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ABSTRACT

THE EFFECTS OF OUTGASSING JETS ON THE ROTATION OF A COMET
NUCLEUS AND ON THE TRAJECTORY OF AN ORBITING SPACECRAFT

by

Sharyl M. Byram

Chair: Daniel J. Scheeres

An outgassing jet model is presented in this thesis in support of spacecraft navi-

gation for future missions to comets. The outgassing jet is modelled as an emission

cone while the comet nucleus is modelled as a uniform density triaxial ellipsoid. The

heliocentric orbit motion as well as in the strength of the outgassing jet are accounted

for in the equations of motion. This model is used for predicting the rotational evo-

lution of a comet nucleus as a result the outgassing jets’ reactive torques as well

as for simulation of an orbiting spacecraft’s trajectory through jet passages and the

estimation of the physical outgassing properties of jets from perturbations to the

spacecraft’s motion.

A model for the rotational evolution of a comet nucleus is presented and predicts

possible levels of rotational excitation for a comet nucleus under torques produced

by multiple discrete outgassing jets located on the surface. An analytical theory for

the secular solution to the rotational motion of comets with an axis of symmetry is

xxi



derived and used to predict rotational state changes over multiple perihelion passages.

A method of characterizing the comet nucleus dynamics to predict the end state of

the rotation is found from the averaged equations. Applications of these analytical

results to predict the stochastic evolution of a comet nucleus rotation are outlined.

This thesis also identifies and analyzes stable Sun synchronous orbits in a Hill

rotating frame which can be applied to any small body in the solar system. The

stability of these orbits is due to the inclusion of solar radiation pressure effects. The

stability of the orbits in terms of escaping the comet is analyzed though construction

of zero-velocity curves and the use of spectral analysis. The effect of orbital per-

turbations from outgassing jets on the stability criterion are also considered in the

stability analysis of a spacecraft in orbit about a comet. Once these orbits have been

identified, the effects of a non-spherical body are explored. In addition, impulsive

and finite burn control schemes to restrict a stable orbit’s motion are determined,

showing that it is feasible to implement a form of orbital hovering in the terminator

plane of a comet.
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CHAPTER I

Introduction

The small bodies in our solar system contain important information on the early

formation of the solar system and are becoming important targets of scientific inves-

tigations. The space agencies around the world are sending an increasing number

of missions to small bodies, in particular comets. Most recently, the National Aero-

nautics and Space Administration’s (NASA) and the Jet Propulsion Laboratory’s

(JPL) Deep Impact mission provided to the world high-resolution images of the sur-

face of the comet Tempel 1. The Deep Impact spacecraft is currently enroute to

study Comet Hartley 2 for an extended mission, EPOXI. Previous to Deep Impact,

NASA and JPL launched Stardust in 1999 which flewby comet P/Wild 2 in January

2001 and returned dust samples from the comet’s coma to Earth. This was the first

mission to return a comet sample for physical analysis. The Stardust spacecraft is

also currently on an extended mission, Stardust NExT, in which it will image the

crater left by the Deep Impact mission on Tempel 1. This mission has the additional

challenge of needing to accurately predict the rotational state of Tempel 1 to target

the correct area to image.

While the missions mentioned and previous ones have flown by and investigated

comets from a distance there has yet to be a mission to actually orbit or land on

1
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the surface. This type of mission is near to becoming a reality and the need to

determine safe orbits in the vicinity of a comet has become important. In NASA’s

most recent Announcement of Opportunity[2], a comet surface sample return mission

is listed among its top priority mission concepts to develop. The United States is not

alone in its quest for more information about comets. The European Space Agency

(ESA) is even closer to reaching a comet nucleus with the launch of the Rosetta

mission in 2004. It is scheduled to reach comet 67 P/Churyumov-Gerasimenko in

2014, delivering a lander to the surface. Both of the comet sample return mission

and Rosetta will involve a period of close proximity to the comet and an orbital

phase about the body.

From a scientific point of view, these missions can provide valuable information

about the physical composition of comets as well as give insight into the formation

of the solar system, but they are also of interest in the field of orbital dynamics. The

asymmetrical shape and size of comets yields a set of dynamical problems similar to

that of asteroids, but it is the outgassing fields that make the dynamical environment

of comets unique. In particular, jets on the surface of the comet eject dust and

gas which produce discrete pressure fields for a spacecraft to pass though. It is

the description of these outgassing jets and their dynamical implications that will

be the focus of this thesis. Describing these outgassing fields has been explored

previously. Miller et al. [3] modelled the outgassing of a comet as constant bias non-

gravitational acceleration with a variable modelling error acceleration from an active

region which is defined by a portion of the surface area of an ellipsoid. Scheeres

et al. [4] approached the outgassing acceleration in two cases to determine the

stability of the spacecraft in terms of impacting or escaping from the comet. Their

first outgassing model assumes that the outgassing field is continuous but variable
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depending on the angle made with the Sun. Their second model assumes that the

comet has jets emanating from the surface, with spacecraft interaction only acting

in the vicinity of the jets.

For the purpose of this work, it will be assumed that the outgassing pressure field

is created by a collection of discrete jets on the surface of the comet similar to the

second case described in Scheeres et al. [4], although there exist many theories about

the structure of a comet’s outgassing fields. Crifo et al. [5] theorize that the coma

structure is produced by multiple interacting dusty gas jets. Sekanina et al. [6] use a

model of comet 81P/Wild 2 from images of dust particles taken by Stardust, which

are ejected from a small active source, which make up a thin conical sheet in the

coma before the formation is gradually dispersed by various forces. Our model, unlike

others, will describe a full three dimensional geometry. We will define and explore

a simple model for an outgassing jet from the surface of a comet. A simulation is

developed using multiple jets to determine the implications of a jet passage for an

orbiting spacecraft. In addition to the model and simulation, this thesis will discuss

how the parameters of this model can be estimated using navigational data from a

spacecraft’s passages through multiple jets’ outgassing fields. This research addresses

the need for a spacecraft to navigate these discrete jet outgassing fields while in orbit

about a comet.

The orbital phase about the nucleus in upcoming missions to comets pose the

need to identify stable orbits in a rotating frame. Previously, Dankowicz[7] has found

these types of orbits offset from the comet’s center of mass in a non-rotating system

and explored their stability. Scheeres and Marzari[8] investigated the stability of

such orbits accounting for the heliocentric motion of the comet, while Scheeres[9]

investigated the definition and stability of Sun-synchronous orbits starting from the
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terminator plane. The analysis presented in this thesis combines the offset orbits

of Dankowicz[7] with the averaging analysis and heliocentric motion present in the

analysis by Scheeres[9]. The stability of identified orbits will be tested for outgassing

jet accelerations in the case of comets as well as for variable gravitational forces due

to an ellipsoidal body. The implications of passages though outgassing jets fields

are explored and a criterion is developed for determining whether a spacecraft’s

trajectory will remain stable based on the outgassing acceleration magnitude. Once

these orbits have been shown to be stable, different control schemes to restrict their

allowable motion are explored. The restricted orbits allow for a spacecraft to better

map the surface of the comet or monitor certain areas which may have interesting

surface activity.

The outgassing jets not only affect an orbiting spacecraft but also have dynamical

implications for the comet nucleus itself. For example, as mentioned, NASA’s Star-

dust NExT is planning to target the comet Tempel 1 and image the crater created

by Deep Impact. Precise attitude knowledge of the comet’s rotation state is crucial

to see the crater at its encounter. Long term predictions of the rotation state are

equally important as the spacecraft will not arrive when observations of the comet

are made, thus the rotational state needs to be propagated over time to determine

any trajectory corrections that may need to be made over months or years before

the arrival. This thesis will explore both the short term and long terms effects which

are also useful beyond missions like Stardust NExT for determining if comets spin

up fast enough to break apart and the time scale over which this may happen.

Changes in the rotational state of a comet through perihelion passages has been

studied previously. Chesley and Yeomans[10] considered a rotating jet model with

non-gravitational accelerations acting on the body to determine rotational drifts.



5

Neishtadt et al.[11] modelled discrete jets at the surface of the comet and considered

the reactive torques on the comet body to cause the angular momentum vector to

change. Drahus and Waniak[12] modelled a single active point outgassing in the

comet’s equatorial plane to simulate observations of spin period changes of Comet

C/2001 K5 (LINEAR). Gutiérrez et al.[13] used large active patches on irregularly

shaped bodies to simulate the effect of outgassing on the precession of the comet’s

rotation axis. Samarasinha et al.[14] theorized about outgassing and tidal torques

applied to the body to change its spin state while analyzing observational data made

on multiple comets.

A portion of this thesis will focus on the effects of outgassing jets on the rotational

state of a comet through development of a precise simulation of the equations of

motion and derivation of averaged equations for long term predictions verified by the

precise simulations. Particular focus will be on the perihelion passages as this is the

time when jets are most active. To study the long term effects of the outgassing jets as

the comet encounters perihelion multiple times, a method of averaging the equations

of motion developed by Neishtadt et al.[11] will be explored and generalized. The

generalized averaged equations uncover changes in the comet’s rotational state with

a focus on the drift in nutation angle, cone angle, and magnitude of the angular

momentum over long periods of time without the computationally intense integration

of the comet’s full equations of motion. These equations will be verified against the

full equations of motion assuming an axially symmetric comet body in a complex

rotation state with multiple randomly distributed jets of varying strengths creating

the time-varying torques on the body.



6

1.1 Original Contributions

This thesis makes some original contributions to the field of cometary outgassing

jet modelling and to the field of dynamics of and about a comet nucleus. The first

major contribution of this thesis is a full three-dimensional geometric model of an

outgassing jet and its pressure profile. This model is used in many applications

throughout this thesis. Most importantly it is used to create reactive torques on the

comet nucleus changing it’s rotational state, and it is used to provide insight into

the dynamics of an orbiting spacecraft as it passes though an active outgassing jet.

These applications allow for better trajectory fits as well as predictions for orbiting

spacecraft.

Another contribution of this thesis is a method for estimating jet parameters

using in-situ measurements. The method presented allows for the location, size,

and outgassing acceleration of a jet to be estimated using only trajectory data and

Doppler tracking. The identification of jet locations could ideally be compared to

surface images to gain insight into surface features which produce jets and furthering

our knowledge of the outgassing jet structure.

The next contribution of this thesis is to perform long-term predictions for the

evolution of the comet’s rotational state assuming multiple jets exist over a full

range of insulation values. By parameterizing the comet’s jet geometry into a single

variable, averaged equations of motion uncover secular drifts in the rotational axis of

the comet caused by jet reactive torques. In addition to uncovering the secular drifts

for a fixed jet geometry, variable jet geometry is allowed to explore the evolution for

a more realistic comet model over long time spans.

The final major contribution is identification of stable Sun synchronous circular
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orbits about a comet perpendicular to the Sun line in a rotating frame under per-

turbations by solar radiation pressure. These orbits are offset from the comet center

of mass. The stability of these families of circular orbits is explored by zero velocity

curves as well as analytically through spectral analysis of linearized equations.



CHAPTER II

Comet Model Description

To study the effects of outgassing jets on an orbiting spacecraft as well as the

effects of the reactive torque on the rotation state of the comet body itself, a model

of the comet body and the outgassing jets located on it’s surface is necessary. Since

the comet nucleus and its environment are complex systems, assumptions on the

characteristics of the comet body and the outgassing jet geometry will be made as

simplifications to the true comet properties. This chapter will define and explore the

outgassing jet model that will be utilized throughout this work.

2.1 Comet Nucleus Model

Although the focus of this research is on the outgassing jet, the body of the

comet needs to be defined before the jet model can be considered. The model for

the jet presented allows for an arbitrarily shaped comet body, it is assumed that the

comet nucleus is modelled as an ellipsoid with principle half lengths, a, b, and c. In

general, we assume that the body rotates with constant rotation rate, ω, about the

z-axis (aligned along the c principle half length) in a body fixed frame which may

be inclined to the comet’s orbital plane. This principle axis rotation assumption is

modified for the analysis of the reactive torques produced on the comet body by

8
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the outgassing jets to be presented in a later chapter. The mass distribution of the

comet is assumed to be uniform and the gravitational field for a homogenous ellipsoid

which has been described in Scheeres [15] will be used for this comet model. For an

ellipsoid with equal principle half lengths, the model collapses to the special case of

a sphere which yields a point mass gravity field. This comet model, as mentioned, is

only an approximation to a true comet body which is more irregularly shaped and

may have nonhomogeneous mass distributions[16][17].

In general, it is assumed that the comet is located significantly far from any other

major celestial body such that the spacecraft’s motion about the comet follows the

standard two-body orbital equations. Other equations of motion for the comet and

spacecraft will be considered as appropriate and presented in a later chapter. The

mass of the spacecraft is assumed to be negligible relative to the mass of the comet.

Based on these assumptions, the equations of motion take the form:

~̈r =
∂U

∂~r
+ ~ap, (2.1)

where ~r is the spacecraft’s inertial position vector relative to the comet’s center of

mass, U is the comet’s gravitational force potential, and ~ap is the acceleration that

the spacecraft feels from the outgassing jet. This jet outgassing acceleration is defined

according to the jet model and is discussed in more detail in the next section.

2.2 Outgassing Jet Model

In the simplest model, the outgassing field around the comet is assumed to be

produced by a single discrete jet located on the surface of the comet. More com-

plicated models assume that the outgassing field is produced by multiple jets of

varying strengths distributed across the surface of the comet nucleus. The single jet



10

case is presented here. Multiple jets are modelled as copies of a single jet with varied

parameters.

Figure 2.1: Outgassing Jet Illustration.

The jet is assumed to be fixed on the comet’s surface with its center located at a

radius from the center of the comet nucleus, r0, a longitude of φ0, and a latitude of

λ0 in the comet body fixed frame. The active region on the surface of the comet is

assumed to have a circular cross section which is defined by the size and shape of the

jet by a constant half angle, δ, and radius on the surface , rp. For the purposes of this

work, these jet parameters remain constant over time (including multiple perihelion

passages) although realistically the jet geometry may change as a result of surface

topological changes due to sublimation or other processes over long time spans. The
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outgassing is modelled as a constant gas velocity, Vog, away from the comet surface in

a direction defined by the jet’s orientation which may point in any arbitrary direction

away from the comet surface. The constant velocity is a reasonable approximation

above one mean comet radius altitude while this assumption may not hold close to

the comet surface where complex gas dynamics and interactions can occur [18]. The

simplest model used assumes that the orientation of the jet is the outward normal to

the surface at the jet location although arbitrary orientations are occasionally used.

In general, the spacecraft orbits do not interact with the jets close to the surface,

therefore the constant velocity assumption holds for the trajectories considered in

this research.

To begin describing the three-dimensional geometry of the jet, we start with

the centerline of the outgassing jet which passes through the center of the jet at the

surface as defined above. The centerline is defined as a function of time since ejection,

s, and can be expressed in the comet body fixed frame (illustrated in Figure 2.2) as:

~rog(s) = r0êrsurf
+ Vogsêrjet

, (2.2)

where ~ersurf
is the body fixed unit vector pointing from the center of the comet to

the jet surface point in the radial direction and ~erjet
is the body fixed unit vector

pointing in the jet orientation direction.

As previously mentioned, the comet body fixed frame is assumed, for now, to

rotate at a constant rate, ω, with the comet nucleus and is transformed from (x̂, ŷ, ẑ),

the non-rotating coordinate system with ẑ aligned along the spin axis of the comet,

to the body fixed coordinate frame, (x̂b, ŷb, ẑb), by the rotation matrix, R(t).
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Figure 2.2: Coordinate Frames

R(t) =




cos (λ0) cos (φ0 + ωt) cos (λ0) sin (φ0 + ωt) sin (λ0)

− sin (φ0 + ωt) cos (φ0 + ωt) 0

− sin (λ0) cos (φ0 + ωt) − sin (λ0) sin (φ0 + ωt) cos (λ0)




. (2.3)

Therefore, the outgassing jet centerline, ~rog, can be expressed as a function of

both the time, t, and the time since ejection, s, in the non-rotating inertial frame,

(x̂, ŷ, ẑ), using the rotation matrix, R(t).

~rog(t, s) = R(t)T
[
r0êrsurf

+ Vogsêrjet

]
. (2.4)

A second rotation matrix is used to transform this inertial frame to a frame

corresponding to the comet’s heliocentric orbit. This calculation will not be presented

here as it is a common transformation and can be found in any orbital mechanics

textbook. Since a circular cross section is assumed for the jet, the surface of the

outgassing jet is modelled as a curved cone that is defined by the constant half
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Figure 2.3: Outgassing Jet Surface

angle, δ, from the jet centerline as well as the time since ejection in the body fixed

frame. The radius of the cross section at the surface of the comet, rp, completes

the geometric description of the outgassing jet by defining a virtual origin of the jet

centerline which in general will not coincide with the center of the comet’s nucleus

and may actually reside outside the comet body. Figure 2.3 illustrates the geometry

of the jet surface. Note that the cone will curve as the comet body rotates and that

the half angle of the jet may diverge at large distances from the surface of the comet.

