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NOMENCLATURE

(Symbols described in the Section where they first appear)

2.1 Small-body Shape Modeling

a,b,c Ellipsoid semi-major axes, a > b > c > 0
ρ̃ Position on the small-body surface, groundtrack vector
E 3x3 matrix that defines an ellipsoid shape
n̂ Unit normal vector to the small-body surface
n̂i Unit normal vector to the i-th polyhedron face
r̃i,1,̃ri,2,̃ri,3 Position of the three vertices of the i-th polyhedron face
Ci Scalar constant for the i-th polyhedron face
ρ̃i Position on the plane defined by the i-th polyhedron face
ωi Solid angle covered by the i-th polyhedron face from the

spacecraft point-of-view

2.2 Small-body Gravity Modeling

Γ Set of positions that define the small-body shape
U Gravitational potential of the small body
G Universal gravitational constant (= 6.67 × 10−11 km3/ (kg s2))
̺ Mass density

ξ̃ Position of a volume element

r̃ = [x, y, z]T Spacecraft position
dV Volume element in the small-body
Msb Mass of the small-body
Cnm,Snm Spherical harmonic coefficient sets
µsb Gravitational parameter of the small-body
Rref Reference radius for spherical harmonic expansion
Pnm Associated Legendre functions
φ Spacecraft latitude
λ Spacecraft longitude

2.3.1 Two-body Problem in the Small-body Fixed Frame

ṙ = [ẋ, ẏ, ż]T Spacecraft velocity

r̈ = [ẍ, ÿ, z̈]T Spacecraft acceleration

xiv



ω̃ = [0, 0, ω]T Small-body angular velocity vector

T̃ = [Tx, Ty, Tz]
T Spacecraft thrust vector (per unit spacecraft mass)

JBF Jacobi constant for the two-body problem in the body-fixed
frame

Rr Resonance radius
A Linear two-body dynamics matrix
0mxn m by n matrix of zeros
Inxn n by n identity matrix

f̃ Linearized two-body dynamics forcing function
r̃0 Nominal (hovering) position

2.3.2 Circular Restricted Three-body Problem

Ñ = [0, 0, N ] Angular velocity of the primaries’ mutually circular orbit
µ1, µ2 Gravitational parameter of the first/second primary
r̃sc,1, r̃sc,2 Spacecraft position w.r.t. first/second primary
µ ≤ 1

2
Ratio of masses

R (f) Distance between primaries
JR3BP Jacobi constant for the circular restricted three-body problem

2.3.3 Hill Three-body Problem

RHill Hill radius
βSRP Force parameter for solar radiation pressure
G1 Solar flux constant (≈ 1 E8 (kg/m2) (km3/s2))
B Spacecraft mass to shadow area ratio
JHILL Jacobi constant for the Hill three-body problem

2.3.4 Generalized Elliptic Restricted Three-body Problem

ḟ Change in true anomaly w.r.t. time

f̈ Second derivative of true anomaly w.r.t. time
µSun Gravitational parameter of the Sun
t Time
aorb Semi-major axis of small-body orbit
eorb Eccentricity of small-body orbit
iorb Inclination of small-body orbit
ωorb Argument of periapsis of small-body orbit
Ωorb Longitude of ascending node of small-body orbit
Tf Rotation matrix from elliptic orbit frame to the rotating

three-body frame
Teo Rotation matrix the inertial frame to the elliptic orbit frame
Tpole Rotation matrix the inertial frame to the small-body
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rotation pole frame
Φpole Latitude of small-body rotation pole
Λpole Longitude of small-body rotation pole
Ti Rotation matrix the small-body rotation pole frame to the

small-body fixed frame

2.4 Measurement Models

h Spacecraft altitude
ŝ Instrument pointing direction
hi Altitude between spacecraft and the plane of the i-th face

ḣ Altitude rate-of-change, time-of-flight velocimeter measurement

3.1 Review of the Results of Sawai et al.

T̃OL Open-loop component of control thrust
α1,α2,α3 Eigenvalues of the Hessian matrix of the gravitational potential
v̂1,v̂2,v̂3 Eigenvectors of the Hessian matrix of the gravitational potential

T̃DB Dead-band component of control thrust
Tm Constant magnitude of dead-band control thrust
ĉ Dead-band thrust direction
fdb Dead-band evaluation function
γ Dead-band size parameter

3.3.2 Analysis of GDTS w/OL Controller Results

n̂db ,̂tdb,ẑ Unit vectors that define dead-band coordinate frame
θ Angle between n̂db and ĉ

3.4 Other Dead-band Hovering Approaches

â0 Acceleration at the nominal hovering position
r̃0I (t) Constant latitude, retrograde, circular orbit
φ0 Initial latitude
λ0 Initial longitude
Φ State transition matrix
M Monodromy matrix

4.1 Zero-velocity Surface Result for Conservative Systems

V Generalized potential function
~Ω Frame angular velocity vector
J Jacobi constant
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C0 Nominal value of Jacobi constant
δr Deviation in position from nominal

δ ˙̃r Deviation in velocity from nominal
β1, β2, β3 Eigenvalues of ∂2J/∂r̃2|(r̃0,03x1)

ϑ̂1, ϑ̂2, ϑ̂3 Corresponding eigenvectors of ∂2J/∂r̃2|(r̃0,03x1)

4.2 Zero-velocity Surfaces and Dead-band Hovering Control

δ (x) Dirac’s delta function
v̂c Unit vector defining dead-band orientation
v+ Spacecraft velocity vector after dead-band thrust activation
v− Spacecraft velocity vector before dead-band thrust activation

4.3 Effects of Uncertainty on Zero-velocity Surfaces

C∗ Value of perturbed Jacobi constant
δr0 Error in initial position vector
δv0 Error in initial velocity vector
∆Z Quantifier of zero-velocity surface perturbation
∆J Perturbation from nominal Jacobi constant
∆Jmax Largest perturbation from nominal Jacobi constant
A Set of allowable spacecraft positions (localized formulation)
rmax Maximum attainable distance from nominal
vmax Maximum attainable spacecraft velocity
B Set of allowable spacecraft positions (global formulation)
Z Set of positions on the zero-velocity surface
D Set of positions on the dead-band surface
κ Function that defines the zero-velocity surface
d Function that defines the dead-band surface
∆J+,∆J− Maximum allowable increase/decrease in Jacobi constant to

preserve boundedness
Rc Dead-band surface radius

r∗ = [x∗, y∗, z∗]T Critical position where dead-band surface and zero-velocity
surface are not transverse

δv0,max Maximal error in initial velocity that preserves boundedness

4.5 Hovering in Non-conservative Systems

H Time-varying Jacobi integral

5.1 Generalized Hovering Zero-Velocity Surface Result
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ã0 Nominal spacecraft acceleration without thrust
δr̃c = [δrc,x, δrc,y, δrc,z] Center of the quadratic zero-velocity surface with

respect to the nominal hovering position

5.2 Using a Reduced Measurement Set for Control

η Angle between n̂ and ϑ̂3

ha, hb, hc, hd Four parameters of the zero-velocity hyperboloid
δr̃r = [δxr, δyr, δzr] Vector from zero-velocity surface center to points on

its surface
u, v Parameterization coordinates
κDB,max, κDB,min Maximum/minimum dead-band surface curvatures
s Sphere radius
r̃s Sphere center
r̃x = [rx,x, rx,y, rx,z] Vector from dead-band sphere center to the zero-velocity

surface center
φm, λm Measured spacecraft latitude/longitude

Q =
∣

∣

∣
ϑ̂1 · r̂0

∣

∣

∣
Zero-velocity surface orientation quantifier

û (v) Unit vector alone surface of a quadratic cone
α, β Angles between the quadratic cone zero-velocity surface

and ϑ̂2 and ϑ̂3 respectively

5.3 Control Application

∆Videal Ideal estimate of hovering fuel cost
∆Vdaily Daily fuel cost of hovering
χ Normalized hovering distance, ||̃r|| /Rr

P Position coefficient
Π Daily fuel cost coefficient

5.4 Simulations

t∆V Duration for which dead-band thrust is applied

6.2 Free-drop Solution

tf Time of transfer

6.3 Constant Thrust Solution

r̃phantom Artificial translation target position
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6.4 Sensitivity to Parameter Uncertainty

X̃ =
[

r̃, ˙̃r
]T

Spacecraft state vector

ζ Arbitrary system parameter

X̃f Final spacecraft state

Cov
(

X̃
)

Covariance matrix of X̃

σ Quantifies the size of the one-sigma uncertainty ellipsoid at
the final spacecraft position

Tmag Magnitude of the transfer thrust
φT , λT Latitude/longitude of the thrust vector

6.6 Sliding Dead-band Descent

d Dead-band overshoot distance
ms/c Spacecraft mass
ψ Thruster plume half-angle
AT Cross-sectional area of the thruster plume on the

small-body surface
p Pressure induced by the thruster plume
rp Radius of a surface particle
Rsb Spherical small-body radius

Appendix E: Zero-velocity Surfaces near Equilibria in Lagrangian Dynamics

L Lagrangian function
T Kinetic energy
CL Value of Jacobi constant in the Lagrangian formulation
q̃ System configuration variables
p̃ Generalized momenta of the system
(

q̃eqm, ˙̃qeqm

)

Equilibrium state in Lagrangian formulation

xix



ABSTRACT

Close Proximity Spacecraft Maneuvers Near Irregularly Shaped Small-bodies:
Hovering, Translation, and Descent

by

Stephen B. Broschart

Chair: Daniel J. Scheeres

Recently there has been significant interest in sending spacecraft to small-bodies

in our solar system, such as asteroids, comets, and small planetary satellites, for

the purpose of scientific study. It is believed that the composition of these bodies,

unchanged for billions of years, can aid in understanding the formative period of our

solar system. However, missions to small-bodies are difficult from a dynamical stand-

point, complicated by the irregular shape and gravitational potential of the small-

body, strong perturbations from solar radiation pressure and third body gravity, and

significant uncertainty in the small-body parameters. This dissertation studies the

spacecraft maneuvers required to enable a sampling mission in this unique dynamical

environment, including station-keeping (hovering), translation, and descent.

The bulk of this work studies hovering maneuvers, where equilibrium is created

at an arbitrary position by using thrusters to null the nominal spacecraft accelera-

tion. Contributions include a numerical study of previous results on the stability of

xx



hovering, a definition of the zero-velocity surface that exists in the vicinity of a hov-

ering spacecraft (for time-invariant dynamics), and a dead-band hovering controller

design that ensures the trajectory is bounded within a prescribed region. It is found

that bounded hovering near the surface of a small-body can often be achieved using

dead-band control on only one direction of motion; altitude measurements alone are

often sufficient to implement this control.

A constant thrust strategy for translation and descent maneuvers appropriate

for autonomous implementation is also presented and shown to accurately complete

maneuvers in the vicinity of the initial position. Sensitivity analysis studies the

effects of parameter uncertainty on these maneuvers.

The theory presented within is supported throughout with numerical analysis

(software tools are described within) and test cases using models of real small-bodies.

xxi



CHAPTER I

Introduction

In recent years, there has been significant interest in sending spacecraft to small-

bodies in our solar system, such as asteroids and comets, for the purpose of scientific

study. Scientists believe that the composition of these bodies, which is likely un-

changed over billions of years, can help us to understand the formative period of our

solar system. Understanding the structure of these bodies would also be essential

to any small-body orbit diversion strategy implemented for planetary protection.

Small moons and planetary satellites, also classified as small-bodies, may harbor

unique environments of great scientific interest as well. If space exploration con-

tinues to expand and become more sophisticated, small-bodies could potentially fill

roles as fueling stations, mining sites, or remote observatories.

The interest of the science community is demonstrated by numerous recently exe-

cuted and currently flying missions. The first comprehensive mission to a small-body

was the National Aeronautics and Space Administration (NASA) / Jet Propulsion

Laboratory (JPL) / John Hopkins University Applied Physics Laboratory (JHUAPL)

Near Earth Asteroid Rendezvous (NEAR) mission to asteroid Eros, which launched

in 1996 and completed its mission in 2001. NASA/JPL followed with the 1999

Stardust mission to collect comet outgassing particles, the 2002 Contour comet ren-

1
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dezvous mission (managed by JHUAPL, failed soon after launch), and the 2005 Deep

Impact mission, part of which collided with a comet so the other part could view the

dust plume. The Japan Aerospace Exploration Agency (JAXA) Hayabusa mission

successfully rendezvoused with the asteroid Itokawa in 2005. As yet, it is unclear

whether the goal of obtaining surface material for return to Earth was achieved suc-

cessfully or not. The European Space Agency (ESA) also launched a mission to

study comets, Rosetta, in 2004 that is slated to arrive at comet 67P/Churyumov-

Gerasimenko in 2014. Numerous other small-body missions currently are in the

proposal or development stages.

Missions to small-bodies have a number of inherent difficulties relative to more

traditional space missions to planets and large moons, particularly if touchdown or

sampling maneuvers are included. First, the gravity of a small-body is insufficient

to pull the mass into a spheroid shape. This results in highly irregular small-body

shapes and corresponding arbitrary gravitational potential fields which complicate

the spacecraft dynamics increasingly with proximity. The weak gravitational fields

near these bodies also allow small accelerations due to tidal forces and solar radi-

ation pressure (SRP) to have tremendous impact on the spacecraft motion, to the

point that orbits are almost all unstable near particularly small bodies. Ironically,

it is the weak gravitational field that has allowed the elemental composition of these

bodies to remain unchanged for so long. Operating a spacecraft near a small-body

is further complicated by the uncertainty in the environment prior to arrival. Ac-

curate small-body bulk density estimates are virtually impossible to obtain prior to

arrival and shape estimates obtained from Earth-bound radar observations have lim-

ited resolution; this adds significant uncertainty to an already complex gravitational

field. In addition, the orbit of the small-body is usually insufficiently well known
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to navigate a spacecraft in its vicinity using Earth-bound radiometric data. Hence,

missions must be equipped with in-situ measurement instruments (such as altime-

ters or optical cameras) and corresponding filtering techniques to safely navigate the

small-body environment. Finally, because of the uncertain dynamics and long travel

time for signals to and from Earth, it is desirable for the spacecraft to have significant

autonomous capabilities.

In this thesis, control strategies are sought to enable the spacecraft maneuvers in

close proximity to a small-body that would be necessary for a sample return mission.

Specifically, the dynamics of station-keeping, translation, and descent maneuvers

are studied. Due to the difficulties discussed in the previous paragraph specific to

small-body missions, the approaches to these maneuvers are necessarily different

from those for planetary orbiters. The control methods presented here are designed

with the difficulties of the small-body environment in mind and attempt to exploit

its peculiarities when possible. Note that the work presented here should be applied

cautiously to spacecraft motion near comets for reasons outlined in Section 2.3.5.

One strategy that has been proposed to mitigate some of the difficulties associated

with an orbital approach to spacecraft station-keeping in the vicinity of a small-body

is hovering[7, 8, 9, 10]. Hovering can be defined broadly as using control thrust con-

tinuously to null the total acceleration on the spacecraft, creating an equilibrium at

a desired position. This stationary equilibrium (in a particular reference frame) may

be an advantageous position for taking high resolution measurements of a particular

area, maintaining a fixed communication, solar panel, or sensing geometry, or for

maintaining relative orientation to the surface during a descent maneuver. This ap-

proach is feasible near small-bodies since the spacecraft’s nominal acceleration (and

therefore fuel consumed) is small. Hovering also handles third-body perturbations
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well, as they are simply an extra small nominal acceleration to cancel.

The bulk of this thesis (Chapters III-V) studies the dynamics of a spacecraft under

hovering control near a small-body. In Chapter III, a numerical hovering simulation

tool is used to study the stability of hovering trajectories in the small-body fixed

frame, where spacecraft position is stationary relative to the small-body surface, and

the inertial frame, where the small-body rotates beneath the spacecraft. This chapter

also numerically tests the analytical stability criteria for hovering under a dead-band

control presented in the previous work by Sawai et al.[10]. Chapter IV presents an

analytical formulation of the zero-velocity surface that exists in the vicinity of a

hovering spacecraft and shows how a dead-band controller can be designed to ensure

formal boundedness of a hovering trajectory in an arbitrary potential field. Chapter

V studies the implementation of the dead-band control results of Chapter IV.

Translation is the act of moving the spacecraft from one position to another

through a combination of thrust and the natural dynamics. Descent is a subset of

translation such that the target position lies on the surface of the body. Both of

these maneuver types are of critical importance to a small-body sampling mission

and are addressed in that context in Chapter VI of this thesis. Ideally, these types

of maneuvers should be designed such that a spacecraft is free to move arbitrarily

around the small-body to investigate areas of interest and touchdown at a chosen

location. A constant thrust translation controller is presented here that is shown

to accurately perform translations over short distances. The effects of parameter

uncertainty on this class of translations is also studied in a way that can be applied

to other maneuvers. The chapter also presents an adaptation of the dead-band

hovering strategy for descent where the target hovering altitude is linearly reduced

down to the small-body surface.
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This work contained here is of interest to people involved in the planning and

implementation of small-body missions and those interested in spacecraft dynamics.

To a lesser extent, this work may be of interest to scientists who study small-body

composition and evolution. It is hoped that the control methodologies and dynam-

ical observations presented here will facilitate small-body exploration missions that

are dynamically less restricted and fundamentally less risky than current proposals.

By enabling broader scoped small-body missions, this work may also benefit space

science. Increased exploration of these bodies could yield information about asteroid

collision mechanics, asteroid composition and porosity, the early composition of the

solar accretion disk, and asteroid thermal properties. This sort of data will be crucial

to any form of future asteroid exploitation.

1.1 State of Knowledge Previous to this Research

Close proximity station-keeping operations near small-bodies have primarily been

studied from an orbital perspective[11, 12, 13, 14, 15, 16, 17, 18], which is appropriate

for small-bodies that are larger than a particular size. For larger bodies, the fuel costs

of maintaining hovering become prohibitively large[7, 19]. However, when the small-

body is relatively small, orbiting options become very limited since the effects of

solar radiation pressure are strong enough to destabilize most orbits in the small-

body vicinity and cause impact or escape[14, 20, 17]. For these bodies, hovering

requires very little fuel and may be the only option for close proximity investigation

of all areas of interest. An orbital station-keeping approach was used throughout the

NEAR mission, which was appropriate because of the relatively large size of Eros

(about 32 km maximum extent)[21]; close-proximity hovering at Eros would cost a

few hundred meters per second of ∆V per day! On the other hand, the Hayabusa
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mission to asteroid Itokawa (about 530 m maximum extent) appropriately chose

hovering to keep the spacecraft in Itokawa’s vicinity[9] at a cost of a few meters per

second or less per day. The choice between these two station-keeping approaches

is driven by the small-body size, but ultimately depends on the mission goals. For

any landing or sampling mission however, hovering dynamics in the small-body fixed

frame must be considered for the final stages of descent if a soft landing with minimal

lateral velocity relative to the surface is desired.

This thesis focuses on the hovering approach to station-keeping near small-bodies,

which is a relatively new field of study. Hovering near small-bodies was first pro-

posed in the literature by Scheeres[7]. That initial mention was followed by a paper

that reported eigenvalue structure as a function of position for hovering in the small-

body fixed and inertial reference frames when using an open-loop controller to cancel

the spacecraft’s nominal acceleration[8]. Subsequent work by Sawai et al. added a

one-dimensional dead-band control on altitude to the open-loop thrust to suppress

deviations from nominal and analytically determined where motion could be sta-

bilized by this controller[10]. Recently, hovering has been studied as a method of

slowly changing the orbit of a solar system body[22, 23]. Other contributions in the

literature to the study of hovering dynamics from 2003 to 2005 contained in this

thesis are given in Appendix A.

The desire to return samples drives current small-body mission proposals. In

order to collect a surface sample, the spacecraft needs to be able to maneuver to a

chosen location in the small-body fixed frame and descend to the surface (or very

close to it). The dynamics of these close proximity translation and descent maneuvers

are the second major topic of study in this thesis. The first ever successful descent

to an asteroid surface was done by NASA’s NEAR mission team using a series of
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open-loop thrusts to de-orbit the spacecraft[24]. Theoretical work on descent to

small bodies has taken a number of approaches. Guelman and Harel[25] gave an

optimal, electric propulsion descent solution from orbit for the spherical body case.

Cui and Cui[26] developed a method for descent using feedback control on altitude

and thrust modulation. Sawai et al. presented a brief study of translation near

arbitrarily shaped small-bodies along a constant potential surface[10].

JAXA’s Hayabusa sample return mission has given an excellent demonstration

of the feasibility of hovering and descent maneuvers in the vicinity of the relatively

small asteroid Itokawa. This mission successfully implemented spacecraft hovering

in a near-inertial frame for the first time near an asteroid in the fall of 2005. Kub-

ota et al.[9] and Kominato et al.[27] document their three-dimensional dead-band

hovering control approach and success in detail. This mission also made numerous

descents to the surface utilizing optical navigation feedback, an altimeter, and a tar-

get marker[28, 29, 30, 31]. During these decents, hovering in the small-body fixed

frame was also used to eliminate spacecraft motion relative to the surface.

1.2 Chapter Preview

Chapter II defines various mathematical models used to describe the small-body

environment. Tri-axial ellipsoid and triangular faceted polyhedron small-body shape

models are introduced and defined as well as constant density gravity models for each

shape type. The spherical harmonic gravity model, often used for small-bodies, is

also introduced. Numerous equations of motion that model spacecraft motion near

a small-body in different situations are defined as well. Finally, the measurement

models for altitude, altitude rate-of-change, and optical navigation measurements

that will be used are defined. These definitions in this chapter are the basis of the
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analysis and numerical simulations throughout the thesis.

Numerical studies of different spacecraft hovering approaches are presented in

Chapter III. First, the analytical stability criteria for hovering under one-dimensional

dead-band control in Sawai et al.[10] are reviewed. The controller for hovering in

the small-body fixed frame suggested in that work is simulated numerically with

the HoverSim software (also described in this chapter). Results of these simulations

are compared with the stability criteria. The difference between the analytical and

numerical results allows an insight on the effect of Coriolis forces on spacecraft dy-

namics under a one-dimensional dead-band controller to be made; a destabilizing

effect is found to exist for hovering above the small-body’s leading edge. Another

body-fixed hovering controller is suggested to reduce this effect and some advantages

of this control are shown numerically. The stability of hovering in an inertial frame,

such that the small-body rotates beneath the spacecraft, is also studied in this chap-

ter. Hovering in this way is found to be stable except for when hovering near the

small-body “resonance radius” (defined in Eq. (2.16)). This result is supported by

numerical simulation. The chapter closes with an application of hovering in the in-

ertial and small-body fixed frames to the asteroid Itokawa, the target of the JAXA

Hayabusa mission.

Chapter IV introduces an energetic restriction on the motion of a spacecraft

under hovering control in time-invariant dynamical systems. A method for designing

dead-band controllers that bound the motion of the spacecraft is developed using

knowledge of this energetic bound. The necessary dimensionality of the dead-band

controller that bounds hovering is determined via a simple analytic criterion which is

easily applied to hovering positions in a known potential field. Results are presented

for hovering near small-bodies in the two-body, circular restricted three-body, and
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Hill three-body problems. It is found that hovering close to the small-body surface

often requires dead-band control on only one direction of motion for boundedness.

A significant region also exists where control is required on only two directions of

motion for boundedness. The section ends with a brief discussion of extending this

method to time-varying dynamics.

Chapter V contains analysis related to implementation of the theoretical ideas

on spacecraft hovering in Chapter IV. First, the zero-velocity (energetic) bound

result is extended to allow for open-loop thrusts that do not necessarily create an

equilibrium at the desired hovering position. This chapter also looks at whether one

direction dead-band control can be implemented near the small-body surface using

altimeter measurements and finds that indeed it often can be. The feasibility of

using optical navigation measurements as the basis of a two-dimensional dead-band

control is also studied. It is found that due to the orientation of the zero-velocity

surface relative to the small-body surface, this control approach does not create a

bounded hovering region. This chapter also addresses fuel consumption and dead-

band control application frequency for close proximity hovering in the two-body

problem. The last section of the chapter presents numerically integrated hovering

trajectories with different error and uncertainties included.

Chapter VI addresses spacecraft translation in an arbitrary potential field such

as that near a small-body. Descent maneuvers are a subset of translations where

the target position is on the small-body surface. This chapter develops a guidance

law for constant thrust translation with error estimation that could be implemented

autonomously. A solution for motion without thrust is also presented via lineariza-

tion of the dynamics. This chapter also presents a covariance study that looks at

the effects of errors in initial state, thrust direction and magnitude, small-body ro-
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tation state, and the small-body gravitational potential model on constant thrust

translation trajectories. Numerical covariance results are presented for descending

translations above models of the asteroids Itokawa, Eros, and Vesta. The chapter

closes with a numerical validation of using a dead-band hovering control for descent

where the target altitude for hovering is linearly varied down to the surface.

The contents of Appendices C and D are also worthy of note. These appendices

contain detailed descriptions of two numerical tools used throughout in support of

this work: the Small-body Characterization Tool (SBCT) and the Small-body Dy-

namics Toolbox (SBDT). The SBCT, written in C++, gives a broad assessment of

the dynamical environment near a specified small-body applicable to various mis-

sion operations including hovering, orbiting, and surface maneuvers. The SBDT

is a combination of Matlab and Simulink tools used to simulate dynamics near a

small-body. The SBDT is capable of simulating dynamics in the two-body problem,

elliptic restricted three-body problem, Hill three-body problem, and the generalized

elliptic restricted three-body problem (Section 2.3.4) as well as one-dimensional and

linearized motion inside a hovering dead-band. The toolkit also is capable of com-

puting periodic orbits, performing covariance studies, and small-body shape, surface,

and gravity characterizations. The SBDT contains many visualization tools as well

to help understand its outputs.

1.3 Outline of Original Contributions

This thesis makes numerous original contributions that may be useful to future

research and space mission planning. A list of publications that have been made

during the course of this research is given in Appendix A.

The most prolific technical contribution in this thesis will likely be the observa-
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tion and definition of the zero-velocity surface that exists near a hovering spacecraft

(Section 4.1). This bound on the spacecraft motion is fixed in time (for time-invariant

systems) and is shown to be a meaningful restriction on the local motion. Knowl-

edge of this built in dynamical “control” allows anyone planning a spacecraft hovering

strategy to quickly understand the dynamical possibilities which are otherwise very

difficult to understand for the complex dynamics in the small-body environment.

The follow-up studies contained here that define the effects of errors in the initial

state (Section 4.3) and open-loop thrust (Section 5.1) on the zero-velocity surface,

map the zero-velocity surface type as a function of position near small-bodies (Sec-

tion 4.4), and numerically integrate spacecraft motion to show the validity of the

bound (Sections 4.3.1 and 5.4) are all original contributions to the existing body of

knowledge.

Contributions are also made to dead-band hovering controller design near small-

bodies in light of the zero-velocity surface result. The minimum number of directions

of motion that should be restricted by a dead-band control for hovering boundedness

is first formulated in Section 4.2. Formal conditions for local and global boundedness

are given in Section 4.3. Sufficient conditions for boundedness of hovering under a

reduced measurement set (altimetry only or optical navigation only) are also pre-

sented here (Section 5.2). These criteria may be useful for planning hovering control

strategy and instrument usage during a small-body mission. The IATNS body-fixed

dead-band hovering control using altimetry (Section 3.4.1) is also an original contri-

bution. The findings on fuel usage (Section 5.3.2) and thrust application frequency

(Section 5.3.3) for a dead-band controller are original contributions that may also

assist in dead-band control design for a future mission.

A contribution is also made to the study of inertial hovering through numerical
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simulation by validating the instability near the resonance radius and showing that

large perturbations from the nominal position exist in the stable region of motion

close to the small-body.

The numerical simulation and characterization tools (HoverSim, the SBCT, the

SBDT, and other manifestations of these ideas) are also important contributions of

this research to future dynamical and mission studies to the small-body environment.

Comprehensive tools such as these did not exist publicly at the beginning of this

research, though some of the code’s capabilities now exist elsewhere. HoverSim and

the SBDT are available for use by others (see Appendix D for contact information).

The HoverSim tool was invaluable to this thesis through simulation and validation

of hovering techniques. It allowed the previous analytical work of Sawai et al.[10] to

be tested and the original observations on the effect of Coriolis forces on dead-band

dynamics to be discovered (Section 3.3.2). Parts of the SBDT have already been

used to support the research of three other graduate students[32][33][34]. Small-

body shape and surface characterizations made with the SBDT have contributed

to numerous papers on small-body shape models derived from Earth-based radar

measurements[35, 36, 37, 38, 39, 40]. The SBCT is the first tool to bring together

the results of the existing research on small-body dynamics into one tool useful for

mission planning and simulation design. The SBCT is continuing to expand under

contract with JPL and its current version (0.03) is available for use by their employees

(see Appendix C for contact information).

The measurement models used here for altitude and altitude rate-of-change mea-

surements above ellipsoidal and polyhedral small-bodies used here are also original

contributions (Sections 2.4.1 and 2.4.2). These models are currently being used at

JPL for internal small-body mission research and development[41].
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The constant thrust translation controller is an original contribution (Section

6.3) that could eventually find use as an autonomous path planning algorithm on-

board a spacecraft. The free-drop solution (Section 6.2) could find similar use for

un-powered descent. The covariance studies on the constant thrust controller are

among the first to demonstrate the effects of uncertainty in various parameters on

spacecraft motion near a small-body (Section 6.4). The techniques outlined here

may help in future covariance studies since they can be applied to any trajectory,

not just constant thrust translation. Finally, the “back of the envelope” calculation

of the maximum altitude at which particles may be lifted off the small-body surface

by thrust in Section 6.6.2 is a useful contribution.



CHAPTER II

Model Definitions

This chapter is devoted to defining the mathematical models used throughout

the thesis to describe the environment near a small-body. The models include small-

body shape descriptions, small-body gravity descriptions, dynamical equations of

motion, and spacecraft measurement models. These models serve as the basis for

the analysis and numerical simulations in the following chapters. The chapter closes

with a brief description of a software implementation that makes use of these models

(and others) to compute dynamical parameters of a given small-body environment:

the Small-body Characterization Tool (SBCT).

2.1 Small-body Shape Modeling

The most unique characteristic of the environment near a small-body is the irreg-

ular shape of the body itself. Small-bodies lack sufficient mass to pull themselves into

near spherical, planet-like shapes. Instead, small-bodies take shapes more consistent

with the primordial pieces of rock that they are, varying from smooth, near ellip-

soidal shapes (for instance Deimos, a moon of Mars, Figure 2.1) to highly irregular

shapes (such as asteroids Kleopatra, Figure 2.2, or Golevka, Figure 2.3). Small-body

sizes vary widely as well; Kleopatra is about 217 km long, while Golevka is only

14
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Figure 2.1: Polyhedral Model of the Martian Moon, Deimos[4]

Figure 2.2: Polyhedral Model of Asteroid 216 Kleopatra[5]

about half a kilometer across.

The work in this thesis has adopted two different approaches to modeling small-

body shapes: the tri-axial ellipsoid and the triangular-faceted polyhedron. Tri-axial

ellipsoids are often reasonable approximations of actual small-body shapes, so using

this model may be advantageous when high resolution shape data are not available

or first cut approximations are desired. This symmetric quadratic shape is param-

eterized by its three semi-major axes: a > b > c > 0. The surface of a tri-axial

ellipsoid is defined by the implicit equation Sellip (ρ̃) = 0, where

Sellip (ρ̃) = ρ̃TEρ̃− 1 (2.1)
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Figure 2.3: Polyhedral Model of Asteroid 6489 Golevka[6]

and

E =















1
a2 , 0, 0

0, 1
b2
, 0

0, 0, 1
c2















. (2.2)

The unit vector normal to a given point on the surface is defined in Eq. (2.3).

n̂ =
Eρ̃

||Eρ̃|| (2.3)

For a spacecraft position r̃, if Sellip (r̃) < 0, the position is in interior of the ellipsoid

and if Sellip (r̃) > 0, the position is outside the body.

More complex small-body geometries are specified as triangular-faceted polyhe-

drons. Polyhedrons can model a much wider range of shapes than ellipsoids, allowing

depressions, ridges, cliffs, caverns, and holes on the model. This type of shape mod-

eling can be very accurate, with resolution increasing with the number of faces used.

