we switch to a numerical integration method. The numerical evalu-
ation of the A and BJ can be performed by “tessellating” the surface of the
ellipsoid into a number of small regions (see Figure 3.1). Each region is repre-
sented by a flat triangular plate with its vertices on the surface of the ellipsoid.
To first approximation, we can treat the integrand as being a constant over each
plate. The integral can then be found by summing up the contributions of each

plate over the surface of the ellipsoid.

Figure 3.1: “Tessellated surface” of the ellipsoid Ey,
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Chapter 4

Numerical results

In this chapter, we focus on some numerical computations of the ellipsoidal
harmonics expansion. Our objective is to validate the theoretical results of the
previous chapters. The numerical methods described in Chapter 3 have been
incorporated into C code and simulations have been conducted for two asteroids,
Asteroid 4179 Toutatis [12] and Asteroid 433 Eros [17].

4.1 Simulation setup

In the following, we evaluate some ellipsoidal harmonics expansions for the ex-
ternal space of an attracting body. Based on the method developed in Chapter
2, we need to know the shape model of the body and its spherical harmonics

coefficients.

From the shape model of the body, one can determine the Brillouin ellipsoid
Ep (smallest ellipsoid enclosing the attracting body). The Brillouin ellipsoid
not only delimits the region in space where the ellipsoidal harmonics expansion
converges but also defines the system of ellipsoidal coordinates (A1, Az, A3).

The evaluation of the ellipsoidal harmonics coefficients is subject to the knowl-
edge of the Ciym, Sim, A% and BT, The spherical harmonics coefficients Cip,

and Sy, are given; however, the AZZ and Bﬁ[g will be evaluated by performing a
numerical integration over the surface of an ellipsoid Ey, as described in section

3.4. The choice of the ellipsoid E}, is subject to the constraints that it must be
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confocal to the Brillouin ellipsoid Ep and enclose the Brillouin sphere Sg (see
section 2.4). In order to minimize the surface of integration we choose for Ej,

the smallest ellipsoid that encloses Sp. It is characterized by the following set

o= VBT
b=k —h2+1%, (4.1)

C=TB

of semi-axes:

where rp is the radius of the Brillouin sphere Sg.

Now, when “tessellating” the surface of E},, one can adjust with the increment
in latitude Aé and the increment in longitude AX. The smaller these increments
are set, the larger is the number of faces and therefore the better is the match

between the “tessellated” surface and the true surface of Ej,.

4.2 Numerical results for the potential

We want to evaluate the ellipsoidal harmonics expansion of the potential V, for
various degrees and compare it with a reference potential V;.z. As long as we
perform these evaluations of the potential outside the Brillouin sphere Sg, it
is convenient to choose a spherical harmonics expansion of the potential as our
reference. Define the error € as:

€= |V(-»3_V;“ef|‘

4.2
Vies (4.2)

It is interesting to study the effect of the level of discretization of the “tessel-
lated surface” E), on the error e. The accuracy of the ellipsoidal harmonics
coefficients ay,p, increases as the number of faces of the “tessellated surface” gets

larger. We will consider three models:

e model with 1520 faces corresponding to latitude and longitude increments
Ad = AX = 9deg,

e model with 6240 faces corresponding to Ad = AX = 4.5deg,

e model 14160 faces corresponding to AJ = AX = 3deg.
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4.2.1 External potential of Eros

For Asteroid 433 Eros, the Brillouin ellipsoid is characterized by:

a = 17.556 km
b=8633km - (4.3)
¢=6.074 km

The Brillouin sphere has then radius 7z = 17.556 km and the ellipsoid Ey, has

semi-axes:
a = 24.074 km
b=18.597 km . (4.4)
¢ = 17.556 km

The reference potential V,.; is a spherical harmonics expansion of degree and
order 12.

Evaluation of the error € on the ellipsoid E),

Annex F represents the error e evaluated on the ellipsoid Ej, as a function
of latitude and longitude for various degrees of the ellipsoidal harmonics expan-
sion. The a;,, were computed using the 14160 faces model for the “tessellated

surface” Ej,.