The geometric description only provides part of the full outgassing jet model. To

complete the model, the outgassing pressure field needs to be considered and defined.

The jet generates a pressure field which is a function of the mass ejection rate per

unit area, Qj, of the jet at the surface of the comet and the velocity of the material

being ejected, Vog. The pressure of the outgassing at the surface of the comet, p0, is
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defined as:

p0 = QjVog. (2.5)

The velocity field is assumed to be uniformly outwards in the direction of the jet’s ori-

entation at the time of ejection, therefore a vector pressure aligned with the velocity

field can be defined as:

~p0 = QjVogêrjet
. (2.6)

This mass ejection rate, Qj, is estimated as [11]:

Qj = Sf(θsun)g(rs)Q∗, (2.7)

where Q∗ is the mass ejection rate of a plane with an area equal to the surface area

of the comet perpendicular to the Sun at a distance of 1 AU away, S is the relative

intensity of the jet with respect to Q∗ defined by the jet’s active area relative to the

comet’s surface area, θsun is the angle between the a unit vector in the direction of

the Sun and the orientation vector of the outgassing jet, and rs is the heliocentric

distance of the comet.

This mass ejection rate is not constant but is dependent on the distance from

the Sun as well as if the jet is sunlit or in darkness. As the comet travels closer to

the Sun its thermal activity will increase as a function of rs yielding an outgassing

strength empirically determined by Marsden et al.[19] to follow the law:

g(rs) = g0

(
rs

rs0

)−c1 [
1 +

(
rs

rs0

)c2]−c3

, (2.8)

where c1 = 2.15, c2 = 5.093, c3 = 4.6142, rs0 = 2.808, and g0 = 0.111262. The

function f(θsun) provides a relationship for the strength of the pressure at the surface

of the comet as it is related to the angle the Sun makes with the orientation of the

jet. If the unit vector pointing towards the Sun is defined as ûs, then cos θsun =
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ûs · r̂og(t, s). Neishdadt et al.[11] uses the function f(θsun) = 1 − α(1 − cos θsun)

with a restriction of α ≤ 1/2, and therefore f(θsun) never takes on a value of 0 in

their theory. A conditional function f(θsun) provides for a stronger pressure when

the surface is illuminated by the Sun and a weak (possibly zero) pressure when it is

not, such that

f(θsun) = max





0

1− α(1− cos θsun)

(2.9)

The parameter α is related to the thermal inertia, and can take on any numerical

value of α such that 0 ≤ α ≤ 1. Note that if α ≤ 1/2, then the function simplifies

to f(θsun) = 1− α(1− cos θsun) which is always greater than or equal to 0.

Note that this pressure vector described is for the pressure at the surface of

the comet. The pressure magnitude felt by the orbiter will depend on it’s radial

distance from the comet’s surface. It is assumed to be inversely proportional to

its radial distance and will diminish as 1/|~rj|2, where ~rj is the spacecraft’s position

vector relative to the virtual center of the jet, illustrated in illustrated in Figure 2.3.

Therefore, the pressure vector at the spacecraft is defined as:

~p = ~p0

(
r0

|~rj|
)2

, (2.10)

where |~rj| > r0 is assumed. The pressure is felt as an acceleration on the spacecraft

from the outgassing, and takes the form:

~ap =
~p

B
= ~p0

1

B

(
r0

|~rj|
)2

, (2.11)

where B is the ratio of the mass of the spacecraft to the area of the spacecraft normal

to the comet. Equation 2.11 provides the basis of the jet outgassing model and will

be substituted into the spacecraft’s equations of motion, equation 2.1.
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2.3 Wild 2 Model

In 1999, NASA launched the Stardust spacecraft to rendezvous with the comet

Wild 2. Wild 2 was chosen as the target of this mission due to the fact that it has

a near original composition. Wild2 has only recently entered into our solar system

with only a few perihelion passages meaning a large portion of its dust and volatiles

have not been lost to sublimation processes[20].

Figure 2.4: Composite Image Taken by the Navigation Camera During NASA’s Star-
dust Jan 2, 2004 Flyby of Comet Wild2. Image from Jet Propulsion
Laboratory[1].

During the 2001 fly by of the comet Wild 2, Stardust collected dust particles from

the comet’s coma and imaged the comet’s nucleus. Sekanina et al.[6] enhanced long

exposure images of the dust in the vicinity of the comet’s nucleus to identify highly

collimated columns of dust particles as jets ejecting material continuously from small
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active patches on Wild2’s surface as seen in figure 2.4.

Using a similar emission cone jet model to the one described in the previous

section, the images were used to triangulate the locations and orientations of multiple

jets that had been identified. Sekanina et al.[6] triangulated 20 jets emanating from

the surface of Wild 2 with the locations and orientations listed in table 2.1 using

a fitted triaxial ellipsoid with radii of 2.7 km, 1.9 km, and 1.5 km for the comet’s

nucleus.

Table 2.1: Wild2 Jet Locations and Orientations

Orientation Angles Jet Location Angles
(degrees) (degrees)

Jet ψor λor φloc λloc

α 161 4 169 1
β −7 36 16 14
γ 25 26 38 13
δ 22 59 42 38
ε −15 −20 353 −7
ζ 9 23 23 9
η −65 3 294 2
θ −130 4 238 2
κ 40 31 60 19
λ 30 47 45 28
µ −59 56 266 43
ν −49 57 260 43
ξ 20 25 27 10
π 34 17 45 9
ρ −64 51 272 38
σ 97 49 95 36
τ −101 53 252 39
φ 16 −10 14 −3
χ 16 −10 5 −3
ψ 1 −7 350 −2

Not surprisingly, most of the jets were determined to be located on the sunlit

portion of Wild 2 with only two jets found to be emanating from the dark side.

These two dark side jets imply that the comet has some thermal inertia which allows
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for material to continue to sublimate after it is out of the direct view of the Sun or

that those jets are driven by a more volatile gas. These 20 identified jets along with

the fitted triaxial ellipsoidal for the Wild 2 nucleus will be modelled and used for

simulation purposes in later chapters.

2.4 Summary

In support of a spacecraft mission to a comet, this chapter develops a simple

cometary outgassing jet mathematical model for a single jet with constant half angle,

δ, and constant outgassing velocity using a uniform ellipsoidal model of the comet

nucleus. The pressure field created by the jet is constant across its profile with the

magnitude inversely proportional to the square of the distance from the surface.



CHAPTER III

Comet Nucleus Complex Rotation

The model of the outgassing jets can be used for applications beyond determining

the effects on an orbiting spacecraft or in estimation jet characteristics though jet

encounters. In this chapter, it will be used to explore reactive torques on the comet

body. Up to this point, the rotation of the comet nucleus has been assumed to

be constant about a principal axis. Although there have been multiple claims of

observations of comets spinning about a principal axis[23], these usually are only

preliminary findings from light curves and cover only a handful of the comets in

existence. Excited rotational states and tumbling motions of asteroids and comets

has also been observed[24][25][26]. These reactive torques can produce a complex

rotation state that causes the spin state to evolve slowly over time. Belton et al.[24]

theorized that this was a possible reason for the changing periodicities seen for comet

2P/Encke. It will be this tumbling, or complex rotation, that will be the focus of

this chapter. The need for a precise integration scheme which can handle both the

complex motion as well as maintain accuracy over long time intervals will also be

presented.

19
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3.1 Rotational Equations of Motion

It is assumed that the comet is located significantly far from any other major

celestial body such that the body follows the two-body orbital equations for motion

about the Sun and the rotational dynamics are not significantly affected by gravita-

tional torques. The comet body is assumed to follow the standard Euler equations

for rigid body rotation. Since the comet body is assumed to be a constant den-

sity axially symmetric ellipsoid, these equations will be used in their principal axes

formulation.

J · ~̇ω + ~ω × J · ~ω = ~M, (3.1)

Ṙt = Rt × ~ω, (3.2)

where J ∈ R3×3 is the inertia matrix of the body, ~M, ~ω ∈ R3 are the moment and

angular velocity vectors, respectively, and Rt is the rotation matrix that defines the

attitude with respect to inertial space. It is possible that comets (and asteroids)

are comprised of larger mass concentrations which are held together through gravi-

tational and spin forces[27]. For the purposes of this analysis, the comet body will

be simplified to a biaxial ellipsoid with moments of inertia C and A (where C > A)

and will not directly address any other type of mass distribution.

The rotational equations of motion for the comet will also be analyzed as appro-
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priate using the equivalent form from [11]:

dθ

dt
=

1

L
[(Mxb sin ψ + Myb cos ψ) cos θ −Mzb sin θ], (3.3)

dφ

dt
=

L

A
− MxL

L
cos φ cos θ − MyL

L
(cot ρ + sin φ cot θ), (3.4)

dψ

dt
= L cos θ(

1

C
− 1

A
) +

Mxb cos ψ −Myb sin ψ

L sin θ
, (3.5)

dρ

dt
=

MxL

L
, (3.6)

dσ

dt
=

MyL

L sin ρ
, (3.7)

dL

dt
= MzL, (3.8)

where θ is the nutation angle (the angle the angular momentum vector makes with

the body fixed z-axis), where ψ is the precession angle and φ is the spin angle

and completes the Euler Angle set with θ, L is the angular momentum magnitude,

Mxb,Myb,Mzb are the jets’ reactive moment vector components in the comet principal

axis body fixed frame, and MxL, MyL, MzL are the same vector’s components in a

frame attached to the angular momentum vector. The orientation of the angular

momentum vector with respect to the perihelion vector is ρ, the cone angle, and σ

is the clock angle. Figure 3.1 illustrates the angular momentum vector’s geometry

with respect to the body fixed frame as well as the perihelion vector, p̂.

With this set of variables, the coordinate transformation from the principle axis

body fixed frame to the angular momentum frame is described by the matrix m

and the coordinate transformation from the angular momentum frame to the inertial

frame attached to the perihelion vector is described by the matrix a.

m =




cos φ cos ψ − sin φ sin ψ cos θ − cos φ sin ψ − sin φ cos ψ cos θ sin φ sin θ

sin φ cos ψ + cos φ sin ψ cos θ − sin φ sin ψ + cos φ cos ψ cos θ − cos φ sin θ

sin ψ sin θ cos ψ sin θ cos θ




.

(3.9)
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Figure 3.1: Angular Momentum Vector Geometry.

a =




cos σ cos ρ − sin σ cos σ sin ρ

sin σ cos ρ cos σ sin σ sin ρ

− sin ρ 0 cos ρ




. (3.10)

The applied moments on the body are reactions to the discrete jets located in

arbitrary positions on the surface. Previously, the outgassing jet model was defined

using the following f(θsun) function:

f(θsun) = max





0,

1− α(1− cos θsun)

(3.11)

where α is related to the thermal inertia. Since the function f(θsun) is a maximum

function, it is instructive to approximate it for the purposes of this analysis of the

reactive torques produced by discrete jets. To account for larger α values which

would cause zero values of f(θsun), the f(θsun) function is approximated with a

Fourier series for α > 1/2, such that the function has a the form:

f(θsun) ≈ a0 +
k∑

n=1

(an cos(nθsun) + bn sin(nθsun)), (3.12)
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where k is the number of terms used in the Fourier series and the coefficients, a0 and

an, are defined as:

a0 =
1

2π

∫ θm

−θm

(1− α(1− cos θ))dθ, (3.13)

an =
1

π

∫ θm

−θm

(1− α(1− cos θ)) cos(nθ)dθ, (3.14)

θm = cos−1(1− (
1

α
)). (3.15)
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Figure 3.2: Fourier Series Approximation to the f(θsun) Function with α = 0.8 for 2,
5, 10, and 20 Terms. Solid = f(θsun), Dotted = Fourier Series Approxi-
mations.

For this function, the coefficients bn are identically 0. Figure 3.2 shows the Fourier

series approximation to the f(θsun) function for 0 ≥ α ≥ 1 with 2, 5, 10, and 20

terms used. The next order of approximation beyond the function used in Neishdadt

et al.[11] is k = 2, which has the following form:

f(θsun) ≈ a0 + a1 cos θsun + a2 cos(2θsun). (3.16)

Using a trigonometric identity, the function can be rewritten in a more convenient
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form as a polynomial of the variable cos(θsun):

f(θsun) ≈ (a0 − a2) + a1 cos θsun + 2a2 cos2 θsun. (3.17)

Note that if α ≤ 1/2, this general function takes on the simpler form of f(θsun) =

(a0 − a2) + a1 cos θsun where a0 = 1, a1 = α, and a2 = α since it is no longer

an approximation and yields the function used in [11]. Combining the parameters

used in the jet model definition with the new f(θsun) approximation, the net applied

moment vector created by the outgassing jets, ~M , has the form:

~M = −
N∑

j=1

Sjf(θsun)g(rs)Q∗(~Rj × ~vj), (3.18)

where N is the number of jets, ~Rj is the radius vector of the jet’s center in the body

fixed frame, and ~vj is the outgassing velocity vector. Although the jet model allows

for an arbitrary direction for the outgassing, this analysis will assume for simplicity

that the outgassing velocity is in the outer normal direction to the ellipsoidal surface

at the center location of the jet.

3.2 Averaged Equations

By averaging the equations of motion, insight can be gained into any long term

changes in the comet’s rotation state without needing to numerically integrate the

full equations of motion. If it is assumed that there are no moments created by

outgassing jets, ~M = ~0, then equations 3.3- 3.8 have the right hand side equal to

zero or become constant rates such as:

dφ

dt
=

L

A
, (3.19)

dψ

dt
= L cos θ(

1

C
− 1

A
). (3.20)

Integrating these new equations would result in a constant precession of the spin axis

of the comet nucleus about its angular momentum vector. This precession would also
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be at constant nutation angle from the angular momentum vector. Since dφ/dt is

constant, the spin rate of the nucleus body remains constant.

3.2.1 Averaging Over Orbit with α ≤ 1/2

When passing through perihelion the jets become active and apply a torque to

the nucleus. If we assumed that the magnitudes of these torques are small, we can

introduce an averaging approximation. To do this, we substitute the non-perturbed

motion into the equations of motion and average the equations over the angles φ

and ψ. Using k = 1 in the Fourier approximation which is appropriate for the

α ≤ 1/2 case, then f(θsun) = a0 + a1 cos θsun. The equations are first averaged over

the nonperturbed nucleus motion (spin angle, ψ, and then precession angle, φ). The

averaging performed uses the operator defined in equation 3.21.

ȳ(ψ, φ, ν) =
1

(2π)2

∫ 2π

0

∫ 2π

0

y(ψ, φ, ν))dψdφ, (3.21)

where y is a generic function. This averaging is possible due to the spin and precession

rates being much larger in magnitude than the comet’s mean motion. Note that if

a0 = (1 − α) and a1 = α, these averaged equations match the ones found in [11]

for α ≤ 1/2 where special cases involving resonance between the two angles were

discussed. Note that for an oblate body there will be no resonance between the

angles in general because they will have different signs. First, the equations of

motion are averaged over the comet rotation as described, yielding the following set
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of averaged equations:

dθ̄

dt
=

g(rs) sin θ̄

2L̄
[3a1D1 cos θ̄(mXz sin ν + mZz cos ν)− 2a0D0], (3.22)

dρ̄

dt
=

a1g(rs)

2L̄
[D2mXy cos θ̄ sin ν + D1Rs(θ̄)(mXx sin ν + mZx cos ν)], (3.23)

dσ̄

dt
=

a1g(rs)

2L̄ sin ρ̄
[D1Rs(θ̄)mXy sin ν −D2(mXx sin ν + mZx cos ν) cos θ̄], (3.24)

dL̄

dt
= −g(rs)[a1D1Rs(θ̄)(mXz sin ν + mZz cos ν)− a0D0 cos θ̄], (3.25)

where

djxb = Rjzbvjyb −Rjybvjzb, (3.26)

djyb = Rjxbvjzb −Rjzbvjxb, (3.27)

djzb = Rjybvjxb −Rjxbvjyb, (3.28)

Rs(θ̄) =
1

2
(2− 3 sin2 θ̄), (3.29)

D0 =
N∑

j=1

SjVog,jdjzb, (3.30)

D1 =
N∑

j=1

SjVog,jdjzbvjzb, (3.31)

D2 =
N∑

j=1

SjVog,j(djybvjxb − djxbvjyb), (3.32)

where Rjxb, Rjyb, Rjzb are the comet body fixed components of ~Rj, and vjxb, vjyb, vjzb

are the comet body fixed components of v̂j. Note that D0, D1, and D2 are related to

the angular momentum projections in the body fixed frame and their signs determine

alignment with the body fixed z-axis.