A triangular-faceted polyhedron is defined by the locations of its V vertices and a list

of which vertices make up each of F faces. These lists implicitly define E = F+V −2

edges. Each face of the polyhedron defines a plane with orientation defined by its

normal vector,

n̂i = [(r̃i,2 − r̃i,1) × (r̃i,3 − r̃i,2)] / ||(r̃i,2 − r̃i,1) × (r̃i,3 − r̃i,2)|| (2.4)
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and location defined by a constant,

Ci = n̂i · ρ̃i (2.5)

where ρ̃i is any vector in the plane. The vertices of each face are ordered such that

n̂i points outside the body. For a spacecraft position r̃,

Spoly (r̃) =
∑

i∈faces

ωi =



































2π, if r̃ is on the polyhedron surface,

4π, if r̃ is inside the polyhedron,

0, if r̃ is outside the polyhedron,

(2.6)

where

ωi = 2 arctan

(

ρ̃i,1 · ρ̃i,2 × ρ̃i,3

ρi,1ρi,2ρi,3 + ρi,1 (ρ̃i,2 · ρ̃i,3) + ρi,2 (ρ̃i,3 · ρ̃i,1) + ρi,3 (ρ̃i,1 · ρ̃i,2)

)

(2.7)

ρ̃i,1 = r̃i,1 − r̃ (2.8)

ρ̃i,2 = r̃i,2 − r̃ (2.9)

ρ̃i,3 = r̃i,3 − r̃ (2.10)

and

ρi,1 = ||ρ̃i,1|| , ρi,2 = ||ρ̃i,2|| , ρi,3 = ||ρ̃i,3|| [42]. (2.11)

Polyhedron models currently exist for a number of real asteroids. A model of the

small-body shape can be created from a set of in-situ spacecraft measurements (al-

timetry or optical measurements for instance[21]) or from terrestrial radar observa-

tions using the method of Hudson[43].

2.2 Small-body Gravity Modeling

The irregular shapes of small-bodies give rise to equally irregular gravitational

environments whose effect on a nearby spacecraft often varies dramatically from that
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predicted by a pointmass gravity model. To accurately compute the gravitational

potential of an irregular shape, one must begin from first principles. For an irregular

(stationary) volume Γ, the potential at r̃ can be integrated using Eq. (2.12),

U (r̃) = G

∫

Γ

̺(ξ̃)
∣

∣

∣

∣

∣

∣̃
r − ξ̃

∣

∣

∣

∣

∣

∣

dV (2.12)

where ξ̃ is the location in the body of the infinitesimal volume dV . The gravitational

attraction (∂U/∂r̃), Jacobian (∂2U/∂r̃2), and Laplacian (∇2U) are also quantities of

interest to our dynamical modeling and can be computed via appropriate derivatives

of Eq. (2.12). For the purpose of numerical simulation, it is highly advantageous

to have a closed form solution for these gravitational quantities. In the simulations

supporting this work, two approaches that give a closed-form solution have been

used.

Given a shape model, the first approach assumes uniform density, ̺, through-

out the body. The literature provides closed form solutions for the gravitational

potential, attraction, Jacobian, and Laplacian for ellipsoidal[44][45] and triangular-

faceted polyhedral[42] shape models under this assumption. Because these results

are fundamental to this research, they are summarized in Appendix B. The results

of the NEAR intensive asteroid exploration mission to Eros suggest the assumption

of uniform density may be quite applicable for at least some asteroids[21]. Even

when the density is not uniform throughout, this approach is not entirely restrictive;

solutions still exist if the small-body can be modeled as a finite union of uniform

density shapes. Estimates of a small-body’s bulk density can be obtained from the

radar reflection albedo measured in terrestrial observations.

The other approach available is to use a spherical harmonic expansion[46] to define

the small-body gravity. In this method, the gravitational potential (Eq. (2.13)) and
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its derivatives are defined by two sets of coefficients (Cnm and Snm) and the associated

Legendre functions (Pnm (x)).

U =
GMsb

||̃r||

∞
∑

n=0

n
∑

m=0

(

Rref

||̃r||

)n

Pnm (sinφ) (Cnm cos (mλ) + Snm sin (mλ)) (2.13)

The implementation of the spherical harmonic potential model used in this work, de-

scribed in Pines[47], avoids singularities that arise in straightforward differentiation

of Eq. (2.13) by using a change of coordinates. Pines goes on to derive recursion rela-

tionships for efficient computation of the spherical harmonic gravitational quantities

in the new coordinates and Lundberg and Schutz[48] demonstrate which recursions

are the most numerically stable. There are two primary drawbacks to using a spher-

ical harmonic representation of the potential. First is that the expansion, which

contains an infinite number of terms (it is truncated in the closed-form solution),

does not converge for positions inside a sphere that circumscribes the small-body.

Thus, a spherical harmonic potential representation is useless for modeling spacecraft

dynamics close to the surface of a small-body, as would be necessary to support any

sampling or touchdown mission. Secondly, accurate spherical harmonic coefficients

for a small-body are impossible to determine without taking in-situ measurements

(which could come from a spacecraft or orbiting debris). Since so few missions to

small-bodies have been flown, very few such models exist.

For consistency with the equations of motion, the center of mass and principal

axes of the small-body shape must be determined. For a constant density ellipsoid

model, these quantities are trivially defined due to symmetry. Results for a constant

density polyhedral shape are provided by Mirtich[49]. The center of mass and princi-

pal axes of a spherical harmonic model can be determined from the first and second

order coefficients[50].
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2.3 Equations of Motion

In this thesis, four typical astrodynamics equations of motion (with appropriate

modifications) are used to model the translational spacecraft motion in the vicinity

of a small-body. These are the two-body problem (in the small-body fixed rotating

frame), the circular restricted three-body problem, the Hill three-body problem, and

the generalized elliptic restricted three-body problem. All four sets of equations

model the spacecraft as a pointmass whose mass is negligible compared to that of

the small-body and a third-body (if present).

2.3.1 Two-body Problem in the Small-body Fixed Frame

This formulation defines the spacecraft dynamics in the small-body fixed frame,

which spins with the small-body around its rotation pole in inertial space. These

equations describe motion relative to the surface of the small-body. This model is

applicable to very-close proximity spacecraft operations where only the gravitational

attraction of the small-body need be considered1.

These equations permit the small-body to have an arbitrary shape and gravita-

tional field (see Sections 2.1 and 2.2). No other perturbing effects (such as planetary

tide, solar tide, and solar radiation pressure(SRP)) are included. It is assumed that

the small-body rotates uniformly about the principal axis corresponding to the max-

imum moment of inertia, which is aligned with the ẑ axis. The x̂ axis is aligned

with the principal axis corresponding to the minimum moment of inertia, and the ŷ

axis completes the right-handed coordinate frame. The only forces present in these

dynamics are the gravity of the small-body, inertial forces due to the rotating frame,

and the spacecraft thruster forces. The equations of motion for a spacecraft in the

1A discussion of the region where gravitational force dominates can be found in Scheeres[14]
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two-body problem in the small-body fixed frame are given in Eq. (2.14)[10].

¨̃r + 2ω̃ × ˙̃r =
∂U

∂r̃

T

− ω̃ × ω̃ × r̃ + T̃ (2.14)

If the thrust vector T̃ is constant (in the rotating small-body fixed frame), then Eq.

(2.14) defines a time-invariant conservative Lagrangian system, which means there

exists a Jacobi constant of the motion (Eq. (2.15))[51].

JBF =
1

2
˙̃r
T ˙̃r − 1

2
ω2
(

x2 + y2
)

− U (r̃) − T̃T r̃ (2.15)

The resonance radius (Eq. (2.16)) is an important parameter in the two-body

problem which arises frequently in this research[10].

Rr =
(µsb

ω2

)
1

3

(2.16)

For a spherical body with the same gravitational parameter as the small-body, the

resonance radius is the equilibrium distance from the center of mass in the equato-

rial plane. This parameter characterizes the approximate location of the important

dynamical boundary in the two-body problem between inward and outward acceler-

ation.

Linearization of the Potential

For the purpose of obtaining a closed form solution to the two-body dynamics, it

may be advantageous to linearize the gravitational potential around some nominal

position (which makes the entire system linear). This approximation can be used

to model hovering dynamics or translation over small distances. The equations of

motion for the two-body problem in the small-body fixed frame with a linearized

gravitational potential are given in Eq. (2.17),






˙̃r

¨̃r






= A







r̃

˙̃r






+







03x1

f̃






(2.17)
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where

A =





















03x3, I3x3

∂2U
∂r̃2

∣

∣

∣

0
+















ω2, 0, 0

0, ω2, 0

0, 0, 0















,















0, 2ω, 0

−2ω, 0, 0

0, 0, 0



































(2.18)

and

f̃ = T̃ +
∂U

∂r̃

∣

∣

∣

∣

T

r̃0

− ∂2U

∂r̃2

∣

∣

∣

∣

r̃0

r̃0. (2.19)

2.3.2 Circular Restricted Three-body Problem

The circular restricted three-body problem expands on the two-body problem

by including the gravity of a third body in a mutually circular orbit with the small-

body. These equations can be used to model the effects of a small-body’s orbit around

the Sun on the spacecraft dynamics, a binary asteroid system, or the dynamics of

a planetary moon orbiter when the eccentricity of the orbit of the two gravitating

primaries is nearly zero. Again here, the only forces considered are those arising from

the gravitational attraction of two primaries, the rotating frame, and the spacecraft

control system.

In this problem, it is assumed that both primaries have point-mass potential fields

so that the equations of motion (without thrust) are time-invariant2. The origin of

these equations is at the center of mass of the two primaries with the positive x̂

axis pointing toward the smaller primary (called the “second” primary). The ẑ

axis is normal to the plane of the primaries’ mutually circular orbit (aligned with

the orbit angular momentum) and the ŷ axis is defined to complete a right-handed

coordinate frame, which is referred to throughout as the rotating three-body frame.

2More complex gravity fields can be used without destroying this invariance (with some modi-
fication of the equations) if the rotation axis and rate of the non-spherical body are equal to the
angular momentum direction and mean motion of the mutually circular orbit.
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The equations of motion for this dynamical system[52] are given in Eq. (2.20),

¨̃r + 2Ñ × ˙̃r = −µ1
r̃sc,1

||̃rsc,1||3
− µ2

r̃sc,2

||̃rsc,2||3
− Ñ × Ñ × r̃ + T̃ (2.20)

where r̃sc,1 = [x+ µR, y, z]T , r̃sc,2 = [x− (1 − µ)R, y, z]T , µ = µ2/ (µ1 + µ2), and

N =
√

(µ1 + µ2) /R3. The mean motion N and the orbital radius R are constant

here because of the circular primary orbit. If the spacecraft thrust vector T̃ is also

constant (in this rotating frame), this is a time-invariant conservative Lagrangian

system with the Jacobi constant defined by Eq. (2.21)[52].

JR3BP =
1

2
˙̃r
T ˙̃r − 1

2
N2
(

x2 + y2
)

− µ1

|̃rsc,1|
− µ2

|̃rsc,2|
− T̃T r̃ (2.21)

2.3.3 Hill Three-body Problem

The Hill three-body problem, which is a valid approximation of the circular re-

stricted three-body problem for spacecraft motion near the smaller primary (the

“small-body”) when µ is small, is now defined. This approximation is valid when

spacecraft motion occurs inside the small-body’s Hill sphere, whose radius is given

in Eq. (2.22).

RHill = R
(µ

3

)
1

3

(2.22)

The Hill approximation applies well to spacecraft motion near small-bodies in orbit

around the Sun or near planetary moons, but generally does not apply to motion

near one of the bodies in a binary asteroid system (µ is too large). The effects of

SRP can be included in this formulation[17]. The frame of these equations is again

the rotating three-body frame, centered at the center of mass of the small-body.

The larger primary is modeled as a pointmass on the negative x̂ axis. For the Hill
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three-body problem, the equations of motion are given by Eqs. (2.23) - (2.25)[53],

ẍ− 2Nẏ = 3N2x+
∂U(r̃, t)

∂x
+
βSRP

R2
+ Tx (2.23)

ÿ + 2Nẋ =
∂U(r̃, t)

∂y
+ Ty (2.24)

z̈ = −N2z +
∂U(r̃, t)

∂z
+ Tz (2.25)

where βSRP = G1/B is a measure of the magnitude of the SRP strength[17]. Here,

U can vary with time which allows these equations to represent dynamics near a

general small-body shape with a rotation state that is independent of its orbit with

the larger primary.

This system of equations is time-invariant if either the small-body has a pointmass

gravitational potential or its angular velocity vector is aligned with the ẑ axis and

has magnitude equivalent to the mean motion of primaries’ orbit. If in addition the

spacecraft thrust is constant, the Jacobi constant is by Eq. (2.26).

JHill =
1

2
˙̃r
T ˙̃r − 3

2
N2x2 +

1

2
N2z2 − U (r̃) +

βSRPx

R2
− T̃T r̃ (2.26)

2.3.4 Generalized Elliptic Restricted Three-body Problem

The generalized elliptic restricted three-body problem is the least restrictive form

of the spacecraft dynamics used in this thesis. These equations expand on the circular

restricted three-body problem by allowing for an eccentric primary orbit, an arbitrary

small-body potential field, arbitrary (but constant) small-body rotation pole and

rate, and SRP.

The equations are given in the three-body rotating frame centered at the small-

body center of mass. In this case, the rotation of the frame is non-uniform because

of the orbit eccentricity. The equations of motion for this system are given in Eq.
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(2.27),

¨̃r + 2
(

ḟ ẑ × ˙̃r
)

= −f̈ ẑ × r̃ − ḟ ẑ × ḟ ẑ × r̃ − µSun − βSRP
∣

∣

∣

∣r̃s/c,Sun

∣

∣

∣

∣

3 r̃

−
[

µSun − βSRP
∣

∣

∣

∣r̃s/c,Sun

∣

∣

∣

∣

3 − µSun

|R (f)|3

]

R (f) x̂ +Gsb,f (r̃, t) + T̃ (2.27)

where

r̃s/c,Sun = r̃ + [R (f) , 0, 0]T (2.28)

R (f) =
aorb (1 − e2orb)

1 + eorb cos f
(2.29)

ḟ =

√

(µSun + µsb)

p3
orb

(1 + eorb cos f)2 (2.30)

f̈ = −2eorb
(µSun + µsb)

p3
orb

sin f (1 + eorb cos f)3 (2.31)

porb = aorb

(

1 − e2orb

)

(2.32)

and Gsb,f (r̃, t) returns the gravitational attraction induced by an arbitrary small-

body in the frame of these equations of motion. It is defined in terms of the small-

body fixed frame potential in Eq. (2.33),

Gsb,f (r̃, t) = TfTeoT
−1
poleT

−1
i

∂U

∂r̃

∣

∣

∣

∣

T

(TiTpoleT−1
eo T−1

f
r̃)

(2.33)

where

Tf =















cos f sin f 0

− sin f cos f 0

0 0 1















(2.34)

rotates a vector from the elliptic orbit frame (where x̂ points to perigee and ẑ is
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parallel to the angular momentum) to the rotating three-body frame,

Teo =















cosωorb sinωorb 0

− sinωorb cosωorb 0

0 0 1





























1 0 0

0 cos iorb sin iorb

0 − sin iorb cos iorb





























cos Ωorb sin Ωorb 0

− sin Ωorb cos Ωorb 0

0 0 1















(2.35)

rotates a vector from the inertial frame in which the orbital elements are defined

(such as EME2000 or EMO2000) to the elliptic orbit frame,

Tpole =















sin Λpole − cos Λpole 0

sin Φpole cos Λpole sin Φpole sin Λpole − cos Φpole

cos Φpole cos Λpole cos Φpole sin Λpole sin Φpole















(2.36)

rotates a vector from an inertial frame into the small-body rotation pole frame (where

ẑ is aligned with the small-body rotation pole), and

Ti =















cos [ω (t− t0,bf )] sin [ω (t− t0,bf )] 0

− sin [ω (t− t0,bf)] cos [ω (t− t0,bf)] 0

0 0 1















(2.37)

rotates a vector from the small-body rotation pole frame into the small-body fixed

frame. In Eq. (2.37), t0,bf is a time at which the small-body fixed frame and small-

body rotation pole frame unit vectors are aligned. In inertial coordinates, this corre-

sponds to the time when the x̂ direction in the body-fixed frame makes a descending

transit through the X − Y plane of the inertial frame. These rotation matrices are

also useful for changing coordinates between the specified frames.

This dynamical system is time-varying and therefore has no Jacobi constant.

2.3.5 Limitations of the Equations of Motion

As with most analytically tractable equations of motion, none of the preceding

equations of motion perfectly define the dynamics that a spacecraft will experience in
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the vicinity of a small-body. The most obvious omission is the rotational dynamics of

the spacecraft and any coupling between its translational and rotational dynamics.

Throughout this work, it is assumed that the effect of any dynamic coupling is

negligible and that the required attitude dynamics maneuvers (i.e., pointing in a

specified direction or performing a steady slew maneuver) can be implemented with

sufficient accuracy.

Though this work is applicable to all types of small-bodies (asteroids, comets,

and small-planetary satellites), these equations are most appropriate for an individ-

ual asteroid in orbit around the Sun. In the case of comets, the acceleration due to

comet outgassing is not modeled by any of these equations of motion. This acceler-

ation is very significant (and quite complex) to the operations of a spacecraft near a

comet[32]. For a spacecraft near a planetary satellite, the gravity of the host planet is

well modeled by any of the preceding three-body equations of motion, but the gravity

and, more importantly, the radiation pressure from the Sun cannot be included and

may have a significant effect on the spacecraft motion. If modeling a binary aster-

oid system, either the circular restricted or the general elliptic restricted three-body

problems are appropriate. However, these equations of motions neglect the inevitably

irregular shape of one of the primaries and the complex rotational/translational cou-

pling in the non-Keplarian motion of the asteroids themselves[33]. Plus the SRP

cannot be included. Finally, all of these equations of motion assume the small-body

rotates uniformly around the principal axis corresponding to its largest moment of

inertia. This is the case for most of the asteroids for which data exists (with excep-

tions such as the asteroid Toutatis[15]), but often is not the case for comet nuclei

due to torques induced by outgassing jets[11].

There are also a number of accelerations that a spacecraft may experience that
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are not modeled in these equations for any type of small-body. If extremely accu-

rate results are desired, as would be needed during mission operations for instance,

a dynamics simulator would have to consider accelerations induced by a number of

planets, passing asteroids, albedo (reflection off the surface of the body), electro-

magnetic forces (important for dynamics near comets), the shape and attitude of

the spacecraft as a function of time, and numerous other stochastic or un-modeled

sources and biases. Because of the many uncertainties involved, a rigorous covariance

analysis would also be necessary. The equations of motion defined above strike a bal-

ance by including the most significant accelerations a spacecraft would experience

near an asteroid, but remaining sufficiently tractable for traditional analysis.

2.4 Measurement Models

Missions to small-bodies place difficult demands on navigators for state estimation

accuracy. Navigation for a “typical” space mission is done primarily with radiomet-

ric Doppler and range measurements taken using large radio telescopes on Earth.

These measurements give line-of-sight velocity accuracy to the order of fractions of

a millimeter per second and line-of-sight position estimates to within a few meters.

However, the small-body state is usually uncertain to tens of kilometers in position

and to a few millimeters per second in velocity. For a mission to a small-body,

which may be only a few hundred meters in size, this level of measurement accuracy

(particularly in position) is not sufficient for safe and effective relative navigation.

Further, because of the tremendous distances between the majority of small-bodies

and the Earth, there is a significant time lag associated with these measurements.

Clearly, if a spacecraft is to operate in close-proximity to the surface of a small-body,

additional measurements are necessary.
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The most effective solution to these problems comes in the form of in-situ mea-

surements. These are direct measurements of the spacecraft state relative to the

small-body which deliver greatly improved position, velocity, and attitude measure-

ments to the spacecraft in real-time. Altimeters and optical cameras have typically

been used on small-body missions to obtain in-situ measurements. This study will

consider three in-situ measurement types: single beam altimetry, time-of-flight ve-

locimetry, and optical navigation. A discussion of the mathematical modeling of these

measurements follows. Since this work is concerned primarily with close proximity

operations, these measurements are defined in the small-body fixed frame where the

surface of the small-body is stationary (though they can be adapted to other frames

without too much difficulty).

Additional information on the altimetry and time-of-flight velocimetry measure-

ments used here, including measurement partials with respect to spacecraft position,

velocity, instrument orientation, and angular velocity, as well as a software class im-

plementation written in MPython, a variant of Python written at JPL as part of the

MONTE navigation software set, can be found in Broschart[41].

2.4.1 Altimetry Measurements

An altimetry measurement specifies the distance between the spacecraft and sur-

face of the small-body in a specified direction. Numerous types of altimeters are avail-

able including radar altimeters, laser altimeters, and multi-beam altimeters. Here a

simple altimeter that returns the range between the spacecraft and the surface of the

small-body in a particular direction is considered. This type of measurement most

closely resembles that of a laser altimeter.

On an actual spacecraft, altitude information would be given to the spacecraft
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Figure 2.4: Altitude Measurement Geometry

by an altimeter pointing in the appropriate direction. For the sake of numerical

simulation, knowledge of the spacecraft position in the body-fixed frame and a small-

body shape model is sufficient to determine the altitude. The problem geometry is

shown in Figure 2.4. Here, the spacecraft position r̃ is given by the simulation

integrator, ρ̃ specifies the point on the surface that the altimeter intersects, h is the

spacecraft altitude, and ŝ is the normalized altimeter pointing direction. From this

diagram, the following relation is derived.

ρ̃ = r̃ + hŝ (2.38)

For an ellipsoidal shape model, ρ̃ must lie on its surface and therefore is a solution

to Sellip (ρ̃) = 0 (Eq. (2.1)). Substituting Eq. (2.38) into Eq. (2.1) yields Eq. (2.39)

since E is symmetric.

(̂sEŝT )h2 + (2ŝEr̃T )h+ (r̃Er̃T − 1) = 0 (2.39)

As one would expect, this quadratic gives two solutions for the altitude h in general,

one intersection on either side of the ellipsoid (a double root is obtained if ŝ is

tangent to the surface). Assuming that the altimeter pointing direction has been

chosen such that both solutions for h are positive real, the smaller solution of the

two (Eq. (2.40)), corresponding to the side of the ellipsoid closest to the spacecraft,
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is the correct range solution.

h =
−ŝEr̃T −

√

(̂sEr̃T )2 − (̂sEŝT )(r̃Er̃T − 1)

ŝEŝT
(2.40)

If there are no real solutions, the sensing direction does not intersect the body.

The calculation of altitude above the polyhedral shape is fundamentally different,

as the surface is described by not one, but many equations. To determine the correct

altitude, range is computed to the plane defined by each facet, then the results are

sorted.

In addition to the constraint in Eq. (2.38), the groundtrack vector must lie on

the surface of the plane defined by a particular facet. Thus, Eq. (2.5) must hold.

Eqs. (2.38) and (2.5) are combined to find that

n̂i · (r̃ + hiŝ) = Ci (2.41)

and thus,

hi =
Ci − n̂i · r̃

n̂i · ŝ
. (2.42)

Eq. (2.42) defines the altitude above each of the polyhedron’s infinitely extended

planar facets. Next, it must be determined which of these solutions for ρ̃i lie on the

actual surface of the body. Given hi and r̃, Eq. (2.38) allows computation of ρ̃i. For

the altitude to be valid, ρ̃i must lie inside the area defined by that face’s three vertex

vectors. Further, the intersection must occur on the correct side of the body, so it

is required that r̃ · n̂i > 0. Applying these two filters leaves only valid intersections

with facets facing in the proper direction. Because the polyhedral shape can be

quite arbitrary, this set can include multiple solutions. As in the ellipsoidal case, the

smallest altitude from this set of valid solutions is the correct one. There may be no

valid altitude, which means the sensing direction does not intersect the body.
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The number of faces in a polyhedral model can be very large, necessitating a

heavy computational load to perform this altitude computation for all the body’s

faces each time an altitude measurement is needed. This load is lessened by creating

a temporary, revised face list which includes only faces that are in the vicinity of

the current spacecraft groundtrack and have surface normals in the proper direction.

Because the spacecraft moves in a continuous manner, it can be assumed that sub-

sequent altitude measurements will fall on this same set of faces. If the simulation is

unable to find a satisfactory altitude from this set of faces, which could occur if the

spacecraft has traveled outside the area, a new set of faces based on the spacecraft’s

current position are chosen. A Matlab implementation of this technique, as well as

groundtrack computation, is found in Broschart[54].

2.4.2 Time-of-flight Velocimeter Measurements

A time-of-flight velocimeter measures the full time derivative of the range to the

body at a given time, as would be calculated by differencing two subsequent altitude

measurements. Using knowledge of the spacecraft position, velocity, and surface

geometry, the rate-of-change in spacecraft altitude in a fixed measurement sensing

direction ŝ can be computed (the formulation in Broschart[41] allows the sensing

direction to vary). This measurement includes components arising from both the

spacecraft velocity and changes in the topography of the small-body’s surface.

The altitude rate-of-change for the ellipsoid or polyhedron shape models is de-

termined in the following way. The system geometry is the same as in the altimeter

formulation (Figure 2.4), but these nominal vectors are propagated forward to their

values after a small time step, ∆t. Nominal values are noted using a subscript 0.
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From the figure,

r̃0 + h0ŝ = ρ̃0. (2.43)

Also, for a small change in the groundtrack vector ρ̃,

(ρ̃− ρ̃0) · n̂ = 0. (2.44)

After a small timestep,

(r̃0 + ˙̃r0∆t) + (h0 + ∆h)̂s = ρ̃. (2.45)

Subtract ρ̃0 from both sides, dot with n̂, and rearrange to obtain the altitude rate-

of-change (Eq. (2.46)).

ḣ =
∆h

∆t
= −

˙̃r0 · n̂
ŝ · n̂ (2.46)

2.4.3 Optical Navigation Measurements

Optical navigation measurements are widely accepted as a critical component of

a small-body navigation system. Computation of optical navigation measurements

is generally complicated involving complex computer vision algorithms that extract,

recognize, and match features from a series of pictures of the small-body surface.

There are a number of techniques used ranging from simple to very complex. These

include centroid computation[55], landmark tracking[56], paired feature tracking[56],

limb tracking, shadow measurements, and others. The ultimate goal of all of these

measurement types is to provide in-situ navigation data.

The mathematical model used here for optical navigation measurements is rela-

tively simple. It is assumed that the measurement gives the unit vector ô that points

from the center of mass of the small-body toward the spacecraft. Equivalently, it can

be said that the measurement gives the latitude and longitude, but not the range,

of the spacecraft with respect to the small-body. This is most consistent with the
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information obtained by a surface feature tracking optical navigation technique, such

as landmark tracking or paired feature tracking.

2.5 Small-body Characterization Tool

The SBCT is a stand alone software tool (written in C + +) designed to give

an overview of the dynamic environment near a small-body. Development up to the

current release, version 0.03, has been sponsered by JPL. The advantage of this tool is

that it gives a broad overview of the dynamic environment near a small-body nearly

instantaneously. Users can quickly get the “big [dynamics] picture” for a specified

close-proximity mission profile. The validity of the user’s assumptions, plausibility

of a mission concept, and the effects of parameter tweaking can quickly be assessed.

SBCT is very useful at a mission planning level, but is useful for simulation design

in this research for many of the same reasons. It gives a method to quickly check

if the equations of motion being used are appropriate. It can be very helpful in

choosing appropriate initial conditions to obtain the desired motion in simulation

and it gives quick answers to a wide range of questions in one place (“Can this orbit

escape?”, “Where are the equilibria?”, “What is the acceleration and escape speed

at this point on the surface?”, etc.). The SBCT brings together previously disparate

tools and research (nothing of its kind for small-body dynamics existed previously)

and is a useful tool for small-body dynamics work such as this. A brief overview of

the use and outputs of the SBCT can be found in Appendix C.



CHAPTER III

Numerical Validation of Hovering

The first goal of this research project was to numerically validate the existing

theory on controlling hovering spacecraft put forth in Sawai et al.[10] and Scheeres[8].

To do this, a first of its kind numerical hovering simulation tool, HoverSim, was

developed. This chapter details the HoverSim tool and the how it was used to test the

previously existing theory on hovering in the small-body fixed and inertial reference

frames. Results and discussions of this comparison are included. The HoverSim tool

is also used to perform a case study of hovering above asteroid Itokawa, the target

of JAXA’s Hayabusa mission1.

These results of this chapter are also detailed in Broschart and Scheeres[58].

3.1 Review of the Results of Sawai et al.

Sawai et al.[10] considers a closed-loop strategy for hovering in the two-body prob-

lem. Hovering in this frame, which rotates with the small-body, is called “body-fixed

hovering”. Body-fixed hovering (equilibrium) is ideally implemented at a nominal

1The study presented here was completed in advance of Hayabusa’s successful rendezvous and
hovering campaign at Itokawa. Improved dynamical models of the shape and gravity of Itokawa
now exist[57] that should be used as the basis of any future analysis.

35



36

hovering position r̃0 by applying thrust T̃ = T̃OL, where

T̃OL = − ∂U

∂r̃

∣

∣

∣

∣

T

r̃0

+ ω̃ × ω̃ × r̃0 (3.1)

in the two-body problem2. In addition to this open-loop cancellation of the nominal

acceleration, Sawai et al. add a closed-loop control component to handle perturba-

tions that completely restricts motion in a chosen direction.

By removing the dynamics in one direction from the equations of motion, stability

criteria for the remaining two-dimensional motion are derived analytically from the

linearized two-body equations of motion (Section 2.3.1). For an arbitrary potential

U , the three criteria for stability derived in Sawai et al.[10] are given in Eqs. (3.2) -

(3.4),

3ω2v̂2
3z + ω2 − (α1 + ω2) − (α2 + ω2) ≥ 0 (3.2)

(α1 + ω2)(α2 + ω2) − ω2v̂2
1z(α2 + ω2) − ω2v̂2

2z(α1 + ω2) ≥ 0 (3.3)

(α1 − α2 − ω2)2 + 3ω4v̂2
3z(v̂

2
3z + 2) − 8ω2v̂2

3z{(α1 + ω2) + (α2 + ω2)} > 0 (3.4)

where α1, α2, α3 are the three eigenvalues of the Hessian matrix of the gravitational

potential (∂2U/∂r̃2) at the nominal hovering point, and v̂1, v̂2, v̂3 are the corre-

sponding eigenvectors (subscripts x, y, and z refer to the Cartesian components of

these vectors). The eigenvectors and eigenvalues are arranged such that the third set

refers to the eigenvector ‘nearly’ aligned with the gravitational attraction direction

(pointing away from the body). Of the remaining two, the eigenvector/eigenvalue

pair with the largest eigenvalue is considered the first set. These three criteria de-

fine a region above an arbitrarily-shaped body where hovering in the small-body

fixed frame is theoretically stable under this control. This region is roughly approxi-

mated by the locus of initial hovering points inside the body’s resonance radius (Eq.

2The stability of hovering under this open-loop control is investigated by Scheeres[8].
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(2.16)). Illustrations of the region defined by these sufficiency criteria for spherical

and ellipsoidal small-bodies, as well as the real asteroid Castalia, can be found in

[10].

Implementation of the open-loop portion of the control requires a constant thrust

that cancels the nominal acceleration on the spacecraft in the small-body fixed frame,

given in Eq. (3.1)3. Note that this is a constant thrust vector in a rotating frame and

thus, actual implementation would require an attitude controller or thrust vectoring

system.

The closed-loop portion of the proposed control perfectly restricts motion along

v̂3, such that ˙̃r
T
v̂3 ≡ 0. A spacecraft with an internal model of the small-body could

compute the Hessian matrix of the potential and determine v̂3 on board. However,

the assumption of such an “infinitely tight” control is not realistic, as it is impossible

for an actual spacecraft control system to implement. [10] suggests an approximation

to this control would be achieved by a dead-band thrust control based on altitude

measurements, which confines the spacecraft movement to a band of positions around

a target altitude. Eq. (3.5) gives a general formulation of a dead-band thrust control,

T̃DB =



















−Tmĉ (r̃) , if fdb (r̃) ≥ γ;

0, otherwise.

(3.5)

where for an altitude dead-band, fdb is defined in Eq. (3.6),

fdb (̃r) = |h (r̃) − h0| (3.6)

and for this controller, ĉ = sgn (h− h0) v̂3. In the idealized controller used for the

3In [10], it is suggested that in implementation the open-loop control need only cancel the
centrifugal force on the spacecraft. However, this research uses the open-loop control to null the
full nominal acceleration on the spacecraft, as proposed in [8] to closer approximate the dynamics
used to develop the theory. Full cancellation is found to more tightly confine the spacecraft’s range
of motion. A more detailed look at the difference between full and partial cancellation of the
nominal acceleration is found in Chapter V.
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analytical model, the dead-band size, γ, would be zero. Hereafter, this implementa-

tion (Eqs. (3.1), (3.5), and (3.6)) of the idealized control proposed by Sawai et al.

where,

T̃ = T̃OL + T̃DB (3.7)

is known as the Gravitational Direction Thrusting and Sensing with Open-loop

(GDTS w/OL) body-fixed hovering controller.

