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Reflection and thermal re-emission of solar radiation can influence the rotational dynamics

of small bodies via the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect. The YORP effect

plays a primary role in the dynamical evolution of small asteroids. Modeling and observations

indicate that many defunct high-altitude earth-orbiting satellites are also driven by the YORP

effect. However, no comprehensive YORP studies for defunct satellites in general rotation have

been conducted. Better understanding of defunct satellite spin state evolution would improve solar

radiation pressure modeling for orbit prediction and facilitate active debris removal and satellite

servicing which require accurate target attitude information. This work explores the long-term

general (uniform and tumbling) rotational dynamics of defunct satellites subject to the YORP

effect, internal energy dissipation, and gravity gradient torques through dynamical modeling and

observation analysis. Focus is placed on the well-documented and dynamically interesting GOES

8-12 geosynchronous satellites. Full dynamics models are developed which illustrate rich, previ-

ously undocumented behavior including tumbling cycles, sun-tracking precession, tumbling period

resonances, and asymptotically stable tumbling states/limit cycles. Using osculating rotational

elements, the relevant perturbations are then analytically and numerically averaged over the satel-

lite’s general rotation, defined by Jacobi elliptic functions. These new tumbling-averaged models

capture and explain the full dynamics behavior and reduce computation times by several orders of

magnitude. The tumbling-averaged models facilitate broad exploration and classification of small

body spin state evolution. Techniques for extracting spin state information from tumbling satellite

light curve and Doppler radar observations are then developed. Analysis of GOES 8-12 observa-

tions from 2014 - 2020 reveals diverse, evolving spin states and clear consistencies with dynamical

theory. The averaged models are then applied to box-wing satellites and meter-sized asteroids.
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Chapter 1

Introduction

1.1 Motivation

Geosynchronous (GEO) and medium earth orbit (MEO) grow increasingly important for

communications, global positioning, earth observation, and weather forecasting. With continued

launches and long or indefinite orbital lifetimes at higher altitudes due to negligible atmospheric

drag or other natural de-orbit mechanisms [59, 91], many regions are becoming more crowded with

active spacecraft and debris. For example, as of January 1, 2019, there were more than 1600

known objects near GEO, only 529 of which were actively controlled [65]. To protect these active

assets and preserve valuable orbital regimes for future use, it is crucial to understand the long-term

rotational dynamics of orbital debris. Many of these debris objects are retired, abandoned, or

otherwise defunct satellites.

Optical light curve surveys have shown that defunct satellite spin rates are diverse and can

change significantly over time. Karavaev et al. [57] and Papushev et al. [80] found spin periods of

tens of seconds to several minutes for defunct three axis stabilized GEO satellites, some of which

were quite variable. Cognion [27] and Ryan and Ryan [94] observed the family of five retired GOES

8-12 satellites. They found that one satellite was in fast uniform rotation with a variable spin rate

[27], three appeared to be in non-principal axis rotation (i.e. tumbling) [27], and one decelerated in

uniform rotation before appearing to transition to tumbling [27, 94]. Earl and Wade [34] collected

long-term observations of several defunct GEO satellites in uniform rotation which exhibited cyclic

spin period variation. Light curve studies by Silha et al. [105] also found high altitude satellites
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and rocket bodies with spin periods ranging from seconds to tens of minutes. The spin periods of

some objects varied over time [105]. This observed spin state diversity and variation is likely due

in part to solar radiation torques via the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect.

Advancing knowledge of long-term defunct satellite spin state evolution stands to provide a

number of benefits. First of all, attitude information will improve projected area estimates for solar

radiation (SRP) modeling. This will benefit long-term debris orbit prediction at higher altitudes

where SRP is the primary non-gravitational perturbation. Also, a better understanding of debris

spin cycles and maximum spin rates will aid modeling of material shedding. For example, most

high area-to-mass (HAMR) objects at GEO are thought to be pieces of multi-layer insulation (MLI)

that have shed off defunct satellites and upper stages [67].

With the growing debris population and the massive cost associated with designing, con-

structing, and launching satellites, a number of organizations are developing active debris removal

(ADR) [6] and satellite servicing missions [28, 24]. Current and proposed methods generally re-

quire a chaser spacecraft to rendezvous with and physically grapple a target. Uncontrolled targets

will generally be non-cooperative with arbitrary and potentially evolving spin states. Also, few

if any satellites and rocket bodies currently in orbit have been designed for on-orbit docking. So

knowledge of a target’s spin state will be crucial, preferably well before rendezvous. Electromag-

netic and electrostatic ADR approaches have been proposed that do not require physical contact to

de-tumble a target [76, 9]. Electrostatic tractor approaches can also be used to re-orbit a spinning

target without needing to de-tumble it first [97]. The efficiency of these various approaches de-

pends significantly on the chaser-target relative geometry. For example, smaller relative separation

distances generally provide higher efficiency. Knowledge of a target’s spin pole direction will help

minimize this separation distance while avoiding collision risk. De-tumble times also depend on the

target’s initial angular velocity. So target spin state predictions are still valuable for these touch-

less approaches. With variable spin state evolution, predicting future capture windows with slow

rotation would also be advantageous. End of life orientations of solar arrays and other appendages

may strongly affect solar torque magnitudes and subsequent long-term evolution. Further study of
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this may help inform satellite decommission procedures to reduce spin rates and make them less

variable. This would in turn facilitate active debris removal and satellite servicing.

1.2 The Yarkovsky and YORP Effects

Up until the late 20th century, the dynamical evolution of asteroids was widely thought to be

dominated by gravitational interactions with large solar system bodies [60, 115, 117, 36, 89, 15, 103]

and mutual collisions [50, 36, 118, 14, 30, 35, 17, 72]. Over the past several decades, a more subtle

mechanism, solar radiation, has been found to play an important role in the orbital and rotational

evolution of sub ∼40 km asteroids [17, 111]. The Yarkovsky effect, named after Ivan Yarkovsky

who first proposed it around the turn of the 20th century, is the process by which an asteroid’s

orbit slowly changes due to non-uniform re-emission of thermal radiation [75, 8]. As an asteroid

rotates, its sunlit side heats up over the course of the day, reaching the highest temperature in the

afternoon. Being hottest, this afternoon region emits more thermal radiation than other parts of

the asteroid. The thermal radiation leaving the asteroid carries momentum and therefore exerts an

equal and opposite push on the asteroid. So this uneven thermal emission results in a consistent

net force which causes the asteroid’s orbit to slowly change. For prograde rotation, the afternoon is

on the trailing side of the asteroid, so the force is roughly along the orbital velocity direction which

causes the asteroid’s semi-major axis increases. For retrograde rotation, the afternoon is on the

leading side and the semi-major axis instead decreases [92, 37]. This diurnal Yarkovsky component

is accompanied by a seasonal component if an asteroid’s spin pole has a projection in the orbit

plane. For this seasonal component, the northern and southern hemispheres reach their highest

temperatures in late summer and late winter respectively which results in a net force opposing the

asteroid orbital velocity [92, 37]. So unlike the diurnal component, the seasonal component always

reduces the asteroid’s semi-major axis. The magnitudes of both Yarkovsky components depend

on several factors including the asteroid’s size, shape, spin rate, obliquity, and material properties

[17, 111]. Most notably, the Yarkovsky drift rate is proportional to 1/D where D is the asteroid

size [17, 111]. So all else equal, smaller asteroids are more susceptible to the Yarkovsky effect.
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Through long-term observational campaigns and precise orbit determination, the Yarkovsky

effect has been detected for an ever growing number of asteroids [111, 43], the first in 2003 for aster-

oid (6489) Golevka [25]. The Yarkovsky effect is now recognized as the most common mechanism

for asteroid migration towards gravitational resonances in the main asteroid belt [37, 114, 17]. Per-

turbed by these resonances, asteroids are then pushed out of the main belt and towards the inner or

outer solar system [36, 115, 117, 17, 111]. The Yarkovsky effect plays a key role in replenishing the

near earth asteroid (NEA) population, which is depleted due to interactions with the large inner

solar system bodies, namely impacts and ejections [17]. Studies of the observed Yarkovsky drift

rates for more than 200 NEAs show a significant bias towards inward drift [38, 43]. Similarly, spin

pole solutions of NEAs obtained from observations are skewed towards retrograde rotation [111].

These biases are consistent with Yarkovsky drift into the strong ν6 resonance at the inner edge of

the main asteroid belt, thought to be the most likely delivery route to the inner solar system [16].

Paralleling the Yarkovsky effect is its rotational analogue, the Yarkovsky-O’Keefe-Radzievskii-

Paddack (YORP) effect. This phenomenon is the process by which reflected solar radiation and

thermal re-emission torques change a body’s spin state [93]. The term YORP was penned by

Rubincam in 2000 [93] to recognize the earlier works of Yarkovsky [75, 8], Radzievskii [87], Pad-

dack [78], and O’Keefe [74]. Assuming instant thermal re-emission of absorbed solar radiation,

Rubincam [93] showed that the YORP effect should cause secular changes in the spin rate and

obliquity of small uniformly rotating asteroids with some type of asymmetry. This includes shape

asymmetry, variable surface albedo, and differences between the center of mass and center of figure

(i.e. non-constant density). YORP-driven accelerations are proportional to 1/D2, so smaller bod-

ies evolve much faster than larger ones [93]. This early investigation proposed the YORP cycle in

which asteroids are driven towards obliquities of 90◦ where they spin down towards non-principal

axis tumbling, eventually returning to uniform rotation due to internal energy dissipation to start

the cycle again [93].

Using Rubincam’s assumption of instant thermal emission, Vokrouhlicky and Capek [113]

explored a wider variety of real and random asteroid shapes. They found that asteroids could be
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tilted to arbitrary obliquities with significantly higher and roughly equal tendencies for asymptotic

obliquities of 0◦/180◦ or 90◦ (i.e. spin poles perpendicular or parallel to the orbit plane respectively)

with a strong tendency for ultimate spin down. Capek and Vokrouhlicky [23] considered delayed

re-emission of absorbed thermal radiation. They found thermal lag to significantly alter obliquity

evolution, with the majority of asteroids exhibiting asymptotic values of 0◦ or 180◦. Furthermore,

simulations showed roughly equal tendencies for asymptotic spin down and spin up [23]. Observa-

tional studies of small main belt asteroids show a strong bias for spin poles near the ecliptic normal

directions [44, 45, 111], consistent with the asymptotic states of Capek and Vokrouhlicky [23].

In 2007, the first direct observational detection of the YORP effect was presented by Lowry

et al. for the ∼120 m diameter asteroid (54509) YORP [68]. Analysis of light curve and radar

observations taken between 2001 and 2005 indicate it is accelerating at a rate of ∼2×10−4 deg/day2.

Since 2007, YORP detections have been made for a handful of additional NEAs including (25143)

Itokawa and (101955) Bennu [111, 32, 49].

In 2007, Scheeres [100] developed the first explicit YORP model for uniform rotation, ex-

pressing the YORP torque as a Fourier series and averaging over both the asteroid’s spin and orbit.

Vokrouhlicky et al. [112] analyzed the YORP spin down of uniformly rotating asteroids with nu-

merical simulations assuming instant thermal re-emission and found that they will not reach zero

spin rate. Rather they begin tumbling and often spin up indefinitely. The tumbling regime was

further explored by Cicalo and Scheeres [26] who developed a semi-analytical tumbling-averaged

model, approximating the facet illumination function as a 2nd order Fourier series to facilitate

analytical averaging. Breiter et al. [19] developed a new semi-analytically averaged model, relaxing

the illumination function approximation of Cicalo and Scheeres and finding new stable and unstable

spin state limit cycles. Breiter et al. [18] added internal energy dissipation to the prior tumbling

model, finding asymptotic tumbling states with constant angular momentum and kinetic energy.

Overall, the YORP effect is now considered to be largely responsible for the ongoing rotational

evolution and observed spin states of sub ∼10 km asteroids, particularly the high fraction of fast and

slow rotators as well as the bias towards extreme obliquities [111]. In addition, YORP is thought
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to play a vital role in the rotational fission of asteroids [99, 84, 102] as well as the formation and

subsequent evolution of binary asteroid systems [29, 99, 69, 55]. Also, by modifying asteroid spin

rates and obliquities, the YORP effect can effectively ”steer” their Yarkovsky drift [111].

Given that defunct high altitude satellites and asteroids are subject to similar environmental

perturbations (YORP, internal energy dissipation, and gravity gradients), study of defunct satel-

lite dynamics may provide valuable insight about asteroid spin state evolution. Kilometer-sized

asteroids generally evolve on timescales of hundreds of thousands to hundreds of millions of years

[93, 113]. So the majority of knowledge about asteroid spin state evolution must be inferred from

modeling and the current observational “snapshot” of the solar system. Slow rotation, limited

observation windows, and daily observation gaps makes extracting asteroid spin states from ob-

servations challenging, especially for tumbling asteroids. Also, meter-sized asteroids, which should

evolve rapidly due to YORP, are extremely difficult to observe given their small size. Intriguingly,

all asteroids with current YORP detections are spinning up, suggesting a potential observational or

dynamical bias favoring acceleration over deceleration [111, 32, 49]. Also, obliquity changes of spe-

cific asteroids have yet to be detected due to slow evolution and limited observation sensitivity [111].

Defunct satellites with much faster evolution, faster spin rates, and easily obtained observations

may provide insight into asteroid YORP cycles and help test theories about their evolution.

1.3 The YORP Effect for Artificial Satellites

It has been known for many decades that solar radiation can significantly affect the rota-

tional dynamics of artificial satellites and debris in earth orbit, particularly at high altitudes where

atmospheric drag is absent and gravitational, magnetic, and eddy current torques from earth are

small [54]. Most investigation to date have involved active satellites. Spin state analysis of the

Ariel 1 satellite, launched in 1962, showed that the large, secular changes in its observed spin

rate were due in part to solar radiation torques [3]. Fedor [39] showed that solar torques could

explain the observed spin rate increase of the spin-stabilized Explorer VII satellite, whose spin

rate increased from 28 - 34 rpm in 110 days. Smith and Kissell [106] found that the PAGEOS
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balloon satellite had a variable spin rate and a spin axis that precessed about the moving sun line

with a nearly constant coning angle of 65◦. Patterson and Kissell [81] showed that solar torques

due to PAGEOS’ asymmetry were of similar magnitude to those required to obtain the observed

spin rate change and precession rate. Pande [79] explored using solar torques and two steerable

panels to re-orient the inertial spin pole of a spinning satellite. Harvie et al. [47] developed and

successfully employed a spin-stabilized on-orbit storage mode for the family of five GOES 8-12

satellites that leveraged passive magnetic dipole coils to rotate the spin axis and maintain solar

array sun-pointing. Simulations showed that using just solar torques to rotate the spin axis resulted

in rapid spin down. Also, simulations and operational data demonstrated that solar torques were

dependent on the solar array rotation angle which strongly affected evolution of the satellite’s spin

rate and inertial spin pole. Van der Ha and Lappas [110] developed a spin-averaged solar torque

model for spin-stabilized spacecraft to study long-term spin pole drift. Tsuda et al. [108] developed

a spin-averaged SRP model for solar sails and applied it to the IKAROS solar sail, showing that

approximate sun-tracking could be maintained under certain conditions using just SRP torques.

The impact of solar torques on small orbital debris has also been investigated. Ojakangas and

Hill conducted numerical simulations of solar torques on centimeter scale orbital debris showing

large and chaotic changes in spin rate and attitude over short periods of time [73]. More recently,

authors have studied the orbital evolution of HAMR objects with simulations that couple transla-

tional and rotational dynamics. Frueh et al. [41] investigated flat HAMR objects simulating MLI

subject to SRP as well as gravitational and solar torques. They noted the importance of attitude

considerations for long-term HAMR orbit propagation. Further research added electromagnetic

forces and torques which were found to directly change the HAMR object’s orbit and attitude, in

turn affecting the SRP force and orbit evolution [40, 52, 53].

Significantly less research has been conducted on the long-term rotational dynamics of defunct

satellites subject to solar radiation torques. To hopefully explain the spin period variation in light

curve observations, Earl and Wade [34] developed a simple spin-averaged solar torque model for

the HGS-1 satellite assuming its spin axis was inertially fixed in the ecliptic plane. By adjusting
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phasing parameters in their model, they were able to match HGS-1’s spin period amplitude as well

as its ∼1 year oscillation period.

The most significant study of defunct satellite spin state evolution to date, and first to

leverage asteroid literature, was conducted by Albuja et al. [1]. Using the uniform spin-averaged

model of Scheeres [100], Albuja et al. [1] investigated representative models of Boeing 376 and

Gorizont satellites. They showed that the theoretical Fourier YORP coefficients of the Gorizont

model had the same magnitudes as those derived from observed spin rate evolution of Gorizont

and Raduga satellites. This indicated that YORP was a plausible explanation for the observed

spin rate evolution. Albuja et al. [2] further explored YORP with the defunct GOES 8 and 10

satellites. Observation analysis showed that GOES 8’s spin period increased from 16.83 s to 75.66

s between December 2013 and July 2014 while GOES 10’s spin period decreased from 31.1 s to

26.2 s between February and August 2014 [27, 94]. Albuja et al. [2] simulated GOES 8’s YORP-

driven evolution with a representative shape model. Starting with the December 2013 extracted

spin periods as initial conditions, their simulations matched all subsequent spin periods to within

2 s. Furthermore, the simulations predicted that GOES 8 would continue spinning down and

begin tumbling by late 2014. Light curve observations of GOES 8 collected in September 2015 and

February 2016 lacked the clear periodicity of earlier observations, suggesting the satellite had in fact

began to tumble [94, 2]. Nevertheless, the authors were only able to speculate about the satellite’s

spin rate. Given these findings, Albuja et al. hypothesized that some satellites may transition

repeatedly between uniform and non-principal axis rotation due to the competing influences of

YORP and internal energy dissipation from structural flexibility and residual fuel slosh [2]. As a

satellite spins down from YORP it loses spin stability. At some point, YORP begins spinning the

satellite up about the minimum inertia axis since it requires the least torque to accelerate. Albuja

et al. propose that dissipation eventually overcomes the minimum axis YORP spin up, driving the

satellite back to uniform rotation about the maximum inertia axis, the lowest energy state for a

given angular momentum, where the cycle may start again [2].

Since the model of Albuja et al. [2] did not include internal energy dissipation, they were
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unable to validate their hypothesis. In addition to dissipation, gravity gradient torques from earth

may also play a role. Understanding the influence these perturbations have on tumbling rotation and

being able to extract quantitative information from non-periodic light curves and other observations

are necessary for forming a general picture of long-term defunct satellite spin state evolution.

The full dynamics (i.e. Euler’s equations of motion and associated attitude coordinates)

used by Albuja et al. [2] to briefly investigate tumbling YORP are not amenable to long-term

numerical propagation as they require short integration time steps to maintain solution accuracy.

More importantly, Euler’s equations are expressed in terms of fast variables (i.e. attitude and

angular velocity). Since we are interested in studying changes over long periods of time, slowly

varying osculating elements (e.g. the rotational angular momentum vector and kinetic energy) are

more appropriate. This is directly comparable to orbital dynamics, where equations of motion

for the osculating orbital elements (i.e. semi-major axis, eccentricity, inclination, etc.) are often

used. For example, the Lagrange planetary equations assume the disturbing forces driving the

time derivatives of the osculating elements are conservative (i.e. can be expressed as gradients

of potential functions) [58]. An alternative form are the Gauss equations, which generalize the

perturbations to arbitrary accelerations (i.e. conservative or non-conservative) [7]. Assuming the

disturbing forces are small perturbations, these equations can be averaged over short and long

period variations to isolate secular contributions (e.g. [61, 21, 70]). Such averaged approaches have

proven vital to understanding and exploring many aspects of long-term orbital dynamics [109]. This

motivates development of analogous tumbling-averaged dynamics for defunct satellites in terms of

osculating rotational elements, namely the rotational angular momentum vector and kinetic energy.

The uniform spin-averaged YORP work of Scheeres [100] and Albuja et al. [1, 2] are not

applicable to tumbling satellites as the motion is driven by two generally incommensurate periods

rather than one for the uniform case [95]. Also, the semi-analytical tumbling-averaged asteroidal

models of Cicalo and Scheeres [26] and Breiter et al. [19, 18] average over the spin state and

heliocentric orbit given the slow spin state evolution of asteroids. Orbit averaging is not appropriate

for defunct satellites given their potential for significant short-term spin state changes. Also, these
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asteroidal models only account for diffuse reflection which is insufficient for defunct satellites since

many surfaces are dominated by specular reflections.

1.4 Contributions

The preceding discussion leads to the following thesis statement:

Thesis Statement

The general long-term rotational dynamics of defunct satellites subject to the
YORP effect and internal energy dissipation have not been investigated. A more
complete picture of these dynamics can be obtained by developing and exploring
full and tumbling-averaged dynamical models. Spin state information extracted
from satellite observations can provide insight and validate dynamical modeling.
Enhanced knowledge will benefit space situational awareness, facilitate debris mit-
igation and satellite servicing efforts, and advance understanding of the dynamical
evolution of small bodies in the solar system.

The dynamical and observational investigations in this work focus primarily on the five GOES

8-12 retired GEO weather satellites studied previously [2]. These satellites have well-documented

mass properties and geometry. They have also been extensively observed [27, 94, 2] and are under-

going significant dynamical evoluiton [2]. While the GOES satellites constitute a small fraction of

the diverse defunct satellite population, their above attributes make them nearly ideal targets for

initial exploration and validation of dynamical modeling.

The contributions in this work can be separated into the following three areas:

Full Dynamical Modeling

� Explored the long-term spin state evolution of defunct satellites subject to the YORP effect,

energy dissipation, and gravity gradient torques with Euler’s equations of motion.