The second averaging of the equations of motion is over the comet’s heliocentric

motion (mean anomaly, M).

y =
1

2π

∫ 2π

0

ȳ(M)dM, (3.33)
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where

dM =
(1− e2)3/2dν

(1 + e cos ν)2
. (3.34)

We will use the averaging operator with the defined transformation to average over

the true anomaly:

x =
(1− e2)3/2

π

∫ π

0

x̄(ν)dν

(1 + e cos ν)2
. (3.35)

This averaging will expose the long term secular drift in the variables. It is

important to note that the function g(rs) is actually a function of the true anomaly,

g(rs(ν)), and is accounted for in this averaging. Here the notation for the doubly

averaged variables such as x is suppressed to be x for notation simplicity.

dθ

dt
=

1

2L
[3a1D1Φ1 cos ρ cos θ − 2a0D0Φ0] sin θ, (3.36)

dρ

dt
= −sin ρ

4L
a1(2− 3 sin θ2)D1Φ1, (3.37)

dσ

dt
=

a1

2L
cos θD2Φ1, (3.38)

dL

dt
= −1

2
[a1D1Φ1 cos ρ(2− 3 sin θ2)− 2a0D0Φ0 cos θ], (3.39)

where

Φ0 =
(1− e2)3/2

π

∫ π

0

g(r(ν))dν

(1 + e cos ν)2
, (3.40)

Φ1 =
(1− e2)3/2

π

∫ π

0

g(r(ν)) cos νdν

(1 + e cos ν)2
. (3.41)

Equations 3.40 and 3.41 are discussed in more detail in [11].

3.2.2 Averaging Over Orbit with α > 1/2

The previous solution for the averaged equations is only valid for 0 ≤ α ≤ 1/2.

For α > 1/2 the Fourier approximation of the f(θsun) function has higher order

terms. If k = 2, thus f(θsun) = a0+a1 cos θsun+a2 cos(2θsun), the averaged equations
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become:

dθ

dt
=

1

2L
(3a1D1Φ1 cos(ρ) cos(θ)− 2a0D0Φ0) sin(θ)

+
a2 sin(θ)

32L
((D0(11Φ0 + Φ3)− 3D3(Φ0 + 3Φ3)

+(Φ0 + 3Φ3)((D0 − 9D3) cos(2ρ) + (D0 − 5D3) cos(2θ)(1 + 3 cos(2ρ))

+2(Φ0 − Φ3)(D0 − 9D3 + 3(D0 − 5D3) cos(θ)) cos(2σ) sin(ρ)2))), (3.42)

dρ

dt
=

sin ρ

4L
[−a1(2− 3 sin θ2)D1Φ1

+2a2 sin2 θ(Φ3((D0 −D3) cos θ cos ρ(3 + cos(2σ))

−D4 sin(2σ)) + Φ0(2(D0 −D3) cos θ cos ρ sin2 σ + D4 sin(2σ)))], (3.43)

dσ

dt
=

1

2L
[a1 cos θD2Φ1 − a2

4
(Φ3(D4(1 + 3 cos(2θ)) cos ρ(3 + cos(2σ))

− cos θ(D3 − 1 + (1− 5D3) cos(2θ)) sin(2σ))

+Φ0(2D4(1 + 3 cos(2θ)) cos ρ sin2 σ

− cos θ(1−D3 + (5D3 − 1) cos(2θ)) sin(2σ)))], (3.44)

dL

dt
= −1

2
[a1D1Φ1 cos ρ(2− 3 sin θ2)− 2(a0 − a2)D0Φ0 cos θ]

+
a2 cos θ

4
[−1

8
Φ3(D0 + 3D3 + 3(D0 − 5D3) cos(2θ))

(2 + 6 cos(2ρ)− 4 cos(2σ) sin2 ρ) + Φ0(2D3 − 3D0 − (D0 + 10D3) cos(2θ)

+(D0 − 3D3 + 3(D0 + 5D3) cos(2θ)) sin2 ρ sin2 σ)], (3.45)

where

D3 =
N∑

j=1

SjVog,jdjzbv
2
jzb, (3.46)

D4 =
N∑

j=1

SjVog,j(djybvjxb − djxbvjyb)vjzb, (3.47)

Φ3 =
(1− e2)3/2

π

∫ π

0

g(r(ν)) cos(2ν)dν

(1 + e cos ν)2
. (3.48)
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Note that the additional term in the Fourier series approximation contributes an

additional Φ0 term to the averaged equations as well as a newly defined Φ3 term.

These averaged equations allow for better accuracy when modelling comets having a

value of α > 1/2. As higher order terms are included in the Fourier approximation

to f(θsun) additional integrals, Φk, and geometry combinations, Dk, will be needed.

3.2.3 Verification of Averaged Equations

To verify the averaged equations, numerically integrated rotational dynamics were

compared to the analytical predictions of the averaged equations. To make a true

comparison, the initial conditions of the averaged and the numerical cases need to

be chosen to be consistent. Since the averaged equations may not start at the same

numerical value as the full equations of motion at an arbitrary time, a small offset

for the magnitude of the periodic part of the equations needs to be found to initialize

the averaged equations consistently.

The full solution, x(t), can be decomposed into secular and periodic parts.

x(t) = x0 + ˙̄xt + xp(t), (3.49)

where xp(t + T ) = xp(t) over one averaging interval. The periodic part of the equa-

tions of motion can be found as:

ẋ(x, t) = ˙̄x(x) + ẋp(x, t), (3.50)

where xp is the periodic magnitude of a generic function, x, T is the period, ẋ(t) is

the equation of motion, and ˙̄x is the secular part of the equation of motion. In our

approximation we will replace the state x in the equations of motion with the singly

averaged state x̄, but will only consider motion over one orbit period beyond this

state. Note that since ẋp(t) is periodic then ẋ(t + T ) = ˙̄x + ẋp(t + T ) = ˙̄x + ẋp(t).
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Table 3.1: Simulation Parameters

Variable Description Value Unit

a comet principal half length 3 km
b comet principal half length 3 km
c comet principal half length 6 km
δ jet shape half angle 1.5 degree
rp cross section radius at surface 50 m
Q∗ mass ejection rate 3.4× 106 kg/hr
a comet orbit semi-major axis 3.44 AU
e comet orbit eccentricity 0.54 -
i comet orbit inclination 3.24 deg

Q∗ assumed to be same as comet Wirtanen.

To find the mean value of the periodic part over a single period, equation 3.50 is

rearranged and integrated.

xp(t) =

∫ t

0

(ẋ(x̄, τ)− ˙̄x)dτ . (3.51)

x̄p =
1

T

∫ T

0

xp(t)dt. (3.52)

Since our equations are functions of true anomaly, ν, the periodic magnitude can be

written in terms of ν instead of time.

x̄p =
(1− e2)3

2π
√

a

∫ 2π

0

1

(1 + e cos ν)2

[∫ ν

0

ẋ(ν ′)dν ′

(1 + e cos ν ′)2

]
dν − T

2
˙̄x. (3.53)

Integrating these periodic magnitudes for the nutation angle, cone angle and angular

momentum magnitude produces offsets to the original conditions which give a more

realistic averaged value for the simulated data. The generic function x is replaced

with the rotational equations of motion to find the needed initial offset.

For the verification, simulations were performed for a prolate ellipsoid comet

nuclei with constant density and various values of α. The “truth model” used to verify

the averaged equations is a variational integration of the full rotational equations (see
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Appendix for description and algorithm used) as it has been verified to conserve the

angular momentum and energy in the absence of torques[28]. Twenty randomly

located jets were added to the surface with their outgassing oriented to the outward

normal to the surface. The orbit defined in Table 3.1 was assumed. As seen in

Figures 3.3- 3.5 for a prolate body with α = 0.7, the cone angle, nutation angle, and

angular momentum magnitude are nicely approximated by the averaged equations

over several orbits. In the figures, the solid lines are the numerically integrated

solution and the dotted lines are the α > 1/2 averaged equations. It is important to

note that these averaged equations may not be valid for long periods of time since

changes in jet activity (new jets becoming active or others becoming dormant) are

not modelled. The averaged equations assume that the active jets and their geometry

are always the same for now.
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3.2.4 Analysis of the Averaged Equations

The drift in the rotational state is captured by the averaged equations and there-

fore can be used to predict the behavior of the comet over time. It is useful to

construct a flow field for the nutation and cone angles such as the one in figure 3.6.

This figure can give the direction and relative magnitude change in these two rota-

tion state parameters as well as the angular momentum magnitude change for any

starting rotation state.
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Figure 3.6: Nutation and Cone Angle Flow Field. Shaded = Angular Momentum
Decreasing, Nonshaded = Angular Momentum Increasing.

Using the averaged equations for α ≤ 1/2 in [11], define a variable, κ, which is

a function of the jet geometry through variables D1 and D0 and the comet’s orbit

through the variables Φ1 and Φ0, such that

κ =
D0Φ0

D1Φ1

. (3.54)

It is important to note that κ is constant once the orbit and the jet geometry are

determined and does not vary with time since the jet geometry is assumed to be
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fixed. If α > 1/2, then performing this transformation on the averaged equations

produces variables of the form:

κi,j =
DiΦj

D1Φ1

, (3.55)

where i = 0, 1, 2, 3 and j = 0, 1, 2, 3 and the combination of i = 0 and j = 0 is the

original κ variable. These κi,j will not be used in this analysis but are provided for

completeness. Performing a change of variable for the α ≤ 1/2 averaged equations

in the nutation and cone angle averaged equations results in a new set of simplified

equations:

dθ

dt∗ =
D1

2
[3α cos ρ cos θ − 2(1− α)κ] sin θ (3.56)

dρ

dt∗ = −α sin ρ

4
(2− 3 sin θ2)D1 (3.57)

where

t∗ =
Φ1

L
t. (3.58)

The rotation state parameters θ and ρ are now only functions of D1 and κ. Equilib-

rium points for this system can be found as a function of κ alone. For any κ value,

there exist at least four equilibrium points which are located at the vertices of the

square K = [0 ≤ ρ ≤ π, 0 ≤ θ ≤ π], K1 = (0, 0), K2 = (π, 0), K3 = (π, π), and

K4 = (0, π). If κ > κ1 = 3α/2(1−α), where κ > 0 and D1 > 0 is assumed, the point

K1 is stable, K3 is unstable, and K2 and K4 are saddle points. Figure 3.7 is the flow

field of the nutation and cone angles where these points can be seen.

If κ = κ1, a bifurcation of the equilibrium points occurs creating two new equi-

librium points, M1 and M2, where

M1 = (0, arccos
κ

κ1

), (3.59)

M2 = (π, π − arccos
κ

κ1

). (3.60)
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and K3 Are Stable and Unstable Nodes with All Other Points Being
Saddle Points. Shaded = Angular Momentum Decreasing, Nonshaded =
Angular Momentum Increasing.

For κ1 > κ > κ2 = κ1/
√

3, these two equilibrium points become the stable and

unstable nodes for the system, respectively, while the points Ki all become saddle

points of the system, illustrated in figure 3.8.

If κ = κ2, another bifurcation of the equilibrium points occurs creating two new

equilibrium points, N1 and N2, where.

N1 = (arccos
κ
√

3

κ1

, arccos
1√
3
), (3.61)

N2 = (π − arccos
κ
√

3

κ1

, π − arccos
1√
3
). (3.62)

For κ2 > κ > κ3 = κ1

√
2/3, these two equilibrium points become the stable and

unstable nodes for the system, respectively, while the points Ki and Mi all become

saddle points, illustrated in figure 3.9. If κ3 > κ > 0, the points N1 and N2 become

stable and unstable foci, respectively, spiraling into or away from the points, shown

in figure 3.10. For the degenerate case of κ = 0, N1 and N2 become centers of the
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Figure 3.8: Nutation and Cone Angle Flow Field for κ1 > κ > κ2 = κ1/
√

3. M1

and M2 Are Stable and Unstable Nodes with All Other Points Being
Saddle Points. Shaded = Angular Momentum Decreasing, Nonshaded =
Angular Momentum Increasing.

system illustrated in figure 3.11. This case arises if D0 = 0 but D1 6= 0. A summary

of these results can be seen in table 3.2.

For all κ > 0, the angular momentum is increasing as the system reaches the

stable equilibrium. It is interesting to note the behavior of the system when κ, D0,

or D1 changes signs. When κ becomes negative (either D0 or D1 is negative), the

stable and unstable equilibrium points “switch sides” and the angular momentum

is decreasing as the system reaches the stable equilibrium. M1 becomes closer to a

nutation angle of π and M2 becomes closer to a nutation angle of 0 when they exist.

N1 and N2 show a similar behavior with N1 becoming closer to a cone angle of π and

N2 becomes closer to a cone angle of 0 when they exist. When it is D0 that causes κ

be negative, the flow direction changes from N1 to N2 when they exist. Figure 3.12

illustrates this case. If N1 and N2 do not exist, then there is no flow change. When
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Figure 3.9: Nutation and Cone Angle Flow Field for κ2 > κ > κ3 = κ1

√
2/3. N1

and N2 Are Stable and Unstable Nodes with All Other Points Being
Saddle Points. Shaded = Angular Momentum Decreasing, Nonshaded =
Angular Momentum Increasing.

it is D1 that causes κ be negative, the flow direction changes from M1 to M2 when

they exist. If both D0 and D1 are negative resulting in a positive κ value, the flow

direction changes for both M1 and M2 and N1 and N2 , but the parameters do not

“switch sides”. A summary of these results can be seen in table 3.3 where M1ρ = 0,

M1θ = arccos(κ/κ1),M2ρ = π, M2θ = π − arccos (
κ
/κ1), N1ρ = arccos(κ

√
3/κ1),

N1θ = arccos(1/
√

3), N2ρ = π − arccos(κ
√

3/κ1), and N2θ = π − arccos(1/
√

3).

The flow field constructed using the averaged equations with α > 1/2 are qual-

itatively similar although they are slightly different quantitatively, as expected. To

reproduce this analysis on the Fourier approximated equations would produce more

κ type variables adding to the complexity of the analysis without adding significantly

to the results as the trends in drift are similar.
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Table 3.2: Summary of Stability Results for κ > 0 and D1 > 0

eq.pt. κ > κ1 κ1 > κ > κ2 κ2 > κ > κ3 κ3 > κ > 0 κ = 0

K1 stable saddle saddle saddle saddle
K2 saddle saddle saddle saddle saddle
K3 unstable saddle saddle saddle saddle
K4 saddle saddle saddle saddle saddle
M1 dne stable saddle saddle saddle
M2 dne unstable saddle saddle saddle
N1 dne dne stable stable focus center
N2 dne dne unstable unstable focus center

Table 3.3: Summary of Kappa Flows

κ D0 D1 L̇∞ κ value Flow

|κ| > κ1 K3 → K1

+ + + + κ1 > |κ| > κ2 M2 → M1

κ2 > |κ| > 0 N2 → N1

|κ| > κ1 K1 → K3

+ − − + κ1 > |κ| > κ2 M1 → M2

κ2 > |κ| > 0 N2 → N1

|κ| > κ1 K2 → K4

− − + + κ1 > |κ| > κ2 (M2ρ, π −M2θ) → (M1ρ, π −M1θ)
κ2 > |κ| > 0 (π −N1ρ, N1θ) → (π −N2ρ, N2θ)
|κ| > κ1 K4 → K2

− + − − κ1 > |κ| > κ2 (M1ρ, π −M1θ) → (M2ρ, π −M2θ)
κ2 > |κ| > 0 (π −N2ρ, N2θ) → (π −N1ρ, N1θ)
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Figure 3.10: Nutation and Cone Angle Flow Field for κ3 > κ > 0. N1 and N2 Are
Stable and Unstable Nodes with All Other Points Being Saddle Points.
Shaded = Angular Momentum Decreasing, Nonshaded = Angular Mo-
mentum Increasing.
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Figure 3.11: Nutation and Cone Angle Flow Field for κ = 0. N1 and N2 Are Stable
and Unstable Nodes with All Other Points Being Saddle Points. Shaded
= Angular Momentum Decreasing, Nonshaded = Angular Momentum
Increasing.
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Figure 3.12: Nutation and Cone Angle Flow Field for κ2 > |κ| > κ3 = κ1

√
2/3

and D0 < 0. N1 and N2 Are Stable and Unstable Nodes with All Other
Points Being Saddle Points. Shaded = Angular Momentum Decreasing,
Nonshaded = Angular Momentum Increasing.



41

3.3 Applications of the Averaged Equations

The evolution of the comet’s rotation state directly depends on it’s κ value.

Varying the κ value slowly over time can simulate changes in the jet geometry or in

the comet’s heliocentric orbit. It is therefore instructive to explore the distribution of

κ for randomly placed jets. Multiple runs calculating the value of κ were performed

randomly distributing 1, 20, 50, and 100 identically sized jets across a comet’s surface.

Figures 3.13- 3.15 shows that there is a peak of κ values which falls below κ3. The

negative κ values correspond to either a negative D0 or D1 value. Note that the

false peaks in the ±20 bins is from lumping κ values with |κ| > 20 into those bins.

Figure 3.16 shows that for a single jet on the surface of the comet body, a κ value

of |κ| < Φ0/Φ1 is not possible. Since, κ is proportional to 1/vjzb for a single jet,

the smallest value 1/vjzb can hold is 1, the case where the jet is oriented along the

body-fixed z-axis.
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Figure 3.13: κ Distribution for 3000 Configurations of 20 Randomly Distributed Jets
on a Prolate Comet Body.
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Figure 3.14: κ Distribution for 3000 Configurations of 50 Randomly Distributed Jets
on a Prolate Comet Body.