3.2 HoverSim Simulation Tool

HoverSim is a software tool, written in Matlab and Simulink, that was developed

to simulate hovering under dead-band control based on altimetry measurements.

The purpose of building this tool was to test the theoretical results of Sawai et

al.[10] and serve as a platform for testing other dead-band control ideas. The basic

function of the code is to integrate the spacecraft equations of motion in an arbitrary

gravitational potential field subject to a chosen control law. Control laws can be

implemented for body-fixed hovering, inertial hovering, or ballistic flight.

The simulation was designed to work with the polyhedron or tri-axial ellipsoid

shape models with a constant density gravitational potential (Sections 2.1 and 2.2).

The spacecraft dynamics are defined by the two-body equations of motion in the

small-body fixed frame (Section 2.3.1), though the option exists to add the time-

varying disturbance caused by the solar tide and SRP (as in Section 2.3.4, but in the

small-body fixed frame).

Over the years, HoverSim has evolved into the more comprehensive Small-body

Dynamics Toolkit (SBDT) which facilitates numerical simulation and investigation

of additional dynamics and spacecraft motions near small-bodies. A more compre-

hensive description of the capabilities of the SBDT is found in Appendix D.
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3.2.1 Thrust Control Options

In HoverSim, the spacecraft thrust T̃ is determined by the control law chosen by

the user. The simulation includes three different types of control that can be applied

to the spacecraft. These include a dead-band control on altimetry measurements

(Eqs. (3.5),(3.6), and Section 2.4.1), a dead-band control on velocimetry (Eq. (3.5)

and Section 2.4.2), where

fdb (r̃) =



















∣

∣

∣
ḣ
∣

∣

∣
, if |h (r̃) − h0| ≥ γ(altitude);

0, otherwise

(3.8)

and an open-loop constant thrust controller (Eq. (3.1)). The simulation can be run

using any combination of these three controllers. It is also possible to specify the

instrument sensing direction ŝ and dead-band control thrust application direction ĉ.

When using the altitude dead-band controller, the user specifies a target altitude

h0 for the spacecraft and a tolerance factor γ. If the spacecraft altitude is within

γ of the target altitude, no thrust is added. If the spacecraft leaves this region, a

thrust is applied along ĉ (r̃) to return the spacecraft to the target altitude band. The

magnitude of this thrust Tm is also specified as a simulation input. It is possible to

implement only one ‘side’ of the dead band controller, i.e., thrusters are only fired

when the spacecraft altitude is less than (greater than) the desired altitude.

The velocimetry dead-band controller is active only when the spacecraft is inside

the altitude dead-band and fires the spacecraft thrusters when the spacecraft changes

altitude faster than the specified rate limit γ. This control has a damping effect,

reducing the magnitude of oscillations in altitude inside an altimetry dead-band.

The final controller available in HoverSim is the open-loop controller. This con-

stant control thrust nulls gravitational and centripetal accelerations in the two-body
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problem at the prescribed hovering point.

3.2.2 HoverSim Output

Upon completion of the simulation, the system parameters and time-stamped

histories of spacecraft position, velocity, altimetry measurements, velocimeter mea-

surements, and thrust are given to the user. These outputs fully define the spacecraft

motion and system geometry and can be used to compute any desired additional

quantities. To obtain data for a range of initial conditions, the simulation can also

be run iteratively as described in a Matlab script file. Any of the HoverSim outputs

can be saved for each iteration.

3.2.3 Simulation Verification

In order to assure that the simulation works as intended, a series of tests with

known results were completed and compared with the expected behavior. First, a

trajectory was computed above a spherical body with no thrust applied. The space-

craft’s angular momentum and energy were computed from the simulation output

and it was found that energy was conserved, the angular momentum vector had

constant magnitude, and it was rotated from its initial direction by ω∆t around the

rotation axis as predicted by the analytical theory.

The next test was designed to verify that the simulation was computing the

correct body forces on the spacecraft. This was done by solving analytically for the

forces on the spacecraft at a given position, then adding an open-loop thrust of equal

magnitude and opposite direction to the spacecraft. If the simulation computes the

forces on the spacecraft correctly, this open-loop thrust should cancel those forces

perfectly and the spacecraft should not move. The simulation was found to correctly

produce this result for numerous test positions.
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The final verification test was done to ensure that the dead-band controllers were

working as intended. This was determined by looking at the thrust, altitude, and

altitude rate of change vs. time output. Thrust should be enabled in the proper

direction whenever the dead-band condition is violated. This test was performed

for a number of initial conditions and the dead-band controllers were found to be

working as expected.

3.3 Numerical Investigation of the Sawai et al. Results

The difference between the idealized closed-loop hovering controller used in the

derivation of Sawai et al.’s stability criteria (Eqs. (3.2)-(3.4)), which completely

restricts motion in a chosen direction, and its practical implementation, which allows

motion across a finite band of altitude in the same direction, is significant enough

to warrant study. For one, the allowable region of motion in the ideal case is a

flat plane in space, while the implementation with altimetry creates a region that

curves in space with the contours of the small-body surface. Also, the cumulative

effect of Coriolis forces on the trajectory in the two unrestricted directions is very

different in three-dimensional motion across a finite dead-band than the effect of

simply canceling the out-of-plane component of the Coriolis force has on the planar

dynamics. Thus, an analysis using the full nonlinear equations of motion under the

GDTS w/OL thrust control is necessary to validate the theoretical results of Sawai

et al[10].

This chapter furthers the previous work by numerically simulating the nonlinear

equations of motion with HoverSim to study one-dimensional dead-band hovering via

altimetry with realistic control constraints. The results of the numerical study are

compared and contrasted with the previous findings to determine in which regions
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the analytical stability criteria (Eqs. (3.2)-(3.4)) produce valid results.

Determining stability characteristics of a trajectory from numerical data is in-

herently difficult. With finite-time simulation data, it is impossible to verify true

stability or instability. In this chapter, a quantifiable numerical definition of sta-

bility which is suitable to evaluate finite-time trajectories will be used. Beginning

with a perturbation from equilibrium smaller than a given magnitude, stability is

quantified by the size of the region around the initial hovering point that contains

the entire trajectory for a given simulation time. The results presented here quantify

the size of this region by the maximum angular deviation from the nominal hovering

position as viewed from the small-body center of mass. Angular deviation may be a

more relevant parameter to a mission than absolute distance deviation if the space-

craft is trying to point at a specific location on the surface of the body. Instability

is defined not as unbounded motion, but as motion outside a specified region during

the simulation time. Due to potentially long time constants of instability, this anal-

ysis seeks only to verify stability for a fixed duration in the regions predicted by the

analytical stability criteria and not to verify instability in the complimentary space.

3.3.1 Hovering with GDTS w/OL Control

The GDTS w/OL hovering controller is defined by a target altitude, h0, and a

dead-band width parameter, γ. If the spacecraft’s altitude (measured along ŝ = −v̂3)

is outside the ‘band’ defined by h0 ± γ, thrust is enabled to return the spacecraft

into the dead-band (where ĉ = sgn (h− h0) v̂3).

Using an ellipsoidal small-body shape model, HoverSim was used to simulate

motion under the GDTS w/OL controller for random initial positions in the body’s

three symmetric planes (X − Y , X − Z, and Y − Z). The ellipsoid used in these
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simulations was 15x7x6 km, a rough approximation of the size of asteroid (433)Eros

that was visited during NASA/JPL’s NEAR mission. A bulk density of 3 g/cm3

and a ten hour rotation period were used, which are not consistent with Eros, but

were chosen to move the resonance radius further from the body for clarity4. The

dead-band width parameter, γ, was 10 meters. For each initial spacecraft position,

the simulation was run ten times with different initial velocity errors each time.

Each Cartesian component of velocity error was chosen randomly from a uniform

distribution between −1 and 1 cm/s.

Data were collected from independent simulations of two different durations,

20000 and 50000 seconds (roughly 5.5 and 13.9 hrs respectively). These relatively

short simulation times (on the order of one rotation period) are justified by noting

that a spacecraft operating in the body-fixed frame very near the surface would have

little reason to remain in one position for long periods of time. This type of maneu-

ver would likely be used during a descent or a translation across the surface, while

longer term hovering station-keeping maneuvers would more likely be carried out in

the inertial frame.

In the following figures, each data point represents the average size over ten trials

of the smallest solid angle such that the entire trajectory is contained within it. For

this analysis, averages of less than 0.4o are considered to be stable. The region inside

the bold line is the locus of initial positions satisfying the analytical stability criteria

(Eqs. (3.2)-(3.4)). Note that for an ellipsoidal shape model, the equations of motion

exhibit a longitudinal symmetry, i.e., results are the same for any two points 180o

longitude apart.

These simulations show that in the X−Z and Y −Z planes the analytical criteria

4With Eros’ true rotation period of 5.27hrs and bulk density of 2.4 g/cm3, the resonance radius
is roughly 15.7 km, barely beyond the long end of the body.
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for stability were well supported by the numerical results. There were no regions of

numerically unstable motion (large angular deviation) that encroached upon the

predicted region of stability. Numerical stability (tightly bound motion) extended

to some regions outside the area defined by the stability criteria in these planes, but

these trajectories are not necessarily stable in the long term and therefore, do not

suggest error in the stability conditions. Figures 3.1 and 3.2 show the results in the

X − Z plane after 20000 and 50000 seconds respectively. The Y − Z results are

essentially identical, the difference being that the boundary of the predicted stability

region is closer to the body at low latitudes and, hence, so is the onset of instability

(just outside that region). It can be noted that large angular deviations arise most

quickly for hovering outside the predicted stability zone at low latitudes in the X−Z

and Y − Z planes.

Figures 3.3 and 3.4 present results from simulations in the body’s X − Y (equa-

torial) plane for simulation durations of 20000 and 50000 seconds respectively. In

the X − Y plane figures, the results do not correspond as well with the analytical

stability criteria as in the others. Here, instabilities arise above the body’s leading

edges inside of the region that satisfies the stability conditions. The leading edges

are defined as the two quadrants of longitude on the body’s surface that extend from

the tip of the largest semi-major axis of the ellipsoid to the intermediate semi-major

axis in the direction of ẑ × x̂. As the simulation duration increases from 20000 to

50000 seconds, the area of instability encroaches further upon the region satisfying

the stability criteria. On the other hand, the region of predicted stability above the

body’s trailing edge is unaffected and remains stable. The region of stability off the

trailing edge actually is significantly expanded for shorter duration (20000 second)

hovering.
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Figure 3.1: Angular Deviation for GDTS w/OL Body-fixed Hovering Controller,
20000 s (X − Z plane)

3.3.2 Analysis of GDTS w/OL Controller Results

The discrepancy between the ideal region of stability and the numerical findings

in the X − Y plane can be attributed to the Coriolis accelerations introduced when

the assumption of infinitely tight control in the gravitational direction is relaxed.

An interaction between the dead-band orientation, the control thrust application

direction, and the Coriolis accelerations causes the degradation of numerical stability

above the ellipsoid leading edges and the improvement in stability above the trailing

edge seen in the simulation data.
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Figure 3.2: Angular Deviation for GDTS w/OL Body-fixed Hovering Controller,
50000 s (X − Z plane)

The orientation of the dead-band region for hovering in the X−Y plane is shown

in Figure 3.5. A coordinate system can be defined for the dead-band dynamics

consisting of the normal vector to the dead-band boundary, n̂db, the unit vector

along the rotation axis, ẑ, and the unit vector transverse to the dead-band boundary,

t̂db = ẑ× n̂db. The surface normal where ŝ, intersects the body’s surface defines n̂db,

the local orientation of the dead-band. This direction is not aligned with the control

direction, ĉ, in general. Therefore, when dead-band control thrust is applied, it will

have some component along t̂db. This transverse thrust component will be equal and

opposite at the two dead-band boundaries. If the spacecraft hits both boundaries
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Figure 3.3: Angular Deviation for GDTS w/OL Body-fixed Hovering Controller,
20000 s (X − Y plane)

an equal number of times, this transverse acceleration will have no net effect on

the spacecraft’s motion along the dead-band. However, due to Coriolis forces which

effectively rotate the spacecraft velocity vector, this may not be the case. This

rotation coupled with the control thrust component along the dead-band can either

cause the spacecraft to repeatedly hit one boundary of the dead-band or encourage

it to bounce back and forth between the boundaries.

Figure 3.6(a) illustrates the dynamics above the leading edge. Above an ellipsoid’s

leading edge subject to GDTS w/OL hovering control, the relative orientation of n̂db

and ĉ is such that at the minimum altitude boundary of the dead-band, a component
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Figure 3.4: Angular Deviation for GDTS w/OL Body-fixed Hovering Controller,
50000 s (X − Y plane)

of the control thrust is applied in the negative t̂db direction and at the maximum

altitude boundary, thrust is applied in the positive t̂db direction. The Coriolis force

acting on the spacecraft, Fc = −2ω(ẑ× ˙̃r), effectively rotates the spacecraft’s velocity

vector clockwise in the plane defined by n̂db and t̂db. When the spacecraft reaches

a boundary, the component of control thrust along t̂db will effectively rotate the re-

turn velocity vector clockwise from the direction it would have been if there were

no thrust component along t̂db. As the spacecraft moves toward its next boundary

crossing, Coriolis forces will rotate the velocity in the same clockwise direction. Once

transients due to initial velocity errors wear off, the combination of these two effects
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will cause the spacecraft to hit the same boundary on successive occasions until the

non-linear effects of gravity and changes in dead-band orientation eventually turn it

around. This successive ‘bouncing’ motion leads to large oscillations from the nomi-

nal hovering point. Examination of numerical simulations show that this “bouncing”

movement always takes over in the steady-state for hovering in a small dead-band

above the leading edge of an ellipsoid subject to the GDTS w/OL controller.

Figure 3.6(b) illustrates the dynamics above the trailing edge. Above the body’s

trailing edge, the relative orientation of n̂db and ĉ is the opposite. At the minimum

altitude boundary, a component of the control thrust is applied in the positive t̂db
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direction and at the maximum altitude boundary, thrust is applied in the negative

t̂db direction. As opposed to above the leading edge, the thrust component along t̂db

in this configuration causes the velocity vector reflected off the dead-band boundary

to be rotated counter-clockwise from where it would have been if there were no

transverse thrust component. In this case, the clockwise rotation of the velocity

vector caused by the Coriolis force will counter the effect of the control thrust,

encouraging the spacecraft to move toward the other dead-band boundary. Again,

in the steady state, this motion always takes over above an ellipsoid’s trailing edge

for small dead-band sizes, causing a ‘chattering’ effect, where the spacecraft never

hits the same boundary on successive occasions. This ‘chattering” has a focusing

effect that keeps the spacecraft close to the initial hovering point.

The analysis here is done in the equatorial plane for the sake of simplicity, but this

effect occurs with weakening strength (meaning the leading and trailing edge results

differ less) all the way to the body’s X − Z and Y − Z planes. In these planes,

thrust transverse to the dead-band and Coriolis accelerations never work together to

push the spacecraft in a consistent direction. Also, the Coriolis accelerations only

act in the unrestricted plane of motion, so their effect is not canceled at all when

the motion along v̂3 is removed. This is why the numerical results in the X −Z and

Y − Z planes agree well with the analytical predictions.

The strength of this Coriolis effect above either the leading or trailing edge is

determined by ω, γ, and the angle between n̂db and ĉ. Let θ be this angle, measured

from n̂db and positive for orientations such that ĉ· t̂db > 0. Sufficiently positive values

of θ will result in a focusing “chattering” effect and sufficiently negative values result

in the destabilizing “bouncing” effect. The sufficient values and the θ that produces

the tightest focusing effect are functions of r̃0, ω, and γ. If a symmetric, universal
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method of choosing control direction is used, such as gravitational direction or initial

acceleration, some optimal control law may exist which will adequately focus the

leading edge dynamics, while not weakening the focusing effect off the trailing edge

too much.

These results suggest that ideally, a spacecraft should use a method of choosing

control direction above the leading and trailing edges such that the angle θ is always

positive. Simulations have shown that shifting the control direction above the leading

edge so that θ is positive does indeed produce the desired stabilizing effect. It should

be noted that θ should never approach ±90o since there will then be no thrust in the

direction normal to the dead-band to maintain the spacecraft’s altitude.

3.4 Other Dead-band Hovering Approaches

During the course of the investigation of the results of Sawai et al., HoverSim

was used to look at some alternative approaches to hovering. First, the Initial Accel-

eration Thrusting and Normal Sensing (IATNS) controller for body-fixed hovering

is studied. This controller is a variant on the dead-band control approach of Sawai

et al. in Section 3.1. Hovering in an inertial frame, where the small-body rotates

beneath the spacecraft, is also investigated numerically.

3.4.1 Body-fixed Hovering with IATNS Control

The performance of another implementation of the body-fixed hovering solution,

the IATNS controller, was also evaluated numerically. This controller also utilizes

a dead-band control based on altimeter readings (Eqs. (3.5) and (3.6)), but it has

no open-loop component. Also for IATNS control, the direction of the dead-band

control thrust is changed to be aligned with the nominal acceleration vector â0 (Eq.

(3.9)), such that ĉ = −sgn (h− h0) â0. This should more directly counter the natural
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motion of the spacecraft. ŝ is also changed to measure altitude in the direction that

is normal to the small-body surface. This is the most robust direction to measure

altitude since the component that changes with the surface topography is minimized

for small deviations in spacecraft position.

â0 =
∂U/∂r̃|Tr̃0

− ω̃ × ω̃ × r̃0
∣

∣

∣

∣

∣

∣
∂U/∂r̃|Tr̃0

− ω̃ × ω̃ × r̃0

∣

∣

∣

∣

∣

∣

(3.9)

The IATNS controller may offer advantages over the GDTS w/OL controller.

By sensing altitude in the direction normal to the surface at the initial hovering

point, the magnitude of the angle θ between the dead-band orientation vector n̂db

and the control direction v̂c is smaller for ellipsoids, which the analysis suggests

should improve performance above the body’s leading edge. Also, removing the

open-loop causes the spacecraft’s motion to proceed very closely along the initial

acceleration direction from the initial hovering point. This lessens the deviation from

the initial hovering point due to transient effects caused by initial velocity errors, as

the spacecraft will more quickly move into steady-state motion in the dead-band.

Fuel savings may result as well (see Chapter V).

With some thought, it is clear that the IATNS controller will fail catastrophically

near (and beyond) the resonance radius of the body. As the spacecraft hovering point

approaches the resonance radius, the initial acceleration vector, â0 will turn 180o as

the nominal acceleration transitions from pointing toward the body to away due to

centrifugal force. Therefore, this controller will be limited to use inside the body’s

resonance radius or near the rotation axis.

Using the same ellipsoidal small-body and system parameters used in the sim-

ulations for the GDTS w/OL controller, spacecraft motion subject to the IATNS

controller has been simulated in the X − Y , X − Z, and Y − Z planes. Here again,
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ten different simulations with random velocity errors were conducted at each initial

hovering point.

The IATNS body-fixed hovering controller was found to work well at altitudes

inside the resonance radius. As expected, the controller quickly becomes less stable

as the initial position nears the area where the initial acceleration rotates away from

the body. In all three planes, initial positions inside this destabilizing threshold are

found to be numerically stable.

Figures 3.7 and 3.8 show the results of simulations in the X−Y plane after 20000

and 50000 seconds respectively. In theX−Y plane, the analytical stability conditions

define the threshold where the initial acceleration vector turns away from the body.

The bold line in the figures outlines this region. As hoped, the IATNS controller re-

duces the deviations associated with the Coriolis forces discussed in the Section 3.3.2

above the body’s leading edge compared to the GDTS w/OL controller. By reducing

θ, the instability related to Coriolis forces above the leading edge is weakened and

develops more slowly. In the 50000 second figure, a slight degradation of stability is

just beginning to appear above the leading edge. In the data from the 20000 second

runs, this degradation of stability cannot be seen. Similarly, the stabilizing effect

above the trailing edge could be slightly weakened due to the realignment of the

vector n̂db for this controller. However, the angle θ is still negative and therefore, a

focusing effect remains, as demonstrated by these numerical results.

For comparison with the GDTS w/OL control, Figures 3.9 and 3.10 show the

results of simulations in the X−Z plane after 20000 and 50000 seconds respectively.

Again, the results in the Y − Z plane are qualitatively similar.
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Figure 3.7: Angular Deviation for IATNS Body-fixed Hovering Controller, 20000 s
(X − Y plane)

3.4.2 Inertial Hovering

This section looks at a second solution to the two-body equations of motion in

the small-body fixed frame (Eq. (2.14)). This solution is a retrograde, constant

latitude, circular orbit whose orbital period is equal to the small-body’s rotation

period. In this “inertial hovering” solution, the spacecraft position remains fixed in

inertial space while the small-body rotates beneath it. In the small-body fixed frame,

this solution is specified in Eqs. (3.10) and (3.11),

r̃0I(t) = ||̃r0I (0)||
[

cosφ0 cos (ωt+ λ0), − cosφ0 sin (ωt+ λ0), sin φ0

]T

(3.10)
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Figure 3.8: Angular Deviation for IATNS Body-fixed Hovering Controller, 50000 s
(X − Y plane)

˙̃r0I(t) = −ω ||̃r0I (0)||
[

cosφ0 sin (ωt+ λ0), cosφ0 cos (ωt+ λ0), 0

]T

(3.11)

where φ0 and λ0 are the initial latitude and longitude (measured from the positive x̂

axis), respectively. For inertial hovering, Eq. (3.12) defines the thrust necessary to

make this circular orbit a solution to the equations of motion.

T̃(t) = −∂U
∂r̃

∣

∣

∣

∣

T

r̃0I (t)

(3.12)

If the two-body equations of motion are linearized about the inertial hovering
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Figure 3.9: Angular Deviation for IATNS Body-fixed Hovering Controller, 20000 s
(X − Z plane)

solution (Eqs. (3.10) and (3.11)), the perturbation equations (Eq. (3.13)) are found.

δ¨̃r + 2ω̃ × δ ˙̃r =
∂2U

∂r̃2

∣

∣

∣

∣

r̃0I(t)

δr̃ − ω̃ × ω̃ × δr̃ (3.13)

This is a periodic, time-varying linear system. The stability of this system can be

determined using Floquet theory, which says that the state transition matrix is of

the form,

Φ (t) = P (t) eMt (3.14)

where P (t) is a periodic matrix and M is the constant monodromy matrix. The

stability of the system is determined by the eigenvalues of M . This is done by eval-
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Figure 3.10: Angular Deviation for IATNS Body-fixed Hovering Controller, 50000 s
(X − Z plane)

uating the state transition matrix after one period of motion, i.e., when P is the

identity matrix. The state transition matrix can be calculated numerically for an

arbitrary gravity model using Matlab tools in the SBDT. Further, this is a Hamilto-

nian system, and thus, the eigenvalues of Φ after one period, or Floquet multipliers,

must come in complex conjugate and inverse pairs. This means that for stability,

the Floquet multipliers of the system must all lie on the unit circle in the complex

plane. Multipliers with magnitude larger than unity imply instability. Previous work

in Scheeres[8] gives the types of eigenvalues of the inertial hovering dynamics (Eq.

(3.13)) as a function of hovering radius and latitude.
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Without performing any calculations, one would expect that the system will

have at least one unstable pair of multipliers corresponding to motion in roughly the

radial direction. If there are some perturbations in this direction, the gravitational

attraction the spacecraft feels will either increase or decrease in the same manner

that the nominal thrust will be inaccurate, resulting in an unchecked acceleration.

This observation is confirmed analytically in Scheeres[8] for a pointmass and the

numerical results given for more general shapes all have at least one such hyperbolic

unstable mode (or pair of eigenvalues).

In fact, for the pointmass gravity field, inertial hovering at all distances and lati-

tudes has exactly one hyperbolic unstable mode and two stable oscillation modes[8].

So at a minimum, a controller is necessary to stabilize motion in the radial direction.

The following results assume a controller that stabilizes radial motion (such as a

dead-band thrust control) exists and focus on the character of the two remaining

modes.

For the ellipsoidal shape case, the perturbation equations (Eq. (3.13)) have been

numerically integrated for one period of motion and the eigenvalues of the state

transistion matrix have been determined for a range of hovering radii and latitudes.

The initial longitude of the hovering position has no effect on the eigenvalues of the

monodromy matrix, though it does effect the eigenvectors[8]. Integrations were per-

formed using Matlab with a relative tolerance of 10−8 (m) and an absolute tolerance

of 10−11 (m).

It was found that inertial-frame hovering dynamics, excluding the hyperbolic un-

stable mode in the radial direction, are stable at most radial distances and inclina-

tions. The exception to this is a region near the resonance radius that extends around

the body, forming a nearly-spherical shell of instability. The cross-hatched regions in
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Figure 3.11 show the shape of this unstable region, which is axially symmetric about

ẑ, for different rotation rates around an ellipsoidal body measuring 15x7x6 km with

a density of 2.3g/cm3 5. The resonance radius corresponding to each rotation rate is

shown as a vertical dashed line. It can be seen that the region of instability moves
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Figure 3.11: Regions of Instability for Inertial Hovering above a 15x7x6 Ellipsoid for
Various Rotation Rates, TEros = 5.27 hrs

with the changing resonance radius (Eq. (2.16)), a function of rotation rate. As

latitude of hovering increases, the radius of unstable hovering becomes smaller and

the strength of the instability is marginally decreased. The range of radial distances

5These parameters roughly approximate the size and mass of asteroid Eros.
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covered by the instability also decreases as the rotation rate decreases. Figure 3.12

shows the magnitude of the four transverse eigenvalues (corresponding to the two

transverse directions in position space) versus radius in the equatorial plane for se-

lected rotation rates. Again, the correlation between the primary instability and the

resonance radius is clear. This figure also shows that the magnitude of the instability

increases for faster rotation rates. Note that the magnitude of the instabilities that

exist near the resonance radii is small, generally < 2 except very near the small-body.

Beyond the instability at the body’s resonance radius, inertial hovering is found to

be stable in all cases up to the point where the two-body assumptions break down

and third-body effects of the sun become an issue. The qualitative properties of this

ellipsoidal example are reflective of the other ellipsoidal shapes tested.

One may expect there to be instabilities near other harmonics of the rotation

rate. The data suggests that relatively weak instabilities may exist inside the reso-

nance radius at these secondary resonances. However, as the ratio of hovering radius

to resonance radius decreases, the condition number of the state transition matrix

that gives us the stability result increases exponentially. The secondary harmonic

instabilities found for the ellipsoidal body case lie too far inside the resonance radius

to be considered numerically accurate. Therefore, the stability of hovering well in-

side the resonance radius remains unknown. No secondary harmonics outside of the

resonance radius, where the result is numerically tractable, were found in this study.

Numerical Support

The analytical result for stability of inertial hovering described above is well sup-

ported in numerical simulations. For these simulations, constant density ellipsoidal

shape and gravity models were used with an ideal dead-band control that restricted
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Figure 3.12: Magnitude of Floquet Multipliers for Inertial Hovering above a 15x7x6
Ellipsoid for Various Rotation Rates, Latitude = 0o

motion to the plane passing through r̃0 defined by the vectors ẑ and r̃0 × ẑ in the

small-body rotation pole (inertial) frame. The control direction was defined as being

constant and parallel to the direction of the initial hovering point.

Because the control direction is constant and the dead-band control confines

the motion of the spacecraft to a plane perpendicular to r̃0, all inertial hovering

trajectories will ultimately have bounded time responses, assuming the thrusters have

adequate authority to enforce the dead-band . That is, as the spacecraft moves far

from the initial point, the gravitational attraction will increasingly pull the spacecraft

back toward the nominal position. This phenomena is not apparent in the linearized
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analysis, but is ultimately true in the full non-linear case. However, oscillations of this

magnitude generally would not be acceptable during a mission to a small-body. For

the purposes of analyzing the linearized result of the Section 3.4.2, let instability not

be represented by unbounded motion, but by growth in the quasi-periodic oscillation

of the spacecraft about the nominal point over time.

Using the same ellipsoidal shape model used in Figures 3.11 and 3.12 (15x7x6

km, ̺ = 2.3 g/cm3), simulations of inertial hovering trajectories were performed at

a range of radial distances in the equatorial plane. Figure 3.13 shows the maximum

deviation from nominal in the ŷ direction (since in the equatorial plane, z ≡ 0)

for simulations of one to five small-body rotation periods. The primary feature

of the previous results, instability near the resonance radius, is clearly shown for

trajectories with a target radius near the resonance radius (23.7 km). Over time,

the largest magnitude oscillations arise for the part of the unstable region closest

to the body. Numerical simulation also confirms that the linear stability analysis

for hovering outside the resonance radius produced accurate results; that is, inertial

hovering is stable orbit over orbit at all radii beyond the resonance radius instability.

Other simulations showed that the oscillations in position of the spacecraft in these

regions were consistent over relatively long simulation times (35 days). Figure 3.13

also shows that in regions very near the body, oscillations from the nominal point

were large in magnitude, though bounded in the long term. In general, the bound on

the spacecraft’s oscillations about the nominal point for stable hovering radii became

larger as radius decreases.

Recall the analytical work did not yield insight into the stability of inertial hov-

ering very near the body. These numerical results show inertial hovering to be

non-linearly stable very near the body, but with large oscillations in position. There
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Figure 3.13: Deviation from Nominal for Inertial Hovering above a 15x7x6 Ellipsoid,
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is growth in the oscillation size between 15 and 20 km period over period, which

continues for longer simulation times. This may be attributable to a three circular

orbits to two rotation period resonance at 18.1 km.

3.5 Hovering above Asteroid 25143 Itokawa

On May 9, 2003, JAXA successfully launched the MUSES-C spacecraft, renamed

Hayabusa after launch, toward asteroid (25143)Itokawa[59]. In this mission, the

spacecraft eventually rendezvoused with the asteroid, spent some time inertial hov-
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ering, then descended to the surface to attempt regolith sample collection for return

to Earth. Because of the applicability of the work in this chapter to this mission,

this section presents numerical stability results for a spacecraft hovering near Itokawa

subject to the control strategies in this chapter. The simulations were conducted be-

fore Hayabusa’s rendezvous and use the system parameters available at that time.

Simulations for both body-fixed and inertial hovering scenarios use the 6098−vertex

polyhedral shape model of Itokawa developed by Ostro et. al.[35]. The body-fixed

simulations assume a bulk density of 2.3g/cm3 and rotation period of 12.12hrs, while

the inertial hovering simulations use updated estimates: a bulk density of 2.5 g/cm3

and a rotation period of 12.132 hrs. Improvements to both parameter sets were

obtained from Hayabusa’s in-situ measurements[57].

3.5.1 Body-fixed Hovering

To verify that the qualitative results found for the ellipsoidal case apply to more

realistic small-body shapes, simulations of body-fixed hovering above Itokawa subject

to the two controllers discussed earlier (GDTS w/OL and IATNS) were performed

with a γ of 5 m. The approach here was to use initial positions at a range of

altitudes along various radial lines extending from the center of the body to test if the

qualitative stability properties of body-fixed hovering above an ellipsoid applied to

this polyhedral shape. Again, numerical stability is quantified by average maximum

angular deviation over ten simulation runs with different initial velocity errors.

Recall that for ellipsoids, the GDTS w/OL controller agreed well with the analyt-

ical stability criteria of Sawai et al. in the X−Z and Y −Z planes. In the equatorial

plane, numerically unstable regions were found above the body’s leading edge that

satisfied the stability criteria and the numerically stable region was extended above



66

the trailing edge for shorter duration hovering. This asymmetry was attributed to

an interaction between Coriolis forces and the dead-band thrust. It was suggested

that these leading and trailing edge effects are present at all latitudes, weakening as

the hovering position moves away from the equator. This analysis is supported by

numerical simulations of GDTS w/OL hovering above Itokawa.

Figure 3.14 shows angular deviation versus radius for GDTS w/OL hovering at

5o latitude and 45o longitude (measured from the positive x axis), i.e., above the

leading edge near the equatorial plane. The radii satisfying the analytical stability

criteria are indicated with squares at the bottom of the plot. It can be seen that

the average deviation starts to increase somewhat inside the region satisfying the

sufficiency criteria for the 20000 second runs. For the 50000 second runs, the effect

is more dramatic; destabilization occurs well inside the analytical stability limit and

causes large deviations from the hovering position. These findings support the results

found in the ellipsoidal analysis where leading edge performance was degraded by an

interaction between Coriolis forces and the control thrust direction.

For the radial line extending at 30o latitude and 45o longitude, body-fixed hov-

ering with the GDTS w/OL controller is found to behave largely in line with the

stability criteria (Figure 3.15). There is a clearly visible increase in the average angu-

lar deviation at both 20000 and 50000 seconds when the initial radius moves beyond

the region satisfying the stability criteria. As the initial radius approaches the limit

of the analytically stable region, a slow increase in average deviation is found, which

can be attributed to the weakened, out-of-plane, leading edge effect.