� Uncovered rich dynamical structure with YORP-driven tumbling cycles, angular momen-

tum sun-tracking, capture into resonant tumbling states, and asymptotically stable tum-

bling states and limit cycles when dissipation and gravity gradients were considered.
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Averaged Dynamical Modeling

� Developed semi-analytical and numerical tumbling-averaged dynamics models for solar ra-

diation torques, internal energy dissipation, and gravity gradient torques that accurately

capture the behavior of the full models while reducing computation time by up to three

orders of magnitude.

� Utilized the computationally efficient averaged models to explain and explore the long-term

behavior observed in the full dynamics.

Observation Analysis

� Conducted simulated optical light curve surveys with a high fidelity ray traced model to

determine the dominant frequencies in tumbling satellite light curves.

� Leveraged Doppler radar observations to provide unambiguous precession period estimates

and complement tumbling light curve analysis.

� Developed novel mono-static Doppler radar techniques for pole estimation.

� Applied these methodologies the extract rotation periods and pole directions from GOES

8-12 satellite observations, demonstrating consistency of satellite spin state time histories

with dynamical modeling.
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1.6 Organization

Chapter 2 outlines the modeling foundations including the full dynamics equations, attitude

coordinates, relevant frames, and analytical solutions for torque-free rigid body rotation that figure

prominently in our averaging approach. Chapter 2 also includes discussion of the attitude perturba-

tions considered and their assumed formulations. The full dynamics are then explored in Chapter

3 for the defunct GOES 8 satellite. In this chapter, rich, previously undocumented dynamical

behavior is presented.

Motivated by the full dynamical modeling results and the limited utility of the full dynamics

for long-term studies, Chapter 4 focuses on development and validation of the semi-analytical and

numerical tumbling-averaged dynamics models. Here, the resonant and non-resonant averaging

approaches are outlined and the averaged solar torque, energy dissipation, and gravity gradient

torque models are developed. These averaged models are then validated against the corresponding

full dynamics. With the averaged models in place, Chapter 5 explores the averaged dynamics for

the GOES 8-12 satellites, uncovering the mechanisms driving the behaviors observed in the full

dynamics and exploring these behaviors in more detail.

With observations providing direct insight and playing crucial roles in theory validation

and refinement, Chapter 6 focuses on methodologies for extracting satellite spin state information

from non-resolved optical light curves and Doppler radar echoes. Here, significant emphasis is

placed on tumbling spin state extraction. In Chapter 7, these methodologies are then applied to

observations of the defunct GOES 8-12 satellites to better understand their spin state time histories.

Resulting spin state estimates are then compared with dynamical modeling findings, showing clear

consistencies. In Chapter 8, the averaged dynamics models are applied to a box-wing satellite and

meter-sized asteroids.



Chapter 2

Dynamics and Perturbations

2.1 Euler’s Equations

The rotational angular momentum vector of a single rigid body is given by [98],

H = [I]ω (2.1)

where [I] is the satellite’s inertia tensor and ω is the angular velocity vector of the body-fixed B

frame with respect to an inertially fixed frame N .

Then, taking M as the sum of all external torques taken about the body center of mass, the

inertial time derivative of H is given by,

Nd

dt
(H) = Ḣ = M (2.2)

With [I] constant in the B frame, it is most convenient to express H in this frame. Applying the

transport theorem [98],
Nd

dt
(H) = [I]ω̇ + [ω̃][I]ω = M (2.3)

where [ ˜ ] is the skew-symmetric cross product operator. Rearranging yields Euler’s equations of

motion [98],

[I]ω̇ = −[ω̃][I]ω +M (2.4)
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2.2 Attitude Coordinates

2.2.1 Euler Angles

The angular momentum frame is denoted by H:{x̂,ŷ,ẑ}. Here ẑ is along the satellite’s rota-

tional angular momentum vector H. The satellite body frame is given by B:{b̂1,b̂2,b̂3}. Rotation

from H to B, shown in Figure 2.1, is given by (3-1-3) (φ-θ-ψ) Euler angles [98]. These angles are

commonly called the precession (φ), nutation (θ), and rotation (ψ) angles. The rotation matrix

from the H frame to the B frame is given by BH = R3(ψ)R1(θ)R3(φ) where Ri denotes a principal

rotation about the ith axis [98]. Expanded out, this is,

BH =

 cosφ cosψ − cos θ sinφ sinψ cosψ sinφ+ cosφ cos θ sinψ sinψ sin θ
− cosφ sinψ − cosψ cos θ sinφ cosφ cosψ cos θ − sinφ sinψ cosψ sin θ

sinφ sin θ − cosφ sin θ cos θ

 =

ax1 ay1 az1
ax2 ay2 az2
ax3 ay3 az3


(2.5)

So an arbitrary vector f in the H frame is given by,

fxfy
fz

 =

ax1 ax2 ax3

ay1 ay2 ay3

az1 az2 az3

f1

f2

f3

 (2.6)

where f1, f2, and f3 are the B frame components.

𝜓

𝐻

𝜃

෠𝑏3
෠𝑏1

෠𝑏2

ො𝑥
ො𝑦𝜙

Figure 2.1: H and B frames
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2.2.2 Orbit Frame

The rotating orbit frame is denoted by O:{X̂,Ŷ ,Ẑ}. This frame is centered at the satellite

with X̂ along the heliocentric orbit angular momentum direction, Ẑ pointed towards the sun, and

Ŷ in the orbital velocity direction (see Figure 2.2). The inertially fixed ecliptic frame is denoted

by N : {n̂1, n̂2, n̂3} where n̂1 is along the equinox, n̂3 is along earth’s orbital angular momentum

vector (coincident with X̂), and n̂2 completes the right-handed system. The angular velocity of O

with respect to N frame is ωO/N = nX̂ where n is the heliocentric mean motion. Rotation from

O to H is given by the rotation matrix HO = R2(β)R3(α). Written explicity,

HO =

cosα cosβ cosβ sinα − sinβ
− sinα cosα 0

cosα sinβ sinα sinβ cosβ

 (2.7)

Consulting Figure 2.2, the ”clocking” angle α and ”coning” angle β are the spherical coordi-

nates of Ĥ in the O frame.

ො𝑥

ො𝑦

Figure 2.2: O and H frames
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2.2.3 Quaternions

For the full dynamics, the body’s attitude relative to the inertially fixed N frame is tracked

using quaternions [98],

BN =


β2

0 + β2
1 − β2

2 − β2
3 2(β1β2 + β0β3) 2(β1β3 − β0β2)

2(β1β2 − β0β3) β2
0 − β2

1 + β2
2 − β2

3 (β2β3 + β0β1)

2(β1β3 + β0β2) 2(β2β3 − β0β1) β2
0 − β2

1 − β2
2 + β2

3

 (2.8)

where β0 is the scalar component. The kinematic differential equation for the quaternions is given

by [98],


β̇0

β̇1

β̇2

β̇3

 =
1

2


−β1 −β2 −β3

β0 −β3 β2

β3 β0 −β1

−β2 β1 β0


ω1

ω2

ω3

 (2.9)

The full dynamics are propagated with MATLAB’s ode113 numerical integrator.

2.3 Torque-Free Rigid Body Rotation

The rotational kinetic energy T of a single rigid body is given by,

T =
1

2
ω·[I]ω (2.10)

Using the angular momentum magnitude H = |H| and kinetic energy T , we define two

parameters fundamental to torque-free rigid body dynamics. The first is the dynamic moment of

inertia Id which is given by,

Id = H2/2T (2.11)

Assuming the B frame is a principal axis frame, we define the principal inertias Is ≥ Ii ≥ Il.

We will assume the long axis convention where the b̂1, b̂2 and b̂3 body axes are aligned with the

intermediate (Ii), maximum (Is), and minimum (Il) principal moments of inertia respectively [95].
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For torque-free rigid body rotation, Id defines the closed path that ω takes through the body

frame, known as a polhode [64]. Id is constrained to [Il, Is] since T is bounded for a given H. When

Il < Id < Ii, the satellite is said to be in a long axis mode (LAM) because ω circulates about the

satellite’s “long” axis (b̂3) which often closely aligns with the longest dimensional axis [64]. When

Ii < Id < Is, the satellite is in a short axis mode (SAM) where ω instead circulates about the

“short” axis (b̂2), which often closely aligns with the shortest dimensional axis. Id = Il and Id = Is

correspond to principal axis rotation about b̂3 and b̂2 respectively. Finally Id = Ii denotes motion

along the separatrix between LAMs and SAMs or uniform rotation about the intermediate axis,

both of which are unstable. Various polhodes are illustrated in Figure 2.3 for the GOES 8 satellite

assuming constant H. Here, the separatrices are shown in black.

Figure 2.3: Angular velocity curves for long (LAM) and short (SAM) axis modes.

Complementing Id is another fundamental quantity called the effective spin rate ωe,

ωe =
2T

H
(2.12)

which linearly scales the satellite’s angular velocity components as shown in the following section.

Together, Id and ωe yield the familiar looking expressions H = Idωe and T = 1
2Idω

2
e .

Here we summarize the analytical solutions for torque-free rotation (M = 0) which figure

prominently throughout this work. Again the long axis convention is assumed with 3-1-3 (φ-θ-ψ)

Euler angles used to rotate between the H and B frames. This is the same convention used in

Ref. [95].
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Equating H in the H and B frames with Eq. 2.5, we find,

az1 = sin θ sinψ =
Iiω1

Idωe
(2.13)

az2 = sin θ cosψ =
Isω2

Idωe
(2.14)

az3 = cos θ =
Ilω3

Idωe
(2.15)

The angles θ and ψ can be unambiguously calculated using Eqs. 2.13 - 2.15 with Eqs. 2.16

- 2.18 for LAMs or Eqs. 2.25 - 2.27 for SAMs. The equations for φ are much more complicated and

are provided separately below.

2.3.1 Torque-Free Solutions for Long Axis Modes

For long axis modes (LAMs), the body frame angular velocity ω = [ω1, ω2, ω3]T is given by,

ω1 = ±ωe

√
Id(Id − Il)
Ii(Ii − Il)

sn τ (2.16)

ω2 = ωe

√
Id(Id − Il)
Is(Is − Il)

cn τ (2.17)

ω3 = ±ωe

√
Id(Is − Id)
Il(Is − Il)

dn τ (2.18)

where cn τ , sn τ , and dn τ are Jacobi elliptic functions [95, 85, 22]. Examples of these functions are

illustrated in Figure 2.4.

The ± distinguishes between the two possible LAM regions: + for ω3 > 0 (LAM+) and −

for ω3 < 0 (LAM-) as shown in Figure 2.3. For LAMs, the linearly scaled time parameter τ is given

by,

τ = τo + ωe

√
Id(Ii − Il)(Is − Id)

IlIiIs
(t− to) (2.19)
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cn

sn

dn

Figure 2.4: Examples of the Jacobi Elliptic Functions cn τ , sn τ , and dn τ

where t is the time and to, τo are the initial values. The period of sn τ and cn τ is 4K(k) while dn τ

is periodic on 2K(k) where K(k) is the complete elliptic integral of the first kind [64, 85],

K(k) =

∫ π/2

0

du√
1− k2 sin2u

(2.20)

and k is the modulus. The parameter n features in the torque-free solutions for φ and Pφ̄. For

LAMs, k and n are given by,

k2 =
(Is − Ii)(Id − Il)
(Ii − Il)(Is − Id)

n =
Il
Is

(Is − Ii)
(Ii − Il)

(2.21)

For LAMs, the Euler angle φ is given by [10],

φ = φo +
H

Il
(t− to)− (Is − Il)

√
IiId

IlIs(Ii − Il)(Is − Id)

[
Π̄(τ, n)− Π̄(τo, n)

]
(2.22)

where Π̄(τ, n) is the modified incomplete elliptic integral of the third kind. Most routines for

calculating the incomplete elliptic integral of the third kind Π(τ, n) (e.g. Ref. [85]) only accept

0 ≤ τ ≤ K(k) even though τ increases unbounded with t. To calculate Π̄(τ, n) correctly, we use

the following algorithm [10]. Dropping the implied dependence of k on K for brevity, and defining

the integer multiple m = int(τ/K),
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(1) If τ has most recently passed through an even multiple of K, i.e. if mod(m, 2) = 0,

Π̄(τ, n) = mΠ(K,n) + Π(τ −mK,n) (2.23)

(2) Instead, if τ has most recently passed through an odd multiple of K, i.e. if mod(m, 2) = 1,

Π̄(τ, n) = (m+ 1)Π(K,n)−Π
(

(m+ 1)K − τ, n
)

(2.24)

where mod is the remainder after division modulo operator.

2.3.2 Torque-Free Solutions for Short Axis Modes

For short axis modes (SAMs), the body frame angular velocity ω = [ω1, ω2, ω3]T is given by,

ω1 = ωe

√
Id(Is − Id)
Ii(Is − Ii)

sn τ (2.25)

ω2 = ±ωe

√
Id(Id − Il)
Is(Is − Il)

dn τ (2.26)

ω3 = ±ωe

√
Id(Is − Id)
Il(Is − Il)

cn τ (2.27)

Again + holds for ω2 > 0 and − holds for ω2 < 0 (SAM+ and SAM−). For SAMs, τ , k, and

n are,

τ = τo + ωe

√
Id(Is − Ii)(Id − Il)

IlIiIs
(t− to) (2.28)

k2 =
(Ii − Il)(Is − Id)
(Is − Ii)(Id − Il)

n =
Il
Is

(Is − Id)
(Id − Il)

(2.29)

For SAMs, φ is instead given by,

φ = φo +
H

Il
(t− to)− (Is − Il)

√
IiId

IlIs(Is − Ii)(Id − Il)

[
Π̄(τ, n)− Π̄(τo, n)

]
(2.30)
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2.3.3 Fundamental Tumbling Periods

In general, torque-free rigid body rotation can be defined by two fundamental periods. Using

the long axis convention, Pφ̄ is the average precession period of b̂3 about H and Pψ is the rotation

period of b̂3 about itself [95]. See Figure 2.5 for an illustration of these periods for the GOES

satellite. For LAMs, Pψ corresponds to continuous rotation, while for SAMs it corresponds to

oscillation between two fixed values of ψ. We stress that Pφ̄ is the average precession period

because for a triaxial body (i.e., with three distinct moments of inertia) the time for φ to increase

by 2π is generally not constant. Here it useful to note that Pψ is also the period of ω in the B

frame. Pθ is proportional to Pψ and therefore not independent. For given moments of inertia, Pφ̄

and Pψ are only functions of Id and ωe.

For LAMs and SAMs, Pφ̄ is given by,

Pφ̄ =
2π

ωe

Il
Id

[
1− (Is − Il)

Is

Π(K,n)

K

]−1

(2.31)

where n is given by the respective equations (Eq. 2.21 for LAMs and Eq. 2.29 for SAMs).

Then for LAMs, the expression for Pψ is,

Pψ =
4

ωe

√
IlIiIs

Id(Ii − Il)(Is − Id)
K (2.32)

whereas for SAMs,

Pψ =
4

ωe

√
IlIiIs

Id(Is − Ii)(Id − Il)
K (2.33)
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Figure 2.5: Fundamental tumbling periods illustrated for the GOES satellite (long axis convention)

One derived quantity that figures prominently throughout this work is the fundamental tum-

bling period ratio. For LAMs it is given by,

Pψ
Pφ̄

=
2

π

√
IdIiIs

Il(Ii − Il)(Is − Id)

[
K − (Is − Il)

Is
Π(K,n)

]
(2.34)

and for SAMs,

Pψ
Pφ̄

=
2

π

√
IdIiIs

Il(Is − Ii)(Id − Il)

[
K − (Is − Il)

Is
Π(K,n)

]
(2.35)

It is important to note that these period ratios are independent of the effective spin rate ωe. They

are only functions of the principal moments of inertia and Id. For example, the Id - period ratio

relationship for the GOES 8 satellite is provided in Figure 2.6. Note that the period ratio has a

lower bound, which differs for LAM and SAM states. Some period ratios (≥∼3.1 for GOES 8) are

possible for both LAM and SAM states. For all physical bodies, Pψ/Pφ̄ ≥ 1 for SAMs and Pψ/Pφ̄ ≥

0 for LAMs [95]. Near the separatrix, denoted by the vertical dashed line in Figure 2.6, the time

for ω to circulate in the body frame (Pψ) approaches infinity, so the period ratio goes to infinity

as well.



25

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

3

4

5

6

LAM

SAM

Figure 2.6: GOES 8 tumbling period ratio vs. normalized Id

In general, provided the period ratio, the principal moments of inertia, and rotation mode

(i.e. LAM or SAM), one can uniquely calculate Id using Eq. 2.34 or 2.35 and the bisection method

(since Id has known bounds). Then either Pψ or Pφ can be used to solve for ωe.

2.4 Solar Radiation Torque

For this work, the faceted solar radiation force model provided by Scheeres [100] is used.

This model accounts for absorption, specular reflection, and Lambertian diffuse reflection and re-

emission. The satellite is assumed to remain in thermal equilibrium, so all absorbed radiation is

immediately re-emitted. The solar radiation force acting on the ith satellite facet is given by,

fi = −PSRP
[
{ρisi(2n̂in̂T

i − I3×3) + I3×3}û+ cdin̂i

]
Ai max(0, û · n̂i) (2.36)

Here, PSRP is the solar radiation pressure (nominally 4.56×10−6 N/m2 at 1 AU), ρi is the total

facet reflectivity, si is the fraction of total reflectivity that is specular, n̂i is the facet unit normal

vector, I3×3 is the 3×3 identity matrix, û is the satellite to sun unit vector (equivalent to Ẑ), Ai

is the facet area, and cdi = B(1 − ρisi) where B is the scattering coefficient (2/3 for Lambertian

reflection). The illumination function max(0, û ·n̂i) ensures that only illuminated facets contribute.

Self-shadowing by other facets and multiple reflections are not considered.



26

The solar radiation torque acting on the faceted satellite model can then be calculated as,

M =

nf∑
i=1

ri × fi (2.37)

where ri is the center of mass to the facet centroid position vector and nf is the number of facets

in the satellite shape model.

To simplify the dynamics, the satellite is assumed to be in circular heliocentric orbit with a

semi-major axis of 1 AU. The satellite’s earth orbit is neglected given its small size relative to its

heliocentric orbit. This approximation was validated by Albuja et al. [2] for the GOES 8 and 10

satellites. Eclipses are also neglected because they are relatively short for high altitude satellites

(e.g. a maximum of ∼70 min at GEO) and only occur during specific times each year.

We will now discuss the GOES model used to validate and explore the YORP-driven dynamics

in this work. The five NOAA GOES 8-12 geostationary weather satellites were built to nearly

identical specifications by Space Systems/Loral and successively launched between 1994 and 2001.

They were retired in sequential order from 2004 through 2013. The 26 facet GOES shape model

used for this work is provided in Figure 2.7 with GOES 8’s approximate end of life principal axes

and solar array angle θsa of 17◦. These satellites feature asymmetric geometry with a single solar

array on the south side of the bus for thermal cooling requirements [31]. Opposite the array on

the north side of the bus is a 3.3 m conical solar sail mounted on a 14.4 m deployable boom [107].

The sail’s purpose is to balance solar radiation torques generated by the sun-tracking solar array

[107]. A reflective, adjustable trim tab is mounted on the end of the solar array to finely balance

the radiation torques which change over the course of the year due to the sun’s varying B frame

latitude [31]. During normal earth-observing operations, the satellite was oriented with the +b̂3

axis along the GEO orbit angular momentum vector (north) and the bus face intersecting the +b̂2

axis pointing at earth [107]. In this configuration, the solar array continuously tracked the sun,

making one rotation relative to the bus once per day.

While the solar sail and trim tab combination effectively balances the solar array radiation
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torques during normal sun-pointing operations, the asymmetries have the potential generate notable

YORP torques outside of this regime (e.g. post-retirement). The geometry for these satellites are

also well documented by Space Systems/Loral [107], greatly aiding dynamical modeling. Overall,

these attributes make these satellites ideal targets for studying long-term dynamical evolution.

Figure 2.7: GOES 8 shape model with principal axes and major components labeled.

The predicted end of life mass, center of mass, and moments of inertia for each GOES satellite

were provided by John Tsui of NOAA’s Office of Satellite and Product Operations. For GOES 8

with a dry mass of 972 kg, its center of mass measured from the center of the bus in B frame

components is rc = [-8.7, -4.6, -16.1]T cm. The reference inertia matrix for GOES 8 is given by,

[I]ref =


3475.2 54.6 29.4

54.6 3526.4 −15.3

29.4 −15.3 980.9

 kg·m2 (2.38)

These reference inertias correspond to the 0◦ solar array position and are expressed in a

frame with two axes normal to the bus faces intersected by +b̂1 and +b̂2 and the third axis along

b̂3. The solar array angle θsa is measured positive around −b̂3, and θsa = 0◦ when the solar

array sun-side and +b̂2 face are parallel. To account for changes to the satellite’s inertia matrix

from rotation of the solar array, the array was modeled as a constant density rectangular prism

with the corresponding inertias. For simplicity, the center of mass location was assumed to be

constant irrespective of array rotation. An estimated array mass of 65 kg was obtained by scaling

the mass-area ratio of the Landsat 7 satellite’s solar array to the GOES array area [48]. Landsat
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7 was developed at a similar time as GOES and both satellites have aluminum honeycomb solar

array panels [107, 48]. The solar array inertia contribution was calculated by subtracting the 0◦

orientation array inertia matrix from the reference inertia matrix, rotating the array inertias to

the correct orientation, and adding these back to the constant bus/solar sail inertia matrix. The

principal inertias Ii, Is and Il and corresponding axes (b̂1, b̂2, and b̂3) were then calculated by

eigenvalue/eigenvector analysis. For GOES 8, the end of life principal inertias are Il = 980.5, Ii =

3432.1, and Is = 3570.0 kg·m2.