Let us define two interesting types of error e€: a “maximum error” and a
“weighted error”. The former is simply defined by the max(e) over the sur-
face of the ellipsoid Ej,. The later is the error € weighted on the “tessellated
surface” area. If €; denotes the error € evaluated on the face ¢ with area dS; of

the “tessellated surface” Fy,, one define the “weighted error” as:

> dSi

Figures 4.1 and 4.2 represent respectively the “maximum error” and the “weighted

“weighted error” = (4.5)

error” as a function of the degree of the ellipsoidal harmonics expansion. For
each case, three curves are shown corresponding to the three “tessellated sur-

face” models.
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maximum error
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Figure 4.1: Maximum error for Eros
Eros
3.5 T T
— 1520 faces
— — 6240 faces
14160 faces
3r — - i b
0 | | | | | | | | |
0 1 2 3 4 5 6 7 8 9 10
degree

Figure 4.2: Weighted error for Eros
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4.2.2 External potential of Toutatis

For Asteroid 4179 Toutatis, the Brillouin ellipsoid is characterized by:

a=2.517km
b=1.174km . (4.6)
¢ = 0.980 km

The Brillouin sphere has then radius rg = 2.517 km and the ellipsoid E), has

semi-axes:
a=3.421 km
b=2.598 km . (4.7)
¢ =2.517km

The reference potential V,.; is a spherical harmonics expansion of degree and
order 16.

Evaluation of the error € on the ellipsoid E),

Figures 4.3 and 4.4 represent respectively the “maximum error” and the “weighted
error” as a function of the degree of the ellipsoidal harmonics expansion. For
each case, three curves are shown corresponding to the three “tessellated sur-

face” models.

4.3 Interpretation

The overall observation for Figures 4.1, 4.2, 4.3, 4.4 is that the errors decrease
as we add higher order terms to the ellipsoidal harmonics expansion of the

potential. Now looking more precisely at the plots, we observe

e that the “maximum error” for the 1520 faces model first decreases, then
increases as the degree of the ellipsoidal expansion gets larger both for

Eros and Toutatis;
e also that the errors never really go to zero and seem to stabilize.

The behavior of the “maximum error” for the model with 1520 faces is interest-
ing insofar as it does not show up as obviously for the two other models. This

indeed reveals that the level of discretization of the “tessellated surface” Ej,

42



maximum error

weighted error

Toutatis

14 T T
—— 1520 faces
=== — — 6240 faces
14160 faces
12 R
10 R
sk 4
6L 4
4l 4
oL 4
0 | | | | | | | | 1
0 1 2 3 4 5 6 7 8 9 10
degree
Figure 4.3: Maximum error for Toutatis
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Figure 4.4: Weighted error for Toutatis
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is not sufficient to accurately compute the coefficients a,,,. To double check
this statement, we numerically evaluate the coefficients Al,{z and Bfg} in the
expression of the ;. These evaluations are conducted for different levels of
discretization of the “tessellated surface” E), and compared to the theoretical
results summarized in Tables 2.1 and 2.2 of Chapter 2. We notice that these
theoretical results are violated if the “tessellated surface” does not sufficiently
match the ellipsoid Ey,. This now explains the erroneous behavior of the plots
for the 1520 faces model.

The second observation we make is that the error tends to stabilize as we add
higher degree terms in the ellipsoidal harmonics expansion instead of decreasing
to zero. The ellipsoidal harmonics coefficients ay,, have been computed from

the spherical harmonics coefficients Cy,,, and Sy, up to a degree L:

g = > (A Cipy + B - Sim).- (4.8)

Thus we expect the ellipsoidal harmonics expansion of the potential to recon-
struct the spherical harmonics expansion, that is € should go to 0 as we increase
the degree n in the ellipsoidal harmonics expansion. The degree n = 10 may not
be sufficient to match a 12 (Eros) or 16 (Toutatis) degree and order spherical
harmonics expansion. This hypothethis appears to be true when reconstructing
a 6 degree and order spherical harmonics expansion with a 12 degree and order

ellipsoidal harmonics expansion (Figures 4.5 and 4.6).
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Figure 4.5: Maximum error for Eros with a 6 degree and order spherical har-
monics expansion of the potential taken as the reference
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weighted error
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degree