Simulations for the radial line at 0o latitude and −30o longitude, i.e., off the

trailing edge, show a region of stability extending well beyond the threshold suggested

by the analytical stability criteria after 20000 seconds (Figure 3.16). In the 50000
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Figure 3.14: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, GDTS w/OL Controller
(5o latitude, 45o longitude)

second case, the angular deviation begins to increase just inside the limit of the

region of predicted stability. Beyond the analytical stability threshold, deviations

are noticeably smaller than in the unstable regions of the other two cases.

Simulations of body-fixed hovering above Itokawa with the IATNS controller

were also run. Again, the results were found to be in agreement with the findings

in the ellipsoidal case. That is, the IATNS controller is consistently numerically

stable for 20000 and 50000 second simulations in all directions in a region near

the body extending almost to the analytical stability threshold. Beyond this point,

the controller becomes very unstable. Figures 3.17, 3.18, and 3.19 show results
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Figure 3.15: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, GDTS w/OL Controller
(30o latitude, 45o longitude)

for the same three radial lines presented above for the GDTS w/OL controller for

comparison.

3.5.2 Inertial-Frame Hovering

A large portion of the Hayabusa mission was dedicated to inertial hovering, dur-

ing which instrumentation onboard the spacecraft was used to map the asteroid’s

surface. For this phase of the mission, Hayabusa implemented a controller consisting

of three orthogonally-oriented position dead-band controllers to maintain spacecraft

position[9]. This type of control effectively forms a ‘box’ in position space that
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Figure 3.16: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, GDTS w/OL Controller
(0o latitude, −30o longitude)

contains the spacecraft’s trajectory.

The analysis in Section 3.4.2 suggests that the spacecraft can maintain position

in inertial space with only a single dimensional controller at altitudes outside the

body’s resonance radius. If this is the case, it could result in improved fuel efficiency

and operational simplicity for this part of the Hayabusa mission. The plan at the

time of this experiment was for the Hayabusa spacecraft to hover at an altitude of

approximately 20 km over Itokawa[60], well outside the resonance radius. The results

presented here predict that inertial hovering at this altitude is stable.

For this data to be as accurate (and useful) as possible, it was necessary to
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Figure 3.17: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, IATNS Controller (5o

latitude, 45o longitude)

compute the appropriate latitude at which the spacecraft would be hovering. The

plan was for the spacecraft to hover in the vicinity of the Earth-asteroid line for

purposes of communication. Given the orbit of Itokawa and the appropriate mission

data (Table 3.1), the Earth-asteroid line is calculated to move between 14.8o latitude

upon the spacecraft’s arrival and 16.8o at departure in the small-body fixed frame.

This analysis is performed at 15o latitude.

Figure 3.20 shows the analytical stability results obtained by examining the eigen-

values of the state transition matrix after one period of inertial hovering at 15o lati-

tude over Itokawa for a range of radial distances. As expected, the primary instability
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Figure 3.18: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, IATNS Controller (30o

latitude, 45o longitude)

exists in the region near the body’s resonance radius of 579m. Again, note that the

magnitude of this instability is reasonably small. Interestingly, two secondary insta-

bilities near 450m radius appear in this case. These results are numerically valid, as

opposed to the secondary instabilities seen in the ellipsoidal case. However, without a

more general result, it is difficult to say if these results validate the idea of secondary

harmonic instabilities suggested in the ellipsoidal case or if they exist only due to a

specific parameter of this model’s shape. Beyond the resonance radius, all inertial

hovering is stable. It is concluded that the Hayabusa mission plan to inertially hover

at an altitude of 20 km is safely within the region of stable inertial hovering subject
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Figure 3.19: Angular Deviation of Body-Fixed Hovering above Asteroid
(25143)Itokawa as a Function of Radius, IATNS Controller (0o

latitude, −30o longitude)

to one-dimensional control when solar gravitation and solar radiation pressure are

ignored. The effect of these perturbations is quite significant though and can be

addressed using the Hill equations (Section 2.3.3) and the results of Chapter IV.

3.6 Discussion

In this chapter, body-fixed hovering subject to a combination of dead-band con-

trol on altitude and open-loop control was numerically simulated with the HoverSim

software. This simulation capability is fundamental here and for the work on hov-

ering in the next two chapters. Using this capability, we were able to compare the
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Orbital inclination 1.728o

Long. of ascending node 70.921o

Orbital eccentricity 0.280
Orbital period 1.521 Julian yrs
Periapsis passage 2001-May-4.601
Argument of periapsis 161.029o

Orbital semi-major axis 1.323 AU
Rotation period 12.132 hrs[35]
Rotation pole 355o, −84o[61]
Hayabusa time of arrival (s/c) 6-15-05
Hayabusa time of departure (s/c) 11-2-05

Table 3.1: Asteroid (25143)Itokawa and Hayabusa Mission Parameters[1][2]

analytical stability results of Sawai et al. for idealized dead-band hovering to nu-

merical simulation data under a realistic dead-band implementation (GDTS w/OL).

The results were mixed. The one-dimensional control technique is shown to be quite

plausible by the simulations and the stability criteria correspond well with the actual

spacecraft motion in the X −Z and Y −Z planes. But the assumptions in the ana-

lytical theory restrict the effect of the Coriolis forces on the dynamics, which turns

out to poorly model motion across a finite dead-band. We found that without the

assumption of infinitely-tight dead-band control, Coriolis accelerations destabilize

hovering above the leading edges of ellipsoidal small-bodies in the equatorial plane

with weakening effect up to the polar planes. This is an important observation for

body-fixed hovering with dead-band control which came as a result of our numerical

simulation capability. The alternative IATNS control demonstrates that this Coriolis

effect can be reduced by decreasing the magnitude of θ. As mentioned previously, θ

would be positive at all hovering points in an ideal implementation.

We found inertial hovering above an ellipsoidal body to be linearly stable (not

including the (roughly) radial direction which is always unstable) at most latitudes
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Figure 3.20: Magnitude of Floquet Multipliers for Inertial Hovering above Asteroid
(25143)Itokawa, 15o Latitude

and radial distances. The exceptions were in a ‘shell’ of unstable hovering positions

around the small-body at a distance near the body’s resonance radius. This was the

first work to look at the strength of this instability, which is strongest in the equatorial

plane and strengthens with increasing rotation rates. In most cases, however, the

strength of this instability remains mild and it would likely be possible for a spacecraft

to safely move across the region under hovering control. This was also the first work

to numerically simulate inertial hovering and we found the theoretical results were

supported very well. These numerical results seemed to confirm the existence of

secondary resonances close to the body which could not be determined definitively
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in the linear analysis. They also showed that though many positions close to the

body are linearly stable, the oscillations in position can be quite large.

The simulations of body-fixed and inertial hovering above asteroid Itokawa were

interesting case-studies for a current mission, but they also served another purpose.

The results suggest that the qualitative properties of the findings for body-fixed

hovering above ellipsoidal bodies (for both the GDTS w/OL and IATNS controllers)

can be extended to hovering over real small-body shapes. This makes sense actually

since for the purpose of computing initial accelerations and gravity gradients, a dipole

gravity field (such as a constant density ellipsoid) will approximate these quantities

very well for arbitrary shapes if the evaluation points are sufficiently far from the

surface. The other half of the control is defined by surface topography, which can

be quite arbitrary, but in some average sense, the qualitative results of the ellipsoid

simulations will hold.



CHAPTER IV

Zero-velocity Surfaces and Hovering

This chapter furthers the work on hovering with an analytical result for bound-

edness of hovering that applies for any conservative system, including the two-body

problem, circular restricted three-body problem, and the Hill three-body problem.

Using the existence of a Jacobi constant in these systems, the zero-velocity surface

is defined for a hovering spacecraft. With knowledge of the zero-velocity surface,

dead-band control can be designed appropriately so that the hovering trajectory is

energetically bounded. Sections of this chapter address this result in the context

of initial state uncertainties, define the zero-velocity surface type as a function of

position for different applications, and look at how the result can be extended to

non-conservative systems.

The majority of the results presented in this chapter can also be found in Broschart

and Scheeres[62].

4.1 Zero-velocity Surface Result for Conservative Systems

The equations of motion for a spacecraft in a uniformly rotating coordinate frame

subject to accelerations derived from a potential function V and a constant thrust

76
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(in the rotating frame) can be written in the form of Eq. (4.1),

¨̃r + 2(Ω̃ × ˙̃r) =
∂V (r̃, t)

∂r̃

T

+ T̃ (4.1)

where the angular velocity of the reference frame with respect to inertial space, Ω̃, is

assumed to be constant. In this form, the centrifugal acceleration term, −Ω̃× Ω̃× r̃,

is derived from the potential function V . The two-body problem in the small-body

fixed frame (Section 2.3.1), the circular restricted three-body problem (Section 2.3.2),

and the Hill three-body problem (Section 2.3.3) can be written in the form of Eq.

(4.1). If both sides of Eq. (4.1) are multiplied by ˙̃r,

d

dt

[

1

2
˙̃r
T ˙̃r − V (r̃, t) − T̃T r̃

]

= −∂V
∂t
. (4.2)

If the reference frame is chosen such that V is not an explicit function of time (i.e.,

∂V/∂t = 0), then Eq. (4.3) defines the general Jacobi constant form for a conservative

system.

J
(

r̃, ˙̃r
)

=
1

2
˙̃r
T ˙̃r − V (r̃) − T̃T r̃ (4.3)

Eq. (4.3) maintains its value for the duration of any trajectory following the equa-

tions of motion (Eq. (4.1)).

If the thrust is chosen such that T̃ = − ∂V (r̃)/∂r̃|Tr̃0
, then the right hand side of

Eq. (4.1) equals zero at r̃0. If ˙̃r is also zero, then r̃0 is an equilibrium point. This

is precisely the approach that is used in spacecraft hovering under open-loop thrust

control.

For a trajectory initialized at an equilibrium state
(

r̃, ˙̃r
)

= (r̃0, 03x1), all states

on a valid trajectory must satisfy Eq. (4.4).

J
(

r̃, ˙̃r
)

= J (̃r0, 03x1) = C0, ∀t (4.4)
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Expand the left-hand side in a Taylor series in position and velocity deviations from

the equilibrium state to second order to obtain the condition in Eq. (4.5) on allowable

states in the vicinity of the equilibrium,

δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ = −δ ˙̃rT
δ ˙̃r ≤ 0 (4.5)

where δr̃ = r̃(t)− r̃0 and δ ˙̃r = ˙̃r(t). Note that ∂J/∂r̃|(r̃0,03x1)
= ∂J/∂ ˙̃r

∣

∣

∣

(r̃0,03x1)
= 01x3

at an equilibrium point. It is clear that for real values of δ ˙̃r, the right hand side must

be less than or equal to zero. The inequality in Eq. (4.5) defines the local region of

allowable motion in position space of the system. The boundary of this region (Eq.

(4.6)) defines a quadratic ‘zero-velocity surface’ as a function of δr̃ that cannot be

crossed by a real-valued system.

δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ = 0 (4.6)

This result for the zero-velocity surface near equilibrium is general and applies to

any time-invariant conservative Lagrangian system. A more general formulation is

given in Appendix E.

Let the eigenvalues of the matrix ∂2J/∂r̃2|(r̃0,03x1)
be β1, β2, and β3 (such that

β1 > β2 > β3) with corresponding eigenvectors ϑ̂1, ϑ̂2, and ϑ̂3. Depending on

the signs of these eigenvalues, this local boundary has one of the quadratic shapes

described in Table 4.1 and shown in Figure 4.1.

Sign of Eigenvalues Zero-Velocity Surface || ˙̃r|| > 0 Surface
+,+,+ Imaginary Quadratic Cone Imaginary Ellipsoid
+,+,− Real Quadratic Cone Two-Sheet Hyperboloid
+,−,− Real Quadratic Cone One-Sheet Hyperboloid
−,−,− Imaginary Quadratic Cone Real Ellipsoid

Table 4.1: Shape of the Nominal Local Zero-Velocity Surface for Hovering[3]
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Figure 4.1: Quadratic Zero-velocity Boundaries

In simple terms, Table 4.1 means the following. If all three eigenvalues are nega-

tive, then there are no local restrictions on where the spacecraft can go, as all (real)

displacements from nominal result in a negative left hand side of Eq. (4.5). Con-

versely, if all eigenvalues are positive, then no (real) displacements from the nominal

state are permitted. For both of the mixed eigenvalue cases, the zero-velocity surface

is a real quadratic cone in δr̃ where the two bounding cones touch at the equilibrium

point. For a real δ ˙̃r, motion is restricted to hyperboloid surfaces on the outside of

these cones in the +,−,− case and on the inside of the cones for the +,+,− case.

The shaded regions in Fig. 4.2 illustrate the allowable region of motion for each

case in two dimensions. Each shaded contour represents allowable positions for some
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|| ˙̃r|| ≥ 0.

+,+,+ +,+,−

+,−,− −,−,−

Figure 4.2: Allowable Regions of Motion for Different Eigenvalue Sets (shaded re-
gions), Each Contour Represents Allowable Positions for some Non-
negative Velocity Magnitude

4.2 Zero-velocity Surfaces and Dead-band Hovering Control

The existence and geometry of the different zero-velocity surfaces induced by an

open-loop hovering thrust control (Eq. (4.7)) suggest a dead-band controller (Eq.

(3.5)) may be appropriate for controlling perturbations from the nominal position.

T̃OL = − ∂V

∂r̃

∣

∣

∣

∣

T

(r̃0,03x1)

(4.7)

It can be shown that the dynamics of spacecraft operating under a combination of

open-loop and dead-band thrust controls maintain their conservative property and
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thus, the zero-velocity surface bound on motion. It will be shown that the combina-

tion of the energetic zero-velocity surface restriction and the restriction induced by

the dead-band can be used to bound the spacecraft motion for all time.

For a dead-band controller (Eq. (3.5)), if Tm is sufficiently large, the small acceler-

ation derived from V (r̃) can be ignored when the spacecraft is outside the dead-band

(when fdb (r̃) ≥ γ). Such a large thrust assumption is reasonable for operation near

small-bodies and typically used for spacecraft applications. This assumption allows a

closed form solution for the ∆V applied to the spacecraft between subsequent dead-

band crossings as a function of incoming velocity. If the dead-band thrust direction

is normal to the dead-band boundary (ĉ (r̃) = ˆ▽fdb (r̃)), the form of the dead-band

thrust component in Eq. (4.8) is obtained.

T̃DB = −
[(

2 ˙̃r
T ˆ▽fdb (r̃)

)

ˆ▽fdb (r̃)
]

δ (fdb (r̃) − γ) (4.8)

The dead-band function fdb can be chosen to constrain the spacecraft motion in

an arbitrary number of directions. The following examples of the function fdb would

restrict spacecraft motion in one (Eq. (4.9)), two (Eq. (4.10)), or three (Eq. (4.11))

dimensions.

fdb (r̃) =
∣

∣

∣
(r̃ − r̃0)

T v̂c

∣

∣

∣
(4.9)

fdb (̃r) =
∣

∣

∣

∣

(

I − v̂cv̂
T
c

)

(̃r− r̃0)
∣

∣

∣

∣ (4.10)

fdb (̃r) = ||(r̃ − r̃0)|| (4.11)

Level sets for each of these examples are shown in Figure 4.3. fdb can be formulated

an infinite number of ways to create the desired dead-band boundary using whatever

state estimates or measurements are available; Eq. (3.6) is an example using altime-

try measurements. The function should be smooth at the boundary fdb (r̃) = γ so

that ∇fdb is well-defined.
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(a) (b)

(c)

Figure 4.3: Level Sets of Example Dead-band Functions ((a) 1-D Dead-band, (b)
2-D Dead-band, (c) 3-D Dead-band), Arrows Indicate Direction of Un-
restricted Motion

4.2.1 Conservation of the Jacobi Constant under Dead-band Thrust Con-
trol

The formulation for the Jacobi constant (Eq. (4.3)) already allows for a constant

thrust, so the conservative properties of this system are not violated for the T̃OL

component of the hovering control. It is easily shown that the same Jacobi constant

is preserved in the presence of the idealized dead-band thrust T̃DB (Eq. (4.8)) as

well. This impulsive thrust “reflects” the velocity vector of the spacecraft off the

boundary fdb (r̃) = γ such that

˙̃r+ = ˙̃r− − 2
(

˙̃r
T

−ĉ
)

ĉ. (4.12)
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It is easily shown that the magnitude of the velocities before and after the burn are

equal. Since the Jacobi constant depends only on the magnitude of ˙̃r, the addition

of the impulsive control thrust T̃DB does not destroy the conservative nature of this

class of dynamical systems.

Figure 4.4 shows the Jacobi constant as a function of time for a typical simulated

trajectory under one-dimensional dead-band control with a finite Tm in the two-body

problem. The magnitude of Tm was approximately 90 times that of the acceleration

due to V in this case. It can be seen that the Jacobi constant is indeed well preserved

over time under dead-band control. The instantaneous spikes in the Jacobi constant

correspond to the times when the dead-band thrust is active (when the spacecraft is

outside the dead-band).
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Figure 4.4: Jacobi Constant versus Time for a Simulated Trajectory under Dead-
band Control
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4.2.2 Dead-band Hovering Controller Design in Conservative Systems

Since dead-band hovering control does not destroy the Jacobi constant of the

system, knowledge of zero-velocity surfaces (Eq. (4.6) and Table 4.1) can be applied

to design a controller that ensures boundedness of a hovering trajectory for all time.

The idea is to use dead-band thrust to control motion in the directions not naturally

restricted by the zero-velocity surface. The general rule for hovering dead-band de-

sign is that the chosen controller must restrict motion in at least as many dimensions

as the zero-velocity surface allows unrestricted motion and be oriented such that the

spacecraft trajectory is trapped inside a bounded region defined by the zero-velocity

surface and the dead band surface (where fdb = γ).

For instance, say hovering is implemented at a position where the Hessian matrix

of the Jacobi constant with respect to position has one negative and two positive

eigenvalues (+,+,− case). Then if a one-dimensional dead-band control of the form

in Eq. (4.9) is implemented such that v̂c is sufficiently close to the eigenvector ϑ̂3

(assumed to point away from the small-body), the spacecraft trajectory is known

to be bounded for all future time. Geometrically, the +,+,− zero-velocity surface

defines a quadratic cone that restricts the spacecraft motion in two dimensions and

the dead-band control defines two bounding planes that place “caps” on these cones.

This creates a three-dimensional hourglass shaped region of space to which the space-

craft is energetically restricted. Similarly in the +,−,− case, where the zero-velocity

surface restricts motion in one dimension, a two-dimensional dead-band control, such

as Eq. (4.10) with v̂c adequately close to the eigenvector ϑ̂1, is sufficient to bound

the nominal trajectory in three dimensions. In the −,−,− case, a dead-band control

that bounds the trajectory in three dimensions, such as Eq. (4.11), would be neces-

sary. Motion near equilibrium in the +,+,+ case is stable without any control, but
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generally does not occur at practical positions in astrodynamics systems.

4.3 Effects of Uncertainty on Zero-Velocity Surfaces

Of course this idea works for the nominal system since there is no motion away

from the equilibrium anyway. The following sections show that this idea remains

valid when uncertainties in the initial state and thrust are considered.

4.3.1 Local Result

First, the effects of small errors in the initial state and control thrust on our

localized zero-velocity surface result are determined. The zero-velocity surface for

hovering with small perturbations in initial position and velocity is defined via a Tay-

lor expansion. In this way, the true value of the Jacobi constant can be approximated

to second order as in Eq. (4.13).

J
(

r̃0 + δr̃0, δ ˙̃r0

)

= C∗ ≈ C0 +
1

2
δr̃T

0

∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃0 +
1

2
δ ˙̃r

T

0 δ ˙̃r0 (4.13)

Note that the true perturbation in J due to δ ˙̃r0 is quadratic and therefore, Eq.

(4.13) is not approximate for perturbations in velocity. For dynamically valid future

motion,

J
(

r̃0 + δr̃, δ ˙̃r
)

= J
(

r̃0 + δr̃0, δ ˙̃r0

)

= C∗ (4.14)

and thus,

δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ ≈ −δ ˙̃rT
δ ˙̃r + 2 (C∗ − C0) . (4.15)

The zero-velocity surface for the system under small-perturbations is defined in Eq.

(4.16).

δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ = 2 (C∗ − C0) = ∆Z (4.16)
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In general, the quantity ∆Z can be positive or negative. The shape of the perturbed

zero-velocity surface for all eigenvalue cases is given in Table 4.2. See Figure 4.1 for

illustration.

Sign of Eigenvalues ∆Z > 0 ∆Z < 0
+,+,+ Real Ellipsoid N/A
+,+,− One-Sheet Hyperboloid Two-Sheet Hyperboloid
+,−,− Two-Sheet Hyperboloid One-Sheet Hyperboloid
−,−,− Imaginary Ellipsoid Real Ellipsoid

Table 4.2: Shape of the Perturbed Zero-velocity Surface[3]

In all eigenvalue cases, the number of dimensions restricted by the zero-velocity

surface and its orientation (eigenvectors) is not changed by small perturbations in

initial state. This means that a dead-band control that bounds the nominal trajec-

tory still has the dimensionality and the proper orientation to bound the perturbed

trajectory (assuming small perturbations). For instance, in the +,+,− case, the zero-

velocity surface is either a one-sheet or two-sheet hyperboloid (Figure 4.1). Hovering

in either of these cases would still be bounded by a one-dimensional dead-band con-

trol designed for the nominal state (with quadratic cone zero-velocity surface). This

analytical result is verified by numerical simulation. Figure 4.5 shows an integrated

hovering trajectory in the +,+,− region above a sphere and the predicted perturbed

zero-velocity surface (dotted region). The trajectory remains contained in the pre-

dicted region for the full integration time (≈ 1 day) under the nominally selected

one-dimensional dead-band control.

Next, a more general statement of the zero-velocity surface for a perturbed initial

state is given without assuming small error. If the control is designed for hovering

at (̃r, 03x1) but, in actuality, the initial state is
(

r̃ + δr̃0, δ ˙̃r0

)

, the equation for the
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Figure 4.5: Example of a +,+,− Simulated Trajectory (motion relative to the zero-
velocity surface, dots indicate the predicted region of allowable motion)

local bounding zero-velocity surface is given in Eq. (4.17),

(δr̃ − δr̃0)
T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃+δr̃0,δ ˙̃r0)
(δr̃ − δr̃0) + 2

∂J

∂r̃

∣

∣

∣

∣

(r̃+δr̃0,δ ˙̃r0)
(δr̃ − δr̃0) = δ ˙̃r

T

0 δ
˙̃r0 (4.17)

where ∂J/∂r̃|(̃r+δr̃0,03x1) 6= 01x3 since T̃OL (̃r) does not create an equilibrium point.

In general, this quadratic is not centered at r̃+δr̃0. The center and ∆Z, which is not

zero in general, can be found by completing the square. The shape of the zero-velocity

surface still depends solely on the eigenvalues of the matrix ∂2J/∂r̃2|(r̃+δr̃0,δ ˙̃r0), and

can be found in Table 4.2. Therefore, for the perturbed system to be bounded under

dead-band hovering control, the actual initial position of the spacecraft must have

the same eigenvalue signs as the nominal position. In addition, the eigenvectors that
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describe the true zero-velocity surface (linearized about r̃+ δr̃0) must be sufficiently

close to the nominal so that the nominal dead-band still bounds the motion in three

dimensions. Thus, it is concluded that hovering near a “border” between different

eigenvalue regions with a minimal dead-band control would risk unbounded behavior.

The effect of open-loop thrust application errors on the zero-velocity surface can

be analyzed similarly. Both thrust and position errors cause ∂J/∂r̃|(r̃0,03x1)
to be

non-zero, which changes the center of the bounding surface as well as its shape.

However, the signs of the eigenvalues of ∂2J/∂r̃2|(̃r0,03x1)
and the orientation of the

zero-velocity surface do not change from nominal, so the nominal controller will still

bound the perturbed system.

4.3.2 Formal Local Boundary Definition

Formally, (uniform) boundedness of the perturbed trajectory under idealized

dead-band control (Eq. (4.8)) can be shown using the definition of Khalil[63]. It

states that the solutions of a dynamical system under a chosen hovering thrust con-

trol law are:

• uniformly bounded if there exists a positive constant c, independent of t0 ≥ 0,

and for every a ∈ (0, c), there is β = β (a) > 0, independent of t0, such that if

||x (t0)|| ≤ a, then ||x (t)|| ≤ β, ∀t ≥ t0.

Since this system is time-invariant, the conditions regarding uniformity are automat-

ically satisfied. For the proof, utilize the standard norm and let c = γ, the parameter

of the chosen dead-band. In the initial condition ball of measure a, first compute the

largest change in J induced by any initial state,

∆Jmax = max
(r̃, ˙̃r)∈Ba

(

J
(

r̃, ˙̃r
)

− C0

)

, (4.18)
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then use it to compute the maximum allowable deviation in position and velocity

from the nominal. Formally, if

A =

{

r̃ ∈ ℜ3 | δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ ≤ 2∆Jmax & fdb (r̃) ≤ γ

}

, (4.19)

then

rmax = max
r̃∈Bd(A)

||̃r − r̃0|| (4.20)

and

vmax =

√

2

(

J0 + ∆Jmax + max
r̃∈A

[

V (r̃) + T̃T
OLr̃
]

)

. (4.21)

If both rmax and vmax are finite, which is implied by the condition that the dead-band

must be properly oriented, then the system is bounded with β (a) = rmax + vmax.

Thus, a sufficient condition for boundedness of trajectories in the vicinity of the

hovering position is that the chosen controller must restrict motion in at least as many

dimensions as the zero-velocity surface allows unrestricted motion and be oriented

such that the spacecraft trajectory is trapped inside a bounded region defined by the

zero-velocity surface and the dead band surface. To get this result, it was assumed

that Tm is sufficiently large so that our impulsive approximation is valid (which makes

the level set fdb = γ an inviolable boundary) and that γ is sufficiently small so that

our second order approximation of the zero-velocity surface is valid. Also, nothing

here (except performance of the thruster) prevents using a very small γ to force A

to be arbitrarily small.

For particular cases, computing rmax and vmax is simple algebra. For example,

if the one-dimensional dead-band function in Eq. (4.9) with v̂c = v̂3 is used at a

hovering position with +,+,− eigenvalue structure,

rmax =

√

γ2

(

1 − α3

α2

)

+
∆Jmax

α2
(4.22)
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and

vmax =
√

2 (∆Jmax + γ2α2
3). (4.23)

The localized system can be misleading due to its second order nature as it allows

for arbitrarily large increases in the nominal Jacobi constant without destroying

boundedness. This is not the case in general as is shown in the next section.

4.3.3 Formal Global Boundary Definition

Now, boundedness of hovering trajectories with perturbations in the initial state

is shown in a global formulation. This result would be more applicable than the

localized result when using a dead-band with a large γ. The argument is intuitive

and simply states that for a trajectory to be bounded, its region of allowable motion

must be finite.

In the formal boundedness definition (Theorem 4.3.2), let c = γ and ∆Jmax be

defined as in Eq. (4.18). The allowable region of motion is defined by the set B,

where

B =
{

r̃ ∈ ℜ3 | fdb (r̃) ≤ γ & −
(

V (r̃) + TOL
T r̃
)

≤ (C0 + ∆Jmax)

& ∃ a path from r̃ to r̃0} . (4.24)

rmax and vmax are defined similarly to the local case (Eqs. (4.22), (4.23)) by substi-

tuting the set B for A. Computation of rmax and vmax in the global case involves

solving simultaneous implicit equations and is generally more complicated than ob-

taining the localized result. If the dead-band is of sufficient dimension and oriented

properly such that these values are finite, then the function β (a) = rmax + vmax

satisfies the condition for boundedness.
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4.3.4 Maximum Allowable Perturbations in Initial State

The largest perturbations in initial state that a spacecraft subject to hovering

control designed for a particular position can withstand and have the future motion

remain bounded is now formulated for the global result. Unlike the linearized result,

there are two limits for ∆J : a maximal decrease that can only be achieved by errors

in position, and a maximal increase, achievable by a combination of errors in position

and velocity. The following formulation applies only to hovering trajectories that are

nominally bounded.

Without approximation, the zero-velocity surface is defined in Eq. (4.25).

Z =
{

r̃ ∈ ℜ3 | κ (r̃) = J (̃r, 03x1) − C∗ = 0
}

(4.25)

The bounding surface(s) created by the dead-band control boundary can be defined

by Eq. (4.26).

D =
{

r̃ ∈ ℜ3 | d (̃r) = fdb(r̃) − γ = 0
}

(4.26)

For boundedness to be preserved, C∗ must be such that these surfaces fully enclose

the permitted motion from the nominal hovering position. The critical values of

C∗ where hovering becomes unbounded occur when the zero-velocity surface and the

control surfaces no longer intersect transversely, i.e., when there first exists a position

r̃ ∈ (Z ∩ D) such that ∇κ(r̃) and ∇d(r̃) are collinear. Finding this critical point

under the assumption that ∆J > 0 yields the maximal allowable increase in Jacobi

constant and assuming ∆J < 0 gives the maximal decrease in Jacobi constant. ∆J+

and ∆J− can be found analytically in simplified cases and numerically in general.

This concept may be best demonstrated visually. Figures 4.6(a) and (b) show

a series of zero-velocity surfaces, Z, for different values of the Jacobi constant in

the planar, circular-restricted three-body problem (Section 2.3.2) as dashed contour
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lines. Here, the spacecraft is “hovering” at the L1 Lagrange point (X ≈ −609

km, Y = 0 km) which requires no thrust since it is a natural equilibrium of the

system. The control surfaces for a one-dimensional dead-band, D, are shown as

vertical dotted lines. In this plot, a spacecraft’s motion is restricted to areas where

J (r̃, 03x1) (equivalent to the negative of the potential V (r) since there is no open-

loop thrust) is less than the initial Jacobi constant. Beginning with the nominal

energy at the hovering point (≈ −1.57), it can be seen that if the spacecraft energy

is increased to −1.35 (by increasing the initial velocity), the allowable region of

motion created by the zero-velocity surface and the control surfaces expands but the

allowable trajectory remains enclosed. It can be seen in the figure that at −1.28,

∆J+ has been exceeded; the zero-velocity contour and the control surface no longer

intersect transversely. This means that the trajectory of a spacecraft that starts at

the L1 Lagrange point of this system with an energy of −1.28 is not guaranteed to be

bounded. An example of an unbounded trajectory with a Jacobi constant of −1.28

is shown as a solid line in the figures. Figure 4.6(b) shows a zoomed-in view of the

trajectory escaping out of the open bottleneck between the zero-velocity and control

surfaces.

Now, an example analytical calculation of ∆J+ and ∆J− is given for spacecraft

motion under a one-sided (thrust is only applied for the dead-band boundary clos-

est to the body), one-dimensional dead-band control (without the open-loop thrust

component) near a spherical body in the two-body problem (Section 2.3.1). Here,

it is assumed that the nominal position is of the form r̃0 = [x0, 0, z0] without loss of

generality. The zero-velocity surface and dead-band control surfaces are defined in
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Eqs. (4.27) and (4.28).

Z =

{

r̃ ∈ ℜ3 | κ (r̃) = −1

2
ω2
(

x2 + y2
)

− µsb

|̃r| − C∗ = 0

}

(4.27)

D =
{

r̃ ∈ ℜ3 | d (̃r) = x− Rc = 0
}

(4.28)

For a trajectory in this system to be nominally bounded under one-dimensional

control, Rc < |̃r0| < Rr. The applicable gradients are given in Eqs. (4.29) and

(4.30).

∇κ(r̃) =

[

−ω2x+ µsb
x

|̃r|3 ,−ω
2y + µsb

y

|̃r|3 , µsb
z

|̃r|3
]T

(4.29)

∇d(r̃) = [1, 0, 0]T (4.30)

The Jacobi constant at the critical position r̃∗ ∈ (Z ∩ D) where ∇κ(r̃∗) and ∇d(r̃∗)

are collinear is sought. It is immediately seen that z∗ = 0 and x∗ = Rc. There are

three possible solutions for the y∗ coordinate, y∗ = 0,±
√

R2
r − R2

c . The solution

[x∗, y∗, z∗] = [Rc, 0, 0] defines the largest allowable decrease in the Jacobi constant,

∆J− = J([Rc, 0, 0]T , 03x1) − C0. This bound can only be violated by an error initial

position such that the spacecraft is initially outside the dead-band. The largest

allowable increase in initial Jacobi constant is defined by the other two solutions for

y∗ where ∆J+ = J([Rc,±
√

R2
r − R2

c , 0]T , 03x1) −C0. If only errors in initial velocity

are considered,

δv0,max =
√

2∆J+ (4.31)

is the maximal allowable error in initial velocity such that the trajectory remains

bounded. For hovering positions outside of the resonance radius, these solutions

are not applicable because the hovering trajectory is not nominally bounded by this

dead-band control.
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4.4 Particular Case Studies Applicable to Small-Bodies

It has been shown that a dead-band controller can be used to maintain hovering

in a conservative system. A number of time-invariant systems can be discussed that

occur in spacecraft dynamics with equations of motion of the form in Eq. (4.1).