For a given heliocentric orbit, 20 jets randomly distributed on the surface yields

a κ value distribution similar to a Gaussian distribution seen in figure 3.13 where

∼ 50% spin up and ∼ 50% spin down. Table 3.4 gives a representative example

of the end state distribution for an oblate body. Note that this distribution of end

states is similar for the different jet numbers except for the single jet case where

κ3 > |κ| > 0 is not possible. This distribution holds for a prolate body as well. Since

over half of the cases fall within |κ| > κ1, it could be assumed that if the κ value lies

within this interval for a comet then small changes in its jet geometry or heliocentric

orbit would cause the new κ value to remain within this interval where the angular

momentum vector drifts to align with the symmetric moment of inertia along the

inertial perihelion vector. This predicts that oblate nuclei will have an asymptotic

spin state that is fully relaxed, but a prolate body will have a fully excited asymptotic

spin state. Note that energy dissipation in not included in this analysis and may
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Figure 3.15: κ Distribution for 3000 Configurations of 100 Randomly Distributed
Jets on a Prolate Comet Body.

Table 3.4: Distribution of End States

jets |κ| > κ1 κ1 > |κ| > κ2 κ2 > |κ| > 0

1 38% 46% 17%
20 55% 16% 29%
50 54% 15% 31%
100 54% 16% 30%

change the end state of the system.

In summary, we see that this theory predicts a variety of outcomes for comet

nuclei. We see that at least half migrate towards an increasing spin rate over time,

which could eventually lead to the bursting phenomenon commonly seen among

comets. Conversely, there is also a population that tends towards a decreasing an-

gular momentum, which could comprise a class of more slowly rotating nuclei. It is

expected that when the rotation period of such nuclei is decreased significantly that

the averaging assumptions made would no longer apply. Based on the theory we also
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Figure 3.16: κ Distribution for 3000 Configurations of 1 Randomly Distributed Jet
on a Prolate Comet Body.

see a variety of different rotation states that a nucleus could tend towards. When

non-symmetric inertia moments are assumed there should be additional final states

that can be found, as discussed and derived using the simpler insolation model in

[29]. Note that these are asymptotic results for the end state that will be applied to

specific studies later.
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3.3.1 Variable Jet Geometry

Finally, by allowing the κ parameters to slowly shift stochastically over time it

may be possible to develop a statistical model for the evolution of a comet nuclei’s

rotation state. In the following, we implement a simple version of this as a proof

of concept. Up to this point, it has been assumed that the jet geometry of the

comet remains fixed with time. This is a somewhat unrealistic assumption as we

would expect that the surface of the comet could possibly change as a result of the

jets’ sublimation relocating jets or, as the rotation axis evolves, new portions of the

comet’s surface will be exposed or shadowed allowing for the activation or deactiva-

tion of jets respectively. Therefore, it is useful to study a variable jet geometry with

respect to the averaged equations. We explore stochastic jet distributions which lead

to a stochastic view of a comet’s time evolution.

We consider a comet with a fixed finite number of jets at randomly distributed

locations on the surface oriented in the outward normal to the surface. We assume

that each jet can expire after some random number of perihelion passages and when

a jet expires, a new randomly located jet is created keeping the number of jets

on the surface constant. This relocation happens at aphelion where the jets are

minimally outgassing. Except for location, orientation, and expiration time, the jets

are assumed to be identical in size and outgassing speed. This setup allows for a

randomly variable jet geometry (thus a variable κ) although it does not correlate

with a jet being activated as a result of a portion of the surface becoming sunlit.

Figures 3.17- 3.19 illustrate that the averaged equations can be adjusted for the

variable κ with time to predict the evolution of the rotation pole over multiple

orbits. The averaged equations begin to deviate from the full equations of motion

after many orbital periods due to the periodic offset at each κ change not being
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adjusted. This example illustrates the effect that the jet locations have on the end

spin state of the comet nucleus as well as on its evolutionary path. This however

is only part of the bigger picture. The jets are allowed to relocate to any random

location but realistically it would be informative to have the jets relocate only to

areas which receive sunlight or to allow the number of jets to decrease over time.
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Figure 3.17: Relative Angular Momentum Magnitude for Variable κ with 20 Jets
Randomly Expiring and Relocating at Intervals of 10 − 15 Perihelion
Passages. Solid = Equations of Motion, Dashed = Averaged Equations.
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3.4 Summary

In this chapter, we derived improved averaged equations for rotationally symmet-

ric bodies as a result of reactive torques produced by jets. The averaged equations

were compared to the full equations of motion, integrated using a variational algo-

rithm, and were shown to capture the drift in the rotational state of the comet. This

can be used to predict the rotational state of the comet nucleus as it passes through

perihelion. With a small correction in the initial conditions, the averaged equations

accurately capture the long term drift in the comet’s rotation state assuming fixed

jet geometry over multiple perihelion passages. The theory allows the comet nucleus

dynamics to be propagated over long time spans as a function of a few parameters.

A variable jet geometry’s effect on the evolution was explored and compared to the
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averaged equations’ prediction with similar results. By examining these averaged

equations over long time spans, insight into comet spin up and spin down can be

gained.



CHAPTER IV

Outgassing Jet Passage Dynamics

The outgassing jets on a comet provide a unique dynamical environment for an

orbiting spacecraft. Strong jets have the ability to significantly modify a spacecraft’s

orbit about a comet and may create the possibility to escape the comet’s weak grav-

itational field while weaker jets may only slightly change the spacecraft’s trajectory.

Therefore, the effects of passage through outgassing jets on an orbiting spacecraft

need to be carefully explored and will be the focus of this chapter.

4.1 Orbit Mechanics in the Presence of an Outgassing Jet

4.1.1 Orbital Elements with Radial Impulse

In order to predict what will happen when a spacecraft passes through a jet

outgassing field, consider small changes in orbital elements. First, note that for large

distances from the comet, the radial component of the outgassing is dominant and

therefore the outgassing due to a jet passage can be considered a radial impulse. We

begin with the orbital parameter, p:

p = a(1− e2) (4.1)

where a is the spacecraft’s semimajor axis and e is it’s eccentricity. First we note

that p has been shown to be conserved [4] through a jet passage as it is related to

50
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the angular momentum which does not change under a radial impulse; a proof is

presented later. Taking a small change in p, ∆p, yields:

∆p = ∆a(1− e2)− 2ae∆e. (4.2)

Next, if we consider the orbital energy, E, it can be rearranged to find a small change

in the semimajor axis, a.

E = − µ

2a
, (4.3)

∆E =
µ∆a

2a2
, (4.4)

∆a =
2a2∆E

µ
, (4.5)

where µ is the gravitational parameter for the comet.

As seen in equation 4.5, a positive change in energy increases the semimajor

axis and a negative change in energy results in a decrease in the semimajor axis.

Substituting this result into equation 4.2 and setting ∆p = 0, yields the result:

∆e =
a∆E

µe
(1− e2). (4.6)

Note that a positive change in energy increases the eccentricity and that a negative

change in energy results in a decrease in the eccentricity. In terms of a jet passage,

rewriting the energy equation as a function of the spacecraft’s velocity provides

additional insight.

E =
1

2
v2 − µ

|~r| , (4.7)

where v is the magnitude of the spacecraft’s velocity. Variations in energy will arise

due to impulsive changes in the spacecraft’s velocity:

∆E = v ·∆v. (4.8)
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Substituting this result into equations 4.5 and 4.6, produces:

∆a =
2a2v ·∆v

µ
, (4.9)

∆e =
av ·∆v

µe
(1− e2). (4.10)

From equations 4.9 and 4.10, it can be seen that an increase in velocity increases

the semimajor axis and the eccentricity and that a decrease in velocity results in a

decrease in the semimajor axis and the eccentricity of an orbiting spacecraft. Since

the outgassing primarily acts in the radial direction when the spacecraft is at a large

distance from the comet body, the radial component of the spacecraft’s velocity is the

only effected component. Therefore, if the spacecraft has a negative radial velocity

component (figure 4.1) such as when it is travelling from apoapsis to periapsis, the

outgassing jet will tend to circularize the orbit, or decrease the semimajor axis and

eccentricity. Likewise, if the spacecraft has a positive radial velocity component such

as when it is travelling from periapsis to apoapsis, the outgassing jet will tend to

make the orbit more eccentric and increase the semimajor axis.

v -vr

v

+vr

(b)(a)

Figure 4.1: Spacecraft Velocity Components: (a) Negative Radial Component, (b)
Positive Radial Component

The radius of periapsis, q = a(1 − e), is also of interest when considering the
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effects of an outgassing jet passage. For a small change in the radius of periapsis:

∆q = ∆a(1− e)− a∆e. (4.11)

This can be related to a change in velocity by substituting for the semimajor axis

and eccentricity from equations 4.9 and 4.10.

∆q =
−q2v ·∆v

µe
. (4.12)

There is an increase in radius of periapsis when the spacecraft has a negative radial

velocity component during a jet passage. Likewise, a decrease in radius of periapsis

occurs when the spacecraft has a positive radial velocity component during a jet pas-

sage. These orbital changes have the possible application of controlling a spacecraft’s

trajectory by targeting known jets.

4.1.2 Lagrange Planetary Equations

Changes in the full set of orbital elements for a spacecraft can be explored by

considering the Lagrange planetary equations. Starting with these equations in the

Gaussian form:

da

dt
=

2a2e

h
sin νF̂R +

2a2h

µr
F̂T , (4.13)

de

dt
=

h

µ

(
sin νF̂R +

e + 2 cos ν + e cos2 ν

1 + e cos /nu
F̂T

)
, (4.14)

di

dt
=

r

h
cos $F̂N , (4.15)

dΩ

dt
=

r sin $

h sin i
F̂N , (4.16)

dωp

dt
= − h

µe
cos νF̂R − r

h
cot i sin $F̂N +

(h2 + rµ) sin ν

µeh
F̂T , (4.17)

dM̄

dt
= n− 1

na

(
2r

a
− (1− e2)

e
cos ν

)
F̂R

−(1− e2)

nae

(
1 +

r

p

)
sin νF̂T , (4.18)
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where

h = na2
√

1− e2, (4.19)

n =

√
µ

a3
, (4.20)

$ = ωp + ν, (4.21)

r = |~r|, (4.22)

and F̂R, F̂T , and F̂N are accelerations in the radial, transverse, and orbit normal

directions, respectively, and ν is the true anomaly. For jet passages, we have assumed

that the spacecraft is located far from the comet body such that the outgassing

component in the radial direction is dominant, therefore the acceleration terms in

equations 4.13 to 4.18 become:

F̂R = ap = p0
1

B

(
r0

|~rj|
)2

, (4.23)

F̂T = 0, (4.24)

F̂N = 0, (4.25)

where r0 is the comet radius at the jet location, and ~rj is the position of the spacecraft

relative to the virtual center of the jet. Substituting in these force components into

the Lagrange planetary equations for a spacecraft during an outgassing jet passage
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become:

da

dt
=

2a2e

h
sin νp0

1

B

(
r0

|~rj|
)2

, (4.26)

de

dt
=

h

µ
sin νp0

1

B

(
r0

|~rj|
)2

, (4.27)

di

dt
= 0, (4.28)

dΩ

dt
= 0, (4.29)

dωp

dt
= − h

µe
cos νp0

1

B

(
r0

|~rj|
)2

, (4.30)

dM̄

dt
= n− 1

na

(
2r

a
− (1− e2)

e
cos ν

)
p0

1

B

(
r0

|~rj|
)2

. (4.31)

Note that the radial acceleration will always be positive since the outgassing pres-

sure acts only in the outward radial direction. It can be seen that the outgassing

pressure affects only four of the orbital elements: the semimajor axis, a, the ec-

centricity, e, the argument of perigee, ωp, and the mean anomaly, M̄ . As seen in

equations 4.26 and 4.27, the semimajor axis and the eccentricity will increase while

the spacecraft’s radial velocity is positive and will decrease while the spacecraft’s

radial velocity is negative. The sin ν term in equation will be positive while the

spacecraft is located along the periapsis to apoapsis portion of its orbit where it has

a positive radial component of its velocity. Likewise, the sin ν term will be negative

while the spacecraft is located along the apoapsis to periapsis portion of its orbit

where it has a negative radial component of its velocity. This agrees with the pre-

vious analysis of the semimajor axis and the eccentricity. As noted previously, the

parameter p is conserved. This can be proven using the results of a radial acceleration

in the Lagrange planetary equations.

dp

dt
=

da

dt
(1− e2)− 2ae

de

dt
, (4.32)

dp

dt
=

2a2e

h
sin νp0

1

B

(
r0

|~rj|
)2

(1− e2)− 2ae
h

µ
sin νp0

1

B

(
r0

|~rj|
)2

= 0. (4.33)
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Estimates for changes in the orbit parameters due to a jet passage can be obtained.

If we assume that the comet spin period is faster than the spacecraft orbital period,

the time it takes for the jet to sweep over a spacecraft located at the jet longitude,

λ0, is approximately:

∆t =
2δ

ω cos λ0

. (4.34)

This leads to impulsive changes in orbital elements of

∆a =
da

dt
∆t =

2a2e

h
sin νp0

1

B

(
r0

|~rj|
)2

2δ

ω cos λ0,
(4.35)

∆e =
de

dt
∆t =

h

µ
sin νp0

1

B

(
r0

|~rj|
)2

2δ

ω cos λ0

, (4.36)

∆ωp =
dωp

dt
∆t = − h

µe
cos νp0

1

B

(
r0

|~rj|
)2

2δ

ω cos λ0

. (4.37)

(4.38)

Note that if the spacecraft travels opposite to the comet’s rotation, the impulse will

be less than if the spacecraft travels in the same sense as the comet’s rotation.

If the spacecraft is close to the comet where the outgassing acceleration cannot al-

ways be assumed to be in the radial direction, the Lagrange planetary equations need

to be carefully examined to determine the dominating acceleration term. Consider

the Lagrange equations for semimajor axis and eccentricity:

da

dt
=

2a2e

h
sin νF̂R +

2a2h

µr
F̂T , (4.39)

de

dt
=

h

µ

(
sin νF̂R +

e + 2 cos ν + e cos2 ν

1 + e cos /nu
F̂T

)
. (4.40)

(4.41)

If F̂T 6= 0, then an impulse in the transverse direction can affect a and e. Depending

on the magnitudes of F̂R and F̂T , it is possible for the semimajor axis to decrease while

the eccentricity increases and vice versa. This however will need to be determined

on a case by case basis.
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Table 4.1: Simulation Parameters

Variable Description Value Unit

a comet principle length 2.75 km
b comet principle length 2.00 km
c comet principle length 1.65 km
P comet period 12 hr
Vog outgassing radial velocity 0.5 km/s
ω comet rotation rate 2π

T
rad/s

δ jet shape half angle 1.5 degree
Q∗ mass ejection rate for entire comet+ 3.4× 106 kg/hr
B spacecraft mass to area ratio 30* kg/m2

* assumed to be same as comet Wirtanen.
+ mass ejection rate for each jet determined by jet surface area.

4.2 Simulation of Passages through Outgassing Jets

A Matlab script was written incorporating the outgassing jet model and the

comet body model. The spacecraft was assumed to follow the trajectory described

by solving the standard two-body problem while the spacecraft is not within an

outgassing region. The pressure acceleration, ~ap, is applied to the spacecraft when

it is determined that the angle between the outgassing pressure vector (at the same

radius as the spacecraft) and the spacecraft position vector, θrel, is within a defined

angle error tolerance, ∆θerr, of the half angle describing the active region’s size. The

angle θrel is determined by:

θrel = arccos
~rog · ~r
‖~rog‖‖~r‖ , (4.42)

where ~r is the position vector of the spacecraft given in the same coordinate frame

as ~rog.

The simulation presented is of an idealized comet 81P/Wild2 (values in tables 4.1

and 2.1) where the mass ejection rate is from Neishtadt, et al.[11], with 20 discrete

outgassing jets located on the surface in the comet. The jets are assumed to be
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Figure 4.2: Spacecraft Trajectory in Inertial Frame for Interaction with Outgassing
Jets with a Half Angle of 1.5◦ and Vog of 0.5 km/s on the Idealized
81P/Wild2

identical with a jet half angle of 1.5 degrees and an outgassing velocity of 0.5 km/s

although the script is written to allow for each jet to have a unique geometry. Fig-

ures 4.2 to 4.5 show the results of this simulation where the thicker sections of the

spacecraft’s trajectory illustrate the portion of the trajectory where the spacecraft

is passing though an outgassing jet field. Figure 4.5 shows the changes in the or-

bital elements, semimajor axis and eccentricity, when the spacecraft encounters an

outgassing jet. The two jet passages can clearly be identified by the sharp changes

in the orbital elements. Since the spacecraft is located close to the comet, we note

that the radial impulse assumption is not valid for the first jet passage where the

jet outgassing orientation is clearly not radial but is a better approximation for the

second jet passage where the jet orientation is much closer to the radial direction.