The end of life solar array θsa and trim tab θtt angles for the five GOES satellites are given in

Table 2.1. These were calculated from the shutdown epochs provided by John Tsui and information

in Ref. [31]. The values differ considerably for the satellites due to different local times and seasons

at shutdown with the array in sun-tracking mode. For the trim tab, 0◦ corresponds to the trim tab

pointing directly out from the solar array. Positive angles are measured for rotation of the trim

tab’s front surface towards the array sun side. The trim tab’s operational range was between -70◦

and -10◦ [31].

Table 2.1: GOES End of Life Solar Array and Trim Tab Angles

Satellite θsa θtt
GOES 8 17◦ -60◦

GOES 9 156◦ -67◦

GOES 10 311◦ -14◦

GOES 11 91◦ -12◦

GOES 12 139◦ -55◦

Table 2.2 provides the nominal optical properties assumed for the various GOES model

components [12]. Note that most of the materials are MLI or aluminized tape which provide

almost exclusively specular reflections.
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Table 2.2: GOES Model Optical Properties

Component Material ρi si
Bus MLI 0.60 1
Solar Array front Solar cell 0.27 1
Solar Array back Graphite 0.07 0
Trim Tab front Al tape 0.83 1
Trim Tab back Graphite 0.07 0
Solar Sail sides/top Al Kapton 0.66 1
Solar Sail base Al tape 0.83 1

2.5 Internal Energy Dissipation

Realistic internal energy dissipation cannot simply be modeled with a control torque on a

single rigid body as this will not conserve the angular momentum magnitude and direction. So a

multi-body energy dissipation model was desired that conserved the inertial angular momentum

vector while being simple and conducive to long-term simulations. The model provided by Rahn

and Barba fits these criteria [88]. It consists of a rigid spacecraft with a spherical slug located at

the satellite center of mass. Between the satellite and slug is a thin viscous fluid layer. This model

was developed for low fidelity simulations of liquid fuel tanks. Although the GOES satellites were

passivated of fuel at end of life, we assume this model can be used to simulate general spacecraft

energy dissipation. Multi-body models with stiffness terms (e.g. springs) provide oscillation fre-

quencies that are often much higher than the satellite rotation rate, requiring smaller integration

time-steps and larger computational expense. For the chosen viscous slug model, the spacecraft

and slug angular velocities are similar in magnitude, helping to improve computational efficiency.

The equations of motion for the spacecraft and slug are,

[I]ω̇ = −[ω̃][I]ω + µσ +M (2.39)

σ̇ = −ω̇ − [ω̃]σ − µ

J
σ (2.40)

where[I] = diag(Il, Ii, Is), J is the spherical slug’s inertia, µ is the non-negative viscous damping

coefficient (a function of the slug radius and fluid viscosity), σ is the angular velocity of the slug
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relative to the B frame, and M are the other external torques acting on the satellite. It should

be noted that σ̇ is the time derivative with respect to the B frame. Taking the time derivative of

the system’s total kinetic energy T and plugging in Eqs. 2.39 and 2.40, we find that Ṫ = −µσ2.

For non-zero µ, the system will dissipate energy whenever there is relative motion between the

spacecraft and spherical slug. Conversely, energy is conserved when the spacecraft and slug are

uniformly rotating with equal inertial angular velocities.

For this model, it is important to establish reasonable upper bounds for µ and J . Harvie et

al. provide angular velocity information for a GOES 10 spin up maneuver in which all non-principal

axis rotation was damped out in ∼28 hours [47]. So µ and J were varied to recreate this dissipation

scenario with the initial spin state and inertias provided by Harvie et al. [47]. For this analysis

is was assumed that complete damping corresponded to a norm off-axis angular velocity less than

0.1% of the angular velocity magnitude (i.e.
√
ω2

1 + ω2
3/|ω| < 1e-3). J = 18 kg·m2 approximately

matched this dissipation rate at a critical ratio of µ/J = 0.01 s−1. Figure 2.8 shows the damping

times for a grid of J and µ/J values, stopping simulations after 48 hr. GOES 10 had significant

liquid propellant remaining during the spin up maneuver, so this dissipation rate is likely much

larger than the current values since all five satellites were passivated of fuel at end of life. Therefore,

the above value of J was taken as the extreme upper bound for all modeling with µ/J ≈ 0.01 s−1

providing the fastest dissipation for a given J .
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Figure 2.8: GOES 10 damping time vs. spherical slug inertia J and ratio µ/J .

2.6 Gravity Gradient Torque

Defining R = RR̂ as the position vector from the earth center to the satellite, the gravity

gradient torque is well approximated by the following [98],

Lgg =
3µe
R3

[
˜̂
R][I]R̂ (2.41)

where µe is the gravitational parameter of the earth. We will assume that the satellite is in a

circular earth orbit, so µe/R
3 can be replaced by the orbit mean motion n2

g = µe/R
3. For satellites

in or below GEO, gravity gradient contributions from the sun and moon are at least five orders of

magnitude smaller than the earth gravity gradient, so they can be neglected.

In the inertially fixed satellite earth orbit frame G,

GR̂ = [− cos ν,− sin ν, 0]T (2.42)

where ν is the true anomaly of the satellite on its earth-centered orbit.

Rotation from the G to the earth centered inertial equatorial frame E (i.e. J2000) is given
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by,

EG = R3(−Ω)R1(−i) (2.43)

where Ω and i are the satellite earth orbit right ascension and inclination. Here we assume a circular

orbit so the argument of periapse ω is neglected.

Then rotation from the E frame to N frame is given by,

NE = R1(δe) (2.44)

where δe is earth’s obliquity with respect to the ecliptic (∼23.44◦).

2.7 Magnetic and Eddy Current Torques

There are two additional environmental perturbations that we must discuss for completeness.

The first are magnetic torques caused by interactions of magnetic materials in a spacecraft with

earth’s magnetic field. These torques are proportional to both a spacecraft’s particular dipole

moment (generated by permanent magnets and current loops) and earth’s magnetic field strength

which goes as 1/R3 [54]. Significant current loops generally require the spacecraft to be active and

powered and therefore will be neglected for studies of defunct satellites. For permanent magnets,

spacecraft designers can align them such that their net magnetic moment is as small as possible

to minimize unwanted magnetic fields and torques [54]. So torques due to permanent magnets

will be neglected as well. The second perturbation is the eddy current torque. For a conductive

body rotating in a magnetic field, the body will experience a time-varying magnetic field, inducing

currents that oppose the body’s rotation [54, 76]. These torques are purely dissipative and will

decrease the satellite’s angular velocity component that is perpendicular to the magnetic field

[54, 76]. Nevertheless, these torques are quite small at GEO since they are proportional to the

square of earth’s magnetic field strength (i.e proportional to 1/R6) [54, 76]. So eddy currents will

also be neglected.



Chapter 3

Full Dynamics

3.1 YORP only

We will now provide simulation results using the full dynamics model (Eqs. 2.4, 2.9, and 2.37)

to illustrate the complex, yet structured YORP-driven dynamical evolution. This will motivate our

development of the tumbling-averaged model. Again, we neglect the satellite’s earth orbit and

assume that the sun rotates in the inertial frame at earth’s mean motion n (∼0.986◦/day). The

GOES 8 shape model and mass parameters given above are utilized. We will discuss two simulation

runs, Run 1 and Run 2. Run 1 demonstrates uniform to tumbling transition, spin-orbit coupling,

and tumbling cycles. Run 2 demonstrates these behaviors in addition to tumbling period resonances.

Starting with Run 1, the satellite is placed in uniform rotation about +b̂2 with Pe = 2π/ωe = 20 min

and a pole direction with αo = 202◦ and βo = 77◦. The initial evolution is provided in Figure 3.1.

Starting in uniform rotation, Figure 3.1a shows that ωe decreases rapidly over the first four days as

the satellite spins down. During this initial spin down, Figure 3.1d shows that β decreases as the

angular momentum vector (i.e. pole) moves towards the sun-line. Once ωe reaches a sufficiently

small value, the satellite transitions to non-principal axis rotation, apparent in Figure 3.1b. Here,

Id decreases as the rotation moves from uniform rotation to SAM to LAM, crossing the separatrix

denoted by the horizontal dashed line. From approximately five days onward, ωe increases and Id

decreases as the satellite spins up further about +b̂3, the minimum inertia axis. During this time,

α and β increase as the pole begins precessing about the sun-line with α taking roughly five days

to complete each cycle.
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Figure 3.1: Run 1 - transition from uniform rotation to tumbling.

Proceeding further in time, Figure 3.2 shows evolution of the Run 1 solution over three years.

On this timescale, we see that the satellite continues in this long axis spin up state until around 160

days when β reaches 90◦. At this point, ωe decreases and Id increases as the satellite moves back

towards uniform rotation. This trend continues until 285 days when the satellite is finally rotating

slowly in near-uniform rotation with β approaching 180◦. Given the small ωe, β decreases rapidly

towards 0◦. During this time, ωe briefly increases, then decreases with Id ≈ Is. Once β nears 0◦,

the satellite again spins up about +b̂3 and enters a second, much longer, tumbling cycle.
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Figure 3.2: Run 1 - long-term dynamical evolution.

To better visualize the pole evolution during these tumbling cycles, Figure 3.3 shows the

evolution of H in the O frame over the first tumbling cycle in Run 1 (from 0 to 309 days in

Figure 3.2). The green section is the initial uniform spin down from 0 to 4 days as ωe decreases and

H moves towards the sun-line (Ẑ). The blue tumbling segment from 4 days to 305 days, shows H

precess about Ẑ while slowly moving in the −Ẑ direction. The red segment shows the return from

β near 180◦ to 0◦. The second tumbling cycle is not shown for clarity but follows this same general

behavior.
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Figure 3.3: Run 1 - H evolution in O frame over the first tumbling cycle (0 to 308 days). The gray

lines are projections of this evolution on the three orthogonal planes.

For Run 2, we illustrate tumbling period resonances. The satellite is again placed in uniform

rotation with Pe = 20 min but now with a pole given by αo = 202◦ and βo = 17◦. The resulting

long-term evolution is provided in Figure 3.4. As with Run 1, ωe decreases rapidly, the satellite

transitions to tumbling, and it proceeds through a tumbling cycle. This first cycle is followed by

a second, shorter cycle. After this tumbling cycle, the satellite again spins up about the minimum

inertia axis but this time is captured in a Pψ/Pφ̄ = 1 tumbling period resonance at roughly 290

days rather than entering another cycle. Pφ̄ is the average precession period of the satellite’s long

axis (b̂3) about H and Pψ is the rotation period about b̂3 itself. See Chapter 2 for the fundamental

period expressions. Given the nearly axisymmetric mass distribution of GOES 8 (Is ≈ Ii > Il), φ̇

is nearly constant and the average precession period Pφ̄ is essentially equal to the true precession

period. So at this 1:1 resonance, the satellite returns to the same inertial attitude at multiples of

Pφ̄ and Pψ. Figure 3.4 shows that ωe increases steadily while Pφ̄ and Pψ remain in lock step with

one another. Because the period ratio Pψ/Pφ̄ is only a function of Il, Ii, Is, and Id, constant Pψ/Pφ̄

requires that Id be constant as well. While in this resonance, β oscillates between 40◦ and 70◦ with
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a slight secular increase over time. Carefully examining Figure 3.4c, the satellite’s long axis spin up

is briefly perturbed when passing through the 1:1 period resonance near 11 days. Also, the period

ratio over the second tumbling cycle (from 260 to 285 days) oscillates around a 2:1 ratio. Tumbling

resonances were often observed in other simulation runs with 1:1 and 2:1 resonances being most

common. Other resonances were occasionally observed.
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Figure 3.4: Run 2 - long-term dynamical evolution.

3.2 YORP with Internal Energy Dissipation

Using the full YORP dynamics model with the spherical slug energy dissipation model

(Eqs. 2.39 and 2.40), long-term evolution for GOES 8 will now be explored. Figure 3.5 shows
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the evolution with an initial state α = 0◦, β = 15◦, Id/Is = 0.98 (SAM+), Pe = 2π/ωe = 120

min and spherical slug inertia J = 0.1 kg·m2. As for the YORP-only cases in Figures 3.2 and 3.4,

the satellite initially spins up tumbling and proceeds across the separatrix into LAM. But unlike

those YORP only cases above, the satellite is pushed back towards uniform rotation (increasing Id)

after ∼50 days due to internal energy dissipation. The satellite then proceeds through roughly five

perturbed tumbling cycles before transitioning to uniform rotation at ∼785 days and spinning up.
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Figure 3.5: GOES 8 YORP + energy dissipation (J = 0.1 kg·m2, µ/J = 1e-3 s−1)

Increasing the spherical slug inertia to J = 1.8 kg·m2, Figure 3.6 shows the resulting evolution

for the same initial spin state as for Figure 3.5. Again the satellite initially spins up tumbling and
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proceeds into LAM. This time it is pushed back towards uniform rotation even more rapidly.

Intriguingly, after some brief oscillation, Id/Is settles to a fixed value of ∼0.97 on the SAM side

of the separatrix. The remaining three osculating elements soon follow. The effective spin rate ωe

approaches a value of ∼0.37 deg/s while α and β converge on ∼99◦ and ∼76◦ respectively. This

indicates a tumbling state with constant fundamental tumbling periods and a pole direction fixed in

the sun-satellite rotating orbit frame. In the absence of YORP, dissipation would ultimately push

the satellite to uniform rotation. So this fixed tumbling state suggests a balance between YORP

pushing the satellite further into tumbling and dissipation pushing it towards uniform rotation.
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Figure 3.6: GOES 8 YORP + energy dissipation (J = 1.8 kg·m2, µ/J = 1e-3 s−1)
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3.3 YORP with Internal Energy Dissipation and Gravity Gradients

Full dynamical evolution will now be considered under the combined influences of YORP,

internal energy dissipation, and gravity gradient torques. Figure 3.7 shows the evolution with an

initial state α = 0◦, β = 15◦, Id/Is = 0.98 (SAM+), Pe = 2π/ωe = 120 min and spherical slug

inertia J = 0.9 kg·m2. The satellite is assumed to be in the GEO graveyard with R = 42575 km

and i = Ω = 0◦. Two cases are considered, 1) with just YORP and dissipation, and 2) accounting

for all three perturbations. In both cases, the satellite initially proceeds further into tumbling and

spins up. After some oscillation, case 1 approaches an equilibrium tumbling state rather quickly.

For case 2, Id also proceeds towards the separatrix where it undergoes significantly more oscillation.

While evolving near the separatrix, Figure 3.7c shows for case 2 that the satellite is temporarily

captured in the 5:1 SAM tumbling period resonance several times. Prior to 100 days, temporary

5:1 resonance capture is also observed for case 1 without gravity gradients, albeit to a lesser extent.

For case 2, there is significantly more variation in ωe and β as well. For case 2, after escaping the 5:1

tumbling resonance at ∼430 days, the satellite spins up quickly while remaining near the separatrix.

Overall, these cases suggest that gravity gradient torques significantly perturb convergence to the

equilibria observed for YORP with dissipation.
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Figure 3.7: GOES 8 evolution for YORP + energy dissipation with and without gravity gradients

(J = 0.9 kg·m2, µ/J = 1e-3 s−1)



Chapter 4

Averaged Dynamics Theory

Accounting for YORP, internal energy dissipation, and gravity gradients, the full dynamics

simulations presented in Chapter 3 revealed a number of intriguing behaviors including tumbling

cycles, spin-orbit coupling, tumbling resonances, and equilibrium tumbling states. Unfortunately

the full dynamics models do not explain the underlying mechanisms driving these behaviors. Fur-

thermore, these dynamics are computationally expensive to propagate. This expense increases

significantly with increasing satellite spin rate. As a result, these factors greatly limit the utility of

the full dynamics for broad, long-term studies. This motivates development of tumbling averaged

dynamical models which are the focus of the current chapter. These averaged models rely on the

key assumption that all disturbances (external torques and dissipation) are small perturbations on

the satellite’s torque-free rigid body rotation. Also, the satellite’s intrinsic rotation is assumed to be

much faster than its orbit around the sun. We start by outlining the osculating elements that will

form the foundation of the tumbling-averaged models. The averaging approaches for non-resonant

and resonant tumbling are then presented. With these approaches in place, the semi-analytical

and numerically averaged models for YORP, internal energy dissipation, and gravity gradients are

derived and validated against the full dynamics.

4.1 Osculating Elements

Given the sun-tracking precession observed in the full model simulations, we are interested

in developing our equations in the rotating O frame. Using the transport theorem [98], we find the
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time derivative of H with respect to the O frame,

Od

dt
(H) = −ωO/N ×H +M (4.1)

where M = Ḣ is the net external torque. Then, expressing H in the O frame, we have

HX

HY

HZ

 =

H cosα sinβ
H sinα sinβ
H cosβ

 (4.2)

where (HX , HY , HZ) are the O frame components. Taking the time derivative of the Eq. 4.2,

solving for α̇, β̇, and Ḣ, and substituting Eq. 4.1, we ultimately obtain,

α̇ =
My +Hn cosα cosβ

H sinβ
(4.3)

β̇ =
Mx +Hn sinα

H
(4.4)

Ḣ = Mz (4.5)

where (Mx, My, Mz) denote the torque components in the angular momentum frame. Note that α̇

is singular for β = 0◦ and 180◦ due to sinβ in the denominator of Eq. 4.3.

These elements are complemented by the dynamic moment of inertia Id = H2/2T . Taking

the time derivative of Id, we obtain,

İd =
2Id
H
M ·

(
I3×3 − Id[I]−1

)
Ĥ (4.6)

or equivalently,

İd = −2Id
H

[
Id − Ii
Ii

az1M1 +
Id − Is
Is

az2M2 +
Id − Il
Il

az3M3

]
(4.7)

where (M1, M2, M3) are the B frame torque components.
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4.2 Non-Resonant Averaging Approach

Following Cicalo and Scheeres [26], we aim to average Eqs. 4.3 - 4.7 over the satellite’s

tumbling motion. For this approach, we assume that the variables α, β, H and Id vary slowly

compared to the satellite’s intrinsic rotation. We also assume that all disturbances are relatively

small perturbations on the satellite’s torque-free motion. So we average over the torque-free motion

(i.e. with respect to φ, θ, and ψ) assuming constant values for the average parameters α, β, H and

Id.

Assuming the fundamental tumbling periods Pφ̄ and Pψ are non-resonant, the precession (φ)

and coupled nutation (θ) and rotation (ψ) motions are driven by different irrational frequencies.

Note that θ and ψ are directly driven by the linearly scaled time parameter τ (see Chapter 2). So

over a relatively short period of time, the satellite attitude will uniformly cover the (τ , φ) phase

space. Figure 4.1 provides a graphical example of this. So in this non-resonant case, averaging over

the torque-free rotation can be reduced to an area average over the (τ , φ) phase space.

(a) inertially-fixed direction in body frame (b) Attitude in (τ ,φ) space

Figure 4.1: Example of non-resonant rotation
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For the general variable F , this non-resonant average can be expressed mathematically as,

Ḟ =
1

4K

1

2π

∫ 4K

0

∫ 2π

0
Ḟ
(
φ, θ(τ), ψ(τ)

)
dφ dτ (4.8)

Averaging over τ involves the Jacobi elliptic functions cn τ , sn τ , and dn τ .

The tumbling-averaged equations of motion are then given by,

α̇ =
My +Hn cosα cosβ

H sinβ
(4.9)

β̇ =
Mx +Hn sinα

H
(4.10)

Ḣ = Mz (4.11)

İd = −2Id

H

[
Id − Ii
Ii

az1M1 +
Id − Is
Is

az2M2 +
Id − Il
Il

az3M3

]
(4.12)

The redundant averaged equation of motion for ωe is given by,

ω̇e =
1

Id

[
Mz −

H

Id
İd

]
(4.13)

We must evaluate the six averaged torque components Mx, My, Mz, az1M1, az2M2, and

az3M3. Note that at this stage, these are arbitrary torques.

4.3 Resonant Averaging Approach

When the fundamental tumbling period ratio satisfies the following equation where m and n

are positive, non-zero integers, the tumbling spin state is considered to be resonant,

Pψ
Pφ̄

=
m

n
(4.14)

In a resonant case, the satellite periodically returns to approximately the same inertial atti-

tude with period Pr = nPψ = mPφ̄. Again, this motion is approximately periodic because φ is not



46

generally periodic in time. An example of resonant motion is provided in Figure 4.2 for the LAM

Pψ
Pφ̄

= 1 resonance assuming Il/Is = 1/6 and Ii/Is = 1/3. Note in Figure 4.2a that the inertially

fixed point takes an approximately periodic trajectory through the body frame compared to the

quasi-periodic trajectory for the non-resonant case in Figure 4.1a. Figure 4.2b shows the trajectory

in (τ , φ) phase space where it is also approximately periodic.

(a) inertially fixed point in body-fixed frame (b) Attitude in (τ ,φ) space

Figure 4.2: Resonant motion with Pψ/Pφ̄ = 1 (LAM)

To study the resonant dynamics, we desire an angle γ that captures the relative offset between

the fast-varying Euler angles yet varies slowly in the vicinity of a given resonance and is constant

directly on the unperturbed resonant motion. With a slow variable, we can then average over the

Euler angles using a similar approach to the non-resonant case. One might assume this could be

achieved by taking γ as nφ−mψ. Unfortunately, even on a resonance, φ̇ and ψ̇ are not constant for

triaxial bodies, and as stated earlier, φ is also non-periodic in the triaxial case. Furthermore, for

SAM states in the long axis convention, ψ librates rather than circulates. So for any triaxial case,

γ would fluctuate on the resonance using this definition. Taking a different approach, we define ϕ̇
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as the average rate of change of φ. And instead of ψ, we use the constant-rate angle τr. We then

have,

ϕ̇ =
2π

Pφ̄
τ̇r =

2π

Pψ
(4.15)

where τr = 2πτ/4K. So τr is essentially τ converted to angle space. With the combined θ and ψ

motion periodic on ∆t = Pψ and ∆τ = 4K, it is therefore periodic on ∆τr = 2π as well.