In this section, boundedness of hovering is considered in three systems commonly

used to model dynamics near small-bodies: the two-body problem in a rotating

frame (Section 2.3.1), the circular restricted three-body problem (Section 2.3.2),

and the Hill three-body problem (Section 2.3.3). Since J is well-defined and twice

differentiable at all physically relevant positions in these problems, the necessary type

of dead-band control to bound hovering can be mapped as a function of hovering

position. Unbounded or problematic hovering areas (i.e., near a boundary of the

eigenvalue regions) for a particular controller can easily be identified and avoided.

4.4.1 Hovering in the Body-Fixed Frame (Two-body Problem)

First, the control type necessary to bound hovering for the two-body problem is

determined. It may be desirable to hover in the small-body fixed frame for purposes

of taking high-resolution measurements of a particular area of the surface or during

a landing or sampling maneuver. The time-invariant equations of motion for this

system are given in Eq. (2.14) and the resulting Jacobi constant is given by Eq.

(2.15) where T̃ = T̃OL. The generalized potential for the two-body problem is

defined in Eq. (4.32).

V (̃r) = U (r̃) +
1

2
ω2
(

x2 + y2
)

(4.32)
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The Hessian partial matrix with respect to position of Jbf is given by Eq. (4.33).

∂2Jbf

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

=















−ω2, 0, 0

0, −ω2, 0

0, 0, 0















− ∂2U

∂r̃2

∣

∣

∣

∣

r̃0

(4.33)

The signs of the eigenvalues of this matrix, and hence, the type of dead-band con-

troller necessary for bounded hovering in the body-fixed two-body problem, can be

mapped out for any well-defined gravitational potential field. Figure 4.7 shows the

different eigenvalue regions for hovering positions above a spherical body in theX−Z

plane, normalized by the resonance radius. The equations of motion are rotation-

ally symmetric about ẑ, so this figure fully characterizes the three-dimensional space

around the body. Using the Routh criterion, it can be shown analytically that the

boundary between the +,+,− and the +,−,− regions is precisely defined by a sphere

at the center of mass with radius equal to the resonance radius (Eq. (2.16)). That is,

all hovering positions near a spherical body with |̃r| < Rr have the +,+,− eigenvalue

structure and therefore, can be bounded by a hovering controller with an appropriate

one-dimensional dead-band. Similarly, the boundary between the −,−,− and +,−,−

regions is defined as a function of |̃r| for |̃r| > Rr by Eqs. (4.34) and (4.35).

(

x

Rr

)2

=
2

3

( |̃r|
Rr

)2

− 2

3

(

Rr

|̃r|

)

(4.34)

(

z

Rr

)2

=
1

3

( |̃r|
Rr

)2

+
2

3

(

Rr

|̃r|

)

(4.35)

Since no +,+,+ regions exist in this problem, the shape of the zero-velocity surface for

hovering near a sphere has been fully mapped analytically as a function of position.

Nothing in this analysis limits the results to small-bodies; the eigenvalue regions

defined in Figure 4.7 apply equally well to dynamics near spherical planetary bodies.

However, on the planetary scale, the necessary thrust to hover is large and the
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oscillations from nominal allowed under a bounding controller may be too large for

some applications.
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Figure 4.7: Hovering Regions Near a Spherical Small-body (X and Z axes normalized
by the resonance radius)

The eigenvalue regions are more complex to define for real small-body shapes.

Because the term “small-body” covers a wide range of irregular gravitational fields,

the shapes of the eigenvalue regions are unique to each. Figure 4.8 shows the suf-

ficient dead-band for bounded hovering in the equatorial plane near a polyhedral

model of the asteroid 433 Eros (3.0 g/cm3 density, 5.27 hr period[21]). Because of

Eros’ elongated shape, the +,+,− hovering region here is divided into two lobes.

Hovering above the small-body equator requires a one-dimensional dead-band near

the elongated ends of the body and requires two dimensions of dead-band control
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near its midsection. Figure 4.9 shows the different hovering regions near a polyhedral

model of the asteroid 6489 Golevka (5.0 g/cm3 density, 6.0289 hr period[6]). This is

also interesting because of the +,−,− region inside the large canyon that runs across

Golevka’s south pole.
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Figure 4.8: Hovering Regions Near Asteroid 433 Eros, X − Y Plane

4.4.2 Hovering in the Circular Restricted Three-body Problem

Next, hovering in the circular restricted three-body problem (Section 2.3.2) is

studied. It may be advantageous to hover in this frame, which rotates with the small-

body around the sun, for the purpose of keeping a fixed communication, sensing, or

solar panel geometry. These dynamics can be applied to hovering in the small-body-

Sun system, a planet-moon system, or a binary asteroid system. The time-invariant
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equations of motion for this system are given in Eq. (2.20) and the resulting Jacobi

constant is given by Eq. (2.21) where T̃ = T̃OL. The generalized potential for the

circular restricted three-body problem is defined in Eq. (4.36).

V (̃r) =
µ1

|̃rsc,1|
+

µ2

|̃rsc,2|
+

1

2
N2
(

x2 + y2
)

(4.36)

Using the methodology discussed previously, the dead-band control sufficient to

bound hovering in the restricted three-body problem can be mapped as a function

of position. Figure 4.10 shows the shape of the eigenvalue regions in the vicinity

of the two primaries for µ = 0.01, a value typical for a planet-moon system. It is

seen that each primary has an area in its immediate vicinity proportional to its mass

where hovering requires one-dimensional perturbation control. If the µ = 0.5 case

is considered, representative of a binary asteroid system, +,+,− and +,−,− regions

are found in the X−Y plane as shown in Fig. 4.11. Here, a lobe of +,+,− dynamics

is found around each equal mass primary. This region of one-dimensional dynamics

is slightly larger on the outside of the primaries’ orbit than on the inside.

4.4.3 Hovering in the Hill Three-body Problem

The last conservative system presented here is the Hill three-body problem (Sec-

tion 2.3.3), which is a valid approximation of the circular restricted three-body prob-

lem for hovering near the smaller primary when µ is small. The Hill approximation

does not generally apply to binary asteroid systems. The time-invariant equations

of motion for this system are given in Eqs. (2.23) - (2.25) and the resulting Jacobi

constant is given by Eq. (2.26) where T̃ = T̃OL. The generalized potential for the

Hill three-body problem is defined in Eq. (4.37).

V (r̃) = U (̃r) +
3

2
N2x2 − 1

2
N2z2 − βSRPx

R2
(4.37)
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Figure 4.10: Hovering Regions in the Restricted Three-Body Problem, µ = 0.01,
X − Y Plane, (coordinates normalized by R, asterisks denote position
of primaries)

The sufficient dead-band type to bound hovering near the small-body is mapped

the same way as done in the previous sections. When |̃r| < RHill (Eq. (2.22)), the

results are identical to those obtained in the circular restricted three-body problem.

Figure 4.12 shows the eigenvalue regions for hovering near the small-body in the

X − Z plane of the Hill problem. It can be noted that the addition of SRP has

no effect on the sufficient dead-band since the potential associated with it is linear

under Hill’s approximations. The only difference in the necessary control is in TOL,

which must null the nominal acceleration due to solar radiation pressure.
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4.5 Hovering in Non-conservative Systems

When hovering in a non-conservative system, the Jacobi constant is no longer

an integral of motion and therefore, if the zero-velocity surface exists, it becomes a

function of time. In reality, all systems have this non-conservative property, caused

by accelerations un-modeled in the idealized conservative dynamical systems (Eqs.

(2.14), (2.20), and (2.23) - (2.25)). It is shown (and believed) that the approach

developed for the conservative systems can still be useful in more realistic, non-

conservative models.

The basis of the study here is the generalized elliptic restricted three-body prob-
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lem (Section 2.3.4), which includes the most fundamental time-varying perturbations:

an elliptic small-body orbit around the Sun and arbitrary rotation of an arbitrarily

shaped small-body. For this problem, V (̃r, t) can be defined by Eq. (4.38)

V (r̃, t) = U
(

TiTpoleT
−1
eo T

−1
f r̃
)

+ 0.5ḟ 2(x2 + y2) +
µSunx

|R (f)|2
+
µSun − βSRP
∣

∣

∣

∣r̃s/c,Sun

∣

∣

∣

∣

(4.38)

and the equations of motion can be manipulated into the form in Eq. (4.39),

d

dt

[

H
(

r̃, ˙̃r, t
)]

= −∂V
∂t

−
(

f̈ ẑ × r̃
)

· ˙̃r − ∂T̃

∂t

T

r̃ (4.39)

where

H
(

r̃, ˙̃r, t
)

=
1

2
˙̃r
T ˙̃r − V (r̃, t) − T̃T r̃ (4.40)

is the time-varying Jacobi integral. Eq. (4.39) is very similar to Eq. (4.2). The

difference is that it allows a non-uniformly rotating coordinate frame and T̃ is allowed

to change with time, represented by the extra terms on the right hand side. The

open-loop thrust necessary to make a nominal hovering state stationary in this case

is given by Eq. (4.41),

T̃OL (t) = − ∂V (r̃, t)

∂r̃

∣

∣

∣

∣

T

(r̃0,t)

+ f̈ ẑ × r̃0 (4.41)

which is time-varying.

4.5.1 Circular Orbit with Arbitrary Small-body Rotation

First, the case where eorb = 0 is considered. This allows the small-body to

have arbitrary pole and rotation rate, but requires that its orbit around the Sun be

circular. In this case, R (f) (Eq. (2.29)) and ḟ (Eq. (2.30)) are constant and f̈ = 0

(Eq. (2.31)). It can be shown that for virtual displacements in state (displacements

without passage of time[64]) consistent with the equations of motion at any particular

instant of time, H
(

r̃, ˙̃r, t
)

is conserved, that is,

∂H

∂r̃
˙̃r +

∂H

∂ ˙̃r
¨̃r = 0. (4.42)
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This is equivalent to saying the dynamics would conserve H if the orientation of

the small-body was frozen at a particular time. If open-loop hovering control is

applied (Eq. (4.41)), equilibrium is induced at the nominal hovering position and

thus, ∂H/∂r̃|(r̃0,03x1,t) = ∂H/∂ ˙̃r
∣

∣

∣

(̃r0,03x1,t)
= 01x3. The region of allowable motion in

the vicinity of the nominal state is then defined via second order Taylor expansion

in Eq. (4.43)

δr̃T ∂2H

∂r̃2

∣

∣

∣

∣

(r̃0,03x1,t)

δr̃ = −δ ˙̃rT
δ ˙̃r ≤ 0 (4.43)

and the local zero-velocity surface is defined at any instant of time by Eq. (4.44).

δr̃T ∂2H

∂r̃2

∣

∣

∣

∣

(r̃0,03x1,t)

δr̃ = 0 (4.44)

The quantity ∂2H/∂r̃2|(r̃0,03x1,t) varies periodically at the rotation rate of the

small-body in the three-body rotating frame. Given a dead-band hovering control,

boundedness of the trajectory can be determined by evaluating whether the time-

varying zero-velocity surface and the dead-band surface create an enclosed region

around the nominal hovering position at all times over one period of motion. Note,

this may be achieved by a time-varying dead-band. Also, the signs of the eigenvalues

of ∂2H/∂r̃2|(r̃0,03x1,t), and therefore, the type of zero-velocity surface may change over

time

Of course, this approach is limited to giving information about the general char-

acter of the zero-velocity surface as a function of time, as it is impractical to assume

that the spacecraft will stay exactly at the nominal state for all time. There are

two ways to approach a perturbed trajectory. One way is to assume the perturba-

tions are small and linearize about the nominal state to determine the zero-velocity

surface for each state (or possible state) on the trajectory for the time of concern

(such as was done in the first part of Section 4.3.1). The resulting zero-velocity sur-
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faces can be checked against the dead-band control to determine boundedness. For

this method, ∂2H/∂r̃2|(r̃0,03x1,t) must be evaluated and stored for only one period of

nominal motion.

Another approach evaluates the local zero-velocity surface at each point on the

actual trajectory, similar to what is done in Eq. (4.17). The trajectory is bounded if

the zero-velocity surface and dead-band create a bounded region at all times in the

duration of interest. However, the usefulness of this approach is limited since the

perturbed state is not known until it has already happened (at least). This method is

more suitable to planned motion away from the hovering position (i.e., a translation

maneuver). Then a linear perturbation method could be used to evaluate the effects

of uncertainty along that nominal trajectory.

4.5.2 Hovering in the Generalized Elliptic-restricted Three-body Prob-
lem

When the circular small-body orbit restriction is lifted, things become more dif-

ficult. Now, if the system parameters are frozen in time, Eq. (4.45) shows H is still

not conserved.

∂H

∂r̃
˙̃r +

∂H

∂ ˙̃r
¨̃r = −

(

f̈ ẑ × r̃
)

· ˙̃r (4.45)

This means that the zero-velocity surface cannot be defined at any time using H and

may not exist at all.

Scheeres[17] uses a “pulsating” frame, where the coordinates are scaled by the

distance between the Sun and the small-body and derivatives are taken with respect

to f , to address this issue in the context of escape orbits. The pulsating frame is

probably not appropriate for evaluating hovering at a stationary position in real

space, unfortunately. Also, this approach evaluates H along a given trajectory and

compares it with a constant escape value in the equatorial plane, where constant
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zero-velocity surface boundaries exist. It is observed that the possibility of escape

first appears in the equatorial plane, so this is a valid approach. For that work, H

need not be constant for permissible motion (which is required here to obtain the

instantaneous zero-velocity surface), it must only remain larger than the constant

threshold value.

The term f̈ is quite small in general (especially for nearly circular small-body

orbits), which may allow treatment of the zero-velocity surfaces under “small varia-

tions” in the value of H . Figuring out how to treat such small variations is crucial

to learning how to apply this result to real systems where other such time-varying

perturbations exist. This is a topic of future work.

4.6 Discussion

The main result here is not that the spacecraft trajectory can be bounded by

dead-band control (that is achieved trivially by a three-dimensional dead-band), but

that it can often be done by a reduced order controller. In Figures 4.7, 4.8, and 4.9,

we see that hovering in close proximity to a small-body, as may be necessary for a

sampling or landing maneuver, can often be bounded by a one-dimensional dead-

band controller, since the zero-velocity surface frequently has a +,+,− structure.

Positions a little further from the body often have +,−,− zero-velocity surfaces,

which requires only two-dimensions of control. The next chapter will look at using

altimetry and optical navigation measurements as a basis of the control for these two

cases respectively.

For safety purposes, it may be desirable to have three-dimensional control of the

spacecraft motion as on the Hayabusa spacecraft[28]. This could be achieved by

a three-dimensional dead-band controller, or more cleverly, by a combination of a
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one-dimensional (such as Eq. (4.9)) and a two-dimensional dead-band control(Eq.

(4.10)). Depending on where the spacecraft hovers, the γ parameter of each thrust

control could be adjusted so that the minimal dimension controller bounds the space-

craft and the secondary controller, which has a larger γ value, provides a safety net.

Measurements for the secondary dead-band could be performed less frequently, which

would conserve spacecraft resources.

This sufficient condition for boundedness is more useful than the conditions for

linear stability on the manifold for one-dimensional dead-band control (Eqs. (3.2)-

(3.4)) presented in the previous literature[10] because it does not neglect the Coriolis

forces on the spacecraft, nor artificially restrict the spacecraft motion in any way.

However, it is interesting to note that the region where that work predicts stability

when motion along v̂3 is restricted corresponds closely with the +,+,− zero-velocity

surface region. This makes sense for slowly rotating small-bodies since the results

in this chapter demonstrate energetically bounded motion perpendicular to ϑ̂3 (the

direction corresponding to the negative eigenvalue of −∂2U/∂r̃2 − diag (ω2, ω2, 0)),

which is close to v̂3 (the eigenvector corresponding to the positive eigenvalue of

∂2U/∂r̃2). Implementation of the control law in Sawai et al. via an altimetry dead-

band however is fundamentally different from restricting motion along v̂3, as will

be seen in Chapter V. This boundedness test is also preferable to the numerical

approach of the previous chapter since it ensures bounded motion for all time. Also,

determining the sufficient dead-band type requires only that the eigenvalues of a

single matrix be determined, as opposed to numerical integration.

This result is a sufficient condition however; a trajectory may be Lyapunov sta-

ble without any control, but not satisfy this boundedness condition. For instance,

Scheeres[8] predicts stable dynamics under open-loop control in the two-body prob-
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lem in areas with +,−,− (two free directions) eigenvalue structure. This work does

not disagree that result; it says the spacecraft has the energy to move far away from

nominal in two directions, but says nothing about the dynamics ever taking it there.

They are two different ways of approaching the same problem, but the results are

similar. The +,+,− (one free direction) area inside the resonance radius corresponds

very closely with the region with one hyperbolic unstable mode in Scheeres[8]. Inter-

estingly, the −,−,− region above the small-body poles in the two-body problem also

corresponds to a region with one hyperbolic unstable mode of the open-loop dynam-

ics; this suggests that the spacecraft is energetically free to move in any direction,

but will actually only move far from the initial position in one.



CHAPTER V

Hovering Implementation Issues and Simulations

In this chapter, some practical issues related to hovering under dead-band control

are addressed in the context of the zero-velocity surface result of the last chapter.

First, the zero-velocity surface result is generalized to allow for varying levels of

open-loop thrust. The next section derives criteria for boundedness of hovering under

dead-band control based on altimetry or optical navigation measurements. Fuel usage

during hovering is addressed both analytically and via numerical simulations with

HoverSim and a method for determining the time between subsequent dead-band

crossings without integration is also given. The final section of this chapter presents

HoverSim simulations to demonstrate the results of this chapter and Chapter IV as

well as to investigate the effects of measurement uncertainty and finite measurement

sampling frequencies.

5.1 Generalized Hovering Zero-Velocity Surface Result

In the previous chapter, the quadratic zero-velocity surface in the vicinity of a

spacecraft operating under hovering control was defined for time-invariant systems

of the form in Eq. (4.1). For a constant applied thrust, this dynamical system has a

Jacobi constant of the form in Eq. (4.3).

110
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It can be noted that the magnitude and direction of the open-loop thrust does not

matter for the purpose of preserving the conservative nature of the system, so long

as it is constant. Here, the zero-velocity surface result in Section 4.1 is generalized to

allow for any constant thrust (in the frame of interest), not just one that creates an

equilibrium at the nominal position. This formulation allows no open-loop thrust to

be used (such as in the IATNS body-fixed hovering controller) or partial cancellation

of the nominal acceleration (such as canceling centrifugal acceleration only[10]).

Using a quadratic expansion of the Jacobi constant around the nominal hovering

state (r̃0, 03x1), the condition in Eq. (5.1) applies to states in the vicinity of the

nominal for all times t,

J
(

r̃0 + δr̃, δ ˙̃r
)

= J (r̃0, 03x1)−
(

ã0 + T̃
)T

δr̃+
1

2
δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃+
1

2
δ ˙̃r

T
δ ˙̃r (5.1)

where

ã0 =
∂V

∂r̃

∣

∣

∣

∣

T

r̃0

(5.2)

is the nominal acceleration on the spacecraft without thrust;
(

ã0 + T̃
)

is null if open-

loop thrust is applied to create an equilibrium at the nominal position. Eq. (5.1)

can be rearranged to give a more general form of the zero-velocity surface restriction

than in Eq. (4.6).

δr̃T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

δr̃ = 2
(

ã0 + T̃
)T

δr̃ (5.3)

By completing the square and moving the coordinate center, the above equation can

be put into the form of Eq. (5.4),

(δr̃ − δr̃c)
T ∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

(δr̃ − δr̃c) = ∆Z (5.4)

where

δr̃c =

(

∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

)−1
(

ã0 + T̃
)

(5.5)
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and

∆Z =
(

ã0 + T̃
)T
(

∂2J

∂r̃2

∣

∣

∣

∣

(r̃0,03x1)

)−1
(

ã0 + T̃
)

. (5.6)

It should be noted that δr̃c may be very large, which means care should be taken when

using a quadratic expansion of the zero-velocity surface near r̃0. This nominal bound

has identical form to the perturbed zero-velocity surface given in Eq. (4.16). Table

4.2 and Figure 4.1 can be referenced to determine the shape of the local zero-velocity

surface. In the figure, the star now represents the location r̃0+δr̃c. Depending on the

eigenvalues and the sign of ∆Z, spacecraft motion may be restricted to the outside

or the inside of these shapes.

5.2 Using a Reduced Measurement Set for Control

Chapter IV demonstrates that boundedness of a hovering trajectory can be en-

sured using a reduced order dead-band controller (Eq. (3.5)); that is, motion may

only need to be controlled in one or two directions for boundedness. This result

suggests it may be possible to implement bounded hovering using a limited mea-

surement set. Here, simple altimetry measurements (Section 2.4.1) are considered as

a basis for a one-dimensional dead-band controller and optical navigation measure-

ments (Section 2.4.3) are considered as a basis for a two-dimensional dead-band.

5.2.1 Altimetry Measurements

Since the region of space closest to the small-body often only requires one-

dimensional dead-band control for boundedness (see the +,+,− regions in Figures

4.7, 4.8, and 4.9), it is natural to wonder if altimetry measurements alone can be

used to maintain hovering in these situations. Here this question is considered using

a dead-band control on altitude with fdb (r̃) defined by Eq. (3.6).
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Simply stated, the local condition for boundedness is that the union of the zero-

velocity surface Z (Eq. (4.25)) and the dead-band surface D (Eq. (4.26)) must

fully enclose the initial position in ℜ3. Boundedness under an altitude dead-band

control is different from under the one-dimensional control presented in the previous

chapter (Eq. (4.9)) because now the topography of the small-body surface defines

the dead-band limiting surface instead of a simple flat plane. Figure 5.1 depicts

the relative orientation of the dead-band and zero-velocity surfaces graphically. It is

clear that using altimetry measurements as the basis of the dead-band control (curved

bounding surface D) instead of full position estimates (flat plat bounding surface D)

will reduce the set of positions where one-dimensional dead-band control bounds

hovering. This is because the surface of the small-body is (usually) convex and its

surface normal generally will not be aligned with ϑ̂3 (the eigenvector corresponding

to the negative eigenvalue of the +,+,− zero-velocity surface). Thus, if the curvature

of the surface of the small-body or the angle η between n̂ and ϑ̂3 is too large at the

nominal sub-altimeter point ρ̃0, the hovering trajectory may not be bounded.

In this section, analytical criteria for boundedness of hovering under an altitude

dead-band controller (Eq. (3.6)) in the +,+,− region are sought using the zero-

velocity surface knowledge gained in Chapter IV. For this analysis, only ellipsoidal

small-body shape models are considered; the boundedness of altitude dead-band

hovering above a polyhedron is a topic for future study. This restriction reduces

the problem to evaluating the intersection set of two arbitrarily oriented quadratics:

a hyperboloid (+,+,− zero-velocity surface) and an ellipsoid (dead-band surface).

This is actually a very challenging geometry problem which has been solved numer-

ically by Dupont et al.[65]. In addition to being numerical, the resulting solution is

prohibitively complex. With some simplification of the problem, analytical sufficient
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η

n̂

κDB,max

κDB,min

Z

D

ŝ = -ϑ̂3

Figure 5.1: Relative Orientation of the Altitude Dead-band Boundary D and the
+,+,− Zero-velocity Surface Z

conditions for boundedness are derived here.

In the hyperboloid coordinate frame (whose unit vectors are ϑ̂2, ϑ̂1, and ϑ̂3), Eq.

(5.7) defines the local zero-velocity hyperboloid, which is a two-sheet hyperboloid if

hd > 0, a quadratic cone if hd = 0, and a one-sheet hyperboloid if hd < 0 (Figure

4.1).

H (δr̃r) =
δx2

r

h2
a

+
δy2

r

h2
b

− δz2
r

h2
c

+ hd = 0 (5.7)

Here, ha > hb and coordinates are measured from the zero-velocity surface center

so that δr̃r = r̃ − (r̃0 + δr̃c). To simplify the analysis, let the zero-velocity surface

be a hyperboloid of revolution about ϑ̂ with hb = ha. This effectively widens the

zero-velocity surface; if it bounds the motion, then the real zero-velocity surface will
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as well. Under this assumption, a parameterization of the solution to Eq. (5.7) is

given in Eq. (5.8) when hd > 0,

δr̃r =

[

ha

√
hd sinh u cos v, ha

√
hd sinh u sin v, ±hc

√
hd cosh u

]T

(5.8)

where u ∈ (−∞,∞) and v ∈ [0, π). The positive third term applies to the “upper

lobe” sheet of the hyperboloid (the one further from the small-body) and the negative

term refers to the “lower lobe” sheet. Eq. (5.9) is the parameterization for the

quadratic cone solution (when hd = 0),

δr̃r =

[

hau cos v, hau sin v, hcu

]T

(5.9)

where u ∈ (−∞,∞) and v ∈ [0, 2π). Eq. (5.10) is the solution parameterization for

when hd < 0 (one-sheet hyperboloid),

δr̃r =

[

ha

√
−hd cosh u cos v, ha

√
−hd cosh u sin v, hc

√
−hd sinh u

]T

(5.10)

where u ∈ (−∞,∞) and v ∈ [0, 2π)[66]. Figure 5.2 shows the parameterization

coordinates u and v on these three hyperboloid surfaces.

The local character of the surface of an ellipsoid at ρ̃0 (and therefore, of the dead-

band surface D) can be characterized by three parameters: the normal vector to the

surface n̂ (Eq. (2.3)), the maximum principal curvature of the surface κDB,max, and

the minimum principal curvature κDB,min. The principal curvatures of the surface

of a tri-axial ellipsoid at any point can be computed using the method described in

Cipolla and Giblin[67]. Let the the problem be simplified by reducing the ellipsoidal

dead-band surface to a sphere with both principal curvatures equal to κDB,max. The

radius of the sphere s is the inverse of this curvature. This sphere fits inside of the

original best-fit ellipsoid and thus, if the spherical surface “caps” the zero-velocity
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−u

v = 0, 2π v = 0, 2π

+u

−u

+u−u

v = 0

v = π

Figure 5.2: Parameterization Coordinates for (left to right) the One-sheet Hyper-
boloid, the Quadratic Cone, and the Two-sheet Hyperboloid

hyperboloid, then so does the ellipsoid. This sphere is defined by S (r̃) = 0, where

S (r̃) =
1

s2
(r̃ − r̃s)

T (̃rr − r̃s) − 1. (5.11)

For points inside the sphere S (r̃) < 0 and for points outside the sphere S (r̃) > 0.

The center of the sphere r̃s is defined as a function of γ and the small-body surface

in Eqs. (5.12) and (5.13),

r̃s,top = r̃0 − γŝ − sn̂ (ρ̃0) (5.12)

r̃s,bot = r̃0 + γŝ− sn̂ (ρ̃0) (5.13)

where r̃s,top corresponds to the dead-band surface at the upper altitude limit and

r̃s,bot corresponds to the dead-band surface at the lower altitude limit. Let r̃x,top (Eq.
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(5.14)) and r̃x,bot (Eq. (5.15)) be the vectors from the respective sphere center to the

hyperboloid center with Cartesian components rx,x, rx,y, and rx,z.

r̃x,top = δr̃c + γŝ + sn̂ (ρ̃) (5.14)

r̃x,bot = δr̃c − γŝ + sn̂ (ρ̃) (5.15)

For hovering to be bound above the minimum altitude limit, there must exist

a complete circuit around the zero-velocity hyperboloid in v (see Figure 5.2) that

is entirely contained by the minimum altitude dead-band sphere (such that S (r̃) ≤

0 ∀ (u, v) on the circuit). Similarly, for hovering to be bound below the maximum

altitude limit there must exist a complete circuit in v entirely outside the maximum

altitude dead-band sphere (such that S (r̃) ≥ 0 ∀ (u, v) on the circuit). The approach

here is to search for such a circuit with constant |u|. The criteria developed under

this restriction on (u, v) correctly predict boundedness in all but the most degenerate

situations.

For each +,+,− zero-velocity surface shape, the parameterization of the hyper-

boloid solution (Eqs. (5.8), (5.9), and (5.10)) can be substituted into Eq. (5.11) with

the appropriate sign condition to derive sufficient conditions for boundedness of the

hovering trajectory with altitude dead-band control. The variables can be separated

so that the resulting inequality can be evaluated by separate functions of u and v.

For the hd = 0 case (quadratic cone zero-velocity surface), the initial position is

at u0 = 0 and must be bounded by both the upper and lower dead-band surfaces;

that is, there must exist a u ≥ 0 such that S (r̃ (u, v)) ≥ 0 and a u ≤ 0 such that

S (r̃ (u, v)) ≤ 0 for all v ∈ [0, 2π). These conditions can be stated as in Eqs. (5.16)
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and (5.17) respectively,

min
u∈[0,∞)

fqc (u; r̃x,top) ≤ min
v∈[0,2π)

g (v; r̃x,top) (5.16)

min
u∈(−∞,0]

fqc (u; r̃x,bot) ≤ min
v∈[0,2π)

g (v; r̃x,bot) (5.17)

where

fqc (u; r̃x) =
1

2hau

(

s2 − r̃T
x r̃x − u2

(

h2
a + h2

c

))

− hc

ha
rx,z (5.18)

and

g (v; r̃x) = rx,x cos v + rx,y sin v. (5.19)

For the hd > 0 case, the two-sheet hyperboloid zero-velocity surface (Figure

4.1) only allows escape on one side for a trajectory contained by a given sheet.

Therefore, only the side of the dead-band corresponding to this sheet must “cap”

the zero-velocity surface. Let |u0| be defined by Eq. (5.20),

|u0| = arccosh

( |δrc,z|
hc

√
hd

)

(5.20)

where δr̃c is defined in the hyperboloid frame. If δrc,z < 0, the initial hovering

position is in the upper lobe and the condition for boundedness is given in Eq.

(5.21),

min
|u|∈[u0,∞)

fts,top (|u|) ≤ − max
v∈[0,π)

|g (v; r̃x,top) | (5.21)

where

fts,top (u) = −hc

ha
rx,top,z coth u

+
1

2ha

√
hd sinh u

[

s2 − r̃T
x,topr̃x,top − hd

(

h2
a sinh u2 + h2

c cosh u2
)]

. (5.22)

Conversely, if δrc,z > 0, the initial hovering position is in the lower lobe and the

condition for boundedness is given in Eq. (5.23),

max
|u|∈[u0,∞)

fts,bot (|u|) ≥ max
v∈[0,π)

|g (v; r̃x,bot) | (5.23)
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where

fts,bot (u) =
hc

ha
rx,bot,z coth u

+
1

2ha

√
hd sinh u

[

s2 − r̃T
x,botr̃x,bot − hd

(

h2
a sinh u2 + h2

c cosh u2
)]

. (5.24)

Finally, for the hd < 0 case (one-sheet hyperboloid zero-velocity surface), the

initial position must be bounded by both the upper and lower dead-band surfaces.

For this case, u0 is defined in Eq. (5.25),

|u0| = arcsinh

( |δrc,z|
hc

√
−hd

)

(5.25)

where δr̃c is again defined in the hyperboloid frame. The sufficient conditions for

boundedness in this case are stated in Eqs. (5.26) and (5.27) respectively,

min
u∈[u0,∞)

fos (u; r̃x,top) ≤ min
v∈[0,2π)

g (v; r̃x,top) (5.26)

max
u∈(−∞,u0]

fos (u; r̃x,bot) ≥ max
v∈[0,2π)

g (v; r̃x,bot) (5.27)

where

fos (u; r̃x) = −hc

ha
rx,z tanh u

+
1

2ha

√
−hd cosh u

[

s2 − r̃T
x r̃x + hd

(

h2
a cosh u2 + h2

c sinh u2
)]

. (5.28)

It must also be ensured for all cases that the initial position is outside of the lower

bounding sphere and inside of the upper bounding sphere (so that the spacecraft

is initially inside the dead-band). These conditions are somewhat less interesting

though because motion in the upper lobe of the hyperboloid is almost always bounded

by an altimetry dead-band since the dead-band surface is generally convex.
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Examples of Bounded Hovering Regions under Altitude Dead-band Con-
trol

This sufficient conditions for boundedness at a given hovering position under

an altitude dead-band in Section 5.2.1 (Eqs. (5.16), (5.17), (5.21), (5.23), (5.26),

and (5.26)) are functions of the surface topography, the initial spacecraft energy

(determines hd), and γ (comes in through r̃x). Eqs. (4.16) and (5.4) show that the

initial spacecraft energy is a function of the initial state error and the applied open-

loop thrust. Here, examples of the region where hovering is bounded using a one-

dimensional dead-band controller based on altimetry are presented to demonstrate

the effects of the surface curvature, the surface normal, the dead-band size, and the

open-loop thrust on this region.