This simulation assumes that the location, size, and orientation of each jet is known.
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Figure 4.3: Spacecraft Trajectory in Body Fixed Frame for Interaction with Out-
gassing Jets with a Half Angle of 1.5◦ and Vog of 0.5 km/s on the Idealized
81P/Wild2

This will rarely be the case for an orbiting spacecraft and, therefore, it is informative

to use the trajectory data to determine the jet’s parameter. A method for estimating

some of the jet characteristics will be the focus of the next chapter.

4.3 Summary

In this chapter, a model of a triaxial ellipsoidal comet was simulated using 20

discrete jets based on the comet Wild 2 model to verify the analytical results found

by assuming small changes in the orbital elements of the spacecraft relative to the

comet. The first case considered was when a spacecraft passes though a nearly

radially outgassing jet, such as when it is far from the comet. It was shown that

if the spacecraft has a negative radial velocity component, the outgassing jet will

decrease the semimajor axis and eccentricity and vice versa for a radial impulse

when the spacecraft is located significantly far from the comet. If, on the other
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Figure 4.4: Spacecraft Trajectory in Body Fixed Frame for Interaction with Out-
gassing Jets with a Half Angle of 1.5◦ and Vog of 0.5 km/s on the Idealized
81P/Wild2 (Detail)

hand, the spacecraft is in close proximity to the comet nucleus, it has been shown

that the transverse component of the outgassing can affect the semimajor axis and

eccentricity of the spacecraft oppositely depending therefore the orientations of the

jets should be known prior to attempting to land on the comet surface to properly

predict the trajectory of the spacecraft.
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CHAPTER V

Outgassing Jet Parameter Estimation

One important use of the outgassing jet model is to aid in spacecraft naviga-

tion. This model can be used to estimate the defining jet parameters from spacecraft

passages through a discrete jet outgassing field. Based on Doppler tracking and a

standard navigation solution for the spacecraft’s trajectory, the jet’s basic describ-

ing parameters: the jet’s location and the half angle, δ, and the pressure of the

outgassing, |~p|, can be estimated. By providing a specific model with parameters

that can be estimated from tracking data, we both enable future trajectories to be

predicted more accurately, and provide measurements of scientific interest. In this

chapter, we explore how to estimate some of the outgassing jet parameters based on

our model from trajectory data.

5.1 Outgassing Acceleration on Spacecraft

Identifying an outgassing jet passage is crucial to being able to estimate its charac-

teristics. Therefore, a spacecraft is assumed to begin passage through an outgassing

field when the Doppler tracking detects an acceleration larger than 1.667×10−5m/s2

(the accuracy to which Doppler data can unambiguously detect change in velocity).

Since the acceleration is directly measured, if we can estimate the spacecraft’s mass

62
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Figure 5.1: Outgassing Acceleration as a Function of Comet Orbital Radius for Vog =
0.5 km/s. Solid = Maximum Outgassing Acceleration. Dotted = Doppler
Tracking Threshold.

to area ratio of the side facing the comet, B, and the mass flux rate of the jet, Qj,

(using a mass spectrometer), we can also gain a direct estimate of the outgassing

speed using the relationship:

|~ap| = QjVog
1

B

(
r0

|~rj|
)2

. (5.1)

Some knowledge of the jet geometry would be needed for this estimate but could

be obtained from images of the comet prior to the jet fly-through. In addition

to estimating the outgassing velocity, this detection can also be used to identify

boundary crossings of the jet outgassing field. These crossings can be used to create

unit vectors in the direction of a crossing in the body fixed frame, ûi, to aid in

estimation of other jet parameters (to be discussed in detail in the next section).

The creation of the crossing unit vectors assumes that a navigation solution for the

spacecraft is available.

As mentioned in the jet model description, the outgassing strength is a function
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of the distance of the comet from the Sun. Therefore it is necessary to determine

the maximum heliocentric distance allowed for Doppler tracking to be able to de-

tect this boundary crossings. If we assume an outgassing velocity of 0.5 km/s, the

magnitude of the outgassing acceleration can be detected by Doppler tracking when

the comet’s orbital radius is less then 3 AU as seen in figure 5.1. The spikes in the

spacecraft’s acceleration components (seen in figure 5.2 from simulation data) illus-

trate jet passages. Since the magnitude of the acceleration spikes are on the order of

10−5m/s2, the jet passages should be able to be identified by the Doppler tracking

producing estimates of not only the outgassing speed but also mapping boundary

points of outgassing jet fields. This calculated maximum heliocentric distance will

change assuming different outgassing speeds.

5.2 Jet Location and Half Angle, δ

The model definition describes the parameters for a single jet, but realistically

there would exist multiple jets on a comet similar to the Wild2 model[6] and the

one used in the model simulations. When developing an estimation method for the

jet parameters, this was carefully taken into account. With multiple jets emanating

from the surface of the comet, it becomes necessary to appropriately identify each

crossing with a probable jet location. Naturally these jet boundary crossings occur

in pairs, one crossing classified as entering and one as exiting the outgassing field.

The degenerate case of “skimming” the boundary producing a single point for both

entering and exiting the field can be applied in the methods considered. The pairs

can be mapped to the surface of the comet in the body fixed frame as unit vectors

that lie on the surface boundary of the jet if the rotation of the comet and the

outgassing velocity, Vog, is assumed to be known. The time since ejection, s, can be
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found using the assumed outgassing velocity and the radial distance from the surface

of the comet. This time gives the angular rotation of the comet from the rotation

rate, ωcom. Rotating the comet back in time and translating the crossing point to

the surface of the comet gives the mapping method to the body fixed frame.
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Figure 5.2: Spacecraft Acceleration Components in an Inertial Frame

After the pairs have been mapped to the comet surface, they are identified with

a possible jet location by checking the proximity of the unit vector which defines

the pair’s bisector with possible jets’ estimated centerlines which have already been

identified. If the bisector unit vector falls within the jet’s estimated size (defined as

the estimated half angle, δ, with some allowable tolerance) then the pair is grouped

with other identified pairs for the possible jet location. If the bisector unit vector

does not match with an existing possible jet location, the pair define a new possible

jet location to be tested for subsequent crossings.

Once a crossing pair has been identified with a possible jet location, the number of

pairs identified with that jet location determines the estimation process as illustrated
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in figure 5.3. If only a single pair has been identified, then the jet centerline location

is assumed to be the unit vector which bisects the pair of unit crossing vectors, and

the half angle of the jet is estimated as half of the angle between the pair of crossing

unit vectors as in jet 1 of figure 5.3. If multiple pairs are associated with a possible

jet location, three possible methods to estimate the jet location and half angle are

explored. All of these estimation methods allow for the spacecraft to fly-through at

different altitudes and allows for curved paths through the outgassing field. Two of

the methods are based on the geometry of the circular cross section and the third

utilizes the directly determined unit vectors. There is a detailed discussion of each

method in the following sections.

Figure 5.3: Illustration of Jet Identification Methods.
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5.2.1 Geometrical Approach 1

The first geometrical approach needs only two pair of crossings to estimate the

centerline position and jet half angle. The pairs are connected to form two chords.

The crossing of the bisecting perpendiculars to these chords will give an estimate

of the center of the jet. Using Pythagoras’ theorem on one of the chords yields the

estimate of the half angle as seen in figure 5.4. If the spacecraft is known to be in the

plane of the outgassing jet then the chord constructed is the diameter of the jet cross

section and reduces to the method used for a single pair crossing. This method has

a maximum of two boundary crossing pairs and would not yield better estimations

with subsequent passages.

d

Figure 5.4: Perpendicular Bisectors Method of Estimating Jet Half Angle
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5.2.2 Geometrical Approach 2

The second geometrical approach requires only one and a half crossing pairs of

the jet outgassing field (three unit crossing vectors). Using the three unit vectors

in the body fixed frame as vertices of a triangle, the geometrical formula for finding

the radius of an circumscribed circle about a triangle can be used to estimate the jet

half angle, δ, as seen in figure 5.5.

r0 sin δ =
1

2

atbtct√
s(s− at)(s− bt)(s− ct)

, (5.2)

s =
1

2
(at + bt + ct), (5.3)

where at, bt, and ct are the chord lengths created by connecting the three crossings.

Once the half angle is known, the center of the jet can be inferred by finding the

common intersection point of circle of radius δ drawn about each crossing point. This

approach could be used if one of the boundary crossings is ill-defined such as in the

“skimming” case. Again, this method has a finite maximum of crossing points and

would not yield better estimations with subsequent passages.



69

5.2.3 Least Squares Approach

The third approach is the most general of the estimation methods presented. It

allows for non-circular cross-sections of the outgassing jet to be ideally estimated

such as jet 3 in figure 5.3 and does not need finite boundary crossing points to be

used in the estimate. Using the mapped boundary crossing unit vectors in the body

fixed frame (illustrated in figure 5.6), another unit vector pointing in the direction of

the estimated center of the cross-section is defined. The nominal cone angle is then

found as:

ûi.ûc = cos(δ), (5.4)

where ûi is the unit vector in the direction of crossing number i and ûc is a unit vector

in the direction of the cross-section’s estimated center. A pair of boundary crossings

will produce a plane of possible solutions to ûc. The location of the center of the

outgassing jet can be estimated uniquely by a third crossing giving an estimated

solution to ûc and thus the half angle, δ. Therefore, a minimum of three boundary

crossings is needed.

These estimates for the jet center location and the half angle can be refined when

subsequent boundary crossings occur by using a least squares approach to incorporate

newly detected crossing unit vectors. First define a cost function as:

Jc =
1

2

N∑
i=1

(ûi · ûc − cos δ)2. (5.5)

Taking the partial derivative of this with respect to the center unit vector and setting

it equal to zero yields an estimate for ~uc.

∂Jc

∂ûc

=
N∑

i=1

(ûi · ûc − cos δ)ûi = 0, (5.6)

~uc = cos δ(
N∑

i=1

ûiûi)
−1

∑
ûi. (5.7)
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Figure 5.5: Circumscribed Triangle Method of Estimating Jet Half Angle

Note that this solution will point in the direction of the proper solution, but may

not be a unit vector. Normalizing the estimate for ~uc yields a function only of the

boundary crossing unit vectors.

ûc =
(
∑N

i=1 ûiûi)
−1

∑
ûi

|(∑N
i=1 ûiûi)−1

∑
ûi|

. (5.8)

For N < 3, the term
∑N

i=1 ûiûi will not be invertible in general, but for N ≥ 3 and

a properly measured set of ûi, it will produce a unique solution. Taking the partial

derivative of the cost function with respect to the jet half angle, δ, yields an estimate

for the half angle which is dependent on the estimate for the center unit vector found

previously in equation 5.8.

∂Jc

∂δ
=

N∑
i=1

(ûi · ûc − cos δ) sin δ, (5.9)
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Figure 5.6: Body Fixed Unit Vectors Method of Estimating Jet Half Angles

cos δ =
1

N
(

N∑
i=1

ûi) · ûc, (5.10)

δ = arccos(
1

N
ûc ·

N∑
i=1

ûi). (5.11)

These new estimates for the jet centerline unit vector and half angle can be used

to identify subsequent jet crossing pairs with the jet in the case of multiple jet en-

counters. This iterative process allows for the mapped pairs to be identified properly

to the correct jet and the estimated jet parameters to be updated each time the

spacecraft passes though the jet’s outgassing field.

Once the location and half angle of the jets have been estimated, the mapped

boundary crossing vectors can be intersected with the surface of the comet to define

the boundary of an active surface patch associated with the jet. Correlating this
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surface patch with images of the comet’s surface can yield insight into the orientation

or source of the jet from surface features such cavities or sharp inclines.

5.2.4 Estimation Errors

The errors in these estimations can be caused by uncertainty in the spacecraft’s

position, uncertainty in the comet’s rotation, or from lack of detailed knowledge of

the outgassing jet’s structure. Uncertainty in the spacecraft’s position and in the

comet’s rotation can produce errors in the mapped unit vectors yielding errors in

the boundary crossings. The spacecraft’s position and comet rotation will have the

largest uncertainties when the spacecraft arrives at the comet and will be better

known as the spacecraft orbits the comet and will need to be updated within the

estimation algorithm.

Lack of knowledge of the jet’s structure is a more complicated error as it can

lead to errors in the identification of jet locations. Consider that the jet’s outgassing

pressure profile is not a solid cone of pressure but has another profile such as a

hollow cone similar to a tube. A spacecraft passing through this type of profile

will produce more “boundary crossings” than actually exist. This would yield the

appearance of crossing two jets instead of one. Then leading the estimation algorithm

to identify two pairs of boundary crossings and in turn producing two possible jet

center locations although realistically there is only one. The methods described

above would need to be modified if a hollow cone pressure profile or another pressure

profile is suspected.

5.3 Estimation Simulation

Utilizing the jet model simulation data, the boundary crossing positions and

times are collected and passed on to estimate the jet parameters. The estimation
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simulation uses the unit vector least squares approach to estimate the jet center

unit vector and the jet half angle assuming that the outgassing velocity and comet

rotation are already known. Note that the locations of the jets are not assumed to

be initially known and are estimated as well. If only a single pair has been identified

with a possible jet location, then the half angle of the jet is estimated as half of the

angle between the pair of boundary crossing unit vectors.

Using simulation data for a single trajectory encountering multiple jets with a half

angle of 1.5 degrees and outgassing velocity of 0.5 km/s, seen in figure 5.7, the jet half

angle is estimated by changing the maximum allowable angle error in the simulation

of the spacecraft’s trajectory. The maximum allowable angle error is defined as the

largest angle with respect to the jet boundary such that the spacecraft is considered

to have crossed the boundary. This replicates the spacecraft’s measurement error.
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Figure 5.7: Detailed View of Simulation of Jets with Half Angle of 1.5 degrees and
Outgassing Velocity of 0.5 km/s Used for Estimation Simulation.

For the half angle estimate, a small angle error in the measurement results, in

general, in a smaller half angle estimate error as seen in table 5.1. The jet half-angles
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Table 5.1: Outgassing Half Angle Estimation in De-
grees Using ≥ 4 Boundary Crossing Points

Jet Crossings Maximum Angle Error
No. pts. 1 degree 0.5 degree 0.1 degree
1 2 2.3337 2.3337 2.5458
2 4 2.3120 2.4327 2.8134
3 4 0.6354* 2.2614 2.4815
4 2 1.9073 1.9073 1.9073
5 2 0.4227 0.4227 0.4227
6 2 1.6908 1.6908 1.6908
7 2 1.9236 1.9236 2.1373
8 4 2.9108 2.9108 1.9160
9 2 2.4646 2.4646 2.2406
10 2 0.4206 0.6309 0.8412
11 2 2.5279 2.5279 2.5279
12 2 1.6857 1.4750 1.6857
* estimated with two crossing points.

which remained constant with varying angle error tolerance are caused by the initial

boundary crossing detections already residing within the smallest angle error toler-

ance for the simulated cases. The time step used in the simulation can affect the

estimates since they determine the detected boundary crossing position. The algo-

rithm reduces the time step of the integration until the boundary crossing detected

resides within the angle error tolerance. The boundary crossing position detected

may also be affected by whether or not the simulation has already encountered a jet

and has varied the time step previously. The errors in the estimation can also be

caused by uncertainty in the spacecrafts position, uncertainty in the comets rota-

tion, or from lack of detailed knowledge of the outgassing jets structure as discussed

previously.
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5.4 Estimation Applications

The described estimation methods have many applications as navigation tools for

a spacecraft. The estimates can be used to identify jets and map their locations on the

surface of the comet as well as determine their size as described. These parameters

can give the spacecraft better trajectory fits and predictions for orbiting spacecrafts’

passages through jets. The location of the jet also allows for targeted scientific

measurements, turning on measurement instruments only when the spacecraft is in

the vicinity of an outgassing jet field and off when not needed. In conjunction with

mass spectrometer measurements, we can determine the gas velocity with simple

relationships. This also holds if we are given a gas velocity from which we can

determine the gas mass flux.

Applications of measuring and determining the outgassing field and jet structure

can also be obtained once the field boundary has been crossed. The spacecraft can

measure the variation of the outgassing within a jet’s field. It may not be a solid

cone structure as assumed in the model, but may actually have an inactive or less

active interior or another activity profile across the jet. Multiple passes can uncover

complex jet boundaries that may be related to the outgassing conditions or features

the comet surface.

5.5 Summary

In this chapter, estimation methods were presented to not only estimate the

jet locations, but also the outgassing velocity and the half angle. The outgassing

velocity can be determined by taking a measurement of the mass flux and the change

in the spacecraft’s acceleration using Doppler tracking depending on the outgassing

strength and thus the heliocentric distance. The half angle can be estimated by
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using boundary crossing points mapped to the surface of the comet. The method for

estimating the half angle of the jet includes an algorithm for identifying jet locations

when multiple jet outgassing fields have been crossed and for ideally estimating non-

circular cross sections. These estimates help to provide a better trajectory fit for the

spacecraft as well as to better predict future trajectories. By knowing probable jet

locations, the spacecraft can target these areas for scientific measurements or avoid

them to maintain particular orbital parameters.