Rearranging Eq. 4.14 and modifying it to accounting for the relative phase angle γ, then

substituting Eq. 4.15, we have,

γ̇ = nϕ̇−mτ̇r (4.16)

Since Pφ̄ and Pψ are constants of motion for torque-free rigid body rotation, so is γ̇. Also, on a

given resonance, γ̇ is zero. Just off of that resonance, Eq. 4.14 is no longer satisfied for the given

m and n, so γ̇ will be non-zero.

Taking the time derivative of Eq. 4.16, we obtain an equation for how γ will evolve in the

presence of internal/external perturbations,

γ̈ = nϕ̈−mτ̈r (4.17)

Expressions for ϕ̈ and τ̈r are provided in Appendix C. Note that Eq. 4.17 depends on the the

external torque M through İd and Ḣ. Following through the expressions in Appendix C, we also

find that H cancels in ϕ̈, τ̈r, and İd. So γ̈ is independent of H (i.e. the satellite rotation rate).

Since γ evolves slowly compared to the satellite’s intrinsic rotation in the vicinity of a given

resonance, we can apply the same assumptions as for the non-resonant case. Taking constant

“average” values for α, β, H, γ, and Id (m,n) we numerically average Eqs. 4.3 - 4.6, and 4.17

over one cycle of the torque-free resonant motion defined by the Euler angles φ(t), θ(t), and ψ(t).

Analytical averaging for the resonant case would require evaluating a number of non-trivial integrals

involving various products of cos, sin, cn, sn, and dn. These required integrals would change for

each resonance. So only numerically averaged resonant dynamics are developed here. The Id value
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corresponding to the given period ratio m/n is calculated using the bisection method with Eqs. 2.34

and 2.35 for LAMs and SAMs respectively. The duration of this resonance cycle is ∆t = Pr where

Pr is the resonance period Pr = nPψ = mPφ̄. Note that the averaging kernel here is distinct from

the non-resonant case where we instead took an area average over the entire (τ , φ) phase space.

For consistency with the average sense of ϕ, one would like ∆φ(∆t = Pr) = ϕ̇Pr = 2πm. This

is very nearly satisfied for roughly prolate bodies which includes many box-wing satellites, rocket

bodies, and the GOES 8-12 satellites. Interestingly, for triaxial bodies in resonances satisfying

Pψ/Pφ̄ = 2/i where i = [1, 2, 3, ...], ∆φ(∆t) = ϕ̇∆t = 2πm for any ∆t = Pr. This can be shown

using the equations for φ in Chapter 2. Otherwise, φ(t) is only periodic for triaxial bodies on

average. Nevertheless, we neglect this complication and simply assume the cycle over which the

average is taken has ∆φ(Pr) = 2πm. So for the non-averaged equation given arbitrarily by Ḟ , the

resonance-averaged equation Ḟ is,

Ḟ
(
α, β,H, γ

)
=

1

Pr

∫ Pr

0
Ḟ
(
α, β,H, Id, φ(t), θ(t), ψ(t)

)
dt (4.18)

Following this notation, the fundamental resonance-averaged equations of motion for the

system (α, β, H, γ) are given by,

α̇ =
My +Hn cosα cosβ

H sinβ
(4.19)

β̇ =
Mx +Hn sinα

H
(4.20)

Ḣ = M z (4.21)

γ̈ = nϕ̈−mτ̈ r (4.22)

where γ̈ in turn depends on İd,

İd =
2Id

H
M ·

(
I3×3 − Id[I]−1

)
Ĥ (4.23)
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Since we are averaging in the vicinity of a particular resonance, Id is held constant.

The resonant motion is best propagated with the analytical torque-free solutions for φ(t),

θ(t), and ψ(t) which do not suffer from numerical integration errors (see Chapter 2 for these

solutions). To propagate the motion, we must determine the initial values for τr and φ, given by

τro and φo. Our approach is to assume γo = nφo −mτro , select a value for τro , and solve for the

corresponding φo. For consistency with the averaged sense of our dynamics, we would like the

unperturbed resonant trajectory over which we average to satisfy γ(t) = nφ(t)−mτr(t) ≈ γ = γo.

Since φ(t) depends non-linearly on τro , Figure 4.3 shows that the resonant trajectories will differ

slightly for different values of τro . Taking τro as any multiple of π/2 yields one trajectory in (τr,

φ) space that tracks γ = γo on average. Also, trajectories for all possible τro values are equally

spread about this ”center” trajectory, with those for τro equal to odd multiples of π/4 located

farthest away. With this in mind, we simply take τro = 0, reasonably assuming that the averaged

equation values for this ”center” trajectory approximately equal the collective mean of the averaged

equation values taken over all trajectories (i.e. all possible τro values). To clearly illustrate the

trajectory differences in Figure 4.3, we selected roughly oblate principal inertias (i.e., Il ≈ Ii < Is).

Using the long axis convention for bodies that are progressively more prolate (i.e., Il < Ii ≈ Is),

dispersion of trajectories around γ = γo becomes smaller and smaller and the ”center” trajectory

values converge on the collective mean values. For the GOES satellites, the four lines in Figure 4.3

are nearly coincident.
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Figure 4.3: Pψ/Pφ̄ = 1 trajectories for different τro values with γo = 0
(
Il/Is = 1/6, Ii/Is = 1/3

)

So, in summary we have,

τro = 0 φo = γ/n (4.24)

The range of γ is [0, 2πn], but one can consider just the sub-interval γ = [0, 2π] because the

trajectories for φo ≥ 2π/n overlap those for 0 ≤ φo < 2π/n.

After averaging over the resonant motion, γ̈, Mx, My, and Mz only depend on β and γ. So

for a given resonance, 2-D (β, γ) lookup tables can be generated. When numerically propagating

Eqs. 4.9 - 4.22, one can simply interpolate between lookup table points. It is valuable to note that

the resonance-averaged equations of motion are generalized for any small perturbing torque.

4.4 Non-Resonant Averaged YORP

The non-resonant, semi-analytical tumbling-averaged YORP model will now be developed.

To obtain analytical solutions for Mx, My, Mz, az1M1, az2M2, and az3M3 in Eqs. 4.9 - 4.12, we
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follow Ref. [26] and approximate max(0, û · n̂i) in Eq. 2.36 using its second order Fourier series

expansion,

max(0, û · n̂i) ≈ gi =
1

3π
+

1

2
(û · n̂i) +

4

3π
(û · n̂i)2 (4.25)

where, given our frame definitions, ux = − sinβ, uy = 0, and uz = cosβ. So û · n̂ = uxnx + uznz.

This illumination function approximation is shown graphically in Figure 4.4.

-1 -0.5 0 0.5 1
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Figure 4.4: 2nd Order Fourier Series Illumination Function Approximation

With this approximation,


Mx

My

Mz

 = −PSRP
nf∑
i=1

[
csi(û · n̂i)gidi + caigiri × û+ cdigidi

]
Ai (4.26)

where di = ri × n̂i and the constants csi = 2ρisi and cai = (1− ρisi).

From Eqs. 2.5 and 2.6, we see that all H frame x and y vector components will contain

either cosφ or sinφ. So products with odd combined powers of x and y will average to zero over

φ. Expanding Eq. 4.26, including only non-zero terms, and dropping the ith facet indices from the

averaged products for brevity, Mx, My, and Mz are then given by,
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Mx = −PSRP
nf∑
i=1

[
ux

(1

2
cdi +

1

3π
csi

)
dxnx + uxuz

(
csi +

8

3π
cdi

)
dxnxnz +

4

3π
csiu

3
xdxn

3
x

+
4

π
csiuxu

2
zdxnxn

2
z +

1

2
caiuxuzrynx +

8

3π
caiuxu

2
zrynxnz

]
Ai

(4.27)

My = −PSRP
nf∑
i=1

[
ux

(1

2
cdi +

1

3π
csi

)
dynx + uxuz

(
csi +

8

3π
cdi

)
dynxnz +

4

3π
csiu

3
xdyn

3
x

+
4

π
csiuxu

2
zdynxn

2
z +

1

3π
caiuxrz −

1

2
caiuxuzrxnx +

1

2
caiuxuzrznz

− 8

3π
caiuxu

2
zrxnxnz +

4

3π
caiu

3
xrzn

2
x +

4

3π
caiuxu

2
zrzn

2
z

]
Ai

(4.28)

Mz = −PSRP
nf∑
i=1

[
1

3π
cdidz + uz

(1

2
cdi +

1

3π
csi

)
dznz +

(1

2
csi +

4

3π
cdi

)(
u2
xdzn

2
x + u2

zdzn
2
z

)
+

4

π
csiu

2
xuzdzn

2
xnz +

4

3π
csiu

3
zdzn

3
z −

1

2
caiu

2
xrynx −

8

3π
caiu

2
xuzrynxnz

]
Ai

(4.29)

Solutions for the various averaged quantities in Eqs. 4.27, 4.28, and 4.29 are provided in Appendix A.

Note that these quantities are implicitly dependent on Id.

The terms az1M1, az2M2, and az3M3 are given by,

az∗M∗ = −PSRP
nf∑
i=1

[
1

3π
cdiaz∗d∗ + uz

(1

2
cdi +

1

3π
csi

)
az∗d∗nz

+
(1

2
csi +

4

3π
cdi

)(
u2
xaz∗d∗n

2
x + u2

zaz∗d∗n
2
z

)
+

4

π
csiu

2
xuzaz∗d∗n

2
xnz +

4

3π
csiu

3
zaz∗d∗n

3
z + caigaz∗δ∗

]
Ai

(4.30)

where ∗ = 1, 2, 3. Also, δ1 = (r2u3− r3u2), δ2 = (r3u1− r1u3), and δ3 = (r1u2− r2u1). To calculate

az∗d∗, az∗d∗nz, etc., we note that dz = az1d1 + az2d2 + az3d3. From the averaged Appendix A

equations that include dz (Eqs. A.16, A.19, A.22, A.23, A.28, A.29 for LAMs and Eqs. A.33, A.36,

A.39, A.40, A.45, A.46 for SAMs), we retain just the terms containing d∗. Solutions for gaz∗δ∗

are provided separately in Appendix A. Overall, Eqs. 4.27 - 4.30 depend on Id and β but are

independent of α and H.
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With the semi-analytical averaged model developed, the analytically averaged components

can now be validated against the numerically averaged modle. For the numerically averaged model,

Mx, My, Mz, az1M1, az2M2, and az3M3 are obtained by numerically averaging over a uniformly

spaced (τ ,φ) grid for each Id and β combination. Here, the full Eq. 2.36 is used without assuming

the 2nd order Fourier series illumination function approximation.

Figure 4.5 shows the average torques in the H frame for the analytically and numerically

averaged models. Both SAM and LAM states are tested. We see that in all cases, the models

only differ quantitatively, sharing the same general structure. For the SAM cases, we see that Mz

is negative for β < 90◦ and positive for β > 90◦. So the satellite will spin down when β < 90◦.

Also, Mx ≤ 0 across all β, so H will tend to be pushed towards the sun line. For the LAM cases

in Figure 4.5, My has the largest magnitude of the three torque components. My drives α̇ and

therefore precession of H around the sun line. The precession rate α̇ varies significantly with β.

Also, Mx ≥ 0 for all β, pushing H away from the sun line. Mz changes sign at β = 90◦, so the

satellite will first spin up and then down as β increases. Continuing the comparison, Figure 4.6

shows İd for the analytically and numerically averaged models assuming an arbitrary ωe = 2π rad/s.

Again, they differ only quantitatively. We see that for both the SAM and LAM states the satellite

will be pushed towards more excited tumbling (smaller Id) for β < 90◦ and towards uniform rotation

(larger Id) for β > 90◦. İd solutions for LAM/SAM − were virtually indistinguishable from the +

solutions and have been excluded from Figure 4.6 for brevity. Overall, the +/− solutions for both

LAMs and SAMs differ insignificantly for all components except My, where the solution is mirrored

around β = 90◦ and has an opposite sign. So for the + and − solutions, α̇ will have opposite signs

and H will precess about the sun line in opposite directions. This symmetric structure is due to

the particular satellite geometry. For a fixed H, the +/− LAM/SAM spin states essentially flip

the satellite model 180◦ while maintaining the same inertial precession direction. As a result, some

averaged torque contributions from the GOES solar array will change for +/− LAM/SAM due to

different reflective properties for the front and back array faces. On the other hand, contributions

from the axisymmetric solar sail will not change.
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Figure 4.5: Comparison of GOES 8 analytically and numerically averaged torques.

We will now compare the dynamical evolution for the full, numerically averaged, and analyt-

ically averaged models by numerically integrating Eqs. 4.9 - 4.12. For all three models, the same

initial spin state is prescribed with αo = 95◦, βo = 50◦, Id/Is = 0.62 (SAM+), 2π/ωe = 40 min.

For the numerically averaged model, 2-D Mx, My, Mz, and İd lookup tables are generated vs. β

and Id (180×150 point grid). Using MATLAB’s ode113 numerical integrator with 1e-12 absolute

and relative tolerances for the models, they were propagated for 3 years. The resulting evolution
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Figure 4.6: Comparison of analytically and numerically averaged İd for GOES 8

is provided in Figure 4.7. Overall, both averaged models follow the full model evolution well.

Given the illumination function approximation for the analytically averaged model, it does start

to diverge from the numerically averaged model. Also, the full model is slightly perturbed while

passing through the Pψ/Pφ̄ = 1:1 resonance at ∼670 days (just prior to the brief return to uniform

rotation). This resonance perturbation is most clearly observed in Figure 4.7a. The non-resonant

averaged models do not account for these resonances. So this provides some of the discrepancy

between the full and averaged models towards the end of the simulation. The computation times

for the averaged models were both ∼4 seconds, compared to 70 minutes for the full model. This

corresponds to a roughly three order of magnitude decrease in computation time.
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Figure 4.7: Non-resonant analytically averaged model validation (αo = 95◦, βo = 50◦, Id/Is = 0.62,

2π/ωe = 40 min)

4.5 Resonance Averaged YORP

With the resonance-averaged model outlined, we will now validate it against the full dynamics

model in the vicinity of the Pψ/Pφ̄ = 1 LAM resonance observed in full dynamics simulations. For

the resonance-averaged model, lookup tables are generated for γ̈, Mx, My, and Mz over the (γ, β)

phase space with 1◦× 1◦ grid spacing. Figure 4.8 shows the full and averaged model evolution over
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30 days for the following initial conditions: αo = 0◦, βo = 45◦, γo = 300◦, and Pe = 2π/ωe = 20

min (ωe = 0.3 deg/s). For the full model results in Figure 4.8, γ is calculated directly from

γ = nφ−mτr. The angle φ is obtained by equating Eq. 2.5 expressed in terms of quaternions and

Euler angles. On the other hand, τr is obtained from the instantaneous angular velocity ω using

the approach outlined by Scheeres [101]. Consulting Figure 4.8, we see that the averaged model

evolution closely follows the full dynamics, particularly in terms of ωe and β. Nevertheless, given

the averaging assumptions, most prominently that the solar torques being are a small perturbation

on the torque-free rotation and only considering the τro = 0 trajectory when averaging, the models

do begin to separate over time with α and γ diverging most rapidly. The simulation run time for

the full dynamics model was ∼27 s compared to ∼1 s for resonance-averaged model. For parity,

both models were propagated with MATLAB’s ode113 numerical integrator using 1e-10 absolute

and relative tolerances.

For more comprehensive validation, we now compare the aggregate evolution of both models

over the (β, γ) phase space. In non-resonant motion, γ circulates rapidly. So upon encountering a

resonance, γ can be thought of as random. To succinctly compare the full and resonance-averaged

models, we investigate the probability of capture for a given β over all possible γ values. The

satellite essentially escapes a resonance when γ changes from libration to circulation. Following

this approach, we define escape when |γ(t) − γo| > 6nπ (i.e., 3 circulation cycles). A cutoff of 3

cycles is used rather than 1 or 2 to ensure that escape has occurred. To determine escape for the

full model, the full dynamics are propagated alongside Eq. 4.17 using the expressions for ϕ̈ and τ̈r

provided in Appendix B with Ḣ and İd obtained from Eqs. 4.5 and 4.6.
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Figure 4.8: Comparison of full and resonance-averaged model evolution for GOES 8 (Pψ/Pφ̄ = 1

LAM+)

Again considering the Pψ/Pφ̄ = 1 resonance, we propagate the full and resonance-averaged

dynamics models for 10 days, sampling γo and βo on a 2◦ × 2◦ grid assuming the same αo and

Pe as for the run above. The mean run time for the ∼16000 runs was ∼19 s/run for the full

model compared to ∼1 s/run for the averaged model. Figure 4.9a shows the (βo, γo) pairs where

the satellite was either captured for ≥ 10 days or escaped prior to this. The full and averaged

model results agree well, with no capture for β near 0◦ or 180◦ and for the horizontal strip around

γ ≈ 160◦. For the averaged model, the capture area is somewhat larger than for the full model.
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Taking the mean over all γo values for each βo, Figure 4.9b summarizes the capture probabilities for

both models. Here, the lower capture probabilities for the full model are clear to see, particularly

around βo = 90◦. The increased escape rate for the full model can be attributed to short period

variations in the dynamics which are often de-stabilizing. These variations are removed through

averaging and are therefore not present in the averaged model, resulting in higher capture rates.

(a) capture contours (white denotes escape)
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Figure 4.9: Full and averaged model probability of capture in Pψ/Pφ̄ = 1 (LAM+) resonance for

≥ 10 days

For further validation of the averaged model, we compare the spin states after 10 days or at

the time of escape, whichever occurred first. Figure 4.10 shows the distributions of the final ωe

and ∆β for both models. The distributions for the full and averaged models are very similar. At

extreme βo values, resonant escape occurs rapidly and there is little time for the states to change.

So ωe and β differ insignificantly from their initial values. For intermediate βo values on the other

hand, there are significant spin state changes over this ≤10 day span. For the initial ωe of 0.3 deg/s,

we see more than a 50% decrease for some cases. Similarly, β changes by as much as ±45◦. These
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results illustrate that temporary resonance capture may yield significant spin state evolution over

a relatively short period of time.
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Figure 4.10: Full and average model spin state distributions after 10 days or at time of escape,

whichever occurred first. (Pψ/Pφ̄ = 1 LAM+)
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4.6 Non-Resonant Gravity Gradient Torque

The aim of this section is to analytically average the gravity gradient torque given by Eq. 2.41.

Gravity gradient torques did not significantly affect resonant YORP-driven dynamics in GOES full

model simulations. So only the non-resonant tumbling case will be considered.

Rotation from the G to H frame is given by the following,

HG = HO

0 0 1
0 −1 0
1 0 0

R3(−λ)R1(−δ) =

bx1 bx2 bx3

by1 by2 by3

bz1 bz2 bz3

 (4.31)

where λ and δ are the right ascension and inclination of the G frame with respect to the O frame.

These angles are illustrated in Figure 4.11, where ĤG is the satellite’s earth orbit angular momen-

tum direction.

Figure 4.11: Orientation of the satellite’s GEO orbit in the O frame

The angles λ and δ can be related to the traditional right ascension Ω and inclination i of

the satellite’s earth orbit. With the satellite’s GEO orbital angular momentum direction in the G



62

frame given by,

GĤG = [0, 0, 1]T (4.32)

we have,

NĤG = NEEGGĤG (4.33)

Then, δ is given by,

cos δ = n̂3 · NĤG = cos δe cos i+ sin δe cos Ω sin i (4.34)

Similarly, the ascending node a = [a1, a2, a3]T of the satellite GEO orbit in the N frame is,

a = n̂3 × NĤG (4.35)

Assuming Ẑ and n̂1 are initially aligned (i.e. the sun is along the equinox), the initial right ascension

λo is,

λo = atan2(a2, a1) (4.36)

where a1 = cos Ω cos δe sin i− cos i sin δe and a2 = sin Ω sin i.

Since the O frame is rotating, λ(t) is time-varying,

λ(t) = −nt+ λo (4.37)

Expressing the earth-satellite unit vector R̂ in the H frame, we simply have,

HR̂ = HG GR̂ (4.38)

Similarly for [I],

H[I] = HB B[I]BH (4.39)

We will make the strong assumption that the gravity gradient torque is a small perturbation

on the satellite’s torque-free motion. We will further assume that the Euler angles φ, θ, ψ, and the

GEO orbit true anomaly ν vary much faster than α, β, H, and Id. Finally, assuming that the GEO
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orbit period and two fundamental tumbling periods are all non-resonant, we average the gravity

gradient torque (Eq. 2.41) over these three independent motions,

HLgg =

LxLy
Lz

 = 3n2
g

1

2π

1

4K

1

2π

∫ 2π

0

∫ 4K

0

∫ 2π

0

H[
˜̂
R]H[I]HR̂ dφdτdν (4.40)

and since HR̂ is independent of φ and τ ,

HLgg =
3n2

g

2π

∫ 2π

0

H[
˜̂
R]

(
1

4K

1

2π

∫ 4K

0

∫ 2π

0

H[I]dφdτ

)
HR̂dν (4.41)

or more compactly,

HLgg =
3n2

g

2π

∫ 2π

0

H[
˜̂
R]H[I]HR̂dν (4.42)

where the average inertia tensor,

H[I] =
1

4K

1

2π

∫ 4K

0

∫ 2π

0

H[I]dφdτ = diag(Ix, Iy, Iz) (4.43)

The average inertias are simply given by,

Ix = Iy =
1

2

[
Ii

(
1− az12

)
+ Is

(
1− az22

)
+ Il

(
1− az32

)]
(4.44)

and

Iz = Iiaz12 + Isaz22 + Ilaz32 (4.45)

Finally, averaging Eq. 4.42 over the GEO orbit true anomaly ν, we find,

Lx =
3n2

g

2

(
Iz − Iy

)
(by1bz1 + by2bz2) (4.46)

Ly = −
3n2

g

2

(
Iz − Ix

)
(bx1bz1 + bx2bz2) (4.47)

Lz = −
3n2

g

2

(
Ix − Iy

)
(bx1by1 + bx2by2) = 0 (4.48)
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Since gravity gradient torques are conservative, their net effect on H over the averaged orbit

and rotation motions should be zero. So Lz = 0 in Eq. 4.48 is expected. Similarly, excluding the

intermediate calculations for brevity, Ṫ = Lgg · ω averaged over these motions is also zero.