First, the effect of the surface curvature is examined. Figure 5.3 shows hovering

positions in the X −Y plane above a sphere that satisfy the sufficient conditions for

bounded hovering with an altitude dead-band and open-loop controller. Here, µsb is

constant so that the small-body radius varies from 0.667 to 1.5 km as the density

varies from 5.74 to 0.50 g/cm3. The dead-band size is 50m for all cases. Two things

are worthy of noting here. The region where hovering under altitude dead-band

control is bounded is a subset of the +,+,− region (union of the “YES” and “NO”

regions) consisting of points inside a particular radius. The area labeled “N/A”

requires a dead-band on more than one direction of motion to stabilize. Second, the

change in surface curvature over the range of realistic small-body densities has only

a small-effect on the bounded hovering region. The region of bounded hovering in

the X − Z plane above a sphere is similar in size, though not perfectly circular.

Figure 5.4 shows the bounded region in the three principal axis planes above a

3.5 x 2.2 x 1.6 km ellipsoid with ̺ = 2.5 g/cm3 and a rotation period of 7.5 hrs. Full
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Figure 5.3: Boundedness of Hovering with Altimetry in the +,+,− Region above a
Sphere, X − Y Plane, Varying Small-body Radius with Constant µsb,
100% Open-loop Thrust, γ = 50m

open-loop cancellation of the nominal acceleration is applied and γ = 50 m in all

three cases. For an ellipsoid, the surface curvature is not constant and the surface

normal is not aligned with ϑ̂3 in general. Here, it can be seen that hovering under

an altitude dead-band is more likely to be bounded above the “flatter” parts of the

surface (where κDB,max is small) and near the axes where η is small. The results here

are qualitatively typical of an ellipsoidal small-body.

Figure 5.5 shows the effect of changing the open-loop thrust in the X − Z plane

of the same ellipsoid. Here the open-loop thrust is modulated to cancel 90%, 80%,

70%, and 50% of the nominal acceleration (left to right, top to bottom). The figures
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Figure 5.4: Boundedness of Hovering with Altimetry in the +,+,− Region above a
3.5 x 2.2 x 1.6 km Ellipsoid, 100% Open-loop Thrust, γ = 50m

are symmetric about x = 0 and z = 0. Decreasing the open-loop thrust (generally)

has the effect of decreasing a negative ∆Z, which widens the zero-velocity hyper-

boloid. As the surface becomes progressively wider the trajectory is less likely to be

bounded under altitude dead-band control. As open-loop thrust decreases, bound-

edness remains longest above the flat areas along the principal axes of the body.

A small area of stable hovering near the one-dimensional hovering boundary above

the small-body’s longest axis is also found. In this area, the spacecraft is nominally

trapped by the upper boundary of the dead-band in the top lobe of a two-sheet

hyperboloid.

Finally, the size of the dead-band γ plays a significant role in boundedness. Figure
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Figure 5.5: Boundedness of Hovering with Altimetry in the +,+,− Region above a 3.5
x 2.2 x 1.6km Ellipsoid, X−Z Plane, Decreasing Open-loop Acceleration
Cancellation, γ = 50m

5.6 shows the bounded region for the 3.5 x 2.2 x 1.6 km ellipsoid in the Y −Z plane

for γ = 5, 20, 100, and 200 m. Here, full open-loop cancellation of the nominal

acceleration is applied. As the dead-band size increases, the set of positions where

hovering is bounded under an altitude dead-band gets smaller.

The sufficient condition for boundedness in this chapter is also appropriate to pre-

dict the performance of the altitude dead-band controllers investigated numerically

in Chapter III (GDTS w/OL and IATNS). For the GDTS w/OL body-fixed hovering

controller (full open-loop cancellation of the nominal acceleration and ŝ = −v̂3), po-

sitions inside the solid line in Figure 5.7 satisfy the sufficient conditions for bounded
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Figure 5.6: Boundedness of Hovering with Altimetry in the +,+,− Region above a
3.5 x 2.2 x 1.6 km Ellipsoid, X − Z Plane, 100% Open-loop Thrust,
Variable γ

body-fixed hovering above a 15 x 7 x 6km ellipsoid with ̺ = 3 g/cm3, γ = 10m, and

a ten hour rotation period. These are the same parameters used for the simulation

results in Figure 3.4, which are plotted here for comparison. It can be seen that

boundedness is not guaranteed for the majority of the area of large angular devia-

tions that satisfies the stability criteria of Sawai et al. (Eqs. (3.2)-(3.4)), indicated

by the dotted line. On the other hand, the regions with large (and small) devia-

tions inside the solid line can be guaranteed to ultimately be bounded. The bound

on angular deviation for some of these positions is apparently larger than the 0.6o

numerical threshold, but it does exist. The positions above the trailing edge that do
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not satisfy the sufficient condition are probably not technically bounded, but angular

deviation is kept small by the Coriolis effect discussed in Section 3.3.2.
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Figure 5.7: Numerical Results with GDTS w/OL Body-fixed Hovering Control Over-
laid with Altitude Dead-band Sufficiency Condition

5.2.2 Optical Navigation Measurements

Optical navigation measurements give information about the lateral position of

the spacecraft with respect to the small-body center of mass, but not the range

(in general). In this section, these measurements are considered as the basis for a

two-dimensional dead-band control that bounds motion in the +,−,− region of the

two-body problem close to a small-body (see Figures 4.7, 4.8, and 4.9).



126

The simple characterization of an optical navigation measurement ô as the unit

vector from the small-body center of mass to the spacecraft in Section 2.4.3 is em-

ployed in this analysis. Eq. (5.29) is a dead-band function that could be used for

this type of measurement,

fdb (r̃) =

√

(φm (r̃) − φ0)
2 + cos2 φ0 (λm (r̃) − λ0)

2 (5.29)

where

φm = arcsin (oz) , φm ∈
[

−π
2
,
π

2

]

(5.30)

λm = arctan2 (oy, ox) , λm ∈ [−π, π] . (5.31)

This dead-band defines a conical boundary that allows a maximum angular deviation

of size γ from the nominal latitude and longitude.

First, a simple argument about boundedness of hovering in the +,−,− region

under this type of dead-band is made. Assume that the zero-velocity surface is a

quadratic cone (hd = 0) where motion is not allowed along ϑ̂1 and let Q =
∣

∣

∣
ϑ̂1 · r̂0

∣

∣

∣
.

Figure 5.8 shows two simple cases. If Q = 1 and the cone is sufficiently wide, then

the union of the dead-band boundary and the zero-velocity surface will fully enclose

the motion as is seen for the zero-velocity surface configuration on the left (motion

is bounded on the outside of the zero-velocity surface and inside the gray conical

dead-band surface). Conversely, if Q = 0, then it will never be bounded as seen

in the right hand configuration. For a spherical small-body, it turns out that Q is

identically zero for all points in the equatorial plane. Recall that the +,−,− region

for a sphere in the two-body problem consists of points outside the resonance radius

within a band of latitudes around the equatorial plane (Figure 4.7). Q is largest at

the maximum latitude boundaries, but its value remains modest with a minimum

angle between ϑ̂1 and r̂0 of about 60o within five resonance radii of the body (ϑ̂1 is
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assumed to have some component pointing away from the small-body). This simple

analysis for a spherical small-body suggests optical navigation measurements used

in this way are unlikely to bound hovering in the two-body problem.

Q = 1 Q = 0

ϑ̂1

ϑ̂1

r̂0

Figure 5.8: Optical Navigation Dead-band vs Zero-velocity Surface Orientation

A more precise approach is to use the unit vectors extending from r̃0 that define

the zero-velocity surface to determine intersection with the conical dead-band. Only

the portion of the zero-velocity surface with δzr > 0 need be considered as if this

side forms an enclosed region, the δzr < 0 side will as well. Figure 5.9 shows a

general orientation of the quadratic cone zero-velocity surface with respect to the

dead-band surface. Boundedness is ensured if r̂0 points in a forbidden direction of

motion with respect to the zero-velocity surface and the angle between the zero-

velocity surface boundary and r̂0 is greater than γ for all v ∈ [0, 2π). If this is true,

the component of the zero-velocity surface perpendicular to r̂0 grows more quickly

than the corresponding component of the dead-band surface as radial distance from

the body increases for all v and thus, bounding intersection will occur. Therefore,

the necessary and sufficient conditions in Eqs. (5.32) and (5.33) must be satisfied

for boundedness of hovering using the optical navigation measurement dead-band
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Figure 5.9: General Orientation of Optical Navigation Dead-band and Zero-velocity
Surface

discussed here,

min
v∈[o,2π)

arccos (û (v) · r̂0) > γ (5.32)

h2
c

(

x2
0

z2
0h

2
a

+
y2

0

z2
0h

2
b

)

< 1 (5.33)

where r̂0 is expressed in hyperboloid frame and

û (v) =
[ha cos v, hb sin v, hc]

T

√

h2
a cos2 v + h2

b sin2 v + h2
c

(5.34)

is the unit vector that defines the quadratic cone at v. To clarify, Eq. (5.32) for-

mulates the condition on the angle between the zero-velocity surface and r̂0 and

Eq. (5.33) determines whether r̂0 points in a direction where motion is forbidden.

Unfortunately the v such that arccos (û (v) · r̂0) is minimized is not easily found ana-

lytically, so either the value must be numerically computed over [0, 2π) or the critical

value of v must be found numerically.
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It may not be necessary to go to that trouble since analytical sufficient forms of

Eq. (5.32) seem adequate to determine boundedness or un-boundedness of hovering

in real systems. Boundedness is guaranteed if the quadratic cone of revolution where

ha = hb (which forbids motion in a smaller region than the actual zero-velocity

surface) intersects the dead-band surface for all v, or equivalently, satisfies Eq. (5.32).

This condition can be reduced to Eq. (5.35),

β ≤ π

2
− γ − arccos (Q) (5.35)

where β = arctan (hc/hb) is the largest angle between the quadratic cone zero-velocity

surface and the plane defined by ϑ̂2 and ϑ̂3 (these are the independent directions of

unrestricted motion). A sufficient condition for boundedness is that Eqs. (5.35) and

(5.33) are satisfied.

Similarly, the zero-velocity surface is guaranteed not to intersect the dead-band

surface for all v if the quadratic cone of revolution where hb = ha (which forbids

motion in a larger region than the actual zero-velocity surface) does not satisfy Eq.

(5.32). This condition can be reduced to the sufficient condition in Eq. (5.36),

α >
π

2
− γ − arccos (Q) (5.36)

where α = arctan (hc/ha) is the smallest angle between the quadratic cone zero-

velocity surface and the plane defined by ϑ̂2 and ϑ̂3. The trajectory is certainly not

bounded by the union of the dead-band surface and the zero-velocity surface if Eq.

(5.36) is satisfied or Eq. (5.33) is not satisfied. This sufficient condition for non-

intersection is not a sufficient or necessary condition for dynamical unboundedness

of the trajectory; it does not preclude the possibility that the trajectory is bounded

by the dynamics and it is not a necessary condition for incomplete intersection of

the two bounding surfaces.
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These two sufficient conditions can be easily applied to any given body as a

function of position. For the ellipsoidal and realistic polyhedral shapes examined in

this research, the sufficient condition for the trajectory to not be enclosed by the

union of the dead-band and zero-velocity surfaces (satisfying Eq. (5.36) or not Eq.

(5.33)) is satisfied at all locations in the +,−,− hovering region. The areas “closest”

to not satisfying this sufficient condition were found near the border with the +,+,−

region above the shortest extents of the body. This does not mean that the spacecraft

motion is certainly unbounded, but the region of energetically allowable motion is

not finite.

It can be concluded from these criteria that using a dead-band control of the form

in Eq. (5.29) based on optical navigation measurements that give information about

the spacecraft longitude and latitude is not an effective means of ensuring bounded-

ness of a hovering trajectory in the +,−,− region close to a small-body. However,

some optical navigation techniques yield some information about the altitude of the

spacecraft. Future work should look at the use of these optical measurements as

a basis for a bounding dead-band hovering control. Future work could also look

at applying these criteria in the circular-restricted and Hill three-body problems to

determine if optical navigation measurements are an effective basis of a dead-band

further from the small-body. Even if this is possible, care would have to be taken to

be sure that fourth body effects from nearby planets or passing small-bodies do not

destroy the boundedness during the applicable time frame.

5.3 Control Application

This section presents a brief analysis of the practical implementation issues of

fuel use and the frequency of dead-band thrust activation.



131

5.3.1 Ideal Fuel Cost of Hovering

An ideal estimate of the ∆V required to maintain hovering at a given position

can be obtained by multiplying the nominal acceleration (without thrust) at the

hovering position by the duration of hovering (Eq. (5.37))[7].

∆Videal = ||ã0||∆t (5.37)

For the two-body problem in the small-body fixed frame, the daily ∆V requirement

for hovering near a spherical body can be computed using Eq. (5.38),

∆Vdaily (χ, φ) = χ−2P (χ, φ)Π (5.38)

where χ = ||̃r|| /Rr is the normalized hovering distance, P (χ, φ) =
√

|1 + (χ6 − 2χ3) cos2 φ|

is the position coefficient, a function of hovering latitude, and Π = (86400s)µsb/R
2
r is

the daily fuel cost coefficient. This formula gives a reasonable “back of the envelope”

prediction for hovering in arbitrary potential fields. Note that Eq. (5.38) should only

be used for hovering positions close to the small-body where the two-body assump-

tions are valid. It does not include accelerations due to solar effects which become

increasingly relevant as χ increases[14].

Values of the position coefficient are shown in Figure 5.10. For hovering above the

equator, ideal fuel cost goes to zero at the resonance radius since it is an equilibrium

for spherical bodies. As the hovering distance is increased further, the coefficient

value rises as a cubic. For inertial frame hovering (Section 3.4.2), P (χ, φ) ≡ 1. Note

that when χ = 3
√

2, the fuel cost of hovering is the same at all latitudes.

Table 5.1 gives the daily fuel cost coefficient for various real small-bodies (modeled

as pointmass potentials). The required ∆Vdaily spans several orders of magnitude

across the spectrum of objects under the classification of small-body. These numbers
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Figure 5.10: Position Coefficient for Fuel Usage as a Function of Latitude and Range

demonstrate one reason why hovering is considered a viable strategy only for smaller

small-bodies; hovering near the large asteroid Vesta generally requires many km/s

of ∆V per day (unless hovering near an equilibrium)! On the other hand, hovering

near Itokawa (which was done in the inertial frame by Hayabusa1) is very feasible

from a fuel cost point-of-view, requiring on the order of only a m/s of ∆V or less

per day.

1For the range at which inertial hovering was used during the Hayabusa mission, the SRP was
the dominate acceleration so Eq. (5.38) is not appropriate for calculation of the required daily ∆V .
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Small-body µsb (km3/s2) Rotation period (hrs) Rr (km) Π (m/s)

Itokawa[68] 2.39 E − 9 12.13 0.487 0.87
Deimos[69] 9.8 E − 5 30.29 30.90 8.87
Eros[21] 4.46 E − 4 5.27 15.96 151
Vesta[70] 17.8 5.34 550 5080

Table 5.1: Daily Fuel Cost Coefficient for Several Small-bodies

5.3.2 Fuel Usage Under Dead-band Control

HoverSim can be used to determine the accuracy of the ideal ∆V solution (Eq.

(5.37)) for hovering under dead-band control. The simulation computes the fuel used

via the simple integration in Eq. (5.39).

∆V (t) =

∫ t

0

∣

∣

∣

∣

∣

∣
T̃OL + T̃DB

∣

∣

∣

∣

∣

∣
dt (5.39)

Here it is assumed that spacecraft can apply T̃ = T̃OL + T̃DB in an arbitrary di-

rection without any cancellation. This formulation is minimum bound on ∆V since

a spacecraft would likely use a combination of thrusters to achieve T̃ that would

generally involve some cancellation between thrusters.

It is clear from Eq. (5.40) that if full cancellation of the nominal acceleration is

applied via open-loop thrust, then the actual ∆V must be larger than predicted by

Eq. (5.37) if Tm >
∣

∣

∣

∣

∣

∣
T̃OL

∣

∣

∣

∣

∣

∣
for a perturbed case.

∆V (t) =

∫ t

0

√

||ã0||2 + T 2
m + 2Tm ||ã0|| (ĉ · â0)dt (5.40)

The assumption that Tm is large is an important part of the argument that the Jacobi

constant is preserved under dead-band control, so this would be the case for hovering

in this manner.

For one-dimensional hovering, it can be seen in Eq. (5.40) that a trajectory which

repeatedly hits the dead-band boundary where the open-loop thrust and dead-band
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thrust are in opposition (T̃T
OLT̃DB < 0 or ĉ · â0 < 0) will be more fuel efficient than a

trajectory that repeatedly hits the opposite boundary. This can be said because the

linearized dynamics are symmetric with respect to both dead-band boundaries and

predict an equal number of dead-band thrusts for both sides (see Section 5.3.3). For

the typical one-dimensional hovering setup where the radial distance to the more fuel

efficient boundary is larger than to the other boundary, this effect is strengthened in

the non-linear dynamics (for a pointmass gravity field, but generally applicable) since

the actual acceleration due to gravity is larger than predicted by the linear model

on both sides of the nominal position. This means that the time between dead-

band thrusts is shorter than predicted by the linear dynamics when ||̃r|| < ||̃r0|| and

longer when ||̃r|| > ||̃r0||. This assertion is supported by numerical simulations, but

the actual fuel savings are not drastic.

Fuel efficiency for a given one-dimensional hovering position can also be im-

proved by adjusting the open-loop component of the control such that it only can-

cels nominal acceleration in the ϑ̂3 direction. This can be shown by substituting

T̃OL = −
(

ã0 · ϑ̂3

)

ϑ̂3 into Eq. (5.40) and defining the dead-band as in Eq. (4.9)

such that v̂c = ϑ̂3 and ĉ = ±ϑ̂3 so that ∆V is defined by Eq. (5.41).

∆V (t) =

∫ t

0

√

||ã0||2
(

â0 · ϑ̂3

)2

+ T 2
m ± 2Tm ||ã0||

(

â0 · ϑ̂3

)

dt (5.41)

The integrand here is clearly smaller than in Eq. (5.40) so the fuel use with this type

of dead-band control will be less if the number of dead-band activations is the same.

The linear dynamics in this case still have the same acceleration along ϑ̂3 as in the

nominal case, so the number of dead-band activations should remain the same. For

the full non-linear dynamics, numerical simulation supports this assertion and shows

that changing the open-loop thrust in this manner seems to alway result in less fuel
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usage than in the nominal case.

Finally, an observation can be made from the numerical simulation data. As the

magnitude of the open-loop thrust is reduced for a particular position (as studied

in Sections 5.1 and 5.2.1), the total ∆V required tends to decrease. Figure 5.11

shows the ∆V used as a function of time for various levels of open-loop thrust under

one-dimensional dead-band control at r̃0 = [294, 294, −240] m above a 350 x 180 x

170m ellipsoid with ̺ = 2.0 g/cm3 and a 12.132hr rotation period. If using altitude
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Figure 5.11: Required ∆V vs. Time for Varying Open-loop Thrust Cancellation

measurements to define the dead-band in a one-dimensional hovering region, this

observation sets up a trade between maximal fuel economy and boundedness (see
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Figure 5.5). In some cases (such as in Figure 5.11 where ∆Videal = 6.67 m/s), the

required ∆V is actually less than the ideal prediction in Eq. (5.37) for reduced levels

of open-loop thrust.

5.3.3 Dead-band Control Application Frequency

An estimate of the time between subsequent dead-band thrust activations can be

obtained by linearizing the dynamics around the nominal hovering position so that

a closed form solution exists. Section 2.3.1 gives the linearized dynamics in the two-

body problem, which are used here as an example. If A (Eq. (2.18) or the equivalent

matrix for other time-invariant linear systems) is invertible and T̃ is constant, the

identity in Eq. (5.42) holds,

t
∫

0

eA(t−τ)







03x1

f̃






dτ = A−1

[

eAt − I6x6

]







03x1

f̃






(5.42)

and therefore, the linear equations of motion have the exact solution in Eq. (5.43).






r̃ (t)

˙̃r (t)






= eAt







r̃0

˙̃r0






+ A−1

[

eAt − I6x6

]







03x1

f̃






(5.43)

The condition that A be invertible is equivalent to requiring that ∂2Jbf/∂r̃
2|0 be

invertible. Chapter IV showed that this condition is met everywhere except on

the boundary between hovering regions (i.e., between the +,+,− and +,−,− or the

+,−,− and −,−,− regions).

For a known state at a some initial time, Eq. (5.43) can be used in conjunction

with fdb to estimate the time until fdb = γ numerically. If a one-dimensional dead-

band of the form in Eq. (4.9) is assumed, then solving the implicit Eq. (5.44) for t

gives the time of the next intersection.

|v̂c · (r̃ (t) − r̃0)| − γ = 0 (5.44)
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Since the dynamics are linear and time-invariant, a large initial guess is always

appropriate to avoid converging to the trivial solution t = 0.

This approach approximates the transit time between any state and the next

dead-band crossing in the full non-linear equations of motion well if γ is sufficiently

small so that the linear approximation is reasonable across the region of possible

motion. As such, for a fixed dead-band size, this approximation is more accurate

further from the body where the linear approximation of the gravitational potential

is accurate for a larger region of space.

5.4 Simulations

This section presents numerical simulations to demonstrate the effects of some

common uncertainties relevant dead-band hovering control implementation on a real

spacecraft. The effects of errors in the open-loop thrust magnitude and direction,

errors in initial state estimate, finite dead-band thrust magnitude, errors in mea-

surements values, errors in the small-body density estimate, and finite measurement

sampling frequencies are examined here.

The Jacobi constant is the primary measure of how well the theory holds under

these perturbations. It is desirable for the Jacobi constant to remain close to the

nominal value over time with minimal oscillations. This means that the zero-velocity

surface remains near its nominal configuration and will continue to effectively bound

the spacecraft motion assuming adequate dead-band control authority. At worst,

the Jacobi constant must stay within the allowable range for global boundedness

(Section 4.3.4). A second way to evaluate the effectiveness of the theory is to look

at the trajectory and see if it stays within the predicted region. If it does, that

suggests the second order expansion of the zero-velocity surface is valid for the given
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dead-band size.

5.4.1 Hovering with Small Errors in Initial State and Realistic Thrusters

Theoretical results on the effects of small-errors in initial position and changing

open-loop thrust have been presented in Sections 4.3.1 and 5.1 respectively. Figure

4.5 qualitatively presents simulation data that shows how the predicted zero-velocity

surface (adjusted for a small error in initial state) properly contains the trajectory.

Here, simulation results that demonstrate the combined effects of small errors in

initial state, open-loop thrust errors (constant in time), and a finite Tm are pre-

sented quantitatively. Except for the effect of finite Tm, the errors addressed here

are relatively benign since they only change the initial value of the Jacobi constant.

After the initial perturbation, the zero-velocity surface continues to apply for the

remainder of the trajectory.

Figure 5.12 shows a trajectory (heavy black line) integrated for a 5 day hovering

duration under two-dimensional dead-band control (Eq. (4.10), γ = 40 m) with

open-loop cancellation of ã0 (nominally). The central body for this simulation is a

polyhedral shape of Itokawa (Ostro et al. rough model[36]) with ̺ = 1.9g/cm3 and a

rotation period of 12.132hrs. The nominal hovering position is [550, −310, −140]T m

with δr̃0 = [10, −5, −5]T m and δ ˙̃r0 = [1, 0, 2]T mm/s. Each Cartesian component

of the error in the open-loop thrust was chosen from a zero-mean normal distribution

with standard deviation of 0.01 ||ã0||. Tm is finite here with magnitude of 3 E−3m/s2,

about 580 times the nominal acceleration magnitude without thrust.

The figure clearly shows that the spacecraft trajectory stays inside the region

predicted by the theory in this thesis. Here, the bounding surfaces are in gray; the

zero-velocity surface is the hourglass shaped hyperboloid and the dead-band surface
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Figure 5.12: Trajectory Under Two-dimensional Dead-band Control with Errors in
Initial State and Open-loop Thrust with Finite Tm (dead-band and
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is the cylinder. The zero-velocity surface seems to correspond well with the actual

spacecraft motion which suggests the quadratic expansion of the Jacobi constant

is valid for this dead-band size. The longest dimension of the Itokawa model is

about 590m, so showing the quadratic zero-velocity surface theory holds in a region

approximately 140 x 80 x 80m is encouraging and may represent a reasonable space

for operations.

Figure 5.13 shows the value of the Jacobi constant versus time for this trajectory.

The initial value of J is preserved very well over the duration of the simulation. This

means that the idealized thrust assumption used in Section 4.2 to show that the
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Jacobi constant is preserved under dead-band control was a good one for large Tm.

The brief spikes in the Jacobi constant value represent times when the spacecraft is

outside the dead-band and dead-band thrust is active.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−6.72

−6.715

−6.71

−6.705

−6.7

−6.695

−6.69

−6.685

−6.68

−6.675
x 10

−3

Time (days)

T
w

o−
bo

dy
 J

ac
ob

i V
al

ue
 (

m2 /s
2 )

Figure 5.13: Jacobi Constant Versus Time for a Trajectory Under Two-dimensional
Dead-band Control with Finite Tm and Errors in Initial State and Open-
loop Thrust

5.4.2 Hovering with Measurement Errors and Finite Sampling Frequen-
cies

Next, the effects of an altimeter sampling frequency and measurement errors

are shown via simulation of one-dimensional altitude dead-band hovering above an

oblate 10 x 10 x 8 km ellipsoid with ̺ = 3.0 g/cm3 and a rotation period of 7.5 hrs.
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For these simulations, the initial position of [10.5, 7.5, 2.5]T km is well within the

bounded region for this altitude dead band where γ = 30m and ŝ = −ϑ̂3; the surface

of the small-body is almost flat in the vicinity of ρ̃0.

Figure 5.14 demonstrates the boundedness of hovering under this altitude dead-

band with full open-loop cancellation of the nominal acceleration. For this plot,

there are no errors in the altitude measurement nor does the altimeter have a delay

between measurements. There are only errors in initial position and velocity (δr̃0 =

[−15, 5, −10]T m and δ ˙̃r0 = [0, −2, 1]T cm/s) and a finite Tm (≈ 87 ||ã0||). The

spacecraft trajectory can be seen to remain inside of the predicted zero-velocity

surface (in gray) for the 5 day simulation duration. Figure 5.15 shows the Jacobi

constant of this trajectory versus time. It varies only slightly on account of the

finite Tm and the integration tolerances. These figures demonstrate the validity of

the boundedness criteria for altimeter dead-band control as well as the perturbed

zero-velocity surface result.

However, when altitude measurements occur only every 0.5 seconds and each

measurement is given a random error (from a normal distribution with standard

deviation of 1 m, nominal altitude here is 3.24 km), the behavior of this trajectory

changes dramatically. Figures 5.16 and 5.17 show the trajectory with the predicted

initial zero-velocity surface and the Jacobi constant versus time respectively for an

integration period of 1hr. It can be seen that the Jacobi constant is not well preserved

at all, even over this relatively short period of time, and by effect, the predicted zero-

velocity surface poorly predicts the allowable region of motion. In fact, the velocity of

the spacecraft grows large enough so that the dead-band thrust is no longer effective

(and decreasingly so) at quickly returning the spacecraft to the dead-band.

The Jacobi constant is not preserved through dead-band thrust activation here
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Figure 5.14: Jacobi Constant Versus Time for a Trajectory Under Altitude Dead-
band Control with Errors in Initial State and Finite Tm

because of the errors in altitude measurement and the altimeter sampling frequency.

Uncertainty in altitude can cause the dead-band thrust to activate and turn off too

early or too late. This should cause a random positive or negative variation in

the magnitude of the spacecraft speed normal to the boundary after the dead-band

crossing ( ˙̃r+ · ϑ̂3) with respect to the normal entry speed ( ˙̃r− · ϑ̂3). This change in

magnitude of ˙̃r gives a corresponding change in Jacobi constant.

The effect of a finite measurement sampling frequency is the real problem here.

The dead-band thrust is not activated until the spacecraft knows that fdb (r̃) > γ

and it is not shut off until the spacecraft knows that fdb (̃r) < γ. Thus, thrust will
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Figure 5.15: Jacobi Constant Versus Time for a Trajectory Under Altitude Dead-
band Control with Errors in Initial State and Finite Tm

always be turned on later than (or equal to in the best case) the time assumed in the

theory and will be turned off later than the proper cut-off time. Both mis-timings

result in an increase in the magnitude of ˙̃r+. When thrust cuts on late, the incoming

velocity at fdb (r̃) = γ∗1 > γ has increased beyond its nominal value. If a constant

acceleration is assumed outside of the dead-band, the late thrust activation already

means the velocity magnitude will be larger still at fdb (r̃) = γ upon return to the

dead-band since it will be equal to the increased incoming value at fdb (̃r) = γ∗1

(since it is ballistic motion in a constant gravity field), then continue to increase.

The velocity is augmented further until thrust is shut off at fdb (̃r) = γ∗2 < γ. Finite

measurement frequency causes a uniform increase in the Jacobi constant which will
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Figure 5.16: Trajectory Under Altitude Dead-band Control with Measurement Er-
rors and Finite Sampling Frequency

eventually lead to escape or impact with the small-body. Figure 5.17 suggests this

may happen in a relatively short period of time. This effect occurs for all types of

dead-band control where activation is based on measurement values and must be

addressed when implementing a controller that relies on the Jacobi constant (the

zero-velocity surface) being maintained.

In order for this effect to be manageable, the mean value of
(∣
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over

all the dead-band crossings (proportional to the change in J) must be zero. One

approach to achieving this goal is to apply dead-band thrust for a specific amount of

time based on the state at the initial dead-band crossing. This approach eliminates
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Figure 5.17: Jacobi Constant Versus Time for a Trajectory Under Altitude Dead-
band Control with Measurement Measurement Errors and Finite Sam-
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the error induced by the thrust cut off time. In simulation this can be achieved

by integrating the trajectory until the spacecraft reaches the dead-band boundary,

then using the impulsive ∆V assumption (Eq. (4.8)) to compute the duration the

dead-band thrust should be fired, t∆V (Eq. (5.45)), from the current state2.

t∆V =
2
∣

∣

∣

˙̃r− · ϑ̂3

∣

∣

∣

Tm

(5.45)

2If the spacecraft acceleration is constant across the range of motion outside the dead-band,
applying thrust for this time preserves the Jacobi constant perfectly. For a realistic gravity field,
applying thrust for this time causes a slow drift in Jacobi constant proportional to the distance
traveled outside the dead-band (inversely proportional to Tm/ ||ã0||). For large Tm, such that t∆V

is small, the rate of change in J due to this approximation is shown to be small by numerical
simulation. Nonetheless, an occasional corrective maneuver may be necessary if the induced change
in J approaches ∆J+ or ∆J

−
.
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A random error in
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is achieved by adding random error to t∆V with

zero mean.

Such an approach is demonstrated by the simulation results in Figures 5.18 and

5.19. The parameters of this simulation are the same as used previous previously

(Figures 5.14 and 5.16) and the random error in t∆V is drawn from a normal distri-

bution with a 1ms standard deviation (nominal t∆V is between 0.1 and 0.2 seconds

for this case). The Jacobi constant in this case exhibits sufficiently small random
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Figure 5.18: Trajectory Under Altitude Dead-band Control with Fixed Duration
Dead-band Thrust

variations about the nominal value such that the trajectory is well contained in the
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Figure 5.19: Jacobi Constant Versus Time for a Trajectory Under Altitude Dead-
band Control with Fixed Duration Dead-band Thrust

predicted region over the 5 day simulation time3.

Applying thrust for a fixed duration based on the state when the spacecraft leaves

the dead-band seems to be a good approach to mitigating the change in Jacobi con-

stant due to dead-band thrust on/off timing. Of course, in a realistic implementation,

there would be some error in the turn on time, but if t∆V is computed from the state

at that time, the error in burn time is the only source of error. For a finite mea-

surement frequency, the state (or even just h and ḣ) and time of the dead-band

crossing could be predicted by a measurement filter and an appropriate model of the

3The change in Jacobi constant induced by error in the impulsive assumption is about −1 E −
5m2/s2 after 5 days here.
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dynamics.

Future work will implement this approach with the thrust turn on time and du-

ration predicted by a measurement filter. Other methods of implementing the dead-

band control such that the Jacobi constant is preserved should also be investigated

in future studies.