CHAPTER VI

Solar Radiation Pressure and Third Body Effects

In Chapter IV, the effect of outgassing jets on an orbiting spacecraft was con-

sidered for the dynamical setup of the 2-body problem. We will now revisit this

topic and consider the more complex dynamical setup of the 3-body problem with

the gravitational attraction of the Sun and under the perturbation of solar radiation

pressure. These effects will be important for a spacecraft to maintain a stable orbit

in the vicinity of a comet. The focus of this chapter will be to identify and ana-

lyze stable Sun synchronous orbits in a rotating frame which can be used to orbit

any small body in the solar system. Previously, Dankowicz[7] found an orbit offset

from the comet’s center of mass and explored the stability in a non-rotating system.

Scheeres and Marzari[8] investigated the stability of such motions accounting for the

orbit of the comet, while Scheeres[9] investigated the definition and stability of Sun-

synchronous orbits started from the terminator plane. This analysis combines the

offset orbits of Dankowicz[7] with the averaging analysis and rotation present in the

analysis by Scheeres[9]. The stability of identified orbits will be tested for outgassing

jet accelerations in the case of comets, and the effects of a non-spherical comet body

will be considered. Once these orbits have been shown to be stable, different control

schemes to restrict their allowable motion will be explored.

77
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6.1 Equations of Motion

Consider the general case of a spacecraft in the vicinity of a comet and signifi-

cantly far from any other celestial body. The spacecraft is assumed to have negligible

mass relative to the comet (modelled as a point mass for now) and is subject to solar

radiation pressure acting in the anti-sunward direction, x̂. In an inertial frame, the

equations of motion for the spacecraft are:

~̈rI =
∂U

∂~rI

+ gx̂, (6.1)

where ~rI is the position vector in an inertial frame, U is the comet’s gravitational

potential, and g is the solar radiation pressure magnitude computed as:

g =
β

d2
c

, (6.2)

where β = (1+η)G1/B, G1 = 1x108kg−km3/(s2−m2), B is the spacecraft mass to

area ratio in kg/m2, η is the reflectance of the spacecraft, and dc is the heliocentric

distance of the comet in km[9]. The Hill equations of motion are appropriate to use

in this case given the dynamical setup. They are as follows in the comet orbit frame

assuming a constant rotation about the Sun, ω.

ẍ = 2ωẏ + 3ω2x− µx

r3
+ g, (6.3)

ÿ = −2ωẋ− µy

r3
, (6.4)

z̈ = −ω2z − µz

r3
, (6.5)

where x is along the Sun-comet line, z is out of the orbital plane, and r =
√

x2 + y2 + z2.

The Hill equations of motion in cartesian coordinates have a Jacobi integral of:

J =
1

2
(ẋ2 + ẏ2 + ż2)− µ

r
− 1

2
ω2(3x2 − z2)− gx. (6.6)
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Note that for a constant rotation rate, ω, this integral is conserved. Although,

cometary orbits do not generally have a constant angular rate, over the short times

spans considered in this paper, a constant rate is a good approximation. A cylindrical

frame will gain us more insight, therefore we apply the following transformation:

x = x, (6.7)

y = ρ cos θ, (6.8)

z = ρ sin θ, (6.9)

ẋ = ẋ, (6.10)

ẏ = ρ̇ cos θ − ρθ̇ sin θ, (6.11)

ż = ρ̇ sin θ + ρθ̇ cos θ. (6.12)

Figure 6.1: Relative Hill Coordinate Frames: Cartesian and Cylindrical.

Converting to the cylindrical coordinates, the equations of motion become:

ẍ = 2ω(ρ̇ cos θ − ρθ̇ sin θ) + 3ω2x + g − xµ

r3
, (6.13)

ρ̈ = −2ẋω cos θ + ρθ̇2 − ρω2 sin2 θ − ρµ

r3
, (6.14)

ρθ̈ = 2ẋω sin θ − 2ρ̇θ̇ − ρω2 sin θ cos θ, (6.15)
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where r =
√

x2 + ρ2. Note that a symmetry in the evolution of the x and ρ states

exists for +θ̇ and −θ̇ when θ0 = 0, π. This is expected due to the term θ̇ sin θ =

−θ̇ sin(−θ) in the ẍ equation and θ̇2 = (−θ̇)2 in the ρ̈ equation. For completeness,

the Hill equations of motion in cylindrical coordinates have a Jacobi integral of:

J =
1

2
(ẋ2 + ρ̇2 + ρ2θ̇2)− µ

r
− 1

2
ω2(3x2 − ρ2 sin(θ)2)− gx. (6.16)

6.1.1 Non-Rotating Equilibrium Solution

The system studied by Dankowicz[7] is a non-rotating two-body problem with the

addition of solar radiation pressure to the secondary body. The equations of motion

used are (in cylindrical coordinates):

ẍ = −µx

r3
+ g, (6.17)

ρ̈ = ρθ̇2 − µρ

r3
, (6.18)

ρθ̈ =
−2ρ̇θ̇

ρ
. (6.19)

Note that these are the same equations of motion described above if ω is set to 0.

Directly integrating equation 6.19 leads to ρ2θ̇ = h which is a constant angular mo-

mentum about the Sun-comet line. Dankowicz[7] found relative equilibrium solutions

to these equations as a class of circular with the following conditions

0 =
µ

r3
− g

x
, (6.20)

0 =
h2

ρ4
− g

x
. (6.21)

This non-rotating system’s equilibrium solutions will be the basis for the exploration

of averaging the Hill equations of motion. These solutions produce a family of Sun-

synchronous circular orbits offset from the comet body and perpendicular to the

Sun-comet line. The orbits which are closest to the body are stable and as the x
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offset gets large the orbits become unstable with equilibrium solutions not existing

for all values of x. At a given equilibrium x0 and ρ0, the angle varies as θ = θ0+ht/ρ2
0.

Note that it is the addition of the solar radiation pressure that produces the offset

orbit solutions.

6.1.2 Averaging Procedure and Results

If we assume that the rotation rate of the comet about the Sun, ω, is small, then

we can derive a set of equations incorporating the rotational terms and eliminating

the time-varying θ term. If we assume the nominal motion is along the circular orbit

found for the non-rotating system, the equations of motion for the rotating system

can be rewritten as

ẋ = f(x) + ω2g(x, t), (6.22)

where x are the states of the system, f(x) are the non-rotating terms of the equations

of motion and ω2g(x, t) are the rotational terms. Note that only the g(x, t) terms

are a function of t through the θ coordinate. We introduce an averaging operator to

extract the effect of the g(x, t) function over one spacecraft orbit.

Lets consider a generic function, χ(θ), which is a function of the cylindrical

coordinate θ. If this function is averaged over a full rotation through the θ variable

then the averaging procedure is of the form:

χ =
1

2π

∫ 2π

0

χ(θ)dθ. (6.23)

If equations 6.13 through 6.15 are averaged over θ in this way, a system similar to

the two body non-rotating system from Dankowicz[7], equations 6.17 through 6.19,
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is recovered with the additional terms of 3ω2x and −1
2
ρω2.

ẍ = g − xµ

r3
+ 3ω2x, (6.24)

ρ̈ = ρθ̇
2

− 1

2
ρω2 − ρµ

r3
, (6.25)

ρθ̈ = −2ρ̇θ̇, (6.26)

where r =
√

x2 + ρ2. Note that equation 6.26 can be directly integrated as:

ρ2θ̇ = h, (6.27)

where h is a constant and in this case is the averaged angular momentum magnitude.

Therefore the averaged equations of motion reduce to functions of x and ρ with

constant h:

ẍ = g − xµ

r3 + 3ω2x, (6.28)

ρ̈ = ρ

(
h2

ρ4 −
1

2
ω2 − µ

r3

)
, (6.29)

(6.30)

with an averaged Jacobi integral of:

J̄ =
1

2
(ẋ

2
+ ρ̇

2
)− µ

r
− 1

2
ω2(3x2 − 1

2
ρ2)− gx +

h2

2ρ2 , (6.31)

where θ̇ = h/ρ2. Note this is the same Jacobi integral that can be obtained by

examining the averaged equations alone where V = µ
r

+ 1
2
ω2(3x2 − 1

2
ρ2) + gx− h2

2ρ2 .

Dankowicz[7] discovered that the angular momentum projected along the Sun-comet

line was constant for the non-rotating system. The angular momentum projected

along the solar radiation direction, x̂, for this rotating frame system is:

hd = x̂ · (~r × ~̇r), (6.32)

where its projected time derivative has the form:

ḣd = x̂ · (~r × ~̈r). (6.33)
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If ~r = (x, y, z) and ~̇r = (ẋ, ẏ, ż), then this time derivative simply reduces to:

ḣd = x̂ · (2ωẋz − ω2yz, gz + 2ωẏz + 4ω2xz,−gy − 2ω(xẋ + yẏ)− 3ω2xy), (6.34)

ḣd = 2ωẋz − ω2yz. (6.35)

Changing variables to cylindrical coordinates results in an angular momentum deriv-

ative of:

ḣd = 2ωẋρ sin θ − 1

2
ω2ρ2 sin(2θ). (6.36)

Applying the averaging procedure, equation 6.23, to the projected angular momen-

tum derivative shows that the average value of ḣd over 2π in θ is 0 due to the sin θ

and sin(2θ) terms if we assume constant values for ρ and ω and a zero or periodic

value for ẋ. This means that the projected angular momentum along x̂s is conserved

on average when orbiting along one of the offset terminator orbits. This conservation

of the projected angular momentum implies that on average the dynamics in this

rotating system have similarities to the non-rotating system found in Dankowicz[7].

6.2 Equilibrium Solutions

To find the equilibrium solutions to this set of equations, we set ẍ and ρ̈ to zero

and find that the following conditions must hold:

3ω2 =
µ

r3 −
g

x
, (6.37)

7

2
ω2 =

h2

ρ4 −
g

x
. (6.38)

Note that these conditions are similar to the ones found by Dankowicz[7] with a

perturbation from the rotation, ω. For a given value of initial averaged x-offset, x0,

then the variables ρ0, θ̇0, and h0 can be found as functions of x0 yielding a family of
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circular orbits perpendicular to the Sun line which are Sun synchronous:

ρ0 =

√(
x0µ

3ω2x0 + g

)2/3

− x2
0, (6.39)

θ̇0 =
7ω2

2
+

g

x0

, (6.40)

h0 = ρ2
0θ̇0. (6.41)

Note that these solutions are dependent on the values of µ, ω, and g resulting in

different family profiles for each system. Again, these solutions do not exist for all x0.

An example profile of the family of circular orbits with a 0.25 km diameter body with

200 kg/m3 bulk density at approximately 3 AU yielding values of µ = 1.1972e− 10

km3/s2, ω = 3.7749e−8 rad/s, and g = 1.4749e−11 km/s2 can be seen in figure 6.2

while figures 6.3- 6.6 illustrate trajectory examples in the vicinity of these circular

orbits. Note that the larger the x offset, the more the trajectory deviates from the

averaged solution. The stability as a function of the x0 offsets is studied later. These

orbits can be considered to be generalizations of the terminator orbits described in

Scheeres[9]. It is important to note that these orbits are sun-synchronous and will

ideally always present the same orientation to the Sun.
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Figure 6.2: Example of Circular Orbit Equilibrium Solutions of the Averaged equa-
tions as a Function of the x Offset.
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Figure 6.3: Initial Offset (x0=0.1 km) Orbit About a Comet with a Regular Gravity
Field in the Rotating Frame. Black = Full Hill Equations of Motion
Trajectory. Red = Averaged Hill Equations of Motion Trajectory. Shown
with Full Equations’ Position Deviation (∆x,∆y,∆z) from the Averaged
Solution.
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Figure 6.4: Initial Offset (x0=0.5 km) Orbit About a Comet with a Regular Gravity
Field in the Rotating Frame. Black = Full Hill Equations of Motion
Trajectory. Red = Averaged Hill Equations of Motion Trajectory. Shown
with Full Equations’ Position Deviation (∆x,∆y,∆z) from the Averaged
Solution.
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Figure 6.5: Initial Offset (x0=1 km) Orbit About a Comet with a Regular Gravity
Field in the Rotating Frame. Black = Full Hill Equations of Motion
Trajectory. Red = Averaged Hill Equations of Motion Trajectory. Shown
with Full Equations’ Position Deviation (∆x,∆y,∆z) from the Averaged
Solution.
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Field in the Rotating Frame. Black = Full Hill Equations of Motion
Trajectory. Red = Averaged Hill Equations of Motion Trajectory. Shown
with Full Equations’ Position Deviation (∆x,∆y,∆z) from the Averaged
Solution.
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6.3 Zero Velocity Curves

It is instructive to construct the zero velocity curves that exist for this problem to

gain insight into the dynamics of the system. These curves will also help determine

if there are any trajectories that may be trapped. To find the zero velocity curves,

we set the averaged Jacobi integral, Equation 6.31, to some arbitrary constant, C,

and the velocities to zero.

C = −µ

r
− 1

2
ω2(3x2 − 1

2
ρ2)− gx +

h2

2ρ2 . (6.42)

Note that C = −V as expected and therefore for a given value of C, the spacecraft’s

motion can occur where

C + V ≥ 0. (6.43)

To find the zero velocity curves, we consider the simplified equation:

Cm +
µ

r
+

1

4
ω2ρ2 − h2

2ρ2 = 0, (6.44)

where

Cm = C +
3

2
ω2x2 + gx. (6.45)

Cm is considered a constant for a given value of x. Rearranging equation 6.44, the

zero velocity curves can be found by solving for the roots of the following polynomial:

0 =

(
1

16
ω4

)
Γ

5
+

(
−1

2
Cmω2 +

1

16
ω4x2

)
Γ

4
(6.46)

+

(
C2

m +
1

4
h2ω2 − 1

2
Cmω2x2

)
Γ

3
+

(
−µ2 − Cmh2 + C2

mx2 +
1

4
h2ω2x2

)
Γ

2

+

(
1

4
h4 − Cmh2x2

)
Γ +

(
1

4
h4x2

)
.

Note that only values of ρ ≥ 0 are appropriate in cylindrical coordinates so the

variable Γ = ρ2 is used in the polynomial. For a given, x, h, C, and g, the zero
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velocity curves can therefore be computed. Figure 6.7 (detailed view in figure 6.8)

shows the zero velocity curves for various circular orbit equilibrium solutions within

a family. Note that as the x offset gets small, the area of allowable motion on the

Sun side of the equilibrium solution reduces until the equilibrium solution becomes a

disconnected stable point from the zero velocity curve. Visually this limit appears to

be a stable/unstable boundary for the circular orbit equilibrium solutions although

this will be analytically verified in the next section. Figure 6.9 shows the curves for

differing values of C while holding h, ω, and g constant. For an h value associated

with a stable equilibrium solution, increasing the energy opens up the allowable area

for motion around the equilibrium point and a large enough value leads to the two

areas merging together at a conjugate unstable equilibrium point which has the same

h value.
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Figure 6.7: Zero Velocity Curves for Various Equilibrium Solutions. * = equilibrium
solution at each C Energy Level. Dashed = Circular Orbit Equilibrium
Solutions Curve. Black→Blue = Decreasing C Value.

The shape or curvature of the zero velocity curves is determined by the solar
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Figure 6.8: Detail of Zero Velocity Curves for Various Equilibrium Solutions. * =
equilibrium solution at each C Energy Level. Dashed = Circular Orbit
Equilibrium Solutions Curve. Black→Blue = Decreasing C Value.

radiation pressure magnitude, g. Larger values of g (which can occur for larger

spacecraft surface area facing the Sun) will tend to straighten the upper portion of

the zero velocity curve and shrink the area of allowable motion for a fixed value of

h as seen in figure 6.10 for a system with constant h and ω and varied the solar

radiation pressure magnitude.

The zero velocity curves are dependant on the heliocentric orbit. As the semi-

major axis of the orbit decreases, the x offset range for the family of circular orbits

as well as the stable region shrinks. Figure 6.11 illustrates how the zero velocity

curves change for varying a values. Note that for a circular orbit at the same x offset

distance for all three case, the larger the semimajor axis cases have a stable solution

while the orbit closest to the Sun is unstable.
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Figure 6.9: Zero Velocity Curves with Constant h. * = Equilibrium Solution at Each
C Energy Level. Dashed = Circular Orbit Equilibrium Solutions Curve
(Red = Stable. Black = Unstable). Black→Blue = Decreasing C Value.
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Figure 6.10: Zero Velocity Curves for Fixed ω varied g. Black→Blue = Increasing g
Value.
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Figure 6.11: Zero Velocity Curves for Varying Semimajor Axis Values. Green (1 AU)
→Blue (3 AU) = Increasing a Value.