Figure 4.12 shows a validation case for the non-resonant averaged gravity gradient torques

against the full dynamics. Both models are started with Id = 3000 kg·m2, Pe = 2π/ωe = 20 min

assuming a circular earth orbit with R = 42575 km. The initial G frame pole latitude and longitude

are set to 45◦ and 180◦ respectively and the averaged model is set to the corresponding average

values over the full model short period oscillation (44.858◦ for latitude). Figure 4.12 shows that

the averaged model closely follows the full model. Note that the G frame pole longitude steadily

decreases while its latitude remains constant on average. In general, the gravity gradient torque

will cause Ĥ to precess about ĤG. For prograde rotation (Ĥ · ĤG > 0) precession will be in the

clockwise direction around ĤG. For retrograde rotation (Ĥ · ĤG < 0) precession will instead be

counter-clockwise.
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Figure 4.12: GOES 8 Tumbling Averaged Gravity Gradient Validation (Id = 3000 kg·m2, Pe =

2π/ωe = 20 min)
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4.7 Averaged Internal Energy Dissipation

An analytically averaged internal energy dissipation model will now be developed from the

full spherical slug model given by Eqs. 2.39 and 2.40. Figure 4.13 shows a simulation of the full

spherical slug model for GOES 8. The initial simulation parameters are ω = [0, 0.971, 0.985]T

deg/s (corresponding to Id = 3000 kg·m2 and Pe = 5 min) and σ = [0, 0, 0]T with dissipation

parameters J = 10 kg·m2, and µ/J = 1e-4 s−1. Figure 4.13a shows that σ converges to steady

state behavior within 100 long axis rotation periods. This convergence was observed for a wide

array of initial spin states with 1e-5 s−1 < µ/J < 1 s−1 . Larger µ/J values generally resulted in

faster convergence to steady state. Figure 4.13b shows that for the given dissipation parameters,

σ ≈ [A]ω in steady state where [A] = diag(a, b, c) and a, b, c are specific constants that depend

on Id, ωe, [I], µ, and J . For the GOES satellites with Pe on the order of 5-20 min, σ ≈ [A]ω in

steady state was observed for µ/J < ∼1e-3 s−1. For larger µ/J values, the steady state σ moved

progressively out of phase with ω while retaining the same shape. Also, ω in Figure 4.13b closely

follows the torque-free solutions. This was observed for a wide range of spin states and dissipation

parameters because, in these cases, µσ is much smaller in magnitude than [ω̃][I]ω in Eq. 2.39.
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Figure 4.13: GOES 8 steady state σ convergence
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To facilitate development of the averaged model, µ/J will be limited to smaller values where

σ ≈ [A]ω. With the initial transient σ motion damping out, it will reasonably be assumed that σ

always tracks the instantaneous steady state solution which slowly changes as the system evolves

due to dissipation and external torques. Apart from the trivial ω = 0 case, the only time σ ≈ [A]ω

is consistent with the full dynamics is at the steady state solution. So, assuming σ = [A]ω, we aim

to find [A] that is most consistent with the full dynamics given by Eqs. 2.39 and 2.40. With these

assumptions,

σ̇ = [A]ω̇ (4.49)

We would like to investigate the difference between the left and right hand sides of Eq. 4.49,

D = σ̇ − [A]ω̇ (4.50)

Assuming torque-free dynamics for the spacecraft (i.e. ω̇ = −[I]−1[ω̃][I]ω) and substituting

Eq. 2.40 with σ = [A]ω,

D = ([A] + I)[I]−1[ω̃][I]ω −
(

[ω̃] +
µ

J
I
)

[A]ω (4.51)

we aim to find [A] that minimizes D2, where D2 is D2 = D · D averaged over one ω cycle in

the body frame (i.e., τ = [0, 4K]). We can substitute the torque-free solutions for ω (provided in

Chapter 2) into Eq. 4.51 and analytically average over τ = [0, 4K]. Then taking the derivatives of

D2 with respect to (a, b, c), we find equations with the following form,

dD2

da
= t11a+ t12b+ t13c+ t14 = 0 (4.52)

dD2

db
= t21a+ t22b+ t23c+ t24 = 0 (4.53)

dD2

dc
= t31a+ t32b+ t33c+ +t34 = 0 (4.54)

where the coefficients tij are functions of Il, Ii, Is, Id, ωe, µ, and J (see Appendix C). Solving the

linear system of equations yields (a, b, c) approximating the steady state σ solution.



67

The averaged steady state energy dissipation rate is then,

Ṫ = −µσ2 = −µωT [A][A]ω = −µ
(
a2ω2

1 + b2ω2
2 + c2ω2

3

)
(4.55)

with the corresponding İd (denoted as hd) given by,

hd = −2Ṫ

ω2
e

(4.56)

Note here that Ṫ ≤ 0, so hd ≥ 0. Therefore dissipation can only cause Id to increase.

Figure 4.14a provides an example contour of the averaged spherical slug dissipation rate hd

for GOES 8 with J = 1 kg·m2 and µ/J = 1e-3 s−1. Figure 4.14b compares the averaged results

to the full model steady state dissipation rate. For the full model, MATLAB’s fmincon is used to

find [A] that best satisfies σ(t) = [A]ω(t) over Pψ. For the majority of the (ωe, Id) space, absolute

relative errors for the averaged model are at most several percent and much lower in some cases.

Only for slow rotation near the minimum inertia axis do the errors rise to 10’s of percent.
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Figure 4.14: GOES 8 averaged spherical slug dissipation model (J = 1 kg·m2, µ/J = 1e-3 s−1)
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4.8 Non-Resonant YORP + Dissipation

To validate the averaged YORP + dissipation model, Figure 4.15 shows the full and averaged

model evolution over two years for the initial state Id/Is = 0.98 (SAM-), Pe = 2π/ωe = 120 min,

α = 0◦, β = 15◦, J = 1.8 kg·m2, and µ/J = 1e-3 s−1. The numerically averaged YORP model is

used. In both cases the satellite initially spins up about the long axis into LAM. Dissipation then

pushes the satellite back across the separatrix into SAM where all four state variables approach

constant values. Overall, the averaged model agrees well with the full model, approaching a very

similar asymptotic spin state. Using 1e-12 absolute and relative tolerances, the full model and

averaged models required 73 min and 19 s for propagation respectively.
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Figure 4.15: GOES 8 averaged YORP and dissipation validation

4.9 Non-Resonant YORP + Dissipation + Gravity Gradients

Figure 4.16 compares full and non-resonant numerically averaged models accounting for

YORP, dissipation, and gravity gradients. The initial state is given by Id = 3500 kg·m2, Pe =

2π/ωe = 120 min, α = 0◦, β = 15◦, J = 0.1 kg·m2, µ/J = 1e-3 s−1. Propagation times were 85 min

for the full model and 4 s for the averaged model. The average model closely follows the full model

for most of the simulation, particularly over the first two tumbling cycles covering roughly 500

days. Figure 4.16c shows that the full model is perturbed by 1:1 and 2:1 resonances throughout the
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simulation, particularly around 550 days. The averaged model does not account for these, result-

ing in divergence towards the end of the simulation. Note that the full model escapes to uniform

rotation. Propagating the averaged model further in time (not shown), it temporarily escapes to

uniform rotation at 3.6 years, reaching a peak ωe = 3.8 deg/s before returning to tumbling.
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Figure 4.16: GOES 8 full and average YORP + dissipation + gravity gradient comparison (J =

0.1 kg·m2, µ/J = 1e-3 s−1)



Chapter 5

Averaged Dynamics

5.1 Uniform Rotation YORP

We start our exploration of the averaged dynamics for the GOES satellites with uniform ro-

tation YORP. The tumbling-averaged model essentially extends the uniform spin-averaged model

explored by Scheeres [100] and Albuja et al. [1, 2] to general tumbling motion. Figure 2.6 illustrates

that the fundamental periods are generally incommensurate for uniform rotation. So in the frame-

work of the tumbling-averaged models, uniform rotation is technically non-resonant. Nevertheless,

in major axis uniform rotation, the amplitude of the motion associated with Pψ is zero since θ =

90◦ and ψ = 0◦ or 180◦. Figure 5.1 shows the numerically averaged ω̇e = Mz/Is for the GOES 8-12

satellites in uniform rotation about the maximum inertia axis. Here ω̇e is directly comparable to

ω̇z for the Scheeres uniform spin-averaged model where the body frame solar latitude δs = 90◦ − β

[100]. For the GOES satellites, ω̇e changes sign at roughly 90◦. For GOES 8, 9, 10, and 12, ωe will

increase for β < ∼90◦ and decrease for β > ∼90◦. For GOES 11, the behavior is reversed. Given

their different end of life solar array and trim tab angles (see Table 2.1) and slightly different mass

properties, the ω̇e curves differ for each satellite. Of the five, GOES 10 has the smallest overall ω̇e.
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Figure 5.1: ω̇e = Mz/Is for the GOES 8-12 satellites in major axis uniform rotation about +b̂2

To further illustrate the differences in ω̇e, the numerically averaged uniform spin rate evolu-

tion for GOES 8 and 10 are provided in Figure 5.2. Starting with an initial spin period Pe = 2π/ωe =

30 s, 200 runs are conducted with uniformly distributed initial pole directions. Here we assume an

initial long axis rotation angle amplitude ψmax = 0.01◦ which corresponds to Id/Is ≈ 1−10−9. This

slight negative offset from uniform rotation prevents Id from exceeding Is during propagation due

to truncation error. For GOES 8, ωe evolution varies significantly with some runs spinning down

rapidly towards zero while others double or nearly triple the initial spin rate within three years.

For GOES 10 on the other hand, the spin rate variation is much lower with no runs reaching zero

spin rate after 3 years. Some runs do exhibit secular decrease in spin rate, suggesting eventual spin

down to zero for these runs.



73

0 0.5 1 1.5 2 2.5 3

Time (years)

0

5

10

15

20

25

30

35
e
 (

d
e
g
/s

)

(a) GOES 8

0 0.5 1 1.5 2 2.5 3

Time (years)

0

5

10

15

20

25

30

35

e
 (

d
e
g
/s

)

(b) GOES 10

Figure 5.2: Uniform spin rate evolution (Pe = 30 s, Id/Is ≈ 1− 10−9, 200 runs each).

5.2 Non-Resonant YORP

5.2.1 Uniform Rotation to Tumbling

Being much faster than the full dynamics model, the tumbling-averaged model readily allows

for exploration of the transition from uniform rotation to tumbling. Figure 5.3 shows the six year

numerically averaged model evolution for GOES 8 starting in nearly uniform major axis rotation.

Here we again assume an initial Pe = 30 s and Id/Is ≈ 1 − 10−9. For the first 3.5 years, the

satellite remains in uniform rotation and exhibits a roughly one year periodicity in ωe. This is due

to Mz and ω̇e changing sign at β = 90◦ (see Figure 4.5a and Figure 5.4c) as H remains nearly

inertially fixed due to the fast spin rate. Defunct satellites including Telstar 401 and retired Glonass

satellites exhibit similar yearly spin rate oscillations [34, 86]. During this initial 3.5 year period,

there is also a secular decrease in ωe. After roughly 3.5 years, the satellite reaches a maximum Pe

of approximately 40 min with β approaching 0◦. At this point, the satellite loses sufficient spin

stability and transitions to tumbling. It then spins up about the long axis and progresses into a

tumbling cycle with H precessing around the sun line.



74

0 1 2 3 4 5 6

Time (years)

0

10

20

30

e
 (
°
/s

)

(a) Effective Spin Rate

0 1 2 3 4 5 6

Time (years)

0.4

0.6

0.8

1

(b) Scaled Dynamic Moment of Inertia

0 1 2 3 4 5 6

Time (years)

0°

90°

180°

270°

360°

(c) Clocking Angle

0 1 2 3 4 5 6

Time (years)

0°

45°

90°

135°

180°

(d) Angle between H and û

Figure 5.3: Averaged model transition from uniform rotation to tumbling for GOES 8 (initial

conditions: α = 90◦, β = 90◦, Pe = 30 s, Id/Is ≈ 1− 10−9).

5.2.2 Tumbling Cycles

We will now leverage the averaged model to better understand the observed tumbling cycles.

Figure 5.4 shows the signs of İd, β̇, and ω̇e computed over Id and β (the sign contours for Ḣ are

nearly identical to those for ω̇e). The black regions denote negative values and the white regions

denote positive values. To simplify analysis, β̇ (Eq. 4.10) has been averaged over α to remove

dependency. This is valid because α is a fast variable compared to Id, β, and ωe during the
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tumbling cycles. Example analytically averaged model evolution has been overlaid in red with an

initial Pe = 2π/ωe = 120 min. Starting at the green dot, Figure 5.4a shows that Id will initially

decrease as the satellite is pushed into more excited tumbling. As we near the separatrix (the

dashed grey line), Figure 5.4b shows that β will start increasing. At the same time, the satellite

effective spin rate (ωe) will begin increasing as well. These combined effects cause the satellite to

proceed into more excited tumbling with a faster spin rate and the pole moving away from the sun.

Once β increases past 90◦ (i.e. pole perpendicular to the sun) the satellite begins spinning down

and moving back towards uniform rotation. Upon crossing the separatrix, the signs of β̇ and ω̇e flip.

So, the satellite then spins up, entering a nearly uniform rotation phase with the pole moving back

towards the sun direction. Finally, passing through β = 90◦, İd and ω̇e flip signs resulting in spin

down and progression back towards tumbling. At this point, the next tumbling cycle can begin.

From Eqs. 4.9, 4.10, and 4.12, we note that the tumbling cycle duration will be driven directly by

H. The larger the initial H, the slower the satellite will progress through the tumbling cycle. For

GOES 8, any escape to long-term uniform rotation from these tumbling cycles will likely occur in

the upper right (after passing upward across the separatrix). To escape, the satellite must spin up

sufficiently before β decreases below 90◦. Alternatively, capture into these tumbling cycles from

uniform rotation (Id = Is) requires β < 90◦ so that İd and ω̇e are negative. If the spin rate is small

enough, H will be pulled towards the sun line and the satellite will spin down and transition into

a tumbling cycle.
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Figure 5.4: Signs of averaged parameter derivatives vs. Id and β (SAM+/LAM+) for GOES 8 with

example averaged evolution overlaid in red, starting at the green dot.

5.2.3 Sun-Tracking Behavior

We will now discuss the sun-tracking precession behavior observed during tumbling cycles.

Plotting My/

√
Mx

2
+My

2
+Mz

2
over Id and β, the resulting values are provided in Figure 5.5a

for GOES 8. From the values near +1, we see that M ≈ Myŷ for most LAM Id, β values. This

makes sense given the large relative magnitude of My compared to Mx and Mz in Figures 4.5b,d.

Calculating My for a number of LAM Id values for GOES 8, Figure 5.5b shows that My ≈M sinβ
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for Id/Is values near 0.4 - 0.5 (where M is the arbitrary torque amplitude). From Figure 4.7b,

we see that the satellite spends most of the tumbling cycle near Id/Is = 0.45, where this M sinβ

approximation agrees best.
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Figure 5.5: Structure of My for GOES 8 (SAM+/LAM+).

Given this, we can develop an approximate system to better understand sun-tracking preces-

sion. Assuming M = Myŷ, we can calculate
Od
dt (H) using the transport theorem,

Od

dt
(H) = Myŷ − ωO/N ×H (5.1)

Then assuming My = M sinβ and noting sinβ = |Ẑ × Ĥ|, Eq. 5.1 can be written as,

Od

dt
(H) =

(
M

H
Ẑ − nX̂

)
×H (5.2)

Since we assume M · H = 0, H is constant. Therefore, Eq. 5.2 is a linear system with

constant coefficients. Solving the initial value problem with H(t = 0) = H[sinβo, 0, cosβo]
T ,

H(t) =
H

ω2

δ(n cosβo + δ sinβo) cosωt− n(δ cosβo − n sinβo)
ω(n cosβo + δ sinβo) sinωt

n(n cosβo + δ sinβo) cosωt+ δ(δ cosβo − n sinβo)

 (5.3)
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where δ = M/H and ω =
√
δ2 + n2. Note that H(t) is periodic with period 2π/ω. Taking the time

derivative of Eq. 5.3, we find,

Od

dt
(H) = H(n cosβo + δ sinβo)

− δ
ω sinωt
cosωt
−n
ω sinωt

 (5.4)

For δ >> n, ω ≈ δ, so ḢZ is relatively small and evolution occurs mostly parallel to the the

X̂ - Ŷ plane (i.e. sun-tracking precession). Here, precession occurs much faster than the mean

motion n because ω >> n. As δ/n decreases, the precession rate slows and motion transitions

more towards the Ŷ - Ẑ plane. As δ/n → 0, ḢX → 0 and motion becomes confined parallel to

the Ŷ - Ẑ plane with ω→n. Here, the torque is not sufficient to turn H which remains inertially

fixed. Figure 5.6 illustrates this transition from sun-tracking precession to inertially fixed H for

a number of δ/n values. Proceeding clockwise from lower right to upper left, δ/n decreases and

circulation gradually transitions from Ẑ to X̂.

/n = 100

 2

1

 0.5

 0

Figure 5.6: Ĥ(t) from Eq. 5.3 over 180 days with varying δ/n (0, 0.5, 1, 2, 100). The green dot

denotes the initial state (α= 0◦, β = 45◦) and the red dots denote the final states for each δ/n.
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5.2.4 Influence of Optical Properties

Given the assumption of instant Lambertian thermal re-emission, there is no distinction in

the current model between diffuse reflection and thermal re-emission. So changing the reflectivity

of surfaces that are assumed to be strictly diffuse, like the back sides of the solar array and trim tab,

will not affect the solar torques. Instead, the amount of specular reflection must be changed. Here

we will focus on surfaces assumed to have only specular reflection and thermal re-emission, namely

the bus, cell-side of the solar array, trim tab front, and solar sail. The reflectivities of MLI, Kapton,

and solar cells can change significantly over time due to space weathering. Figure 5.7 shows the

analytically averaged model ωe evolution for different reflectivities, holding the specular fraction si

of these surfaces equal to 1. The initial spin state for all cases is given by Id = 3500 kg·m2, α =

0◦, β = 15◦, and Pe = 2π/ωe = 120 min. The cases in red correspond to the nominal values from

Table 2.2. In all cases, the satellite proceeds through roughly 1.5 tumbling cycles. For the bus,

trim tab, and solar solar sail, changing the reflectivity has a negligible impact on evolution over the

first tumbling cycle. Proceeding into the second cycle after ∼4 years, there are slight differences

in evolution, likely due to increased spin state sensitivity during the brief transition to and from

near-uniform rotation. For the solar array on the other hand, the first tumbling cycle duration

decreases notably as the reflectivity is increased. Investigating the averaged torque contours, Mx

is progressively larger for increasing ρ, resulting in faster pole motion and shorter tumbling cycles

for the higher reflectivities. Overall, varying the reflectivities of these specular surfaces within

reasonable bounds only has a quantitative impact on the dynamical evolution.
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Figure 5.7: GOES 8 evolution dependence on component reflectivity properties

5.2.5 Influence of End of Life Configurations

It is important to note that the counter-clockwise (Id, β) motion in Figure 5.4 is just one

of the possible evolutionary scenarios. Figures 5.1 and 5.2 show that long-term uniform GOES

evolution strongly depends on the end of life solar array angle θsa. Computing Mx, My, Mz, and İd

over all possible end of life GOES 8 solar array angles with the analytically averaged model, we find

the following contours in Figure 5.8. For İd, ωe = 2π rad/s was again assumed. Sweeping over θsa,



81

the averaged components change significantly in sign and magnitude, indicating that θsa greatly

affects general long-term satellite evolution. In addition, for θsa near odd multiples of 42◦, we find

that Mx, Mz, and İd are approximately zero. These critical θsa values also hold for the major

axis uniform rotation contours (not shown). Obviously, these negligible torque configurations are

specific to GOES 8’s geometry and mass distribution. For other satellites, the averaged framework

will allow for fast and efficient studies of the parameter space to identify any similar configurations.

These GOES findings illustrate the potential to reduce long-term spin state variation by properly

setting end of life configurations.
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(a) Mx (b) My

(c) Mz (d) İd

Figure 5.8: GOES 8 Averaged Terms vs. β and Solar Array Angle θsa (SAM+ Id = 3500 kg·m2)

We will now briefly consider the long-term evolution for GOES 8 with a different solar array

angle. Changing GOES 8’s θsa from 17◦ to 70◦ yields the contours in Figure 5.9. Here, the signs

of İd and ω̇e are essentially mirrored about β = 90◦ as compared to Figure 5.4. For β̇, the sign

is mirrored about the separatrix. Complementing the contours is the six year averaged evolution

given by the following initial conditions: α = 0◦, β = 165◦, Id/Is = 0.98 (SAM+), and Pe =
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240 min. The satellite goes through several tumbling cycles as in Figure 5.4 except that (Id, β)

evolution instead proceeds clockwise with β now decreasing over the course of each tumbling cycle.
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Figure 5.9: Same as Figure 5.4 except with θsa = 70◦ and corresponding averaged evolution.