5.5 Discussion

This chapter takes some of the first steps in bridging the gap between the bounded

hovering theory that has been developed in the preceding chapters and its implemen-

tation in a real space mission. The discussion and simulations in Section 5.4.2 have

shown us that this job is far from complete; a realistic method of implementing the

dead-band control that does not significantly change the Jacobi constant over time

must be found before this theory can be applied in a small-body mission.

Important theoretical results were presented in this chapter on the feasibility of

using a dead-band control based on altimetry or optical navigation measurements.

If station-keeping could be reduced to monitoring a single measurement type, it

would be advantageous to a small-body mission through reduced instrument cost

and operational complexity of the mission.

We found that, theoretically, hovering near the surface of an ellipsoidal small-

body in the +,+,− zero-velocity surface region can often be maintained with altitude

measurements only. For an arbitrarily shaped small-body, the formulation is more

complex, but the qualitative results should be similar; changes in dead-band size,

open-loop thrust, and the surface curvature should have similar effects as in the

ellipsoidal case (Section 5.2.1) and we can expect that hovering closer to the surface

or the smaller semi-major axes is more likely to be bounded than at other positions.
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This is an important result for close proximity operations that could reduce the

controller complexity during descent and touchdown maneuvers.

We were able to conclude that measurements of the unit vector from the small-

body center of mass to the spacecraft are not an effective basis of a bounding dead-

band control in the +,−,− zero-velocity surface region in the two-body problem. This

would have been a very useful result if it were positive but the sufficient condition

for incomplete intersection of the zero-velocity and dead-band surfaces was satisfied

everywhere we looked.

Finally, simulations were presented in this chapter that verify the previous analyt-

ical work. Our numerical simulation capabilities (HoverSim and SBDT) continue to

serve as a very useful laboratory for testing theory and observing hovering dynamics.



CHAPTER VI

Translation and Descent

In this chapter, the spacecraft translation and descent maneuvers are consid-

ered in an arbitrary gravitational field such as that near a small-body. Linearized

dynamics are used here to give a closed form solution to the dynamics under a con-

stant thrust. This solution is used to define a constant thrust control that moves

the spacecraft between two arbitrary positions in a chosen time. A method for im-

proving the performance of this controller by estimating the error associated with

the linearization is also described. Numerical studies of the controller performance

are presented for translations above asteroids Itokawa and Eros. A descent without

thrust solution is also derived from the linearized equations which gives the locus

of initial states that result in touchdown at a chosen position. A sensitivity study

of constant thrust translation maneuvers to various model parameters is described

with numerical covariance results given for maneuvers near models of the asteroids

Itokawa, Eros, and Vesta. A multi-leg descent scenario to asteroid Eros is also de-

scribed in detail. Finally, results of numerical simulations of descent under a sliding

dead-band control are discussed.

150
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6.1 Problem Formulation

The problem of translation is addressed here as an interception problem; deter-

mine the necessary maneuvers to arrive at a specified position regardless of final

velocity. The guidance laws presented here are intended to be implemented au-

tonomously; it is therefore implicitly assumed that the spacecraft has an on-board

model of the small-body shape and estimates of rotation state and density.

The work in this chapter assumes the translation and descent maneuvers take

place in close proximity to the small-body surface. As such, the dynamics of the

two-body problem in the small-body fixed frame (Section 2.3.1) are used throughout,

though the approaches presented can be extended to other time-invariant dynamics.

The two-body equations of motion (Eq. (2.14)) are linear except for the attraction

terms derived from the potential. If the attraction vector is linearized about its value

at the nominal initial position, the linear equations of motion in Eq. (2.17) are found.

If only constant thrust (in the rotating frame) maneuvers are sought and the ma-

trix ∂2Jbf/∂r̃
2|

r̃0
is invertible, the identity in Eq. (5.42) holds which gives the closed

form solution for the state at time t = tf in Eq. (5.43). Now, there are six linear

equations with sixteen potential variables (initial state, final state, time of transfer

(tf ), and thrust) that define the spacecraft motion. Given a set of known variables,

this formulation can be cast as a solution for a number of different situations. One

such solution was the time between dead-band crossings presented in Section 5.3.3.

In this chapter, Eq. (5.43) is used to find solutions to two other problems: the

free-drop and constant thrust translation problems.
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6.2 Free-drop Solution

For a mission studying small-body composition, it is desirable to cut off spacecraft

thrusters before reaching the surface to avoid contamination. Because of the small

gravitational accelerations induced by these bodies, un-powered ‘free-drop’ descents

are possible without excessive impact velocity. By rearranging the solution of the

linearized dynamics in Eq. (5.43), the locus of initial states that result in impact at

a given surface position without thrust (thrust is constant here with T̃ ≡ 03x1) are

defined by Eq. (6.1) (note that the second derivatives of the small-body potential in

matrix A are evaluated at r̃ (tf ) here).
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(6.1)

For the free-drop problem, the surface target position and time of transfer are

specified. If touchdown velocity is neglected, Eq. (6.1) yields three equations and

six unknowns. This defines a three dimensional manifold of initial states in six

dimensional phase space that result in touchdown at the target for the chosen transfer

time (in the linear dynamics). If an initial velocity is specified (zero for instance),

a line of qualifying initial positions parameterized by tf is defined. The manifold

of initial states defined by the free-drop solution is useful as a target space for the

preceding transfers.

6.3 Constant Thrust Solution

The general interception problem can be solved by applying a constant thrust

in Eq. (5.43). In this formulation, an initial state, final position, and transfer time

are specified and the appropriate thrust to complete the transfer is determined. By
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rearranging Eq. (5.43), this necessary thrust is found (Eq. (6.2)),

T̃ = G(4 : 6, :)













r̃ (tf )

˙̃r (tf )






− eAtf







r̃0

˙̃r0












− ∂U

∂r̃

∣

∣

∣

∣

T

r̃0

+
∂2U

∂r̃2

∣

∣

∣

∣

r̃0

r̃0 (6.2)

as well as a linear estimate of the resulting final velocity (Eq. (6.3)),

˙̃r (tf) = G−1(1 : 3, 4 : 6)






G(1 : 3, :)eAtf
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−G(1 : 3, 1 : 3)r̃ (tf )






(6.3)

where

G =
[

eAtf − I6x6

]−1
A. (6.4)

The notation G(a : b, c : d) represents the a-th through b-th rows and c-th through

d-th columns of matrix G (equivalent to the notation used in Matlab). A colon

alone indicates all rows or columns are included. This thrust solution completes the

transfer exactly in the linearized system. Errors arise in the true system due to the

nonlinearity of the potential field.

6.3.1 Estimate of Linear Error

The error induced by nonlinearity of the potential in the constant thrust solution

can be computed by comparing the linearized dynamics with the true dynamics. The

solution to the non-linear two-body equations of motion (Eq. (2.14)) is given by Eq.

(6.5),
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Error is computed in Eq. (6.7) by subtracting the solution to the linear dynamics.

E(t) =
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(6.7)

Because of the integral involving the true path of the spacecraft, the error cannot be

evaluated without explicitly integrating the non-linear equations of motion. How-

ever, if it is assumed that the nominal constant thrust solution derived from the

linear dynamics is ‘close’ to the actual path, the integral can be evaluated along the

linearized path to obtain a suitable approximation.

If it is further assumed that all paths near the true path have similar ∂U/∂r̃

profiles over time, then the error vector can be assumed to be nearly the same since

the integral is the only path dependent part of the error. If the magnitude of this

error is sufficiently small, a phantom target position, defined in Eq. (6.8), can be

chosen such that if Eq. (6.2) is used to calculate thrust to arrive at the phantom

target, roughly the same error is invoked, and therefore, the spacecraft arrives very

near the desired target.

r̃phantom = r̃target − E(tf) (1 : 3) (6.8)

This method also yields an improved estimate of the final velocity by adding the

velocity error in Eq. (6.7) with the predicted velocity in Eq. (6.3).

Using this error estimate approach, the original constant thrust translation con-

troller is made more accurate without numerically integrating the equations of mo-
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tion. Further, a closed form solution for the necessary transfer thrust and a well-

defined nominal trajectory are maintained.

6.3.2 Accuracy of Translation Controller

Using an appropriate phantom target, the constant thrust controller can be shown

numerically to be very accurate for translations inside a fairly large domain around

the initial position. An idea of the limits of the accurate domain can be obtained by

considering the case of translations in a point-mass potential field. The erroneous

assumption in the derivation is that the attraction vector changes in a linear manner

as the spacecraft position deviates from the initial position. In actuality, for a change

of position in the radial direction, percentage error in this approximation grows as a

cubic of the ratio of initial radius to final radius. If a line of constant radius along

either a constant latitude or longitude line is traversed, the attraction vector changes

as the cosine function. This suggests the linearity assumption is only valid for trans-

lations that involve small changes in latitude or longitude. Generally, translations

across the same distance are more accurate further from the body since both the

angular deviation and the ratio of initial radius to final radius change more slowly.

This type of analysis closely predicts the error in the original controller formulation

(Eq. (6.2)) before the error estimate is included. The qualitative properties of the

error remain the same for the phantom target formulation; the domain of accurate

translation is bounded by a maximum allowable angular deviation and a maximum

radial deviation.

Contour plots in Figures 6.1 and 6.2 show numerical results for the nominal miss

distances (difference between the target and numerically integrated final position) as-

sociated with a class of translations above asteroids Itokawa and Eros, respectively.
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Figure 6.1 shows the nominal miss distance, in centimeters, for translations from

a stationary initial position r̃0 = [300, 0, −150] m (denoted by ‘+’) to targets in

Itokawa’s X−Z plane with a transfer time of 1200s. A rotation period of 12.132hrs

and a density of 2.5g/cm3 are assumed for the polyhedral model of Itokawa[35]. The

constant thrust controller misses the desired target by less than 8 cm for the transla-

tions on the order of a few hundred meters shown here. Figure 6.2 shows translations

to points in the plane z = 5 km from the initial position r̃0 = [16, 0, 5] km above

a polyhedral model of the asteroid Eros[21] with rotation period of 5.27 hours and

density 3.0 g/cm3. Errors here are on the order of a few centimeters for transla-

tion distances on the order of a kilometer. These examples are typical of the miss

distances and domain of accuracy seen for this controller in general.

It should be noted that the time of transfer must be kept adequately small to

ensure accuracy of the control. If the time of transfer becomes too large, the ac-

tual path will deviate significantly from the predicted linearized path and the error

estimate will be inaccurate.

6.4 Sensitivity to Parameter Uncertainty

Parameter uncertainty is an inevitable part of any space mission. Here, the effects

of parameter uncertainty on the open-loop, constant-thrust translation controller are

characterized. The final state in Eq. (5.43) is dependent on the initial state, rotation

rate, thrust, and gravitational potential, and can be characterized as in Eq. (6.9).







r̃ (tf)

˙̃r (tf)






= g(r̃0, ˙̃r0, ω, T̃,Msb, Cnm, Snm) (6.9)

The parameters Msb, Cnm, and Snm represent the small-body mass and spherical

harmonic gravity coefficients as defined in Eq. (2.13). There is uncertainty associated
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Figure 6.1: Miss Distance(cm) for Translation in the X − Z Plane near Asteroid
Itokawa

with each of these system parameters. Expanding the perturbed system in a Taylor

series, gives Eq. (6.10).
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The partial derivatives in Eq. (6.10), called sensitivity matrices, can be evaluated

numerically using standard sensitivity analysis[50]. If the equations of motion are
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defined by Eq. (6.11)
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and ζ is one of the parameters, then the dynamics of the sensitivity matrices are

given in Eq. (6.12),

d
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where X̃ is the state vector and
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except in the case of sensitivity to initial state, where

∂X̃
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∣

(r̃0, ˙̃r0)

= I6x6. (6.14)

Once the sensitivity matrices are known, the linear covariance of the final state is

computed by Eq. (6.15) given the initial covariances of the various parameters,
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where Φ(tf , 0) is the state transition matrix from time 0 to tf .

6.4.1 Qualitative Sensitivity Results

Sensitivity of the constant thrust translation controller to parameter uncertainty

is a function of the time of transfer, endpoints of the trajectory, and small-body

parameters. Instead of trying to cover this entire parameter space, this study will

look only at low altitude descent trajectories traveling from an outer spherical shell

to an inner sphere with the starting position and target having the same latitude

and longitude. Uncertainty in any system parameter results in a six-dimensional

hyper-ellipsoid in phase space representing the final state covariance. This study is

concerned only with uncertainty in final position, parameterized by the square root

of the largest eigenvalue of the final position covariance matrix,

σ = max
[

√

λeig ∈ ℜ : [λeigI3x3 − Cov (r̃ (tf))] v̂ = 0
]

(6.16)

where v̂ is an arbitrary unit vector.

First, sensitivity to errors in the initial state is studied. The sensitivity matrix in

this case is equivalent to the state transition matrix. For descents above a spherical

body, errors in initial position are amplified most when descending near the equator

and least at the poles. Magnitude of the error in final position is generally on
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the order of error in the initial position. Assuming the spacecraft uses an in-situ

navigation scheme, uncertainty in the initial position should be a few meters. Errors

in initial velocity produce the greatest uncertainty in final position for descents near

the pole and the least near the equator. Miss due to velocity uncertainty can be

large if initial velocity is not well known. Velocity should be known to within a

few mm/s to keep σ on the order of a few meters. When the same descents are

integrated over an ellipsoidal body, the final position uncertainty is largest at the

equator above the elongated ends of the body and smallest at the equator near the

body’s intermediate semi-major axis for both initial position and velocity errors. The

magnitude of error due to this equatorial “shape effect” dominates the difference in

final position uncertainty between polar and equatorial descents.

Sensitivity to errors in rotation rate is determined using Eq. (6.12), where ∂f/∂ω

is defined in Eq. (6.17).

∂f

∂ω
=

[

0, 0, 0, 2ωx+ 2ẏ, 2ωy − 2ẋ, 0

]T

(6.17)

Generally, uncertainty in ω is very small. For the NEAR mission, one-sigma un-

certainty in ω was 3.03 E − 11 rad/sec[21], corresponding to about a 2 ms error in

rotation period. For the class of descents studied here, this uncertainty resulted in

σ on the order of 10 µm, which is negligible compared to the effects of other un-

certainties. Uncertainty in final position was found to be largest for descents near

the equator and went to zero for polar descents, which is expected since ω has no

effect on descent along the ẑ axis. Again, when the body is elongated, the largest

uncertainty in final position occurs above the long ends of the body.

Rotation rate is unique in that it is the only parameter whose sensitivity is directly

dependent on initial velocity. Radial initial velocities away from the body are found
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to produce smaller errors than for toward the body and initial velocities in the

retrograde direction induce smaller errors than velocities in the direct direction.

Error in the thrust vector T̃ (Eq. (6.18)), results from error in thrust magnitude

and error in thrust direction,

δT̃ = δλT
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(6.18)

where φT and λT are the latitude and longitude of the thrust direction respectively,

and Tmag is the thrust magnitude. The zero subscript indicates nominal quantities.

∂f/∂T̃ is given in Eq. (6.19).

∂f

∂T̃
=







03x3

I3x3






(6.19)

Since thrust is applied in an open-loop manner, miss due to thruster error can be

large if the thrust direction and magnitude are not well known. The very low level

of thrust necessary to perform these maneuvers, on the order of 10−2−10−5N/kg, is

also a challenge, particularly near very small bodies. Wolff et al. found in calibration

simulations for an ion propulsion system that thrust magnitude can be tuned to an

accuracy of 1.2% with a maximum error of 0.5mN and thrust orientation to within

0.5 to 5 degrees[71]. With this type of calibration, errors due to thruster uncertainty

are reasonable.

Error due to thruster uncertainty is the largest contributer to σ in almost all

cases. Depending on the transfer and the calibration, σ due to thrust alone can be
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from meters to kilometers. The error in final position due to thruster uncertainty as

a function of latitude and longitude cannot be easily characterized. For a spherical

body, the maximum σ due to thrust uncertainty can occur above the equator or

the pole. Which of these is the case and the relative magnitudes of the errors for a

particular situation seem to depend on the transfer time and the time to drop the

specified distance without thrust. If the ratio of these times for a particular body is

too high or too low, the maximum σ will occur at the equator. On the other hand, if

this ratio is just about right, maximum σ is induced at the pole and minimum error

is at the equator. For an ellipsoidal gravity field, the maximum error in the final

position occurs for descents either over the intermediate or largest semi-major axis of

the body. Generally, for longer transfer times relative to the time to drop freely, the

largest σ for descents is found above the long ends of the body. For shorter transfer

times, the largest σ for descents is found above the intermediate semi-major axis.

The minimum error occurs at either the poles or the non-maximum equatorial axis

depending on the spherical body result.

Finally, sensitivity to errors in the spacecraft’s potential model as defined by a

spherical harmonic expansion (Eq. (2.13)) are studied. Errors in the small-body

mass estimate are found to produce the largest errors in final position above the

poles and elongated ends of the body. The NEAR mission was able to determine the

mass of Eros to within 4.5 E − 2% [21]. Using the same percentage error, errors due

to mass uncertainty are found to be on the order of centimeters or less.

Errors in the C10, C11, and S11 coefficients correspond to offsets of the center of

mass in the x̂, ŷ, and ẑ directions respectively. If uncertainty due to each term is

studied individually, each causes maximum uncertainty in final position for descents

along its respective axis. When all three are considered concurrently, uncertainty in
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final position is found to be maximal for polar descents and minimal for equatorial

descents. Using the one-sigma uncertainty in these coefficients found by the NEAR

mission (4 E − 6)[21], errors in final position for the descent scenarios tested here

were on the order of millimeters.

Looking at the higher order harmonics, a general pattern emerges. For the Cnm

coefficient, σ for these descents is proportional to Pnm(sinφ) cosmλ. Similarly, the

error due to uncertainty in the Snm coefficient is proportional to Pnm(sinφ) sinmλ.

This is not surprising since the sensitivity equation is driven by ∂2U/ (∂r∂ [Cnm, Snm])

and the spacecraft moves with nearly constant latitude and longitude. The one-sigma

errors that arise from uncertainties in the harmonic coefficients are generally on the

order of meters or less.

When all these parameters are considered simultaneously, uncertainty in the final

position is likely to be largest for descents above the equator of an elongated body,

either near the longest or intermediate semi-major axis. Descents with minimum

uncertainty in final position may occur above the equatorial semi-major axis not

corresponding to the maximum error or above the poles depending on the distance

and duration of the transfer. For a nearly spherical body, it is possible that the largest

values of σ will be found for descents above the poles. Thruster error is the dominant

contributer to σ, followed by error in the initial state. Since maximum uncertainty in

the final position can occur about anywhere depending on the transfer parameters,

covariance studies using the above described method should be performed for each

case of interest.
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6.4.2 Covariance Simulations

Numerical covariance analysis, including uncertainty in all of the parameters

above, has been performed for descent trajectories at a range of latitudes and lon-

gitudes above three realistic asteroid shapes. Polyhedral models of the asteroids

Itokawa and Eros have been considered, as well as an ellipsoidal approximation of

the asteroid Vesta. For each body, the three different sets of parameter covariances

given in Table 6.1 were implemented. For all three covariance sets, it is assumed that

Covariance Set #1 #2 #3

Position (x,y,z) 1m 5m 10m
Velocity (x,y,z) 0.1mm/s 1mm/s 5mm/s
θT 0.5◦ 2◦ 5◦

φT 0.5◦ 2◦ 5◦

Tmag 0.1% 0.8% 2.0%
ω 3.03 E − 11 rad/s 3.03 E − 11 rad/s 3.03 E − 11 rad/s
Mass 0.0448% 0.0448% 0.0448%
1st Order Harmonics 4 E − 6 4 E − 6 4 E − 6
2nd Order Harmonics 4 E − 6 4 E − 6 4 E − 6
3rd Order Harmonics 5 E − 6 5 E − 6 5 E − 6

Table 6.1: One-sigma Parameter Uncertainties for Descent Simulations

the spacecraft uses in-situ measurements (i.e. optical navigation and/or altimetry)

in addition to Doppler range and range rate measurements to refine its position es-

timate to the given level. The spacecraft thruster (electric propulsion or low-thrust

chemical) is assumed to have been calibrated in the manner discussed by Wolff et

al.[71], though a maximum error in the thrust magnitude is not imposed here. The

one-sigma values given for covariance set #1 correspond to a mission with a well-

calibrated thruster and advanced navigation instruments, while the accuracy in set

#3 may be obtained by a cheaper mission. The uncertainties used for ω, Msb, and

the harmonic coefficients are those found during the NEAR Mission[21]. It is as-



165

sumed here that other visiting spacecraft can characterize their target to this level

of certainty.

Itokawa

The first small-body studied here is asteroid Itokawa, the target of the JAXA’s

Hayabusa spacecraft. Itokawa is relatively small, measuring only 548 x 312 x 276m,

and is very nearly a perfect ellipsoid. The rotation period of Itokawa is 12.132 hours

and its bulk density is approximately 2.5 g/cm3 1. For these runs, the spacecraft will

descend from an outer sphere with radius 600m to an inner sphere of radius 310m

in 1200 seconds. A 6098 vertex constant density polyhedron was used to model the

body’s potential[35].

The results of these simulations for the three covariance sets in Table 6.1 are

shown in Table 6.2. The largest and smallest σ values and their locations are given.

For all three bodies, descents were done every 9◦ latitude and longitude, so the

locations given are accurate only to 9◦ resolution. The area averaged σ is also given.

Covariance Set Max σ(m) (Lat/Long(◦)) Min σ(m) (Lat/Long(◦)) Avg σ(m)
#1 2.704 (0,-90) 2.630 (90,-) 2.650
#2 11.302 (0,-90) 11.015 (90,-) 11.091
#3 27.733 (0,-90) 27.004 (90,-) 27.207

Table 6.2: Results of Covariance Analysis of Descents Above Itokawa

Figure 6.3 shows σ as a function of longitude and latitude for descents using

covariance set #3. The effect of longitude and latitude on descents using the other

covariance sets are similar. Here, it is seen that the largest uncertainty in final

1These parameters and comments are based on the now dated estimates obtained from ground-
based radar before the arrival of the Hayabusa spacecraft.
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Figure 6.3: σ (m) as a Function of Latitude and Longitude for Radial Descent over
Asteroid Itokawa

position occurs above the body’s intermediate semi-major axis at the equator. This

maximum is largely attributable to thrust uncertainty. For Itokawa, the duration

of this transfer is short enough relative to the distance covered that the maximum

error occurs here. The secondary effect of the remaining parameter uncertainties

causes σ to increase above the body’s largest semi-major axis. Polar descents yield

the minimum uncertainty in final position for this transfer. However, there is not

much variation in σ over Itokawa for these descents; there is less than 3% difference

between the maximum and minimum σ for all covariance sets.

Considering no feedback is used, the magnitude of errors induced by covariance
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sets #1 and #2 are quite reasonable. One reason for this is that the necessary

thrust magnitude for these maneuvers is so small; errors in thrust magnitude and

orientation do not push the spacecraft off course very strongly. However, it may be

difficult for an actual spacecraft to reliably implement these very low thrust levels.

The 27 m average σ value from set #3 is also small, but corresponds to about 5◦

angular error, which may be significant.

Eros

The asteroid Eros was recently visited by the NEAR spacecraft. The first success-

ful descent to an asteroid was performed by this spacecraft using a series of open-loop

burns to descend from orbit[24]. In these descent simulations, an 809 vertex polyhe-

dral shape model of Eros measuring approximately 32.8 x 14.4 x 11.9km is used[21].

The orbit period of Eros is 5.27 hours and the bulk density used here is 2.67 g/cm3.

The shape of Eros, shown in Figure 6.4, is quite elongated with two large craters

on either side of its midsection. The results presented here are for descents from an

outer sphere of radius 16.2 km to an inner sphere of 15.7 km in 1500 seconds.

The results of these simulations are shown in Table 6.3. There is a large differ-

ence between maximum and minimum σ; the maximum value is nearly 5 times the

minimum. This is attributable to Eros’ elongated shape and varied surface. The

minimum value occurs above one of the large craters on the body’s side near the ŷ

axis and the maximum occurs at the most elongated end of the body. The polar

area is also a relatively good place to descend. Figure 6.5 shows σ as a function of

latitude and longitude for these descents using covariance set #2. Descents above

most of the surface produce a σ of between 30 and 40 meters. Near the long ends of

the body, uncertainty quickly grows large and there is some improvement near the
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Figure 6.4: 809 Vertex Polyhedral Model of the Asteroid Eros

Covariance Set Max σ(m) (Lat/Long(◦)) Min σ(m) (Lat/Long(◦)) Avg σ(m)
#1 24.816 (-9,-171) 5.280 (0,36) 10.315
#2 99.597 (-9,-171) 21.585 (0,36) 41.536
#3 249.024 (-9,-171) 53.319 (0,36) 103.716

Table 6.3: Results of Covariance Analysis of Descents above Eros

large craters. The average errors for descents to Eros seem reasonable considering

the size of the body. The maximum σ obtained with covariance set #3 corresponds

to a miss of only 0.9◦ and the average is only 0.36◦. With improved calibration and

parameter certainty, results are even better.

Vesta Ellipsoid

Finally, covariance in the final position is studied for descents above a very large

asteroid, Vesta. The true shape of Vesta is approximated by a tri-axial ellipsoid with

semi-major axes of 289, 280, and 229 km. Thomas et. al. approximated the density

of Vesta to be 3.7 g/cm3 and its rotation rate to be 5.342 hours[72]. Here, results for
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Figure 6.5: σ (m) as a Function of Latitude and Longitude for Radial Descent over
Asteroid Eros

an 1800 second radial descent covering 10 km from a radius of 300 km to 290 km are

presented.

The maximum, minimum, and average σ’s for these simulations are given in Table

6.4 and σ as a function of longitude and latitude for covariance set #2 is shown in

Figure 6.6. Errors due to parameter uncertainty in these descents are quite large.

These errors are primarily due to thruster orientation errors. Because the necessary

thrust is so large, any misalignment causes a significant perturbing force, which goes

unchecked because of the nearly constant gravitational attraction in the immediate

vicinity of the spacecraft.
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Covariance Set Max σ(m) (Lat/Long(◦)) Min σ(m) (Lat/Long(◦)) Avg σ(m)
#1 2469.9 (0,180) 2104.5 (-18,-90) 2113.2
#2 9989.6 (0,180) 8444.9 (-18,-90) 8559.8
#3 24977 (0,180) 21116 (-18,-90) 21403

Table 6.4: Results of Covariance Analysis of Descents above a 289 x 280 x 220 km
Ellipsoid

In reality, a constant thrust translation approach would probably be a poor choice

for a body as large as Vesta. A large amount of fuel would be necessary to perform

constant thrust maneuvers and impact velocity for a free-drop or constant thrust

descent would be high. Also, initial position accuracy could probably not be refined

to the levels in covariance sets #1−#3 for this large of a small-body, so the covariance

in final position would be probably be even larger than found here.

6.5 Detailed Descent Scenario

Now a detailed look at a descent using the constant thrust and free-drop solutions

is presented. The descent described here is very similar to the final phase of the

NEAR mission descent[24]. The spacecraft will descend from roughly 2.25km altitude

to touchdown in the vicinity of the Himeros depression on the asteroid Eros (modeled

by the 809-vertex polyhedron). The spacecraft will begin at (2.25 km altitude, −35◦

latitude, 82◦ longitude) with about 70% of orbital speed (3 m/s retrograde in the

body-fixed frame). A constant thrust segment will then slow the spacecraft to arrival

at (156 m, −30◦, 60◦). The spacecraft will then drop without thrust to the surface

target at (0m, −29.345◦, 61.123◦). The constant thrust maneuver is performed over

40 minutes and the free-drop segment takes 206 seconds.

Given the initial state and the target position, Eqs. (6.2) and (6.8) are used to

obtain the corrected constant thrust value, T̃ = [−0.557, 4.259, −2.542]T mN/kg,
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Figure 6.6: σ (m) as a Function of Latitude and Longitude for Radial Descent over
a 289 x 280 x 220 km Ellipsoid

to complete the first segment. Eq. (6.3), corrected similarly to the thrust, gives the

predicted velocity at the way point. Eq. (5.43) is then used to numerically determine

the time to free-drop from the predicted state to the surface. The free-drop trajectory

cannot be corrected through error estimate because the target state cannot be freely

changed without thrust.

Figure 6.7 shows the planned path (way points indicated by circles) and the

actual trajectory of the descent (x’s show actual position at the way point time).

The dashed line is the powered portion and the solid line is the free-drop trajectory.

The nominal miss distance due to non-linearity of the potential at the first way point
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was 11.39m. The nominal miss distance at the touchdown point was 20.65m. The

touchdown velocity was nominally 1.165 m/s normal to the surface and 1.230 m/s

tangent to the surface. When the uncertainties in covariance set #2 were included,

the one-sigma ellipsoid was found to have semi-major axes of 374.90 m, 346.71 m,

and 185.65m at the thrust cut-off way point and 375.20m, 346.79m, and 190.67m

at the touchdown point. On the ground, these errors correspond to a few degrees

longitude or latitude error, which may be acceptable. However, the one-sigma error

at the way point is larger than the nominal altitude. Without measurements, the

way point must be at a higher altitude, which means a larger impact velocity. Errors

in thrust application account for most of the uncertainty found here. Without it, the

one-sigma ellipsoid at the surface target is 69.04 x 28.88 x 9.94m.

6.6 Sliding Dead-band Descent

In this section, a different approach to descent is discussed. The idea is to use a

dead-band body-fixed hovering control (discussed in Chapters III-V) with a variable

target altitude to drive the spacecraft down to the small-body surface. Since hovering

with an dead-band on altitude has been shown to be bounded near the small-body

surface (Section 5.2.1), this may be a good approach to descend in a stable and tightly

controlled way. This section presents a numerical test of the feasibility of this idea

using HoverSim. This brief analysis utilizes the IATNS body-fixed, station-keeping

controller (Section 3.4.1). This controller offers an advantage in that the sensing

and control directions are different. This may prevent contamination of the surface

regolith to be sampled by the thruster outgassing in sample return missions. A

formulation of the maximum altitude at which particles may be lifted off the surface

by the thruster plume is also presented.
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2.25 km Altitude
3.0 m/s         

156 m Altitude
0.99 m/s      

Touchdown        
1.12 m/s normal, 
1.22 m/s tangent 

Figure 6.7: Descent to the Surface of Asteroid Eros Using Constant Thrust and Free-
drop Control

The strategy for descent to the surface will be as follows. Using the IATNS thrust

controller, the target altitude for the spacecraft is varied linearly in time down to

the surface. During ascent, the target altitude will initially be put at some distance

off the surface to give the spacecraft an initial thrust so that oscillations around the

dead-band do not cause the spacecraft to reimpact the surface. Because this initial

period of thrusting will cause large oscillations in distance from the desired hovering

point (the altitude dead-band has no effective damping), the velocity dead-band

controller discussed in Section 3.2.1 is implemented during ascent. Only the part of

the velocity controller regulating negative altitude rates-of-change is used, as not to

impede the initial thrusting off the surface.
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It is important that the controller keep the velocity of the spacecraft as small as

possible at impact to protect the spacecraft. Touchdown should occur very close to

the target landing site and the spacecraft should also ascend to a point near where

it began.

6.6.1 Derivation of Necessary Control Thrust

In the descent maneuver, deviations from the prescribed hovering point have more

serious consequences than in station-keeping maneuvers. The larger the deviations

from the desired altitude, the larger the maximum velocity obtained by the spacecraft

is. As mentioned previously, it is important that the spacecraft impact the surface

at a reasonable velocity. This impact can occur at any point in the dead-band, so it

is important to keep the spacecraft’s velocity low at all times. It is also important

to have tight control on the spacecraft to avoid unplanned collisions with the surface

when operating at very low altitudes. To maintain this tight control on the spacecraft,

γ must be very small and overshoot beyond the dead-band boundary must be limited.

The way to limit overshoot outside the dead-band is through Tm. Over a small

range of motion (as in a dead-band with small γ), it is reasonable to approximate

the spacecraft dynamics as one-dimensional motion in a constant gravity field. Let

the spacecraft begin stationary at altitude h0 with the lower dead-band boundary

at altitude h0 − γ. Downward acceleration is ||ã0|| when inside the dead-band and

upward acceleration is Tm − ||ã0|| when outside the dead-band. Motion in this one-

dimensional system is periodic with the spacecraft overshooting the lower dead-band

boundary by d (Eq. (6.20)) once per cycle.

d =
||ã0|| γ

Tm − ||ã0||
(6.20)

For optimal descent controller performance, this overshoot should be kept as small
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as possible by selecting a dead-band thrust magnitude Tm >> ||ã0||. Overshoot can

be kept small (1 − 2% of the dead-band width) by selecting a magnitude of control

thrust between 50 and 100 times the nominal gravitational acceleration. This thrust

should not be selected too large though, as the larger it becomes, the more trouble

small errors in the thruster on/off times become.