The zero velocity curves appear to have an open shape, so it is only natural to

determine if there exist any other conditions for the curves to close up and bound the

motion of the spacecraft inside. First, consider the partial derivatives of the Jacobi

integral:

J̄x =
∂J̄

∂x
= −g − 3ω2x +

µx

(ρ2 + x2)3/2
, (6.47)

J̄ρ =
∂J̄

∂ρ
= −h2

ρ3 +
1

2
ω2ρ +

µρ

(ρ2 + x2)3/2
. (6.48)

To find a point of closure, J̄x = 0 and J̄ρ = 0 must hold. Note that equations 6.47

and 6.48 are exactly the conditions used to find the circular orbit equilibrium solu-

tions. First consider the case of negligible solar radiation pressure, g = 0, these

partial equations become:

−3ω2x +
µx

(ρ2 + x2)3/2
= 0, (6.49)
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−h2

ρ3 +
1

2
ω2ρ +

µρ

(ρ2 + x2)3/2
= 0. (6.50)

Rearranging yields:

3ω2 =
µ

(ρ2 + x2)3/2
, (6.51)

h2

ρ4 −
1

2
ω2 =

µ

(ρ2 + x2)3/2
. (6.52)

By substitution, the following solution is found:

ρ4 =
2h2

7ω2
, (6.53)

x2 =
( µ

3ω2

)2/3

−
√

2

7

h

ω
. (6.54)

Note that for a real valued solution to exist, x2 > 0. This condition on x becomes a

condition on the angular momentum magnitude, h, for the system:

h <
( µ

3ω2

)2/3
√

7

2
ω. (6.55)

Since we are mostly interested in the circular orbit equilibrium solutions, we can

substitute h = ρ2
0θ̇0, using the solutions for ρ0 and θ̇0 into this condition and find the

condition to be a function of x0:

((
x0µ

3ω2x0 + g

)2/3

− x2
0

)(
7ω2

2
+

g

x0

)
<

( µ

3ω2

)2/3
√

7

2
ω. (6.56)

If we now consider that the solar radiation pressure is non-negligible then the

rearranged equations are:

3ω2 +
g

x
=

µ

(ρ2 + x2)3/2
, (6.57)

h2

ρ4 −
1

2
ω2 =

µ

(ρ2 + x2)3/2
. (6.58)

These equations are the same as the conditions for the circular orbit equilibrium

solutions. This implies that closure points occur at equilibrium solutions with the
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same angular momentum magnitude as predicted by the zero velocity curves and

that there do not exist any other closure points of the system allowing a spacecraft

to escape in unbounded areas.

6.4 Stability of Averaged Equations of Motion

The zero velocity curves provide a graphical look at the stability of the system, we

now verify these results analytically. To begin the averaged equations are linearized

about a circular orbit equilibrium solution (ρ0, x0, and θ̇0 from the above relations)

yielding the following linear equations with time invariant coefficients:

δẍ =

(
3x2

0µ

r5
0

− µ

r3
0

+ 3ω2

)
δx +

(
3x0ρ0µ

r5
0

)
δρ, (6.59)

δρ̈ =

(
3x0ρ0µ

r5
0

)
δx +

(
3ρ2

0µ

r5
0

− µ

r3
0

+ θ̇
2

0 −
1

2
ω2

)
δρ + (2ρ0θ̇0)δθ̇, (6.60)

δθ̈ =

(
2ρ̇0θ̇0

ρ2
0

)
δρ +

(
−2θ̇0

ρ0

)
δρ̇ +

(−2ρ̇0

ρ0

)
δθ̇. (6.61)

Note that for a circular orbit, ρ̇0 = 0 therefore equation 6.61 becomes:

δθ̈ =

(
−2θ̇0

ρ2
0

)
δρ̇. (6.62)

For notational simplicity, these equations are rewritten as:

δẍ = aδx + bδρ, (6.63)

δρ̈ = cδx + dδρ + eδθ̇, (6.64)

δθ̈ = fδρ̇, (6.65)
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where a, b, c, d, e, f are defined by the original linearized averaged equations and

c = b. In state space form, the linearized averaged equations are:




δẋ

δρ̇

δθ̇

δẍ

δρ̈

δθ̈




=




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

a b 0 0 0 0

b d 0 0 0 e

0 0 0 0 f 0







δx

δρ

δθ

δẋ

δρ̇

δθ̇




, (6.66)

Ẋ = AX. (6.67)

To determine the spectral stability of this system, let’s examine the eigenvalues of

the A matrix, which are determined by its characteristic polynomial:

λ6 + (−a− d− ef)λ4 + (−b2 + ad + aef)λ2 = 0. (6.68)

It is obvious from the characteristic polynomial that there exist two eigenvalues at 0.

Therefore, the system is by definition unstable, but the eigenvector associated with

the zero eigenvalues is (0, 0, 1, 0, 0, 0) or the θ direction, which does not affect the

stability of the circular orbit but only yields a downtrack drift. Therefore, the other

eigenvalues need to be used to determine the stability of the orbit. Eliminating the

zero roots of the characteristic polynomial results in:

λ4 + (−a− d− ef)λ2 + (−b2 + ad + aef) = 0, (6.69)

which has the roots:

λ = ±
√

(a + d + ef)±
√

(4b2 + (−a + d + ef)2)

2
, (6.70)



96

where

(4b2 + (−a + d + ef)2) =
36µ2x2

0ρ
2
0

(x2
0 + ρ2

0)
5

+

(
3θ̇

2

0 +
3µ(x0 − ρ0)(x0 + ρ0)

(x2
0 + ρ2

0)
5/2

+
7ω2

2

)2

> 0,

(6.71)

(a + d + ef) = −3θ̇
2

0 +
µ

(x2
0 + ρ2

0)
3/2

+
5ω2

2
. (6.72)

With two of these roots always having positive signs, only purely imaginary roots will

allow for a stable solution and they depend on the comet’s specific orbit. Therefore

to have purely imaginary roots, the following condition needs to hold for the comet’s

orbit:

(a + d + ef) < −
√

4b2 + (−a + d + ef)2, (6.73)

since
√

4b2 + (−a + d + ef)2 > 0 always.

As an example, figure 6.12 illustrates the stable and unstable circular orbit equi-

librium solutions based on this analysis. The eigenvalues are indeed either zero or

purely imaginary for the stable solutions.
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Figure 6.12: Possible Circular Orbit Solutions as a Function of x from averaged equa-
tions. Red = Stable. Black = Unstable.
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To test this stability criteria, example simulations of stable and unstable solutions

as determined by equation 6.73 were performed and their trajectories were plotted on

the appropriate zero-velocity curve. Figure 6.13 shows a stable trajectory remaining

close to the equilibrium point. Note that the zero-velocity curves are computed for

the averaged equations with a slightly different energy (a result of terms which have

been averaged out) from the non-averaged equations yielding a curve around the

averaged equilibrium solution instead of a single point. Figure 6.14 shows an unsta-

ble trajectory wandering far from the equilibrium point as expected and eventually

escaping. These results provide an analytical method of determining stable orbits

in the Hill rotating system about a small body under solar radiation pressure. In

general, the stable orbits exist near the body (small x offset).
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Figure 6.13: Stable Trajectory Plotted on Zero Velocity Curves. Blue = Trajectory.
Black = Trajectory Zero velocity Curve. Red = Averaged Equilibrium
Zero Velocity Curve.
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Figure 6.14: Unstable Trajectory Plotted on Zero Velocity Curves. Blue = Tra-
jectory. Black = Trajectory Zero velocity Curve. Red = Averaged
Equilibrium Zero Velocity Curve.
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6.4.1 Stability in Presence of Outgassing Jet

Until this point, the analysis presented could be applied to any small body with-

out disturbing forces other than solar radiation pressure. Lets shift our focus to a

comet with outgassing jets which produce a varied pressure field in the vicinity of

the comet nucleus. The acceleration due to an outgassing jet will be considered as a

radial force with the acceleration vector defined as[32]:

~aoj =
Aog

|~r|3~r, (6.74)

where Aog is the strength of the outgassing jet. The new equations of motion become:

~̈rI =
∂U

∂~rI

+ gx̂ + ~aoj. (6.75)

When broken down into cylindrical coordinates, it becomes obvious that only the x

and ρ directions are affected by the outgassing jet’s acceleration.

ẍ = 2ω(ρ̇ cos θ − ρθ̇ sin θ) + 3ω2x + g − xµ

r3
+

xAog

r3
, (6.76)

ρ̈ = −2ẋω cos θ + ρθ̇2 − ρω2 sin2 θ − ρµ

r3
+

ρAog

r3
, (6.77)

ρθ̈ = 2ẋω sin θ − 2ρ̇θ̇ − ρω2 sin θ cos θ. (6.78)

Therefore the new Jacobi integral is:

Jog =
1

2
(ẋ2 + ρ̇2 + ρ2θ̇2)− µ

r
− 1

2
ω2(3x2 − ρ2 sin(θ)2)− gx +

Aog

r
. (6.79)

Averaging this over θ as before yields:

J̄og =
1

2
(ẋ

2
+ ρ̇

2
)− µ

r
− 1

2
ω2(3x2 − 1

2
ρ2)− gx +

h2

2ρ2 +
Aog

r
. (6.80)

If we consider that the spacecraft passes through an outgassing jet’s pressure field,

we can determine a bound on the strength of the jet for which the spacecraft is con-

tained within an area about stable equilibrium solutions. As determined previously,
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the stable equilibrium solution has a conjugate h-valued unstable equilibrium solu-

tion which defined the closure point on the zero velocity curve with increased energy.

Define Cs as the energy associated with a stable equilibrium solution having angu-

lar momentum magnitude, h, and Cu as the energy associated with the conjugate

unstable equilibrium solution. Therefore the condition Cs ≤ Cog ≤ Cu, where Cog is

the energy while within an outgassing jet, must hold to keep a spacecraft bounded

near the stable equilibrium. This implies a bound on the outgassing magnitude, Aog:

Aog

r
≤ Cu − Cs, (6.81)

or

Aog ≤ (Cu − Cs)r. (6.82)

Therefore, if the strength of an outgassing jet, Aog, can be estimated, this bound

gives insight into whether the spacecraft will remain trapped in the vicinity of the

stable equilibrium. For example, figure 6.15 illustrates the trajectory of a spacecraft

which has passed though an outgassing jet with a magnitude which does not violate

the criteria and allows for the spacecraft to remain bounded near the equilibrium

solution. The magnitude of the outgassing jet in figure 6.16 is too large and forces

an instability in the orbit allowing it to escape.

Ellipsoidal Body Effects

Since comet bodies are rarely spherical or produce point mass gravity, let’s now

consider the effect an ellipsoidal body has on this type of orbit. Using the method

in Broschart et al.[33] for finding the gravitational force, the effect of an ellipsoidal

comet body was incorporated into the equations of motion. For comparison, the µ

value was kept constant by using a biaxial ellipsoid body and varying the radius of

one of the sides. The comet rotational period was set to 12 hours with constant spin
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Zero Velocity Curve (Two Jet Passages). Blue = Trajectory. Black =
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about the z axis. For a varied radius in the orbital plane (with initial position of

longest radius aligned along the x direction as shown in the figures and identical initial

conditions for the spacecraft across the simulations), figures 6.18 to 6.20 show the

deviation from the spherical model, figure 6.17. As expected, the more ellipsoidal the

body becomes, the more the trajectory deviates from the spherical body’s trajectory

(seen in figure 6.21) until it appears to become unstable and escape the vicinity of the

circular orbit as in figure 6.20, although the stability was not analytically verified.
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Figure 6.17: Orbit with Initial Offset of x = 0.5km with Spherical Comet Body of
Radius 0.129 km. Solid = Trajectory.
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Figure 6.18: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
0.193, 0.105, and 0.105 km. Solid = Trajectory. Dashed = Trajectory
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Figure 6.19: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
0.258, 0.091, and 0.091 km. Solid = Trajectory. Dashed = Trajectory
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If the ellipsoidal radius is varied in the out of orbital plane direction, as in fig-

ure 6.22 through 6.26, the trajectory appears to remain stable for a more ellipsoidal

body then for the case of the body varied in plane. Figure 6.27 shows the deviations

of the trajectories from the spherical model (figure 6.17) illustrating that this con-

figuration allows for the spacecraft to remain in a stable orbit for a more elongated

body then when the comet is elongated in the plane.
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Figure 6.22: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
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Figure 6.23: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
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Figure 6.24: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
0.082, 0.082, and 0.322 km. Solid = Trajectory. Dashed = Trajectory
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Figure 6.25: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
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Figure 6.26: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
0.069, 0.069, and 0.451 km. Solid = Trajectory. Dashed = Trajectory
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Since these simulations all assumed an identical initial circular orbit which is close

to the comet body and within the stable region, we now consider how the initial x

offset of the circular orbit is affected by an ellipsoidal body. To produce a wider

stable x offset region, a larger body will be considered for these comparisons. We

consider a single ellipsoid body with lengths 1, 0.253, and 0.253 km and vary the

initial x offset to determine the effects of the ellipsoidal body, as seen in figures 6.28

though 6.31. As expected, figure 6.32 shows that the ellipsoidal body effects lessen

and the position components appear to converge as the initial x offset of the circular

orbit increases.
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Figure 6.28: Orbit with Initial Offset of x = 0.5km with Ellipsoidal Body with Radii
1, 0.253, and 0.253 km. Solid = Trajectory. Dashed = Trajectory
Assuming a Spherical Body.
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Figure 6.29: Orbit with Initial Offset of x = 1.0km with Ellipsoidal Body with Radii
1, 0.253, and 0.253 km. Solid = Trajectory. Dashed = Trajectory
Assuming a Spherical Body.
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Figure 6.30: Orbit with Initial Offset of x = 1.5km with Ellipsoidal Body with Radii
1, 0.253, and 0.253 km. Solid = Trajectory. Dashed = Trajectory
Assuming a Spherical Body.



111

−8 −6 −4 −2 0 2 4 6 8 10

−6

−4

−2

0

2

4

6

x hill

y 
hi

ll
0 0.5 1 1.5 2 2.5

x 10
6

1.5

2

2.5

x

0 0.5 1 1.5 2 2.5

x 10
6

7

7.5

8

ρ

0 0.5 1 1.5 2 2.5

x 10
6

0

500

θ 

0 0.5 1 1.5 2 2.5

x 10
6

−1

0

1
x 10

−6

xd

0 0.5 1 1.5 2 2.5

x 10
6

−2

0

2
x 10

−6

ρ 
d

0 0.5 1 1.5 2 2.5

x 10
6

2

3

4
x 10

−6

θ 
d

time (s)

Figure 6.31: Orbit with Initial Offset of x = 2.0km with Ellipsoidal Body with Radii
1, 0.253, and 0.253 km. Solid = Trajectory. Dashed = Trajectory
Assuming a Spherical Body.
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For comparison to the simulations in chapter IV, the idealized comet body for

Wild 2 was tested. Figure 6.33 shows the trajectory and the difference in position

components (compared to a spherical body with the same gravitational parameter,

µ) for a spacecraft in orbit about the Wild 2. Note that since this body is much

larger in size then the previous bodies considered, the initial circular orbit is also

much larger with an initial offset of 4 km and radius of 53 km.
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Figure 6.33: Orbit with Initial Offset of x = 4.0km on Idealized Wild2 Ellipsoidal
Body with Radii 2.7, 1.9, and 1.5 km. Solid = Difference in Trajectory
Components from a Spherical Body.

6.5 Summary

In this chapter, the effects of the heliocentric motion about the Sun using the Hill

three-body problem are examined. We have shown that on average Sun synchronous

circular orbits offset from the center of mass of the comet body exist in the Hill

equations of motion when solar radiation pressure is present. The stability of these

orbits were determined through the construction of zero velocity curves and verified

using spectral stability analysis. In direct connection to the topic of this thesis, a

bound on the outgassing magnitude was determined such that the stability of an
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orbit is maintained as a spacecraft passes though a jet field. This bound only allows

for the spacecraft to remain in a stable orbit which is not necessarily the original orbit

it was following or even in the vicinity of the original orbit. The number of passages

through jet fields (either the same one or multiple different ones) has no limit as

long as the outgassing magnitude for each jet remains within the given bound. An

ellipsoidal body was then incorporated into the equations of motion to determine the

effect on the identified stable orbits. Different effects were explored by varying the

radii of the ellipsoidal body and changing it’s orientation to the orbits. As expected,

the more non-spherical the body became the larger the deviation from the nominal

spherical body became. Also, as the spacecraft orbit is located farther from the body,

the less the ellipsoidal body affected the deviation from the nominal.



CHAPTER VII

Restricted Orbital Motion

Since it has been shown that stable orbits exist, we now consider controlling

these orbits. Orbits that are restricted to an interval of θ on the comet’s termina-

tor would be useful for monitoring the comet’s surface at sunrise or sunset, where

interesting surface activity occurs. Several control schemes are presented to restrict

the motion of an orbiting spacecraft using a one or two dimensional surface to define

the boundary of the allowable orbit. Different control boundaries will be considered

when developing a control scheme. The first case is for the motion to be restricted by

an angle in the cylindrical coordinate formulation of the equations of motion. This

produces a long wedge shaped allowable area with the possibility of impact with the

nucleus. Finally, boundaries defined by both an angle and a minimum radius which

also restrict impacting are tested. In each case, an acceleration is applied when the

spacecraft violates the defined boundary to push the spacecraft back into the allow-

able motion area[33]. Both impulsive and finite burn control schemes are explored

with the addition of outgassing accelerations and gravitational perturbations from

an ellipsoidal body.