5.3 Resonant YORP

5.3.1 1:1 LAM Resonance

Figure 5.10 shows the contours of γ̈, Mx, My, and M z with example 10 day trajectories

overlaid for the Pψ/Pφ̄ = 1 LAM resonance. From from left to right, the trajectory initial conditions



84

are given by: 1) βo = 10◦, γo = 180◦, 2) βo = 45◦, γo = 300◦, 3) βo = 90◦, γo = 250◦, 4) βo =

130◦, γo = 150◦, and 5) βo = 170◦, γo = 180◦ all with αo = 0◦ and an initial Pe = 20 min. Looking

first at β ≤ 10◦ and ≥170◦, Figure 5.10a shows that γ̈ does not change sign in these regions. So

at these extreme β values, γ strictly increases or decreases and begins circulating as illustrated by

trajectories 1 and 5. This explains why capture was not observed for these β values in Figure 4.9.

Moving on to trajectory 2 which shares initial conditions with the Figure 4.8 example, we see that

γ instead oscillates about the stable γ̈ = 0 manifold. Since dγ̈/dγ < 0 along this manifold, nearby

trajectories will remain close for an extended period and be captured in the resonance. Consulting

the contours in Figures 5.10b-d, we see that trajectory 2 will have Mx < 0, My > 0, and M z < 0.

With Mx, My, and M z driving β, α, and ωe respectively, this explains the initial secular decrease

in ωe and β as well as the increase in α observed in Figure 4.8.

For trajectory 3, the satellite is placed a bit farther from the stable γ̈ = 0 manifold. Never-

theless, it is captured for at least 10 days albeit with larger γ oscillations. Here β slowly increases

due to net positive Mx over one γ oscillation. Now considering trajectory 4, it is initialized near the

unstable γ̈ = 0 manifold where dγ̈/dγ > 0. So γ and γ̇ steadily increase until reaching the stable

manifold near γ = 360◦. At this point, γ̇ is too large to be sufficiently slowed in the narrower γ̈ < 0

region. As a result, γ̇ remains positive and γ begins circulating with the satellite escaping from the

resonance. Generalizing the trajectory 4 results, the asymmetry between the positive and negative

γ̈ regions over one γ cycle for moderate β values (i.e. near 45◦ and 135◦) reduces the capture rate.

Moving towards β = 90◦, capture will occur for more γ values due to greater symmetry in the γ̈

regions over one γ cycle. Near β = 90◦, rapid escape only occurs near the unstable γ̈ = 0 manifold

(i.e. for γ ≈ 160◦). So the γ̈ asymmetries help explain the convergent-divergent shaped capture

contours and centrally-peaked capture probability in Figure 4.9.
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(a) γ̈ (b) Mx

(c) My (d) Mz

Figure 5.10: GOES 8 Pψ/Pφ̄ = 1 (LAM+) resonance-averaged contours with five overlaid runs.

One fundamental question is how long a satellite will remain captured in a given resonance.

Investigating capture duration with the full dynamics over the entire (β, γ) phase space would

be computationally expensive. Given that the resonance averaged model provides a speed up of

at least 20×, it is much better suited to this task. Nevertheless, the larger capture rates for the
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averaged model in Figure 4.9 indicate that these capture durations will likely be an upper bound

for the full model. Continuing with our exploration of the 1:1 LAM+ resonance, Figure 5.11 shows

the capture duration over the (β, γ) phase space for an initial Pe = 20 min (ωe = 0.3 deg/s). This

is essentially Figure 4.9a stratified in terms of capture time. Many of the captured trajectories in

Figure 5.11 have dwell times longer than 50 days. Note that full model simulation in Figure 3.4

exhibited 1:1 capture for at least 80 days. For the averaged model, we see that the longest capture

durations occur along the stable γ̈ = 0 manifold with a maximum of about 283 days near β = 30◦,

γ = 300◦. Consulting Figures 5.10a,b this is approximately where the γ̈ = 0 and Mx = 0 manifolds

intersect. So β and γ will evolve slowly in this vicinity and the satellite will remain captured for an

extended period of time. Even at the γ̈ = Mx = 0 intersection, β will vary due to frame rotation

and α circulation (see Eq. 4.10). So one cannot expect indefinite capture. The 1:1 resonance was

also investigated for the LAM- case. We found that in general the capture probabilities were slightly

higher for LAM+ than LAM-, with maximum capture durations somewhat longer for LAM-.
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Figure 5.11: GOES 8 capture duration in Pψ/Pφ̄ = 1 resonance (LAM+)
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Also of interest is how much the satellite spin state changes while captured. Figure 5.12 shows

the corresponding states at the time of escape from the 1:1 (LAM+) resonance. For trajectories

that are not captured, the final ωe and β values are essentially unchanged from the initial values.

For most captured trajectories, notably the longest duration ones in Figure 5.11, the final ωe

values have gone to zero. In fact, most extended capture duration trajectories were stopped when

H approached zero rather than when γ began circulating. From Eqs. 4.10 and 4.12, β̇ and İd

go to infinity as H → 0. Rapid β and Id evolution will likely cause the satellite to escape the

resonance. The validity of this reasoning was confirmed by propagating several trajectories with

the full model. Holding βo and γo constant while increasing Pe from 20 to 60 and then 120 min, the

time until γ began circulating decreased notably. Now considering Figure 5.12b, there is significant

local variation in final β values. This is driven in part by the horizontally banded structure in

Figure 5.10b, where β evolution will be very sensitive to the γ libration amplitude. A prominent

feature in Figure 5.12b is the concentration of high ∆β values on the two mirrored lobes for βo <

90 ◦. Here escape occurs because β is pushed far enough to the right that γ begins circulating.
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Figure 5.12: GOES 8 states at Pψ/Pφ̄ = 1 resonance escape (LAM+)
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To explore the dependence of capture probability on spin rate, Figure 5.13 shows the 1:1

LAM+ capture probabilities for increasing effective spin periods. Capture probabilities rise for β <

45◦ as Pe is increased. On the other hand, they steadily decrease with increased Pe for β > 90◦.

For Pe = 60 min, the large drop in capture probability for β between 70◦ and 160◦ is primarily due

to H → 0. Obviously, as the initial spin rate is decreased, less time is needed to reach H ≈ 0, and

escape via this avenue becomes more likely.
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Figure 5.13: GOES 8 capture probability in Pψ/Pφ̄ = 1 resonance for ≥ 10 days for different

effective spin periods (LAM+).

5.3.2 Higher Order Resonances

We will now investigate higher order LAM resonances with the averaged model, specifically

Pψ/Pφ̄ = 3:2, 2:1, 3:1, 4:1. Tying these back to the physical motion using the 3:2 resonance as an

example, for every 3 precession periods of the long axis b̂3 around H, the satellite rotates about b̂3

twice. Recall from Figure 2.6 that these higher order resonances are all possible for GOES 8 LAM

states, while only the 4:1 resonance is possible for SAMs. The 4:1 SAM resonance structure was

similar to that for the following higher order LAM resonances and has been excluded for brevity.
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Figure 5.14 shows the γ̈ contours for the higher order LAM resonances. The most apparent trait

across these contours is that the γ̈ = 0 manifolds span considerably narrower ranges of β compared

to the 1:1 resonance contour in Figure 5.10a. This suggests that capture into these resonances will

only be possible for smaller fractions of the phase space. Of the four resonances, the 2:1 contour

shares the most similarity with the 1:1 resonance in terms of structure.
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(a) 3:2 (b) 2:1

(c) 3:1 (d) 4:1

Figure 5.14: GOES 8 γ̈ for higher order resonances (LAM+)

Propagating trajectories for these resonances using 2◦ × 2◦ grid spacing for β and γ, the

resulting 10 day capture probabilities are shown in Figure 5.15. Consistent with the contour

discussion above, resonance capture occurs for smaller ranges of β compared to the 1:1 resonance,

with probabilities peaking around 90◦. Also, the capture probabilities themselves are generally
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lower than for the 1:1 resonance. These findings help explain why the 1:1 and 2:1 resonances

were observed most frequently in the long-term full YORP dynamics simulations, as they have the

highest capture “area” of the resonances shown. It is also worthy to note that for the YORP-driven

tumbling cycles observed in Chapter 3 and Figure 5.4 for example, the satellite generally passes

through these higher order resonances at extreme values of β where the capture probabilities are

negligible. This further explains why they were not encountered frequently in long-term full YORP

dynamics simulations.
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Figure 5.15: GOES 8 probability of capture in various resonances for ≥ 10 days (LAM+)

5.4 Non-Resonant YORP + Gravity Gradients

Full dynamics simulations showed that gravity gradients alone did not significantly affect

YORP-only tumbling evolution or resonant capture for the GOES satellites. But, gravity gradients

were found to impact long-term uniform spin rate evolution in a non-negligible way. Figure 5.16

shows the uniform spin rate evolution for GOES 10 accounting for averaged solar radiation and

gravity gradient torques assuming αo = 90◦, βo = 90◦, Pe = 30 s, R = 42500 km. Here, the

numerically averaged model was used assuming Id/Is ≈ 1− 10−9. Several different simulations are
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included: 1) assuming solar torques only, 2) for GOES 10’s orbit in April 2021 with approximate

inclination i = 11◦ and right ascension Ω = 33◦, and 3) the classical GEO Laplace plane with i ≈ 7◦

and Ω = 0◦ [4]. Due to luni-solar gravitational perturbations, the orbit planes of uncontrolled GEO

satellites will oscillate about the classical Laplace plane every ∼53 years [4]. Figure 5.16 illustrates

that gravity gradient torques can have a non-negligible impact on uniform spin rate evolution over

long timescales with dependence on the satellite orbit.
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Figure 5.16: GOES 10 averaged uniform spin rate evolution for YORP and gravity gradients

5.5 Non-Resonant YORP + Dissipation

5.5.1 Equilibria

Using the averaged model, we would like to investigate the YORP + dissipation equilibria

observed with the full dynamics. The aim is to find α, β, H, and Id such that,

α̇ =
My +Hn cosα cosβ

H sinβ
= 0 (5.5)

β̇ =
Mx +Hn sinα

H
= 0 (5.6)
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Ḣ = Mz = 0 (5.7)

İd =
2Id

H
M ·

(
I3×3 − Id[I]−1

)
Ĥ + hd = 0 (5.8)

We start by prescribing β and finding the Id value(s) that satisfy Eq. 5.7. Since Id is bounded,

this can be done with the simple bisection method. Mx and My are then calculated for the (β, Id)

pair(s). Setting the numerators of Eqs. 5.5 and 5.6 equal to zero and solving for sinα and cosα,

we obtain α,

α = atan2
(
−Mx,−My/cosβ

)
(5.9)

Note that we can solve for α in this way by canceling out Hn because it equally scales both terms

and is positive (i.e. will not change their signs). On the other hand, removing the negative signs in

Eq. 5.9 would change the quadrant, yielding an incorrect solution for α. We can then obtain H from

Eq. 5.5 or 5.6. Finally, the value of J satisfying Eq. 5.8 is calculated (assuming a prescribed value

for µ/J). Again, bisection can be used with a wide initial search range constrained to positive J

values. Note that the equilibrium state is essentially solved for in reverse, since J and µ/J actually

dictate the equilibrium values for α, β, H, and Id. Figure 5.17 shows the YORP + dissipation

equilibria for GOES 8 computed with this approach, using numerically averaged lookup tables for

the solar torque evaluation. These solutions place the satellite on the SAM side of the separatrix,

consistent with earlier full and averaged model results. The solutions differ considerably for SAM+

and SAM- states, largely due to differences in the averaged torque components and the sensitivity

of α solutions in Eq. 5.9 to changes in these components.
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Figure 5.17: GOES 8 YORP + dissipation equilibria (µ/J = 1e-3 s−1)

Figure 5.17 shows the corresponding Pψ = Pφ̄ period ratios. For both SAM+ and SAM-, these

equilibrium period ratios are in the vicinity of the 4:1 and 5:1 resonances which has implications

for resonant capture.
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Figure 5.18: GOES 8 YORP + dissipation equilibrium period ratios corresponding to Figure 5.17

Figure 5.19 is an extension of Figure 5.17 over the range of end of life solar array angles

θsa for the SAM- equilibria. Here, the torques are evaluated with the analytically averaged model.

Sweeping through θsa, the equilibrium solutions change significantly. Note that equilibria only exist

one side of β ≈ 90◦ for a given θsa since YORP-induced İd changes sign here (see Figures 5.4 and

5.9). Dissipation-induced İd is always positive, so for an equilibrium to exist, YORP-induced İd

must be negative.
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Figure 5.19: GOES 8 YORP and dissipation SAM- equilibria vs. array angle θsa (µ/J = 1e-3 s−1)

5.5.2 Stability

To evaluate the linear stability of these equilibria, we analyze the eigenvalues of the dynamics

matrix B at a given equilibrium state Xe,

B =
∂Ẋ

∂X

∣∣∣∣
Xe

(5.10)

where X =
[
α, β,H, Id

]T
. Partial derivatives involving Mx, My, M z, and İd are evaluated with

finite difference of the corresponding lookup tables, selecting the finite difference deltas small enough

such that the partials converge.
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Figure 5.20 shows the stability corresponding to the equilibria in Figure 5.17. While the

existence of local asymptotic stability depends on the given J , note that the SAM- equilibria all

have lower associated kinetic energy than the SAM+ states. For a subset of J values, there are

also several possible SAM- equilibria, some being locally asymptotically stable or unstable. For

both SAM± equilibria, the least stable eigenvalues (i.e. those with the largest real components)

generally corresponded to the angular momentum direction, indicating the equilibria are least

stable in this direction. For unstable equilibrium points, averaged model simulations showed that

divergence in H (and ωe) generally occurred well before the other state variables, supporting this

eigenvalue/eigenvector analysis.
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Figure 5.20: GOES 8 YORP + dissipation equilibria stability (µ/J = 1e-3 s−1)

Using the numerically averaged model, we will briefly investigate the asymptotic stability for

a case where J has multiple SAM- equilibria. We will consider J = 1.8 kg·m2 which has two stable

and one unstable equilibria as shown in Figure 5.20a. The two stable equilibria have corresponding

system kinetic energies of ∼0.07 and ∼0.3 Joules respectively. We propagate 200 runs, uniformly

drawing initial values for α from [0◦, 360◦], β from [0◦, 90◦], Id from [Ii, Is], and Pe = 2π/ωe from

[5, 20] min. The resulting evolution is shown in Figure 5.21. All states converge to the stable

equilibria, but the histogram in Figure 5.21b indicates the satellite is roughly 2.5× more likely to
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settle in the lower energy equilibrium.
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Figure 5.21: GOES 8 YORP + dissipation preferred convergence to minimum energy SAM- equi-

librium (J = 1.8 kg·m2, µ/J = 1e-3 s−1, 200 runs)

Extending this analysis to the combined SAM± equilibria, which both exist for a given J ,

we conduct simulation runs with the full model to naturally handle switching between SAM+ and

SAM-. Starting the GOES 8 model with Id/Is = 0.98, Pe = 2π/ωe = 120 min, α = 0◦, β = 15◦,

we vary J from 0.5 to 10 kg·m2 over 13 runs for SAM- and SAM+ states. Figure 5.22 shows the

resulting evolution for the 26 total runs. In all cases, Id settles on the SAM side of the separatrix

within roughly one year. Similarly, ωe is in the process of converging in almost all cases, albeit

a bit more slowly given the aforementioned negative real eigenvalue components being closer to

zero. Nevertheless, in each run shown, the short axis spin rate ωs is converging a negative value,

indicating SAM-. The averaged analysis from Figure 5.20 shows that the stable SAM- equilibria

have lower energy than SAM+. As the satellite is perturbed by YORP and dissipation, it repeatedly

transitions between LAM and SAM, having the opportunity to switch from SAM+ and SAM-. So

as it dissipates energy, the satellite will tend to settle in equilibria with the minimum energy, which

for the GOES 8 model and prescribed J values correspond to SAM- states. Investigating stable
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SAM+ equilibria from Figure 5.20 with the averaged model, they were only locally asymptotically

stable, diverging from the equilibria for sufficiently large initial state offsets.

(a) effective spin rate ωe and short axis rate ωs (b) normalized dynamic moment of inertia Id

Figure 5.22: GOES 8 full model YORP and dissipation SAM- convergence (µ/J = 1e-3 s−1)

5.6 Resonant YORP + Dissipation

With İd for YORP + dissipation given by Eq. 5.11,

İd =
2Id

H
M ·

(
I3×3 − Id[I]−1

)
Ĥ + hd (5.11)

we can write γ̈ as,

γ̈ = γ̈YORP + γ̈diss (5.12)

where γ̈ in turn depends on İd through the expressions provided in C.

Considering the 1:1 LAM resonance, Figure 5.23 shows that γ̈ shifts upwards as ωe (and

therefore the dissipation rate) increases. This is because γ̈diss ≥ 0 in LAM. As a result, the γ̈ =

0 manifolds shrink with increasing dissipation. For Figure 5.23d, dissipation becomes sufficiently

large that γ̈ is strictly positive and resonance capture is no longer possible. As a reminder, γ̈YORP

is independent of H (and ωe), so the YORP only contour in Figure 5.23a holds for all spin rates.
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(a) YORP only (b) ωe = 0.3 deg/s

(c) ωe = 0.6 deg/s (d) ωe = 1.2 deg/s

Figure 5.23: GOES 8 YORP + dissipation γ̈ for Pψ/Pφ̄ = 1:1 resonance (LAM+) with various spin

rates (J = 1 kg·m2, µ/J = 1e-3 s−1)

Figure 5.24 shows the LAM+ 1:1 resonance capture duration with dissipation J = 1.8 kg·m2,

and µ/J = 1e-3 s−1, Pe = 20 min (ωe = 0.3 deg/s). Compared to Figure 5.11 for the YORP only

case, there are significantly fewer regions that result in extended capture and the maximum capture
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duration (219 days) is about 25% lower. This is consistent with the shrinking γ̈ = 0 manifolds in

Figure 5.23 with increasing spin rates.
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Figure 5.24: GOES 8 capture duration in Pψ/Pφ̄ = 1 resonance for YORP + dissipation (ωe = 0.3

deg/s, J = 1 kg·m2, µ/J = 1e-3 s−1))

Figure 5.25a demonstrates the reduction in capture probability for increased initial spin

rate. Starting with Figure 5.25a, capture probabilities decrease steadily with increased ωe, with

no capture for ωe = 1.2 deg/s. This behavior is consistent with the interpretation of the contours

in Figure 5.23. Similarly, the dissipation rate can be increased by increasing J for a fixed ωe.

Figure 5.25b shows the resulting reduction in capture probability for increasing J .
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Figure 5.25: GOES 8 YORP + dissipation Pψ/Pφ̄ = 1:1 (LAM+) probability of resonance capture

for ≥ 10 days (µ/J = 1e-3 s−1)

Figure 5.26 shows γ̈ for the 5:1 SAM- resonance for YORP with and without dissipation.

In SAM, γ̈diss ≤ 0, so the γ̈ = 0 manifold shifts leftward to smaller values of β. Overall, the 4:1

and 5:1 SAM± γ̈ contours have similar structure and follow the same behavior. As noted above,

the 4:1 and 5:1 SAM resonances will be near the period ratios corresponding to the equilibria in

Figures 5.17 and 5.18. The γ̈ = 0 manifold does not span nearly as wide a β range compared to

the LAM 1:1 and 2:1 resonances, suggesting low capture probability. Nevertheless, for particular

dissipation rates, the β value centered on γ̈ = 0 will be near the corresponding equilibrium β. With

β evolving in the vicinity of the γ̈ = 0 manifold, probability of capture probability in the SAM 4:1

and 5:1 resonances will likely be greater for YORP + dissipation than for YORP alone. This is

consistent with the full YORP dynamics simulations from Chapter 2, where 5:1 SAM resonance

capture was generally observed only when dissipation was considered.
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(a) YORP only (b) ωe = 1.2 deg/s

Figure 5.26: GOES 8 YORP + dissipation γ̈ for Pψ/Pφ̄ = 5:1 resonance (SAM-) (J = 1 kg·m2,

µ/J = 1e-3 s−1)

5.7 Non-Resonant YORP + Dissipation + Gravity Gradients

The influence of gravity gradient torques on the averaged model YORP + dissipation equi-

libria will now be investigated. Figure 5.27 shows the evolution when gravity gradient torques are

considered in addition to YORP and dissipation for J = 1 kg·m2. Here, the satellite is assumed

to be in the GEO Laplace plane (i = 7◦, Ω = 0◦). For the YORP + dissipation case, the satellite

converges to the stable equilibrium in roughly two years. Adding gravity gradients, the satellite

spin state begins oscillating about steady state values that are offset from the YORP + dissipation

equilibrium. Propagation for 20+ years showed no damping, indicating the satellite is captured in

a limit cycle. These oscillations have a 1 year periodicity, consistent with the annual rotation of

λ(t) in the O frame.
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Figure 5.27: GOES 8 averaged YORP + dissipation + gravity gradient limit cycle (SAM-, J = 1

kg·m2, µ/J = 1e-3 s−1, i = 7◦)

Considering a higher dissipation rate with J = 10 kg·m2, Figure 5.28 shows that the difference

between the YORP + dissipation equilibrium and steady state gravity gradient limit cycle spin

states are much greater, particularly in terms of ωe and β. This shift in steady state values is

due to the gravity gradient tendency to precess H around the GEO orbital angular momentum

direction ĤG which affects the YORP-driven sun-tracking.
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Figure 5.28: GOES 8 averaged YORP + dissipation + gravity gradient limit cycle (SAM-, J = 10

kg·m2, µ/J = 1e-3 s−1, i = 7◦)

Figure 5.29 compares averaged model simulations for YORP + dissipation with gravity gra-

dients on and off. For both cases, the satellite initial approaches the asymptotically stable equilib-

rium. For the small prescribed J = 0.1 kg·m2, the equilibrium is very near β = 90◦. Note that for

GOES 8, İd in the SAM region switches from negative to positive as β > increases past 90◦. For

the case without gravity gradients, the satellite state remains near this equilibrium. For the case

with gravity gradients, β is perturbed significantly enough beyond 90◦ that the satellite escapes to
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rapid uniform rotation. It then undergoes successive tumbling cycles. The peak uniform rotation

precession period is roughly 16 s near the end of the simulation.
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Figure 5.29: GOES 8 averaged model tumbling escape due to gravity gradient torques (SAM-, J =

0.1 kg·m2, µ/J = 1e-3 s−1, i = 0◦)



Chapter 6

Observation Analysis

While dynamical modeling provides the opportunity to explore various perturbations and

their effects on long-term rotational dynamics, it is important that these simulations agree with

observed satellite spin state evolution. So it is useful to validate simulation results against satellite

spin state estimates extracted from real observations. Observations also provide direct insight into

ongoing dynamical evolution. There are several types of observations often used to investigate space

debris spin states. Measurements of an object’s time-varying photometric brightness due to reflected

sunlight (i.e. light curves) are the most prevalent observation type [80, 57, 105]. There are two other

notable observation types, both relying on active approaches. The first is satellite laser ranging

(SLR). Here, short laser pulses transmitted from a ground-based laser reflect off of an object and

back to the observer. The round-trip light time then provides precise ranging information which can

be used to infer an object’s spin state [63]. SLR requires an object to be fitted with retro-reflectors

which are not common, especially on older spacecraft. Therefore, SLR is not applicable to the

general space debris population. The second notable active observation type is radar. Radio waves

with carefully engineered properties (e.g. frequency, phase, polarization) are transmitted from

a ground-based antenna towards an object [77]. The reflected echoes have different properties,

providing insights about the object. The primary limitation for radar is the 1/R4 dependence of

echo power, compared to 1/R2 dependence for brightness measurements [77, 104]. So large, high

power antennas are needed to obtain sufficiently high signal to noise, particularly for distant objects

[77].
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In this work, we will focus on extracting satellite spin state information from light curves and

Doppler radar observations with a particular emphasis on the tumbling regime. Here, analysis is

limited to period and pole extraction rather than complete spin state estimation (i.e. instantaneous

attitude and angular velocity). Various methods for light curve based complete spin state estimation

for satellites have been explored (e.g. [116, 51, 66, 82]). These methods are significantly aided by a

priori information. The approaches outlined in this chapter have the potential to greatly constrain

possible solutions for subsequent complete spin state estimation, especially for tumbling rotation

where there can be many candidate tumbling period pairs. For the following spin state analyses,

we make the important assumption that the satellite is in torque-free rigid body rotation. Since

solar radiation torques, gravity gradients, and dissipation are generally small perturbations on

torque-free rotation for high-altitude satellites, this is a good approximation over relatively short

timescales.