Figure 4.6: Weighted error for Eros with a 6 degree and order spherical har-

monics expansion of the potential taken as the reference
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Conclusion

Ellipsoidal harmonics are very suitable to asteroids and comets; however they are
very complex. The goal of this thesis has been to use the knowledge on spherical
harmonics to provide a better understanding of the ellipsoidal harmonics theory.
Because of the obvious analogy between spherical and ellipsoidal harmonics,
we have been interested in establishing an analytical expression that relates
the spherical harmonics coefficients Cj,, and S;,, to the ellipsoidal harmonics
coefficients a,,. The coefficients oy, are the only terms in the expansion that
incorporate “information” on the shape and density of the attracting body. In
Chapter 2, we have taken advantage of an interesting orthogonalization property
of the Lamé functions to express the a,,, as a linear transformation of the Cj,,
and Si,,.

[e%s) l
Tnp = ) Z (A" - Gl + BI™ - ).
=0 m=0

The coefficients AZZ and BZ’; have been formulated as integrals over an ellipsoid.
Although we have not been able to come up with explicit expressions for these
coefficients, we have shown that the linear transformation @, = f(Cim, Sim)

could be further simplified based on symmetry arguments.

When numerically computing the A!™ and B! in Chapter 4, we have observed
that the A" and BL? vanish not only for the cases predicted in Chapter 2, but
also for many other cases. For these cases further investigation needs to be con-
ducted. The main problem that arises is that the integrand in the expressions
of AI™ and B! is a function of both spherical and ellipsoidal coordinates with
no obvious relation between these two sets. One approach that may be inter-
esting to investigate is that the Alm and Blm are independent of the choice of

the ellipsoid Ej,. In addition, for A\; — oo, the ellipsoid Ey, becomes a sphere.
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Thus integrating over the surface of a sphere instead of an ellipsoid may lead to

further progress regarding an analytical expression of the Al,{z and Bf{g.

Finally, for the same degree of expansion [ = n, it is unclear which of the
spherical or ellipsoidal harmonics expansion is more accurate. Both expansions
involve the same number of coefficients. However, for some particular cases
such as the homogeneous triaxial ellipsoid (see [8]), the gravity field is entirely
described by a lot less ellipsoidal harmonics coefficients a,,, than spherical har-

monics coefficients C,,, and Sj,,,.
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Appendix A: Lamé functions of the first kind of
degree n < 3

Ey(z) =1
El _
i(x) ==
E}(z) = \/|2? - h?|
Ef(z) = /|2* — k2|
El(z) =2 — %[(hQ + k%) — /(h? + k2)2 — 3h2k2 ]
E2(z) = a” — %[(hQ + k) + V/(? + k?)? — 3h2k? ]
Ej(z) = 2 \/|2? — 1?|
Ey(z) = z /|22 — k2|
E3(x) = V/|(2? — h?) (22 — k?)]
Elz) = 2® — %[Q(hQ + k%) — VAR + K2)% — 1512k |
E2(z) = 2® — %[Q(hQ + k%) + VAR + B2)% — 1512k |

h% + 2k — \/(h2 + 2k2)2 — 5h2k2

h% 4+ 2k* + \/(h? + 2k2)2 — 5h2k2

2h% + k% — \/(2h2 + k2)2 — 5h2k2

2h% + k2 + \/(2h2 + k2)2 — 5h2k2

)
)
)
)

52,
—~
8
N
I
EX
V)
|
| Enyl
N
/N
8
(V)
| cnli—lcnli—lcnli—lcnh—t

E
)
-~
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Appendix B: Normalization constants of degree
n<3

Yo =47

L ATk E?

"= 3

e 47 h? (K — h?)

! 3

- Ak (K* — h?)

! 3

1 167 8 8 67.2 21,6 4.4

AL :4_05[% +2k% — 4hSk? — 4R?kS + 6h'K

+V Rt + k* — h2k2(—2h° — 2k5 + 3h*K? + 3h7k*) |

1

o2 = % [2h% + 2k% — 4RSK? — B2k + 6h*K*

+vh* + k* — h2k2(2h° + 2k° — 3h'Kk* — 3h7K) ]

s AThtE2 (K2 — h?)