114



115

7.1 Impulsive Maneuvers

For our initial analysis we consider a theoretical control method that is commonly

used to test the feasibility of the control boundaries, an impulsive thrust. First

consider the case where a ∆v is applied to reverse the direction of the full velocity

vector while holding the magnitude constant. This will reverse the motion of the

spacecraft, ideally retracing its orbital path. This result, as seen in figure 7.1, does

not maintain the orbit perpendicular to the Sun line, evidenced by the drift in x

in figure 7.1, although the impulsive maneuver is successful at not violating the

boundaries.
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Figure 7.1: Orbit Control with Full Reversed Velocity Impulse with Angle Boundary.
Solid = Controlled Trajectory. Blue = Angle Boundary. o = Impulse
Location. Position and Velocity Components of the Controlled Orbit are
Also Plotted for Reference.

Since the reversal of the full velocity vector performs poorly at maintaining the

orbit’s attitude, we consider the same impulse maneuver except only reverse the ẏ

and ż components (or ρ̇ and θ̇ components). This result, as seen in figure 7.2, also

does not maintain the orbit perpendicular to the Sun line but has less deviation than

the full velocity reversed maneuver.
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Figure 7.2: Orbit Control with Reversed θ and ρ Velocity Impulse with Angle Bound-
ary. Solid = Controlled Trajectory. Blue = Angle Boundary. o = Impulse
Location. Position and Velocity Components of the Controlled Orbit are
Also Plotted for Reference.

Finally lets consider once again the exact same impulse maneuver except only

reverse the θ̇ component:

∆v = v+ − v− = ρ+θ̇+ − ρ−θ̇−, (7.1)

where ρ+ = ρ− = ρ and θ̇+ = −θ̇− = θ̇ resulting in:

∆v = 2ρθ̇. (7.2)

This would ideally result in a final velocity of −ρθ̇. This control impulse, as seen in

figure 7.3, maintains the x offset similar to the ρ̇ and θ̇ reversal but does not maintain

the ρ component as well.

Figure 7.4 shows a comparison of the three impulsive schemes for the angle bound-

ary. It is clear that the reversal of the ρ̇ and θ̇ velocity components is the best of the

three at maintaining the orbit across all three position components.

The drawback to the boundary defined by angles is that the spacecraft can be

contained within the bounded area and still impact the comet. Let’s consider now

an orbit bounded by the angles as before and also a minimum radius from the body.
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Figure 7.3: Orbit Control with Reversed θ Velocity Impulse with Angle Boundary.
Solid = Controlled Trajectory. Blue = Angle Boundary. o = Impulse
Location. Position and Velocity Components of the Controlled Orbit are
Also Plotted for Reference.

When the spacecraft encounters the angle boundary, a reversal of the θ̇ velocity

component impulse will be applied, while a reversal of the ρ̇ velocity component

impulse will be applied when the radius boundary is violated. Figure 7.5 illustrates

the result of this control scheme and figure 7.6 illustrates the addition of a reversal of

the ẋ velocity component also when the minimum radius boundary is encountered.

Note that both methods give similar results for the x offset but the method with the

additional ẋ velocity control maintains the ρ component better.
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7.2 Finite Burn Maneuvers

The control used up until this point has been an impulsive thrust maneuver with

the main objective of confining the spacecraft within a region. These methods were

necessary to illustrate that the spacecraft could be controlled to remain within an

allowable region and not escape. A finite burn maneuver can be developed to recreate

the impulsive thrust to reverse the motions and retrace the spacecraft’s path. We

now consider a finite burn based on the best impulsive control with the form:

~T = m[0,−vρ̇,−vθ̇], (7.3)

where m is a scale factor and −vρ̇ and −vθ̇ are the velocity components of the

spacecraft at the time of boundary crossing. Note that this control thrust is fixed

in magnitude and direction once the boundary has been violated. The thrust is

turned on when the spacecraft crosses the boundary angle and turned off once its

θ̇ becomes the negative of the value at the boundary crossing. Figures 7.7 and 7.8

illustrate the finite burn control for a range of angle boundaries. Note that the

deviation from the initial circular orbit depends on the x-offset and the scale factor,

m. These represent a more realistic case of orbit control, although we note that other

important effects such as orbit uncertainty and central body non-sphericity have not

been incorporated.

7.3 Summary

Multiple control maneuvers were presented to restrict the motion of the spacecraft

within a defined bounded area. Initially, impulsive maneuvers were explored to verify

that stable orbits could be controlled in such a manner and still remain near the

original orbit. Finally, a finite burn thrust based on the best performing impulsive
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maneuver was used to demonstrate a more realistic approach for restricting the orbits.
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CHAPTER VIII

Conclusions

With the small bodies in our solar system, particularly comets, becoming im-

portant targets of space missions, this thesis has addressed some of the associated

challenges. While many missions have flown by and investigated comets from a dis-

tance there has yet to be a mission to actually orbit or land on the surface. The

need to determine safe orbits in the vicinity of a comet has become important as this

type of mission is near to becoming a reality with ESA’s Rosetta mission and the

proposed NASA comet surface sample return mission. For the flyby type of comet

mission, long term predictions of the rotation state can be similarly important. This

is especially evident in NASA’s Stardust NExT mission as the spacecraft will not

arrive when observations of the comet are made, thus the rotational state needs to

be propagated over time to determine any trajectory corrections that may need to

be made months or years before the arrival.

8.1 Outgassing Jet Model and Comet Rotational State

In support of a spacecraft mission to a comet, this thesis develops a simple

cometary outgassing jet mathematical model for a single jet with constant half angle,

δ, using a uniform ellipsoidal model of the comet nucleus. The pressure field created
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by the jet is constant across its profile with the magnitude inversely proportional to

the square of the distance from the surface. To explore the evolution of the rotational

state of a comet nucleus, we derived improved averaged equations for rotationally

symmetric bodies as a result of reactive torques produced by jets. The averaged

equations were compared to the full equations of motion, integrated using a varia-

tional algorithm, and were shown to capture the drift in the rotational state of the

comet. This validates the theory presented in Neishtadt et al.[11] and can be used

to predict the rotational state of the comet nucleus as it passes through perihelion.

Stardust NExT is set to image the crater left behind by Deep Impact on the comet

Tempel 1. The optimal time for a trajectory correction is well in advance of the

encounter, therefore, for a successful mission, the rotational state of the comet needs

to be accurately predicted so that the spacecraft can target the crater for imaging.

With a small correction in the initial conditions, the averaged equations accu-

rately capture the long term drift in the comet’s rotation state assuming fixed jet

geometry over multiple perihelion passages. The theory allows the comet nucleus

dynamics to be propagated over long time spans as a function of a few parameters.

This also allows for development of a stochastically varying comet nucleus rotation

over very long time spans. A variable jet geometry’s effect on the evolution was ex-

plored and compared to the averaged equations’ prediction with similar results. By

examining these averaged equations over long time spans, insight into comet spin up

and spin down can be gained. The comet spinning at too large of a rate has severe

implications[35]. Comet spin up due to the torques produced by the sublimation in

active areas has been considered to be a major cause to the breakup of comets[36].

By being able to predict the long term evolution of the comet’s rotational state and

spin rate due to outgassing jets, comets which are on a path to break up could be
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identified.

8.2 Outgassing Jet Effects and Jet Estimation

If a mission is planned to encounter a comet during a phase of jet activity, there

is a need to determine the effect outgassing from discrete jets has on an orbiting

spacecraft. A model of a triaxial ellipsoidal comet was simulated using 20 discrete

jets based on the comet Wild 2 model to verify the analytical results found by

assuming small changes in the orbital elements of the spacecraft relative to the comet.

The first case considered was when a spacecraft passes though a nearly radially

outgassing jet, such as when it is far from the comet. It was shown that if the

spacecraft has a negative radial velocity component, the outgassing jet will decrease

the semimajor axis and eccentricity and if the spacecraft has a positive radial velocity

component, the outgassing jet will tend to make the orbit more eccentric and increase

the semimajor axis for a radial impulse when the spacecraft is located significantly

far from the comet.

If, on the other hand, the spacecraft is in close proximity to the comet nucleus,

such as during a landing or hovering scenario, it has been shown that the transverse

component of the outgassing can affect the semimajor axis and eccentricity of the

spacecraft oppositely depending on the relative magnitudes of the components. The

orientations of the jets should be known prior to attempting to land on the comet

surface to properly predict the trajectory of the spacecraft.

The locations of the jets will need to be determined and compared to images

taken of the comet surface in order to estimate the jet orientations. Estimation

methods were presented in this thesis to not only estimate the jet locations, but also

the outgassing velocity and the half angle. The outgassing velocity can be deter-
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mined by taking a measurement of the mass flux and the change in the spacecraft’s

acceleration using Doppler tracking depending on the outgassing strength and thus

the heliocentric distance.

The half angle can be estimated by using boundary crossing points mapped to the

surface of the comet. The method for estimating the half angle of the jet includes

an algorithm for identifying jet locations when multiple jet outgassing fields have

been crossed and for ideally estimating non-circular cross sections. For the half

angle estimation method simulated, a small angle error in the measurement results

in general in a small half angle estimate error. These estimates help to provide a

better trajectory fit for the spacecraft as well as to better predict future trajectories.

By knowing probable jet locations, the spacecraft can target these areas for scientific

measurements or avoid them to maintain particular orbital parameters.

8.3 Stable Orbits in a Rotating Frame

For longer stays at a comet, the effects of the heliocentric motion about the

Sun need to be considered. Since comets are, in general, located significantly far

from other celestial bodies, the dynamic setup of the Hill three-body problem nicely

describes the system. We have shown that on average Sun synchronous circular

orbits offset from the center of mass of the comet body exist in the Hill equations of

motion when solar radiation pressure is present. The construction of zero velocity

curves provide insight into the stability of these orbits and allows for evaluation

of stability in the presence of pressure from an outgassing jet. The stability of the

orbits as deemed by zero velocity curve analysis was verified though spectral stability

analysis. Although the Hill equations of motion are for a constant rate about the

Sun, for short time spans, on the order of weeks, these orbits will persist.



127

Since the focus is on comets, there are significant perturbations which were ex-

amined. In direct connection to the topic of this thesis, a bound on the outgassing

magnitude was determined such that the stability of an orbit is maintained as a

spacecraft passes though a jet field, i.e. the spacecraft does not escape from the

comet body. This bound only allows for the spacecraft to remain in a stable orbit

which is not necessarily the original orbit it was following or even in the vicinity of

the original orbit. The number of passages through jet fields (either the same one

or multiple different ones) has no limit as long as the outgassing magnitude for each

jet remains within the given bound.

As discussed, comet bodies are rarely spherical, therefore an ellipsoidal body

was then incorporated into the equations of motion to determine the effect on the

identified stable orbits. Different effects were explored by varying the radii of the

ellipsoidal body and changing it’s orientation to the orbits. As expected, the more

non-spherical the body became the larger the deviation from the nominal spherical

body became. Also, as the spacecraft orbit is located farther from the body, the

less the ellipsoidal body affected the deviation from the nominal. Until the exact

shape of the comet body is known, orbiting at a larger distance from the body will

produce the least deviation from the nominal stable orbit while gathering information

to determine the feasibility of maintaining a stable orbit in close proximity to the

nucleus.

Imaging the comet surface or monitoring a particular region on the comet re-

quires careful control. In particular, the Sunrise terminator on the comet would

provide valuable information in terms of jet activity and may be of interest to mon-

itor. Therefore multiple control maneuvers were presented to restrict the motion

of the spacecraft within a defined bounded area. Initially, impulsive maneuvers
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were explored to verify that stable orbits could be controlled in such a manner and

still remain near the original orbit. Finally, a finite burn thrust based on the best

performing impulsive maneuver was used to demonstrate a more realistic approach

for restricting the orbits. These restricted orbits give the spacecraft the ability to

“hover” over a particular region.

8.4 Future Directions

While this thesis contributes to many areas in the field of outgassing jet dynamics,

there are more effects to be considered.

8.4.1 Rotational State of the Comet Nucleus

Although this thesis provided a basic look at the effects that variable jet geometry

on the rotational evolution of a comet nucleus, a more systematic approach could be

devised. Previously, we assumed that as jets expired, new jets appeared randomly.

Using the predicted changes in the the rotational state, the jets could be correlated

to the rotational axis orientation such that new jets would appear on only sunlit

areas of the comet surface. In addition, the spin up of the comet could be examined

more carefully. Using the jet reactive torques, it may be possible to find conditions

on the jets, their geometry, or the rotation axis that will lead to the eventual breakup

of the comet nucleus.

8.4.2 Orbit Sensitivity to Outgassing

The sensitivity of the orbits to the outgassing perturbations needs to be quantified

as it may affect the navigation precision. A correlation between the outgassing

magnitude and the immediate deviation from the nominal orbit could be made.

Assuming that the time it takes to pass though an outgassing jet field is small, the
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results from the two-body orbital elements analysis could be applied. Also, since the

outgassing jet parameters may not be well known, a covariance analysis with respect

to the jet parameter errors on a spacecraft’s trajectory would provide more insight

into the orbit’s sensitivity.

8.4.3 Stable Orbits in a Rotating Frame

For long term orbiting, the elliptical heliocentric motion of the comet would

need to be considered. This thesis assumed that the spacecraft would be in the

vicinity of the comet for a short time span such that the heliocentric motion would

be approximately constant. This would not be the case for a mission goal of long

term monitoring of comet activity or multiple surface sampling. A possible solution

for this would be to determine stable orbits for segments of the heliocentric path

by averaging over the changing angular rate. Maneuvers could be performed at the

intersection of the segments to transfer the spacecraft from one stable orbit to a new

stable orbit for the next segment. The segment size would need to be a function of

the angular rate. Therefore there would need to be more segments and more transfers

near perihelion where the angular rate is rapidly changing.



APPENDICES

The algorithm for the variational integration[28] used is presented. The rotational

equations of motion for a rigid body in a body fixed frame.

J · ~̇ω + ~ω × J · ~ω = ~M, (A.1)

Ṙt = Rt × ~ω, (A.2)

where J ∈ R3×3 is the inertia matrix of the body, ~M, ~ω ∈ R3 are the moment and

angular velocity vectors, respectively, and Rt is the rotation matrix.

To begin, denote the function S(·) as a skew mapping of a generic vector to a

matrix such that for x, y ∈ R3:

S(x)y = x× y. (A.3)

Also, let the matrix Jd be related to the inertia matrix, J, by the relationship:

J = trace[Jd]I3×3 − Jd. (A.4)

Note that Jd is symmetric and satisfies the following equation for ω:

S(Jω) = S(ω)Jd + JdS(ω). (A.5)

For a general shape, Jd is defined as:

Jd =




∫
x2dm

∫
xydm

∫
xzdm

∫
xydm

∫
y2dm

∫
yzdm

∫
xzdm

∫
yzdm

∫
z2dm




=

∫
~ρ~ρdm. (A.6)
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For a constant density ellipsoid with principal axes a, b, c and mass M , as was as-

sumed for the comet body above, Jd is defined as:

Jd =
1

5
M




a2 0 0

0 b2 0

0 0 c2




. (A.7)

An initial ωk, J, and Rk are known (k denotes time step). To begin, the implicit

Eq. A.8 needs to be solved for Fk.

S(Jωk) =
1

h
(FkJd − JdF

T
k ), (A.8)

where h is the time step.

To solve this equation, consider the implicit Eq. A.9 which can be solved by using

the following Cayley Transformation into equivalent vector Eqs. A.10 and A.11[37].

Note that g = hJωk is the relationship which solves Eq. A.8.

S(g) = FkJd − JdF
T
k , (A.9)

GCay(f) = g + g × f + (gT f)f − 2Jf = 0, (A.10)

FCay = (I3×3 + S(f))(I3×3 − S(f))−1. (A.11)

Here FCay is the solution for Fk which solves Eq. A.8. To find FCay, the vector f

must be computed. To do this, the Jacobian 5GCay(f) is needed

5GCay(f) = S(g)− 2J + (gT f)I3×3 − fgT . (A.12)

Using Newton’s iteration on Eq. A.13, solve for f using the previous solution as the

initial guess, fk+1,0 = fk,i, (use angular velocity as an initial guess for f0,0) and the

following equation (i denotes iteration number and k denotes time step):

fk,i+1 = fk,i −5GCay(fk,i)
−1GCay(fk,i), (A.13)
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until the condition from Eq. A.10 or computationally, ‖GCay(f)‖ < tolerance is

satisfied from the iteration on f . FCay (= Fk) can then be computed from Eq. A.11.

Once Fk is known, the rotation matrix, Rk+1 (body fixed frame to inertial frame)

for the next time step is found as:

Rk+1 = RkFk. (A.14)

In general, the moment vector is produced from the potential, V , and is determined

as S(M) = ∂V
∂R

T
R−RT ∂V

∂R
. For our comet body’s complex rotation, the moments are

produced by the jets and using Rk+1, we can then solve for Mk+1 from our outgassing

model. The angular velocity is calculated from:

ωk+1 = J−1(FT
k Jωk + hMk+1). (A.15)
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