6.1 Photometric Light Curves

Given the small angular size of GEO satellites from earth, resolved images are generally not

obtainable with current ground-based optical telescopes. So spin state information must be inferred

from non-resolved brightness measurements. As a satellite rotates, different surfaces are exposed

to the sun and reflect light towards the observer, resulting in time-varying brightness known as

a light curve. An object’s instantaneous brightness is a function of many parameters including

it’s shape, reflective properties, and attitude (as well as the sun-satellite-observer phase angle and

relative distances which are assumed to be known).

For uniformly rotating satellites with inertially fixed sun-satellite-observer geometry, light

curves are periodic in the satellite precession (i.e. spin) period Pφ̄. In this case, a number of

methods can be employed to estimate the precession period. For observations that are equally

spaced in time, fast Fourier transforms (FFTs) can be used to determine the precession period

[56]. Observation gaps and data points contaminated by background stars often result in uneven

spacing. For these cases, traditional FFT analysis will yield spurious frequencies. So it is instead
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more appropriate to use Lomb-Scargle periodograms or single period Fourier series fitting which

can handle these gaps [46]. A particularly robust alternative is minimum dispersion phase-folding.

For this technique, one folds the data in time over a candidate period. The folded light curve is

then divided into a number of discrete bins. Calculating and summing the brightness variation of

the data points in each bin, the candidate period minimizing overall variation is selected. Phase-

folding is particularly advantageous for cases where the light curve sampling rate is low compared to

the satellite rotation period. Time-varying geometry introduces differences between this extracted

synodic period P syn

φ̄
and the sidereal (inertial) period Pφ̄. This difference is approximately [83, 11],

∆P ≈ d(PAB)

dt
P 2
φ̄ (6.1)

where d(PAB)/dt is the rate of change of the phase angle bisector (vector halfway between the

satellite-sun and satellite-observer vectors). For GEO observing, d(PAB)/dt is roughly half of

earth’s spin rate (∼3.5e-4 rev/min−1). So for Pφ̄ = 10 min, ∆P would be approximately ±2 s.

Due to the general incommensurability of Pφ̄ and Pψ, tumbling light curves are generally

non-periodic. So frequency analysis becomes significantly more challenging. For tumbling asteroids,

dominant light curve frequencies are generally a priori unknown integer linear combinations (i.e.

harmonics) of the two fundamental frequencies fφ̄ = 1/Pφ̄ and fψ = 1/Pψ [56, 71, 83, 96]. In other

words,

fi = afφ̄ + bfψ (6.2)

where fi is a dominant frequency and a and b are different integers [...,−2,−1, 0, 1, 2, ...].

These frequency harmonics are generally low orders (e.g. 2fφ̄, fφ̄ + fψ, fφ̄ − fψ) given the

relative simplicity of asteroid shapes and their roughly homogeneous reflective properties dominated

by diffuse reflection [56, 71, 83, 96]. Nevertheless, there will be many potential assignments for a

given tumbling light curve. So correctly interpreting the dominant frequencies in tumbling asteroid

light curves is challenging. For tumbling defunct satellites with more complex geometry, varying

surface materials, and specular reflections, it is important to determine if these low order harmonics
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still dominate. No studies of how fundamental tumbling periods appear in satellite light curves

have been conducted. Binz et al. [13] attempted place upper limits on “tumble rates” of defunct

GEO satellites from light curves using a simple correlation function. Piergentili et al. [82] looked

at the dominant Fourier transform frequencies in observed and simulated light curves. Neither

discussed how these “tumble rates” or dominant frequencies connect with the underlying tumbling

periods.

6.1.1 Light Curve Simulator

In order to explore how the fundamental periods manifest themselves in tumbling light curves

of defunct satellites, a light curve simulator was needed. Given the complexity of observed light

curves, a model was desired that could generate specular, glossy, and diffuse reflections as well as

shadows and indirect illumination (i.e. multi-bounce reflections). So a light curve simulator was

developed in the NASA Goddard Space Flight Center (GSFC) Freespace dynamics toolbox using

the built in stochastic (Monte Carlo) ray tracer [33]. The three channel (red, green, blue) ray tracer

employs a bidirectional reflectance distribution function (BRDF) based on the model by Ashikhmin

and Shirley [5]. This energy conserving BRDF can generate diffuse, glossy, and specular reflections

through a microfacet formulation to simulate small-scale surface roughness.

Another important aspect of the light curve simulator was an accurate GOES shape model.

An existing GSFC model was updated to include an articulating solar array and trim tab. End

of life orientations for these surfaces were provided by John Tsui of NOAA’s satellite operations

office. With the various surface materials of the GOES satellites well documented [107], their

reflective properties in each color band were set to plausible pre-launch values. However, the true

properties have likely been altered by space weathering effects. The bus and solar sail are covered

in multi-layer insulation (MLI) and aluminized Kapton, materials that generate almost exclusively

specular/glossy reflections. So macroscopic roughness was added to these surfaces better match

the true material appearance and observed light curves. A ray traced image of the GOES shape

model is shown in Figure 6.1 and illustrates the complex reflections and shadows possible with the
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light curve simulator. The surface roughness of the bus MLI is also visible.

(a) high fidelity GOES shape model

(b) ray traced image of shape model

Figure 6.1: Freespace GOES 8 shape model for light curve simulator

To generate more accurate simulated data and facilitate comparison with observed light

curves, the correct time-varying positions of the satellite, sun, and earth-based observer were ac-

counted for. The satellite’s orbit was propagated from two line element (TLE) data obtained from

the Joint Space Operations Center’s Space-Track database. JPL Horizons ephemerides were used

to determine the correct sun and earth positions. Finally, WGS 84 coordinates were used for the

observation site. The raw output of the ray tracer is an image with three radiance values per pixel

(one for each waveband). The simulated photometry was determined by integrating the radiance

values (W/m2/sr) over all pixels in the image and multiplying by each pixel’s solid angle. Each of
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the three radiance values was pre-multiplied by the prescribed photometric filter’s average trans-

mittance in that waveband. This yielded a total irradiance (W/m2) at the observing location.

Finally, this irradiance value was calibrated to the prescribed filter’s corresponding zero point flux

and converted to magnitudes. Successive reduced images constitute a simulated light curve.

An example tumbling GOES light curve generated with the ray traced simulator is provided

in Figure 6.2. This light curve illustrates several notable features. First of all is the lack of clean

periodicity with several frequencies seemingly present. There are short period variations on the

order of several minutes superimposed on longer period variations of more than 20 minutes. The

light curve also exhibits a trend in decreasing magnitude (increasing brightness) due to time-varying

viewing geometry and the resulting change in sun-satellite-observer phase angle.
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Figure 6.2: Simulated GOES Light Curve (Id = 3520 kg·m2, Pφ̄ = 7.04 min, Pψ = 25.83 min, phase

angle: 49◦-27◦)
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6.1.2 Tumbling Light Curve Frequency Analysis

We will now discuss methodologies to extract the fundamental periods from tumbling light

curves. Generally, tumbling light curves can be approximated by a 2-D Fourier series [83],

B(t) = C0 +
m∑
i=1

[
Ci0 cos iωφ̄t+ Si0 sin iωφ̄t

]
+

m∑
j=1

m∑
i=−m

[
Cij cos (iωφ̄ + jωψ)t+ Sij sin (iωφ̄ + jωψ)t

]
(6.3)

where C0 is the mean light-curve brightness, m is the Fourier series order, ωφ̄ = 2π
Pφ̄

= 2πfφ̄, and

ωψ = 2π
Pψ

= 2πfψ, and Cij and Sij are the Fourier coefficients for a particular frequency harmonic.

Note that there are (2m + 1)2 coefficients. So the number of parameters grows very large with

increasing m.

Given Equation 6.3, the most obvious and straightforward extraction technique would be to

choose candidate values for Pφ̄ and Pψ and perform a least-squares fit of the Fourier coefficients

with the goal of finding the period pair with the lowest root mean square (rms) residual. The rms

residual ε is given by,

ε2 =
1

n

n∑
k=1

(
B(tk)− L(tk)

)2
(6.4)

where B(tk) and L(tk) are the modeled and observed light-curve brightness values at a particular

time tk and n is the number of observations. The candidate periods could be chosen by systemati-

cally searching a grid. While simple, this type of ‘blind’ grid search has a number of disadvantages.

First, it will generally require a finely spaced grid to locate well-fitting period pairs. This grid needs

to be made large enough to ensure it contains the true pair. More importantly, this approach is

likely to yield a number of similarly well-fitting, harmonically related solutions. This is because

these harmonically related solutions will share many of the same iωφ̄+ jωψ Fourier series frequency

terms. As a result, it is often more useful to first compute the fast Fourier transform or Lomb-

Scargle periodogram of the light curve and determine the dominant frequencies. Then, a Fourier

series containing consisting of just these frequencies can be fit to the light curve to improve the

estimates of these dominant frequencies.
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Frequency analysis of the Figure 6.2 light curve is provided in Figure 6.3. The top plot shows

the FFT light curve power spectrum. The power spectrum peaks are labeled with their corre-

sponding frequency harmonic. Note that 2fφ̄ is the dominant frequency. Also note the prominent

left-most peak due to the secular decrease in magnitude. This peak is also adjacent to the fψ peak.

For rotation near the separatrix where Pψ becomes large (and fψ small), discerning between light

curve variations due to long-period rotation and changing phase angle becomes quite challenging.

So de-trending a light curve to zero mean magnitude may result in removal of long-period rotation

information. The bottom plot shows the iterated Fourier series fit to the light curve using the power

spectrum frequencies for initial guesses. The iterated Fourier series provides improved frequency

estimates given the limited resolution of the power spectrum.
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Figure 6.3: Simulated GOES light curve frequency analysis (Id = 3520 kg·m2, Pφ̄ = 7.04 min, Pψ =

25.83 min, phase angle: 49◦-27◦)

To develop a better understanding of the dominant frequencies in tumbling GOES light

curves, Figure 6.4 shows the histograms of dominant frequencies in an ensemble of 400 SAM light

curves with pole directions spread across the celestial sphere. The largest amplitude frequency in

each light curve is almost always 2 or 4fφ̄ and the second largest peak is most often a multiple of

fφ̄ as well.
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Figure 6.4: Histograms of dominant frequencies in 400 simulated GOES light curves (Id = 3520

kg·m2, Pφ̄ = 7.04 min, Pψ = 25.83 min, phase angle: 49◦-27◦)

The final test case provided concerns resonant tumbling and how that manifests itself in a

tumbling light curve. A SAM state with Pφ̄ = 4.43 min, Pψ = 15.55 min (Pψ/Pφ̄ = 3.51 ∼7/2)

was tested. Figure 6.5 shows a sample light curve folded on the best-fit synodic Pr = 30.85 min.

Note that the sidereal Pr =31.01 min, so the difference due to time-varying geometry is roughly 9

s. The light curve covers roughly 3.5 resonance periods and almost exactly repeats, demonstrating

that the satellite periodically returns to nearly the same attitude. The light curve variation over

this resonant cycle is very complex with a total of 14 peaks. No more than 4 peaks per cycle were

observed for uniform rotation GOES light curves [11].
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Figure 6.5: Simulated phase-folded resonant tumbling GOES light curve (SAM Pφ̄ = 4.43 min,

Pψ = 15.55 min, Pψ/Pφ̄ ∼ 7/2, Phase angle: 20◦ - 9◦)

Additional surveys are provided in Benson et al. [11]. Overall, the simulated light curve sur-

veys provided a number of insights about light curve frequency content. First of all, integer linear

combinations of the tumbling fundamental frequencies fφ̄ and fψ account for the overwhelming ma-

jority of observed GOES light curve frequencies. Furthermore multiples of the precession frequency

fφ̄ tend to dominate GOES light curve power spectra with three or more different multiples often

observed. This is likely due in part to the large, axisymmetric solar sail which provides frequent

precessional reflections but is unaffected by long axis rotation and therefore fψ. As a further con-

straint, the most dominant frequency in any simulated light curve was never higher than 4fφ̄, likely

constrained by the cube-shaped bus and solar sail not providing more than four broad reflections

per precession period. For GEO observing conditions with slowly time-varying phase and viewing

geometry, the dominant light curve frequencies still closely agreed with tumbling frequency com-

binations apart from low frequency phase change aliases sometimes included. For slower complex

rotation, the low frequency fψ terms were often obscured by long period phase change aliases,

making identification of fψ more difficult. Finally, light curves for resonant tumbling states folded

cleanly on the synodic resonance period Pr, even in the presence of time-varying viewing geometry.

This encourages the use of long-period phase folding to identify potential resonant tumbling states.



118

While these results show that for GOES, fφ̄ can often be narrowed to a few possibilities, they

also showed that identification of fψ is much more challenging. So ultimately, after conducting

Fourier analysis, there are often a number of plausible solutions for the pair (fφ̄, fψ). Only Pψ/Pφ̄

ratios greater than specific values are viable. In general all physical bodies require Pψ/Pφ̄ ≥ 0 for

LAMs and Pψ/Pφ̄ ≥ 1 for SAMs [95]. For objects with well-known moments of inertia such as

GOES, possible period pairs can be further constrained. Considering Eq. 2.34 and 2.35 for the

limiting case of uniform rotation, we have the following inequality for LAMs [95],

Pψ
Pφ̄

>

√
IiIs

(Ii − Il)(Is − Il)
− 1 (6.5)

whereas for SAMs,

Pψ
Pφ̄

>

√
IlIi

(Is − Ii)(Is − Il)
(6.6)

So for a given body, potential period pairs obtained from frequency analysis can be discarded

if they do not meet these criteria. Even with these general and body-specific inertia constraints, one

will likely have a handful of candidate period pairs remaining. Also, these pairs could correspond

to both LAM± and SAM± states. Candidate solutions can then be tested with optimization [56,

83, 82] or statistical filtering [116, 51, 66] approaches with representative satellite and measurement

models to determine the best-fitting solution. This requires considering the sphere of possible pole

directions and the initial attitude phasing. Even using high fidelity ray tracing for objects with well-

constrained mass properties, geometry, and optical properties, this often results in many similarly

well-fitting solutions within model uncertainty and measurement noise.

6.2 Doppler Radar

To help reduce light curve spin state ambiguity, especially for tumbling objects, Doppler radar

measurements can be incorporated. Unlike non-resolved photometric light curves, Doppler radar

provides spatial resolution due to differences in radial velocity across a spinning object. The radar

antenna transmits an electromagnetic wave towards the target body which is then reflected back to
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the antenna. Assuming a single transmitting/receiving radar antenna, the Doppler frequency shift

fd of the reflected signal is given by,

fd = −2Ṙ/λt (6.7)

where Ṙ is the range-rate of the target relative to the antenna and λt is the transmitted radar

wavelength [77]. Since the inertial radial velocity of a rotating body increases with distance from

its center of mass, Ṙ will vary across the body. Therefore the radar echoes reflected back to the

antenna will be spread in frequency. An example of this is provided in Figure 6.6 showing the

Doppler shift of the rotating target along the horizontal axis.

Figure 6.6: Illustration of Doppler shift for a rotating body [77]

For elongated objects, the Doppler frequency spread (i.e. bandwidth) will vary significantly

as the object rotates. This allows for unambiguous identification of the long axis precession period

Pφ̄ for elongated uniform rotators and tumblers. Furthermore, compared to light curves, Doppler

provides pole information that is much easier to interpret and a potentially unambiguous pole so-

lution given advantageous geometry. Overall, radar and optical data are complementary. Optical

provides rich period harmonics and detailed attitude information, while radar provides the preces-
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sion period and greatly constrains the pole. These constraints can be used to significantly narrow

the search space for the light curve fitting process, potentially yielding an unambiguous complete

spin state solution (i.e. instantaneous attitude and angular velocity).

6.2.1 Doppler Radar Model

We will start by discussing the simulated radar model used to test spin state estimation

techniques. To calculate simulated Doppler echoes, the vector Ri from the ith satellite facet to

radar antenna is given by,

R = s− ri (6.8)

where ri is the position vector from the satellite center of mass to the facet centroid, and s = sŝ

is the vector from the satellite center of mass to the radar antenna (calculated using JPL NAIF

SPICE ephemerides for the antenna and TLEs for the satellite orbit). Then, assuming |ri| << s,

the facet’s range-rate Ṙi due solely to satellite rotation is given by,

Ṙi = −
[
(ω − ωS/N )× ri

]
· ŝ (6.9)

where ω is the satellite’s inertial angular velocity and ωS/N = −1
s ṡ × ŝ is the angular velocity of

ŝ with respect to inertial space (roughly 15◦/hr for GEO satellites). The spacecraft attitude and

angular velocity are obtained from the analytical solutions for torque-free rotation in Chapter 2.

Neglecting distance and constant antenna parameters and assuming Lambertian reflection, the facet

echo power Pi is simply given by,

Pi = ρiAimax(ŝ · n̂i, 0)2 (6.10)

where ρi is the facet radar reflectivity, Ai is its area, and n̂i is its outward unit normal vector.

The max() function ensures that facets only provide echoes when ŝ is above the facet horizon. To

obtain the Doppler power spectrum, the facet power is then discretely binned by its corresponding

Doppler shift fd.
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Figure 6.7 shows the radar shape model of the defunct GOES 8 satellite in the principal axis

frame consisting of roughly 1000 facets. The large number of facets helps fill the Doppler spectrum.

The thin solar sail boom is only shown for effect and not included in the actual model.

Figure 6.7: GOES radar shape model

Simulating Doppler echoes, the satellite model is placed in uniform rotation about the maxi-

mum inertia axis with Pφ̄ = 216 s. The radar reflectivity of all facets is set equal. Figure 6.8 shows

simulated Doppler echoes vs. time with brighter regions denoting higher echo power, here simply

expressed in terms of area. The sinusoidal ±15 Hz amplitude echoes correspond to the conical

solar sail as this is farthest from the satellite center of mass and therefore has the largest radial

velocity. The ±5 Hz solar panel echoes are directly out of phase with the solar sail echoes since

these components are on opposite sides of the satellite. The 216 s periodicity is clearly evident

from the sail and solar panel echoes. This extracted synodic period P syn

φ̄
will differ slightly from

the true period Pφ̄ due to non-zero ωS/N . Finally, around ±1 Hz are the bright bus echoes. With

significant implications for pole estimation, we see a notable increase in Doppler echo frequency

range (i.e. bandwidth) over time. Since the satellite’s pole is inertially fixed, the projection of the

satellite’s rotational velocity along the time-varying ŝ changes as it orbits, resulting in increasing

Doppler bandwidth.
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Figure 6.8: Example GOES Doppler echoes (uniform rotation with Pφ̄ = 216 s)

6.2.2 Doppler Bandwidth Pole Estimation

We will now discuss the first and simplest pole estimation technique considered in this work,

called Doppler bandwidth. This method only requires knowledge of the satellite’s maximum radial

extent from the center of mass (known for the GOES satellites). First, with r denoting the satellite’s

maximum radial extent and α the angle between Ĥ and ŝ (see Figure 6.9), the maximum range-rate

of a facet (assuming uniform rotation with ωS/N << ω) is,

Ṙmax =
2πr sinα

Pφ̄
(6.11)

With Eqs. 6.7 and 6.11, we can solve for α in terms of the observed maximum Doppler half-

bandwidth b,

sinα =
λtPφ̄b

4πr
(6.12)

This equation is illustrated in Figure 6.9 where v is the inertial velocity of the satellite at its

maximum radial extent.
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Figure 6.9: Doppler bandwidth illustration

For Doppler bandwidth, we assume Pφ̄ = P syn

φ̄
(a good approximation if ωS/N << ω). To

estimate P syn

φ̄
from radar, we simply phase fold the Doppler echoes in time. Binning the time steps

by rotational phase for each candidate P syn

φ̄
, the dispersion over successive periods in each Doppler

frequency/rotational phase bin is calculated. Sweeping over a range of candidate periods in small

increments, the one minimizing overall dispersion is taken as P syn

φ̄
.