"= 15
o _ AT K (R - b?)
Y2 15
s _ ATh? k(K - h?)?
Y2 15
1 167 5.5 8 8 67,2 21,6 474
%= T3s 1k [16h° + 16K® — 36h°k* — 36h°k° + 46h'k
+V/4ht 4kt — Th2E2(—8h° — 8K° + 11h%K? + 11h%kY) |
1
V= 136;;5 h? k2 [16h° + 16k° — 36h°k? — 36h%k° + 461"k
+V/4ht + 4kt — Th2E2 (8RS + 8k° — 110K — 11h2kY) ]
1
73 = % h? (k* — h?) [ 6h® + 16k — 12h°k* — 28h° k5 + 34n*k*
+V/h* + 4k* — h2k2(—6h° — 8K + 9n*k* + 13h°k") ]
16
V= 131;5 h? (k% — h?) [6h5 + 16k° — 1215k — 28h%K° + 34h*k*
+Vh* + 4k* — h2k2(6R° + 8k° — OR'k* — 13h%K") |
16
¥ = 1317275 k2 (k% — h2) [16h® + 6k — 28h°k> — 12h2k° + 34h*k*
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+V/4h* + k* — h2k2(—8h° — 6K° + 13h*K” + 9R%k*) ]

1
9 = ot (K — %) [16° + 6K — 281K — 127K° + 340K’

+v/4ht + k* — h2k2(8R° + 6k° — 13R"K* — 9K%K?) ]
¢ _ Amht k(R - 1?)?
7 105
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Appendix C: Leading products ¢, partials of (A1, A2, A3)

with respect to (z,y, 2)

Leading products for Lamé functions of the first kind

¥ )
EP n even n odd
type K 1 A
type L AV A2 — Rh?| |A2 — h?|
type M A/ |AZ — k2| A2 — k2|
type N | IOV =) 1] || AW/ =) (% — 7]

Expression of ¢P(A2)¥P(A3) in terms of the cartesian coordinates

(z,y,2)
Yh (A2)9h (As)
EP n even n odd
type K 1 Z_lf T
h?k  |k* —h? k? — h?
type L )\—1 m Ty )\% — e Y
hk® [k* —h? k* — h?
type M N m xz e z
2 _ p2 27.2(1.2 2
Sl R k—(ljﬂxﬁf 5 | 5 NG _(12)(; i
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Partial derivatives of the ellipsoidal coordinates (A, A2, \3) with re-

spect to the cartesian coordinates (z,y, 2)

or Ox Oz
N 0 0N | _
oy 0Oy Oy
0z 0z 0Oz
(A2 = k) (N = h?) (A3 = k*)(\3 = 1?) (A3 = k) (N3 = 1?)
X Xz X
ML =2A)AT =23 7 AAF=ADMAS = A3) T (A3 = AD(A3 - A3)
M(A] = k) A2 (A3 — k%) A3(A3 — k?)
- - mewm-w? e -’
AL (A = h?) A2 (A3 = h?) A3(A3 = h?)

-2 -23) " - -R) T B-N)E-x)
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Appendix D: Eigenvalue problem for the Lamé
functions of the first kind

Coefficients a;, b; and c; of the matrix A

Let
%n for n even,
o=
2 (n—=1) forn odd,
and , ,
2 2
= [ — :1— — e —
« (k) B (k) , Y=a-=p

The coefficients a;, b;, ¢; are then given by:

— for K? and n even,

a; =—(20—2i+2)(20 +2i — 1)a

b; = 20(20 + 1)a — 4i%y

| ci=—(2i +1)(2i +2)8

— for K? and n odd,

a; =—(20—-2i+2)(20 +2i + 1)a

b; = (20 + 1)(20 + 2)a — 4i%a + (20 + 1)%3
| ci=—(2i +1)(2i +2)8

— for L? and n even,

(4, = —(20 — 2i)(20 + 2i + Da

bi = 20(20 + )a — (2i + 1)%a + (2i + 2)%p
| ci = —(2i+2)(2i +3)8

— for L? and n odd,
(i = —(20 — 2i +2)(20 + 2i + 1)a

bi = (20 +1)(20 + 2)a — (2i + 1)y

| ci=—(2i +2)(2i +3)p

— for MP and n even,

(i = —(20 — 2i)(20 +2i + D)o

b; = 20(20 + 1)a — (2i + 1)%y

| ci=—(2i+1)(2i+2)p

— for M? and n odd,

(4 = —(20 — 2i +2)(20 + 2i + Do

b; = (20 + 1)(20 + 2)a — (2i + 1)%a + 4428
| ci=—(2i+1)(2i+2)p
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— for NP and n even,

\
— for N and n odd,

\

a;=—(20—2i)(20 + 2i + 1)
b; = 20(20 + 1)a — (2i + 2)%a + (20 + 1)%8
ci=—(2i+2)(2i+3)3

a; = —(20 — 2i)(20 + 2i + 3)«
bi = (20 + 1)(20 + 2)a — (2 + 2)%y
ci=—(2i+2)(2i+3)3

54



Appendix E: Computation of the normalization

constants 7

The (E?()X))? can be rewritten as a polynomial in A:

(B20)" =3 e,

Jj=0

where the coeflicients C}’s are related to the D;’s as follows:

— for K? and n even, ¢?(A) =1 and

C]’:D]’, j:O,...,n

—for K? and n odd, ¢¥2(\) = A and

C[) :h2D0
Cj:hz(Dj—Djfl), j:l,...,n—l
C :—hQDn,1
—for LP and n even, ¥P(\) = A /|\2 — h?| and
Co=0

Cy = h* Dy sign(A)
Cj :h4 (D]’_l _Dj_Q) szgn(A), j:2,...,n—1
Cp = —h*Dy,_s sign(A)

—for L2 and n odd, $2(X) = /|\2 — h?| and

Co=0
C;=h*Dj_ysign(A), j=1,...,n
— for ME and n even, ¥2(\) = X /|\2 — k?| and

Co =h*(k*>—h?) Dy
Cy  =h2(k?—h?) Dy + h%(2h% — k?) Dy
Cj :hz(kz—hz)D]’-‘-hz(th—kz)D]’_l—h4D]’_2, j:2,...,n—2

Co1=h? (2h% — k) D — h* Dyy_3
Cn =—ht Dy_»

\

— for ME and n odd, ¥2(\) = /|A\? — k?| and
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Co = (k> = h*) Do
Ci=k"—-h*)Dj+h*Dj_y, j=1,...,n—1
kC'n:hz.Dn,1

— for NP and n even, 92 (X) = \/|(A2 — h2)(A2 — k2)] and

(Co=0

Cy = h? (k* — h?) Dy sign(A)

C; = [h* (k* = h*)Dj_1 + h* D;_,] sign(A), j=2,...,n—1
Cp = h* D3 sign(A)

\

— for N? and n odd, ¢2(X) = ,\\/|(/\2 —h2)(X2 — k2)] and

Co =0

Cy = h*(k? — h?) Dg sign(A)

= [1* (k2 — B?) Dy + B* (21% — K?) Do] sign(A)
C; = [h (K — h2) Dj_y + h* (20> — k) Dj_p — B D;_s] sign(A), j =3,...
Cr—1 = [h* (2h? — k*) Dyy—3 — h® Dy,_4] sign(A)

(Cr, = —h®D,_3sign(A)

In the preceding expressions,

1 A=A,

Sign(A):{ 1 if A=A
_ 3,
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Appendix F: Accuracy of the ellipsoidal harmon-

ics expansion for Eros

Eros — Degree 0

I
5% =< error
2% < error < 5%
1% < error < 2%

0.5% =< error < 1%
error < 0.5%

Latitude (deg)

|
50 100 150 200 250 300 350
Longitude (deg)

Eros - Degree 1
T

50 100 150 200 250 300 350

Eros - Degree 2
T

100

50 100 150 200 250 300 350
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Eros - Degree 3
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Eros - Degree 9
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