6.6.2 Effect of Thrust on Surface Material

Surface materials that may be kicked up by the thruster plume are another con-

cern for this type of descent, since thrust is used very close to the surface. Surface

dust may degrade the performance of the spacecraft’s solar panels, cover the lenses

of cameras, or otherwise interfere with sensitive on-board equipment. Here, a “back

of the envelope” computation of the altitude at which particles could be lifted off

the surface is presented. This altitude could determine when cameras are shuttered

or when a free-drop descent trajectory begins.

Here, a downward thrust of magnitude ms/c

∣
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∣

∣

∣

∣
T̃
∣

∣

∣

∣

∣

∣
, where ms/c is the mass of

the spacecraft, is considered at altitude h above the small-body surface. A conical

thruster plume is considered with half angle ψ. The geometry of the problem is

shown in Figure 6.8.

The circular cross-section of the thrust plume at the surface, AT , is given by Eq.

(6.21).

AT = πh2 sin2 ψ (6.21)

If a uniform density plume is considered, the pressure at the surface due to the thrust

p is given in Eq. (6.22).

p =
ms/c

∣

∣

∣

∣

∣

∣
T̃
∣

∣

∣

∣

∣

∣

AT
(6.22)

For a spherical surface particle with radius rp and density ̺ to rise off the surface,
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Figure 6.8: Thruster Plume Geometry

the vertical acceleration from the thruster plume pressure must be greater than or

equal to the gravitational acceleration on the particle2. If a spherical small body with

radius Rsb and density ̺ is assumed, then the acceleration on the surface particle

due to pressure is given in Eq. (6.23) and the acceleration due to gravity is given in

Eq. (6.24).

ap =
3p

4̺rp
(6.23)

ag =
4

3
πG̺Rsb (6.24)

Equating these accelerations and rearranging gives the spacecraft altitude at which

particles could first lift off the ground as a function of thrust magnitude, plume

2A more detailed model could included centrifugal acceleration terms.
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half-angle, and particle radius (Eq. (6.25).

h =
3

4π

1

̺ sinψ

√

√

√

√

ms/c

∣

∣

∣

∣

∣

∣
T̃
∣

∣

∣

∣

∣

∣

GRsbrp
(6.25)

This equation can be used to predict the maximum altitude at which dead-band

thrust could cause surface dust to impact the spacecraft. This altitude is proportional

to the thrust magnitude and inversely proportional to the thruster plume half-angle

and the particle size.

Though the dynamics are similarly defined, hovering very close to the small-body

surface differs from hovering at higher altitude because of possible interference from

surface material. Under an open-loop hovering control, Eq. (6.25) can be reduced

further. For hovering above a spherical small-body,

∣

∣

∣

∣

∣

∣
T̃
∣

∣

∣

∣

∣

∣
=

4πG̺R3
sb

3 (Rsb + h)2 . (6.26)

Substituting this into Eq. (6.25) and solving a quadratic predicts the maximum

altitude at which open-loop hovering can lift material off the surface in Eq. (6.27).

h = −Rsb

2
+

√

R2
sb

4
+

3Rsb

2 sinψ

√

ms/c

3π̺rp
(6.27)

6.6.3 Results of Sliding Dead-band Descent Simulations

Numerical simulations of descent trajectories using sliding IATNS dead-band con-

trol have been conducted over an ellipsoidal shape that roughly approximates asteroid

Itokawa. A 50 meter descent to the surface and ascent was simulated for a range

of latitudes and longitudes. The descent was designed to take 1200 seconds. The

ellipsoidal shape model used was 0.3 x 0.18 x 0.17 km with a density of 2300 kg/m3.

A two meter altitude dead-band was implemented with a 0.1m/s velocity dead-band.

Control thrust was set to roughly 60 times the local gravitational acceleration.
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For this particular case, the average impact velocity was found to be 3.24 ±

1.75cm/s, which should be acceptable for most missions. Figure 6.9 shows the lateral

drift from the initial position for the complete descent/ascent cycle. These results

seem to suggest that this drift is a regular and predictable phenomenon, dependent

on the rotation rate and shape of the body. It can be seen that the greatest drift over

the cycle occurs on the trailing edge of the body. The distance between the initial

groundtrack point and the actual touchdown point, shown in Figure 6.10, exhibits

similar regularity, but 180o out of phase with the drift distance after ascent; that is,

the maximum miss distance at touchdown occurs on the body’s leading edge and the

minimum value occurs on the trailing edge. For both the miss at touchdown and the

drift after ascent, values are at a minimum at 90o latitude, i.e. the poles. This is

expected since no centrifugal acceleration exists at these points and the spacecraft

motion is entirely vertical.

6.7 Discussion

In this chapter, we have used a closed-form solution to the linearized two-body

equations of motion to model constant thrust translations. The necessary constant

thrust to complete a translation between two arbitrary positions was formulated, as

well as the locus of initial states that result in interception of a target position without

thrust (free-drop solution). The constant thrust translation solution is improved

by including an error estimate calculated using the linearized trajectory and the

spacecraft’s on-board potential model. This translation controller was designed with

autonomous spacecraft operations in mind; the computation load for computing an

accurate transfer thrust is reduced and the closed form solution is certain to exist.

Numerical studies detailing the accuracy of this translation controller were presented
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Figure 6.9: Drift for Sliding Dead-band Descent/Ascent Maneuver

and the accuracy was found to be good within a range of radial distances and angular

deviations around the starting position.

This chapter also contained a covariance study that detailed the effects of un-

certainty in initial state, thrust, small-body rotation, and small-body gravitational

potential on descent trajectories using the proposed constant thrust control. Under-

standing how uncertainty effects spacecraft trajectories near small-bodies is critical

since the environment is inherently very uncertain, especially upon the arrival of

the spacecraft. To my knowledge, this is one of the first covariance studies for ma-

neuvers near small-bodies formally presented in the literature (see Broschart and

Scheeres[73]). We found that errors in thrust and initial state have the greatest
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Figure 6.10: Miss Distance for Sliding Dead-band Descent

impact on error in the final position of the parameters studied for constant thrust

descents. Numerical examples of descent uncertainty above realistic asteroid shapes

were presented for models of asteroids Itokawa, Eros, and Vesta, as well as a detailed

discussion of a descent scenario to asteroid Eros.

The final section of the chapter suggests that the hovering results of the previous

chapters may extend well to descent maneuvers. Using a sliding dead-band as de-

scribed seems to be a very good approach for keeping tight control of the spacecraft

position and velocity during descent. The zero-velocity surface boundedness results

can likely be applied to this problem as well. A good topic for future study would be

determining how to bleed off the energy that accumulates during the descent such
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that a tight zero-velocity boundary is maintained all the way down.

A study of the zero-velocity surface induced by the constant thrust translation

controller is another topic for future consideration. Since the thrust is constant, the

Jacobi constant is preserved. At the least, understanding the zero-velocity surface

during a translation should give a good way to determine if the translation has

sufficient energy to escape. At the best, such understanding could lead to novel

control ideas.



CHAPTER VII

Conclusions

This thesis is the culmination of a multi-year study on spacecraft maneuvers in

the complex dynamical environment in close proximity to small solar system bodies.

Specifically, research on hovering, translation, and descent maneuvers has been pre-

sented here. I hope that these results will promote future understanding of dynamics

in the vicinity of small-bodies and expand the dynamical options available to space

mission planners for small-body exploration.

7.1 Summary of the Research Results

In Chapter III, body-fixed hovering under altitude dead-band control was stud-

ied numerically using the HoverSim simulation software. In this study, we were able

to compare and contrast numerical results with previously existing analytical sta-

bility criteria for hovering under the GDTS w/OL control. Our numerical results

corresponded well with the stability criteria for hovering positions in the X −Z and

Y − Z planes near the small-body, but unexpected large deviations in the hovering

trajectory were found above the small-body’s leading edge in the X − Y plane (and

by extension, for all positions above the leading edge). An explanation is presented

which attributes this discrepancy with the stability criteria to Coriolis forces unmod-
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eled in the analytical derivation. Another controller which was designed with this

effect in mind was found to delay the onset of large deviations above the leading edge.

It was also found that with proper design, this effect can be eliminated completely.

The analytical stability criteria from the previous work were derived from a linear

stability analysis. In Chapter V, we were able to apply a boundedness condition

derived from energetic constraints on the spacecraft motion to the results for the

GDTS w/OL controller in Chapter III. It was found that much of the region with

unexpected large deviations from the nominal hovering point is not bounded; this

suggests that if the time of simulation was increased, hovering at these positions may

ultimately prove to be unstable.

Chapter III also presents an analysis of hovering in the inertial frame. It is found

analytically that an instability in the linear two-dimensional lateral dynamics (it is

assumed that the radial direction, which is usually unstable, is controlled) exists for

hovering near the small-body resonance radius. Numerical simulation validated this

linear instability, though inertial hovering is found to be non-linearly stable (possibly

with very large deviations from the nominal position) at all radii under the chosen

controller.

Chapter IV defines the zero-velocity surface in the vicinity of a spacecraft under

open-loop hovering control in time-invariant dynamical systems. This important

observation leads to a method of dead-band control design that restricts motion in

the minimum number of directions necessary to ensure a bounded trajectory. It is

found that the region closest to the small-body usually requires control on only one

direction of motion for boundedness. The question of whether or not a dead-band

control based on altitude measurements can be used to bound hovering in this one-

dimensional region is addressed in Chapter V. It is found that an altitude dead-band
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is often sufficient to bound this type of hovering. A significant region is also identified

where two directions of motion must be controlled for boundedness. In Chapter V,

we find that in the two-body problem, hovering at these locations cannot be bound

by a dead-band control based on optical navigation measurements. The effects of

errors in the initial state and open-loop thrust on the zero-velocity surface are also

defined.

In addition to the contributions mentioned above, Chapter V also investigated fuel

use and control application frequency under dead-band hovering control. Simulations

demonstrating the validity of the zero-velocity surface result were also presented.

In Chapter VI, a constant thrust translation controller is presented and shown

to accurately intercept positions in its vicinity at the chosen time. Also, the locus of

states that result in touchdown at a specified point on the small-body surface without

thrust is defined. A method of assessing uncertainty in the final position resulting

from parameter uncertainty in the dynamic model is also presented and applied to

descending translations under the constant thrust controller. Covariance analysis

is applied to a sample trajectory that incorporates the constant thrust translation

control and the no thrust solution. Finally, simulations of descent using a hovering

dead-band with variable target altitude are discussed. This discussion includes a

simple calculation of the altitude at which dust particles can be lifted off the surface

by the thruster plume.

Throughout, the analytical work presented was supported with numerical data for

realistic implementations from the HoverSim and SBDT software packages. A case

study of inertial and body-fixed hovering over the asteroid Itokawa was presented in

Chapter III. In Chapter IV, the zero-velocity surface type is given for positions near

models of the asteroids Eros and Golevka and in Chapter V boundedness under alti-
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tude dead-band hovering control is demonstrated. Chapter VI applies the constant

thrust translation control and covariance analysis to maneuvers near the asteroids

Itokawa, Eros, and Vesta.

7.1.1 Summary of Hovering Strategies Discussed

Since hovering maneuvers are a focus of this work, an explicit list of the different

strategies covered with their strengths and weaknesses is given here.

Hovering in the Rotating Body-fixed Two-body Equations of Motion This

approach fixes the spacecraft position relative to the small-body surface. This

may be advantageous for taking high resolution measurements or in preparation

for a descent maneuver. This approach applies to hovering near the small-body

where only acceleration from its gravity must be considered. This dissertation

studies body-fixed hovering with three different types of measurements:

• Position measurements If position of the spacecraft in the rotating

frame can be measured, dead-band control (possibly of reduced order)

can be designed (as the examples in Section 4.2) such that boundedness

of the trajectory can be determined in a straightforward manner without

significant approximation (see Sections 4.2.2 and 4.4.1). The disadvantage

of this approach is that it requires accurate estimation of the spacecraft

position at all times.

• Altitude measurements Section 5.2.1 demonstrates that hovering can

often be bounded using only altitude measurements near the surface of a

small-body. This has the advantage of requiring only one measurement

instrument (good for cost saving and when other measurements are not

available) and being relatively simple to implement. The disadvantages
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of this approach are that fewer hovering positions can be bounded than

with position measurements and the boundedness result relies strongly on

surface topography, open-loop thrust magnitude, and dead-band size. Nu-

merical results for two body-fixed dead-band hovering controllers (GDTS

w/OL and IATNS) that rely on altitude measurements are presented (Sec-

tions 3.3 and 3.4.1). It is found that the orientation of the curved dead-

band surface induced by this type of measurement may destabilize motion.

• Optical navigation measurements Hovering under a dead-band con-

trol on optical navigation measurements (assumed to give information on

latitude and longitude only) is found to not bound hovering in the two-

body problem (Section 5.2.2).

Hovering in an Inertial Frame above a Rotating Small-body This approach,

studied in Section 3.4.2, fixes the spacecraft position in an inertial frame while

the small-body rotates beneath it. This may be useful for characterizing the

small-body shape or keeping a fixed communication or solar panel geometry.

The advantage of this approach is that it is usually stable under control on one

direction of motion. The disadvantage is that it only applies close to the body

where forces other than the small-body gravity can be neglected.

Hovering in the Three-body Problem This approach can be applied to hover-

ing near a planetary satellite or in a region around a small-body where the

gravity and SRP from the Sun must be considered. Position knowledge is

assumed and the necessary dead-band control to bound hovering can be com-

puted in a straightforward manner (Section 4.2.2). The disadvantage of this

approach is that it does not allow arbitrary small-body shape, rotation state,
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or orbit. Hovering in the circular restricted and Hill three-body problems are

discussed in Sections 4.4.2 and 4.4.3.

7.2 Topics for Future Study

One of the main contributions of this work was the development of the zero-

velocity surface bound on hovering motion. This result has great application to

station-keeping controller design. However, this bound on the motion relies on preser-

vation of the Jacobi constant. Two issues have been identified that may destroy this

bound. First, this result must be extended to time-varying systems since all real

spacecraft dynamics are ultimately time-varying. It may be possible to find a result

by assuming the effect of the time-varying portion of the dynamics is small or by

studying the dynamics over a short period of time with the slowly-varying parameters

fixed.

Second, a method of realistic implementation of the idealized dead-band controller

must be developed that avoids the problems introduced by a finite measurement

sampling frequency and measurement errors shown in the last section of Chapter V.

Such an implementation must keep the Jacobi constant within a small range around

the nominal value through repeated dead-band thrust activations. This problem may

be resolved by applying a filter to the measurement values and predicting thrust

on/off times in advance.

The final section of Chapter VI introduces the idea of using dead-band hovering

control with a variable target altitude to descend to the small-body surface. This

method keeps a tight rein on spacecraft velocity, which is desirable for soft landing

maneuvers. A tight bound on the position of the spacecraft is inferred by the numer-

ical results in this section. Using the Jacobi constant and the zero-velocity surface
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bound (possibly changing with time), I suspect that a method of maintaining tight

position control on the spacecraft through descent can be developed and shown to

work analytically. This would be an excellent topic for future study.

Implementation of two-dimensional dead-band control using optical navigation

measurements is also a topic worthy of further study. It was shown here that using

optical navigation measurements of spacecraft latitude and longitude as the basis

of a two-dimensional dead-band control is not an effective method of bounding the

possible spacecraft motion in close proximity to the small-body, but it could be a

useful approach for hovering in the three-body problem at a greater distance from the

small-body. Also, the two-dimensional dead-band presented here only assumed infor-

mation on the spacecraft latitude and longitude; some optical navigation techniques

give range information as well. It may be possible to exploit this range information

to create a dead-band controller from these measurements that bounds hovering close

to the small-body.

Also, the work here on implementation of one-dimensional hovering using altime-

try could be extended to allow for arbitrary small-body shapes, though I suspect a

numerical approach to that problem will be necessary.

Also, the zero-velocity surface result should be used to study constant thrust

translation maneuvers. Since the thrust is constant, the Jacobi constant is preserved

throughout these maneuvers. Zero-velocity surface analysis could be used to deter-

mine when escape from the small-body is possible or may yield novel insight into

translation control design.

Finally, the applicability of this research to small-body mapping strategies should

be studied. Since these maneuvers allow a spacecraft to move around the small-body

arbitrarily and linger at a fixed position relative to the surface, they could be used to
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improve the temporal efficiency and coverage of current mapping techniques. With

these maneuvers, coverage need not be limited in certain areas and repeated in others

(though additional fuel costs will likely apply).

7.3 Application of this Research

For the maneuver approaches developed here to be used on a small-body mis-

sion, some additional work and testing is required to bring the technology to flight

readiness.

For implementation of all the maneuvers discussed, the measurement and estima-

tion process must be shown to reliably determine spacecraft position, velocity, and

attitude to sufficient accuracy. A detailed study of the estimation process, includ-

ing all measurements, conservative uncertainties, and a detailed dynamical model,

should be done to characterize the expected uncertainty in these quantities. Uncer-

tainty in the state must be shown to be acceptable for the chosen maneuver and

pointing accuracy must be shown to be sufficient for reliable thrust application.

If using altitude measurements, the reliability and accuracy of the chosen altime-

ter should be well characterized before flight. This requires hardware testing with

the selected instrument against probable small-body surface types across a range of

orientations and ranges and, if available/applicable, study of the altimeter perfor-

mance during the NEAR and Hayabusa missions. Optical navigation measurements

should be characterized via computer simulation as realistically as possible.

To be used on a mission, hovering with a reduced order dead-band control must

be demonstrated to be fail safe. If the hovering control fails, impact with the surface

or escape will usually occur; both cases would likely be catastrophic to a mission. To

avoid this, the thrusting, measurement, and estimation components of this control
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must be very reliable. Safe hovering requires reliable and redundant thrusters to

accurately produce low levels of thrust (in order to preserve the Jacobi constant).

Typical error in the applied thrust for the thrusters being used should be char-

acterized in the lab and the effect of those errors on the spacecraft velocity and

zero-velocity surface determined using the perturbation theory presented here. The

effect of the expected level of uncertainty in the dynamical parameters, state, and

attitude on the bounding zero-velocity surface must be carefully studied as well.

For use of constant thrust translation maneuvers in practice, it may be desirable

to extend the approach so that the constant thrust solution is used to move between

waypoints spaced in short intervals along the desired trajectory. This preserves

accuracy and allows the applied thrust to be updated based on the latest state

estimates.

Descent to the small-body surface is potentially a very dangerous maneuver since

uncontrolled or unplanned impact with the surface may disable the spacecraft. If

a mission includes a descent to the surface, the strategy to be used should be very

carefully studied. Again, navigational accuracy and altimeter reliability should be

demonstrated if using altitude as a trigger for maneuvers during the descent. How-

ever, because of the risk and critical importance of this mission phase, detailed

hardware-in-the-loop simulation on the ground is justified. The final descent and

touchdown phases should be tested in a ground simulation with realistic spacecraft

dynamics and a realistic spacecraft model. The control logic to be applied during the

mission should be used based on actual hardware measurements (assuming altitude)

taken off a realistic small-body surface mock-up. Though it is outside the scope of

this thesis, the actual sample collection hardware should be tested as well across a

range of likely surface properties. Such a descent test should be performed for a
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range of possible initial conditions.
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APPENDIX B

Constant Density Gravity Computations

This appendix gives the literature results for the gravitational potential and its

derivatives of an ellipsoid or polyhedral body with uniform density.

B.1 Potential of a Constant Density Ellipsoid

The gravitational potential of a constant density ellipsoid is defined by MacMillian[44].

The results are presented here in the notation used by Scheeres[45].

The gravitational potential of a constant density ellipsoidal small-body at a space-

craft position r̃ is defined in Eq. (B.1),

U = −1

2
µsb

[

x2RD

(

b2 + λ, c2 + λ, a2 + λ
)

+ y2RD

(

c2 + λ, a2 + λ, b2 + λ
)

+z2RD

(

a2 + λ, b2 + λ, c2 + λ
)

− 3RF

(

a2 + λ, b2 + λ, c2 + λ
)]

(B.1)

where (for a constant density ellipsoid)

µsb =
4π

3
G̺abc. (B.2)

RD (Eq. (B.3)) and RF (Eq. (B.4)) are Carlson forms of the elliptic integrals,

RF

(

a2, b2, c2
)

=
1

2

∫ ∞

0

du
√

(a2 + u) (b2 + u) (c2 + u)
(B.3)
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a2, b2, c2
)

=
3

2

∫ ∞

0

du

(c2 + u)
√

(a2 + u) (b2 + u) (c2 + u)
(B.4)
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which are solved numerically using the method of Press et al[74]. λ = 0 for positions

in the ellipsoid interior and is defined implicitly by Eq. (B.5) for exterior positions.

φ (x, y, z;λ) =
x2

a2 + λ
+

y2

b2 + λ
+

z2

c2 + λ
− 1 = 0 (B.5)

The gravitational attraction vector is defined by Eqs. (B.6) - (B.8).

∂U

∂x
= −µsbxRD

(

b2 + λ, c2 + λ, a2 + λ
)

(B.6)

∂U
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= −µsbyRD
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)

(B.7)

∂U

∂z
= −µsbzRD
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a2 + λ, b2 + λ, c2 + λ
)

(B.8)

If r̃ is inside the ellipsoid (see Section 2.1),
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If r̃ is outside the small-body,
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(B.13)

where

ζ̃ =

[

x

a2 + λ
,

y

b2 + λ
,

z

c2 + λ

]T

. (B.14)

For both cases, the Laplacian is defined by Eq. (B.15).

∇2U =
∂2U

∂x2
+
∂2U

∂y2
+
∂2U

∂z2
(B.15)
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B.2 Potential of a Constant Density Polyhedron

The gravitational potential of a constant density polyhedral small-body is derived

in Werner and Scheeres[42]. The potential and its derivatives are computed using

the summations over the polyhedron’s faces and edges given in Eqs. (B.16)-(B.19),

U =
1

2
G̺

∑

e∈edges

r̃T
e Eer̃e · Le −

1

2
G̺

∑

i∈faces

r̃T
i Fir̃i · ωi (B.16)

∂U

∂r̃

T

= −G̺
∑

e∈edges

Eer̃e · Le +G̺
∑

i∈faces

Fir̃i · ωi (B.17)

∂2U

∂r̃2
= G̺

∑

e∈edges

Ee · Le −G̺
∑

i∈faces

Fi · ωi (B.18)

∇2U = −G̺
∑

i∈faces

ωi (B.19)

where

r̃e = r̃e,1 − r̃ (B.20)

Ee = n̂i1n̂
T
e,i1 + n̂i2n̂

T
e,i2 (B.21)

Le = ln
ρe,1 + ρe,2 + e1,2

ρe,1 + ρe,2 − e1,2
(B.22)

r̃i = ρ̃i,1 (B.23)

Fi = n̂in̂
T
i . (B.24)

Here for edge e, r̃e,1 and r̃e,2 are the positions of the two constituent vertices, n̂i1

and n̂i2 are the surface normals to the two constituent faces, and n̂e,i2 and n̂e,i2

are the outward pointing normal vectors to the edge in the plane of face i1 and i2

respectively. Also,

ρe,1 = ||̃re,1 − r̃|| (B.25)

ρe,2 = ||̃re,2 − r̃|| (B.26)

e1,2 = ||̃re,1 − r̃e,2|| . (B.27)
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ρ̃i,1 is defined in Eq. (2.11) and ωi is defined in Eq. (2.7). Note that the summations

should be conducted over the polyhedron’s unique edges, not all of the edges for each

face.
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APPENDIX C

Use and Outputs of the Small-body

Characterization Tool

The Small-body Characterization Tool1 is initialized by a set of text files that

contain descriptions of the small-body shape, gravity, and orbit, basic spacecraft

properties, proposed mission parameters, and desired outputs.

The software is designed as a C++ class that can be compiled to run as a stand-

alone program or as a class to be called from other C + + programs or compatible

software (such as JPL’s MONTE software or Matlab). The stand-alone version of

the tool also must be told which functional blocks to execute while the individual

methods can be called upon when the tool is used as a class within other software.

The SBCT class has six functional blocks (public methods), that can be called

on to report specifics of the dynamic environment.

Fundamental Properties gives basic parameters of the small body shape and

gravity including gravitational parameter (µsb), volume, surface area, bulk den-

sity, J2 (= −C20), C22, spatial extent, ratios of the moments of inertia, and the

dynamically equivalent equal volume ellipsoid (DEEVE).

1Requests to secure use of the SBCT should be sent to Shyam Bhaskaran
(Shyam.Bhaskaran@jpl.nasa.gov).
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Two-Body Dynamics describes the two-body problem in the rotating frame (Sec-

tion 2.3.1) for the input body. Outputs from this block include the resonance

radius (Eq. (2.16)), the two-body equilibria (including their location, stability,

and characteristic times), and the small-body type[75].

Solar Effects describes the effect of the Sun on the dynamics near the small-body

(using equations of motion in Sections 2.3.2 and 2.3.3) and reports values of

the Hill radius (Eq. (2.22)), spacecraft mass to area ratio, normalized SRP

strength[17], and three-body equilibrium locations (with and without SRP in-

cluded).

Orbital Environment takes the proposed orbit from the input file and determines

the period of the secular orbital element oscillations, the relative strength of the

major perturbations (solar tide, small-body oblateness, and SRP), the offset

of the terminator orbit center due to SRP, and the orbital elements for the

frozen orbits at the proposed semi-major axis[14]. It also determines if it is

energetically possible for the orbit to escape the vicinity of the small-body.

Surface Properties reports on the surface accelerations (assuming two-body dy-

namics), slopes, escape speeds[15], and the dynamically plausible composition

of the body[76].

Hovering Environment describes hovering near the small-body by reporting the

nominal acceleration, daily required ∆V , and local zero-velocity surface[62] for

a given hovering position.
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APPENDIX D

Small-body Dynamics Toolbox Description

The Small-body Dynamics Toolbox1 is a collection of Matlab and Simulink soft-

ware tools that have been developed to aid in this research. The functions of the

SBDT include small-body shape and gravity modeling tools, trajectory integration

(including HoverSim which is described in Section 3.2), covariance computations,

periodic orbit computations, small-body surface characterization, and output visu-

alization.

Small-body Shape and Gravity Modeling

The SBDT allows the use of tri-axial ellipsoidal or triangular faceted polyhe-

dral small-body shape models (as described in Section 2.1) in its computations. A

constant density gravity model corresponding to the chosen shape (as described in

Appendix B) is assumed. For the given shape and gravity, the volume, center of

mass, and moments of inertia are determined using the method of Mirtich[49]. For

each facet of a polyhedral model, the center, normal vector, maximum extent, and

surface area are computed. The edges of the polyhedron are also determined and

specified by which two vertices they connect. The rotation rate of the small-body

1Requests to obtain portions of the SBDT should be sent to Steve Broschart
(sbroscha@gmail.com) and Dan Scheeres (scheeres@umich.edu).
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is determined from the specified rotation period, which allows computation of the

resonance radius (Eq. (2.16)).

Trajectory Integration

The SBDT uses Matlab’s ’ode45’ function to integrate various equations of mo-

tion. Functions exist to integrate the two-body equations of motion in the frame

rotating with the small-body (Section 2.3.1), the linearized two-body equations of

motion in the rotating frame (Section 2.3.1), the circular restricted three-body prob-

lem (Section 2.3.2), the elliptic restricted three-body problem, the generalized elliptic

restricted three-body problem (Section 2.3.4), and one-dimensional dynamics with

linearly varying gravity. Each of these integrators returns the position and velocity

history of the spacecraft, corresponding times, Jacobi constant (if applicable), and

dead-band crossing times and states (if applicable).

The various control types discussed in this dissertation can be applied in any

of these equations of motion. These include open-loop cancellation of the nominal

acceleration (also can cancel a percentage of the nominal acceleration), one, two,

or three dimensional dead-band control based on position measurements (as in Eqs.

(4.9)-(4.9)), dead-band control on altitude (measured along v̂3, ϑ̂3, or a specified

direction), and dead-band control on altitude rate-of-change. The formulations used

for altitude and altitude rate-of-change are presented in Sections 2.4.1 and 2.4.2

respectively. Controls also exist that compute and implement constant thrust trans-

lation trajectories given a target position in the two-body problem (Section 6.3) and

for sliding dead-band descent (Section 6.6).
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Covariance Computations

The SBDT can determine the evolution of the linear covariance ellipsoid around a

nominal trajectory considering uncertainty in initial state, small-body rotation rate,

small-body mass, first through third order spherical harmonic coefficients, thrust

magnitude, and thrust direction using the technique presented in Section 6.4. It

does not use measurements to update the uncertainty, but simply propagates the

initial uncertainty in state along a nominal trajectory.

Periodic Orbit Computation

The SBDT has the capability to compute periodic orbits around polyhedral small-

bodies. Given an initial state guess, the tool can converge on a state that results in

a periodic orbit in a conservative system using the monodromy matrix. This matrix

is made invertible by reducing the dynamics onto a Poincaré surface, then reducing

again using the Jacobi constant by the method of Scheeres et al.[16]. The stability

of a periodic orbit is determined from the eigenvalues of the monodromy matrix.

Orbit families can be mapped out from an initial orbit for changing Jacobi con-

stant or small-body gravitational parameter. Equilibrium points in the rotating

two-body problem (orbits with period equal to the small-body rotation period) are

also found using a Newton algorithm to converge on positions where the nominal

acceleration is zero.

Small-body Surface Characterization

The SBDT can compute the total acceleration, surface slope (angle between the

surface normal and total acceleration vector), acceleration normal to the surface,

acceleration tangent to the surface, the downhill vector (vector in the small-body

surface that points in the acceleration direction), sufficient escape speed[15], and
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necessary escape speed[15] for each facet of a polyhedral small-body model. These

quantities can be used for studies of surface regolith distribution, small-body com-

position, and surface particle or spacecraft “hopper” dynamics.

Visualization Tools

The SBDT utilizes Matlab’s excellent visualization routines to display the results

of its calculations. Plotting routines for trajectory integration show the computed

trajectory relative to the small-body surface, trajectory relative to the nominal po-

sition (with quadratic zero-velocity surface shown for hovering), distance from the

nominal position versus time, Jacobi constant versus time, altitude versus time,

sub-altimeter point latitude and longitude (on small-body surface), altitude rate-of-

change versus time, range from the small-body center of mass versus time, velocity

magnitude versus time, spacecraft latitude and longitude relative to the small-body

center of mass, thrust magnitude versus time, and expended ∆V versus time.

There are also scripts which evaluate the zero-velocity surface type in the two-

body, circular restricted three-body, and Hill three body problems and plot the results

as a function of hovering position (as in Section 4.4). The sufficient conditions for

bounded hovering under an altitude dead-band can also be evaluated as a function

of position and plotted (as in Section 5.2.1).

Polyhedral shape models can also be visualized with the option to color code

the surface facets as a function of any of the computed surface properties (slope,

acceleration, escape speed, etc.).
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APPENDIX E

Zero-velocity Surfaces near Equilibria in

Lagrangian Dynamics

The results found for equilibria in spacecraft dynamical systems of the form of Eq.

(4.1) are applicable to a broader class of unconstrained, time-invariant Lagrangian

systems. This more general formulation follows.

For a time-invariant rheonomic system, there exists a Lagrangian function of the

form of Eq. (E.1).

L
(

q̃, ˙̃q
)

= T
(

q̃, ˙̃q
)

+ V (q̃) (E.1)

The Jacobi constant is defined as

J
(

q̃, ˙̃q
)

=
∂L

∂ ˙̃q
˙̃q− L = CL, (E.2)

which has constant value for all states on a valid trajectory. The equations of motion

for this system are given by the standard form of Lagrange’s equations,

˙̃q = ˙̃q (E.3)

˙̃p =
d

dt

(

∂L

∂ ˙̃q

T)

=
∂L

∂q̃

T

. (E.4)

For a state to be an equilibrium, ˙̃qeqm = 03x1. In addition, ∂L/∂q̃ must equal zero.

When evaluated at ˙̃qeqm, this second condition reduces to finding q̃eqm such that

∂J/∂q̃|(q̃eqm,03x1)
= 01x3.
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The discussion follows from here in the same manner as in Section 4.1. If the

trajectory is initialized at the equilibrium point (q̃eqm, 03x1), all possible future states

must have the same value of Jacobi constant. A quadratic expansion around the

equilibrium can be performed and because
∣

∣

∣

∣

∣

∣

˙̃q
∣

∣

∣

∣

∣

∣
> 0, this defines the zero-velocity

surface of the system in the vicinity of the equilibrium.
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