At a given epoch, Eq. 6.12 yields two cones on which Ĥ lies (only one if sinα = 1). Echoes

obtained from significantly different ŝ directions yield additional cones. Assuming the pole is

inertially fixed, viable pole solutions must lie on the intersection of cones from all epochs. With a

single or two closely spaced transmitting/receiving antennas, the well-spaced ŝ directions can be

obtained by observing a GEO target every several hours or at different local times on subsequent

days.

Sample GOES 8 Doppler bandwidth analysis is provided in Figure 6.10. The simulated

Doppler echoes are provided in the top plot. The dashed white lines denotes the maximum possible

bandwidth for the given Pφ̄ = 216 s and maximum radial extent. The colored time stamps denote

the observation times with the corresponding half-bandwidths marked. Proceeding from t1 to t3,

b decreases from ∼23 Hz to ∼15 Hz. Solving Eq. 6.12 and plotting the resulting cones, we obtain

four candidate poles shown in Figure 6.10b. Note that the upper left solution with R.A. = 90◦
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and declination = 45◦ is the correct one. In general, Doppler bandwidth yields at least two pole

solutions and often four.

(a) Doppler echoes with half-bandwidth b at different times

(b) Candidate pole solutions (true solution is R.A.= 90◦ and dec-

lination = 45◦)

Figure 6.10: Doppler bandwidth example (Pφ̄ = 216 s)

6.2.3 3D Rotationally Phased Doppler Pole Estimation

While straightforward, the Doppler bandwidth approach yields at least two candidate pole

solutions and requires knowledge about the satellite’s maximum radial extent. To hopefully over-

come these limitations, we explore another technique. With three or more receiving antennas in a
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well-spaced, non-planar configuration, one can directly solve for an object’s instantaneous velocity.

Assuming |ri| << s and ωS/N << ω, both strong assumptions for GEO satellites, Eq. 6.7 can be

written in matrix form for three (or more) receiving antennas denoted 1, 2, and 3,

fd1

fd2

fd3

 =
2

λt

ŝT
1

ŝT
1

ŝT
1

v(τ) (6.13)

where v(τ) is the inertial rotational velocity of a part of the satellite and ŝ1, ŝ2, and ŝ3 denote

the unit vectors from the satellite to each receiving antenna (see Figure 6.11). With ŝ1, ŝ2, and ŝ3

well-spaced and non-planar, we can invert Eq. 6.13 to solve directly for v.

Figure 6.11: Rotationally phased Doppler illustration

Unfortunately for GEO observation, the receiving antennas must be in a non-planar config-

uration 1000s of km apart. In most practical scenarios, obtaining and coordinating three or more

large antennas separated by these distances is not possible. For example, at NASA Goldstone, the

antennas are separated by no more than 20 km (angular separation at GEO of 0.03◦). This is not

sufficient for the above inversion.

To overcome this practical limitation for the case of a single transmitting/receiving antenna,

we leverage the periodicity of the satellite’s rotation. Assuming the satellite is in uniform rotation
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with a fixed Pφ̄ and pole direction, the inertial position r(τ) and velocity v(τ) of a part of the

satellite (e.g. GOES 8’s solar sail in Figure 6.11) with respect to the center of mass are periodic in

Pφ̄. In other words,

r(τ + nPφ̄) = r(τ) v(τ + nPφ̄) = v(τ)

where n is an integer. So now, instead of ŝ1, ŝ2, and ŝ3 being the directions to each of three

antennas at the same time, they are the directions from the satellite to a single receiving antenna

at three different times spaced by multiples of Pφ̄,

ŝ1(τ) = ŝ(τ + n1Pφ̄) ŝ2(τ) = ŝ(τ + n2Pφ̄) ŝ3(τ) = ŝ(τ + n3Pφ̄)

Observations in phase with the satellite’s rotation are used so that the “same” velocity vector is

viewed at each time. Provided the observer lines of sight are sufficiently well-spaced and non-planar

over time, one can directly solve for v(τ) using Eq. 6.13. Repeating this analysis for successive

rotational phases (i.e. times spanning ∆τ = Pφ̄), one can trace out the v(τ) rotational plane and

therefore the pole direction Ĥ with the right hand rule.

There is a complication for this rotationally phased Doppler (RPD) approach, namely esti-

mation of Pφ̄ . Solutions for v(τ) will be very sensitive to the estimated value for Pφ̄. As noted

above, the extracted synodic period P syn

φ̄
will likely differ slightly from the true inertial value Pφ̄.

For uniform rotation with a fixed spin rate, the velocity magnitude |v(τ)| is constant. So with

the Doppler echo phase-folding technique we obtain P syn

φ̄
. From there, we sweep over candidate

Pφ̄ values around P syn

φ̄
, obtaining solutions for v(τ) for a number of phases spanning one complete

satellite rotation. We then find the candidate Pφ̄ that yields the smallest dispersion in |v(τ)| over

one satellite rotation. This Pφ̄ estimate can then be used to obtain our pole solution.

To illustrate this RPD approach, we will now provide simulated analysis. We use the GOES

8 model and place it in the 14.9◦ inclination orbit of defunct GEO satellite Telstar 401 on Apr. 30,

2020. Assuming an arbitrary and precise Pφ̄ = 216.4493 s and pole right ascension and declination

of 0◦ and 45◦ respectively, Doppler spectra are recorded at a 2 s cadence over the course of 8 hr



127

assuming a single antenna located in Goldstone, California. Phase-folding the initial 30 min of

data, we obtain a minimum dispersion P syn

φ̄
= 217 s. Analyzing observations at the beginning,

middle, and end of this 8 hr arc (see Figure 6.12), we manually fit local sinusoids to the outermost

(i.e. solar sail) Doppler echoes, shown as red lines in Figure 6.12. Continuous local fits are useful

since we sweep over candidate Pφ̄ values, sampling the Doppler at different times.

(a) t = 0 hr (b) t = 4 hr

(c) t = 7.9 hr

Figure 6.12: Doppler echoes at multiples of P syn

φ̄
. The red lines are locally fit sinusoids.
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Figure 6.13: 3D rotationally phased Doppler example solution

Solving for v(τ) using Eq. 6.13 at 22.5◦ increments of rotational phase from 0◦ to 360◦ using

the locally fit sinusoids from Figure 6.12, the resulting velocity magnitude standard deviation for

candidate Pφ̄ values are provided in the top plot of Figure 6.13. Note that the Pφ̄ resolution is

0.001 s. Here, we see the lowest dispersion at 216.450 s where the standard deviation in |v(τ)| over

these 22.5° increments is 1.5 mm/s, 0.3% of the nominal |v(τ)|, and nearly an order of magnitude

smaller than the next best solution. Taking this as our Pφ̄ estimate, Figure 6.13b provides the

pole estimate. We can see that the pole estimate is very sensitive to the assumed Pφ̄ value. The

resulting spin state estimates are provided in Table 6.1 along with the prescribed truth values.

Since the GOES satellites have known radial extents (e.g. 18.87 m for GOES 8 from the center of
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mass to the end of the solar sail[107]), this can also be compared to the derived extent given by

|v|meanPφ̄/2π. All parameters agree well for our simulated case.

Pφ̄ RA Dec Radial Extent

Truth 216.4493 s 0◦ 45◦ 18.87 m
Estimate 216.450 s -0.4◦ 44.75◦ 18.997 m

Table 6.1: Results for 3D Rotationally Phased Doppler Example

Summarizing this 3D rotationally phased Doppler (RPD) pole estimation approach, with

sufficiently well-spaced and non-planar observation directions, a precise Pφ̄ estimate can be obtained

along with an unambiguous pole estimate using Doppler echoes from a single transmitting/receiving

antenna. Importantly, we assume that the satellite’s pole and inertial precession period Pφ̄ are

fixed. Assuming spin state perturbations are small, the former is a reasonable assumption over

relatively short timespans. For rigid torque-free tumblers, Pφ̄ is only constant for uniform rotation

or when the object has axisymmetric moments of inertia. For nearly axisymmetric tumblers like

GOES and many other satellites, Pφ̄ oscillations may be small enough for this approach to work.

In addition, the RPD approach does not employ a satellite model in the solution process. So

detailed knowledge of an object’s geometry and reflective properties are not required, only the

presence of distinguishing features far from the center of mass that can be identified over successive

rotations (e.g. solar sail, solar panel outer edge, upper stage rocket nozzle). For GEO objects, high

inclinations are advantageous as they provide the necessary non-planar observation geometry. Once

a sufficiently accurate P syn

φ̄
is obtained, observations are only needed every several hours covering

1-2 rotation periods each. So the antennas can be cycled between several targets over one observing

session. For MEO and geostationary transfer orbit (GTO) objects, the smaller semi-major axes and

often large inclinations allow for shorter observation arcs to yield the same line of sight variation

with only marginal increase in ωS/N . Shorter arcs are useful as the satellite’s spin state could be

slowly changing due to environmental torques.
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6.2.4 2D Rotationally Phased Doppler Pole Estimation

For shorter observing arcs and/or low inclination satellites where 3D RPD is not possible, the

approach can be reduced to two dimensions for satellites with known radial extent r, yielding two

candidate pole solutions (because the sign of the out of plane velocity component is unconstrained).

Denoting βi(τ) as the angle between the instantaneous velocity v(τ) and the antenna direction ŝi(τ)

we have,

cosβi(τ) =
λtPφ̄fdi(τ)

4πr
(6.14)

Eq. 6.14 yields a single cone around ŝi(τ) on which v(τ) lies. Using three or more observations

spaced at multiples of the candidate Pφ̄, we find the value of Pφ̄ where all cones mutually intersect

(i.e. self-consistent inertial velocity directions). This provides the two possible solutions for the

velocity direction at that rotational phase. Solving at successive rotational phases yields additional

velocities, providing the two candidate rotation planes and pole directions.



Chapter 7

Observation Results

The five GOES 8-12 satellites have been observed periodically between 2013 and 2020. Opti-

cal light curves were collected at the Maui Research and Technology Center (MRTC) [27], the US

Naval Observatory (USNO) Flagstaff Station, Magdalena Ridge Observatory [94, 11], and Lowell

Observatory [11]. Subsets of these GOES satellites were observed using Doppler radar at NASA

Goldstone Deep Space Communications Complex on Dec. 6, 2019 and Feb. 18 - 20, 2020. Two of

Goldstone’s 34 meter Deep Space Network (DSN) antennas were used in a bi-static configuration

with one antenna transmitting and the second receiving the reflected echoes. The transmitted

signal consisted of fixed frequency, continuous wave carrier at X-band (∼7150 MHz). We cycled

periodically between targets over the course of the night to sample different inertial viewing di-

rections for each. On several radar nights, near-simultaneous photometry was collected using a 12

inch aperture f/6.6 Schmidt Cassegrain telescope at Magdalena Ridge Observatory (MRO) in New

Mexico.

7.1 GOES 8

Of the five GOES satellites, observations collected from 2013 to 2020 have shown GOES 8

to exhibit the most significant dynamical evolution. Optical light curves indicate its uniform spin

period (Pφ̄) steadily increased from 16.48 s to 75.66 s between February and July 2014 [27, 94].

Optical light curves and Doppler radar echoes collected between 2014 and 2020 will now be analyzed

and discussed to better understand the satellite’s subsequent spin state evolution.
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7.1.1 September 2014

In September 2014, the USNO COTS instrument obtained the following observations in

Figure 7.1. These data were collected at a 37 s sampling cadence with 32 s exposures and have

been calibrated to apparent V magnitude (courtesy Dave Monet). Both light curves in Fig 7.1 fold

well on periods of ∼40 min, suggesting that the satellite is in fact rotating slowly and that a much

faster spin period is not being under sampled. The variations in light curve structure over successive

rotations may be caused by one-time glints, under sampling of features, or mild non-principal axis

tumbling. So no definitive conclusions can be drawn about uniform rotation vs. tumbling.
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(c) Sept. 25 2014 light curve
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Figure 7.1: September 2014 GOES 8 light curves and minimum dispersion phase-folded solutions.
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7.1.2 September 2015

Figure 7.2 shows a light curve obtained with the Magdalena Ridge Observatory (MRO) 2.4 m

telescope on 28 September 2015. All MRO observations were taken using an Andor iKon 936 CCD

camera and Bessel VR or R filter. Images were taken at a rate of 1 Hz with 0.6 s exposures and

reduced using the IRAF phot task, yielding instrumental magnitudes. These observations suggest

significantly faster rotation than a year before. The 28 September observations fold on a period

of 14.46 ± 0.05 min. Nevertheless, the alignment and amplitude of the peaks is quite variable,

suggesting complex rotation. Simulated GOES 8 uniform rotation light curves generally folded

more cleanly than this light curve, particularly in terms of peak alignment.

Given the observation gap in the middle of the light curve, a Lomb-Scargle frequency analysis

was conducted. It showed the two most dominant frequencies were 0.2772 min−1 and 0.5544 min−1.

Several peaks at additional multiples of 0.069 min−1 were also present. These dominant frequencies,

the phase folding results, and light curve survey findings strongly point to the dominant frequency

of 0.2772 min−1 being 4fφ̄ (i.e. Pφ̄ ≈ 14.46 min).
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Figure 7.2: Sequential and phase-folded September 28, 2015 GOES 8 light curve (MRO 2.4 m)
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7.1.3 April 2018

The GOES 8 light curve in the top plot of Figure 7.3 was obtained on 19 April 2018 with

the MRO 2.4 m telescope. These data were collected using a Bessel R filter and processed in the

same fashion as the previous MRO observations except that they were calibrated to apparent R

magnitude. The high frequency of this light curve suggests rapid rotation but there is no clearly

visible periodicity.
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Figure 7.3: Sequential and phase-folded April 19, 2018 GOES 8 light curve (MRO 2.4 m)

An intriguing result is obtained when the 19 April 2018 light curve is phase folded over a large

range of candidate periods. In the bottom plot of Figure 7.3, the data are folded on the minimum

dispersion period of 24.31 min, showing clear repetition in the 10 broad peaks and many of the
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sharper glints (particularly at 2, 11, and 14 minutes of phase). While there are differences in peak

amplitudes and misaligned glints, these would not be unexpected for uniform rotation given the

varying geometry over the ∼100 min observation arc. The clean folding suggests that the satellite

could be in uniform rotation with a 24.31 min spin period. On the other hand, all previous periodic

GOES 8 and GOES 10 light curves have had no more than four broad peaks per rotation [27, 94].

Simulated uniform rotation light curve surveys showed the same four peak limit [11]. This light

curve would have at least 10 main peaks.
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Figure 7.4: April 19, 2018 GOES 8 light curve Power Spectra (Part A and Part B)

Figure 7.4 shows the power spectra for parts A and B of the light curve, generated separately

to avoid observation gap aliasing. From left to right, both power spectra show clearly dominant

frequencies of 0.04 min−1, 0.12 min−1, 0.41 min−1, and 0.82 min−1, all of which are approximately

multiples of 0.04 min−1. This common denominator corresponds to the 24.31 min best fold period

from Figure 7.3b. Folding the observations on the next best-fitting periods of 4.88 min and 9.76

min showed significant variation in peak alignment. This suggests that the satellite is actually in

a tumbling period resonance with Pr = 24.31 min. The frequencies present in the power spectra

suggest 0.41 min−1 is 2 or 4fφ̄, making Pφ̄ ≈ 4.88 min or 9.76 min. This would mean that

m = Pr/Pφ̄ = 5 or 2.5 respectively. Given m for the 9.76 min period is not an integer, the satellite

would be half a precession cycle off in 24.31 min and the light curve would likely not fold as cleanly.

No clear improvement was made when folding the observed light curve on a 48.62 min period.
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Given this, Pφ̄ ≈ 4.88 min is the most likely solution. From simulated tumbling light curve surveys,

the left most clean power spectrum frequency was most often fψ. This suggests that fψ ≈ 0.04

min−1 and Pψ = 24.31 min. Overall, these period assignments would mean the satellite is in a

Pψ/Pφ̄ = 5:1 tumbling resonance which is possible for both LAMs and SAMs.

7.1.4 December 2019

Doppler radar echoes for GOES collected were collected on Dec. 6, 2019. With the echoes

recorded, windowed FFT analysis was conducted to obtain Doppler spectra vs. time. Adjustment

of the FFT integration time allowed for trade off between temporal and frequency resolution. To

maintain roughly equal Doppler and rotational phase resolution for all observations, FFT inte-

gration times were adjusted for the extracted precession periods. With a fixed frequency carrier,

orbital Doppler was removed in post-processing using TLEs for the satellites and JPL NAIF SPICE

ephemerides for the antennas.

Figure 7.5 shows the resulting Doppler spectra vs. time, collected roughly three hours apart.

Comparing with the simulated Doppler echoes in Figure 6.8, we can clearly identify the solar sail,

solar panel, and bus echoes. Phase-folding the observations yielded P syn

φ̄
= 353 s (5.9 min). There

are additional rotating features visible that lag roughly 45◦ behind the solar sail sinusoid (e.g. at

+4 Hz at ∼700 s and ∼1100 s in the top plot and 400s and 2500 s in the bottom plot). These

are likely due to the satellite’s magnetometer boom and/or telemetry and control antenna which

protrude several meters from the bus (see Figure 2.5). Tracing these features through both plots, we

see that their amplitudes vary over successive precession periods, indicating long axis rotation and

therefore non-principal axis tumbling. With long axis rotation, the projected area of the solar panel

along the satellite to antenna line of sight ŝ would change, likely affecting the panel’s echo power.

Examination of the top plot in Figure 7.5 shows that the echo power (brightness) within the +/- 5

Hz amplitude solar array sinusoid (i.e. the sinusoid directly out of phase with the large amplitude

boom echoes) varies over successive rotations. This is consistent with the varying projected area

associated with long axis rotation. Also, we see that the observed Doppler bandwidth in the top
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plot is nearly equal to the maximum expected bandwidth for the extracted spin period, indicating

we are viewing the pole roughly side-on. Moving to the bottom plot, we see a notable decrease in

Doppler bandwidth indicating a somewhat more pole-on view.

Figure 7.5: Dec. 6, 2019 GOES 8 Doppler echoes. The outer dashed lines denote the maximum

expected bandwidth for the extracted precession period P syn

φ̄
= 353 (5.9 min)

We analyzed the Dec. 6, 2019 GOES 8 echoes with the Doppler bandwidth and 2D RPD

techniques to obtain candidate poles, leveraging GOES 8’s known radial extent. The relatively

short arc and resulting near-planar observing geometry made the 3D RPD approach infeasible. Pφ̄

is almost constant for the tumbling GOES satellites since their mass distributions are nearly prolate.

So GOES 8’s rotation was assumed to be uniform, allowing us to use the Doppler bandwidth and

2D RPD approaches. The resulting solutions are provided in Figure 7.6 in the J2000 ecliptic frame

to allow for natural comparison with the sun and anti-sun directions (shown as filled and open
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circles respectively). The Doppler bandwidth approach yields eight possible pole solutions (in four

compact regions). 2D RPD eliminates two of these regions. Overall, this analysis suggests GOES

8’s pole is below the ecliptic plane with either ecliptic longitude of ∼150◦ and ecliptic latitude of

∼-30◦ or alternatively ∼300◦ and ∼-23◦.

Figure 7.6: Dec. 6, 2019 GOES 8 Candidate Poles in the J2000 Ecliptic Frame. The colored lines

and crosses are the Doppler bandwidth and 2D RPD solutions respectively. The open circle is the

anti-sun direction.

7.1.5 February 2020

Figure 7.7 shows GOES 8 Doppler echoes obtained on Feb. 18, 2020. Initially, the echoes

beginning at 02:42 UT fill nearly the maximum expected Doppler bandwidth for the best-fit phased

folded P syn

φ̄
= 216 s (3.60 min). This indicates a nearly side on view of the pole (i.e. roughly along

GOES 8’s equator). Continuing through time over the remaining three plots there is a significant

decrease in Doppler bandwidth indicates a progressively more pole on view.
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Figure 7.7: Feb. 18, 2020 GOES 8 Doppler echoes. The extracted P syn

φ̄
= 216 s (3.6 min).

Figure 7.8 shows the candidate poles for GOES 8 on Feb, 18, 2020. We see that the Doppler

bandwidth solutions and 2D RPD solutions are consistent with one another indicating the pole

has ecliptic longitude ∼135◦ and latitude ∼15◦ or ∼325◦ and ∼25◦. Fortunately, the GOES 8

observation geometry was well-enough spaced on this day to attempt 3D RPD analysis. The

tentative 3D RPD solution is shown as a black diamond in Figure 7.8 and is near the left-most

Doppler bandwidth/2D RPD solution. We are somewhat confident in this 3D RPD solution because

it yielded almost exactly the same Pφ̄ estimate as the 2D RPD solution ( 215.0 s) with a derived

radial extent of 22 m (slightly more than GOES 8’s known boom length). Regardless, both
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candidate solutions place GOES 8’s pole within 30◦ of the sun/anti-sun line. Furthermore, the two

pole solutions obtained from Feb. 20, 2020 GOES 8 Doppler echoes were virtually the same as for

Feb. 18, increasing our confidence in these candidate solutions.

Figure 7.8: Feb. 18, 2020 GOES 8 Candidate Poles. The colored lines and crosses are the Doppler

bandwidth and 2D RPD solutions respectively. The black diamond denotes the tentative 3D RPD

solution.

On Feb. 18, GOES 8 photometry was also obtained at Magdalena Ridge Observatory (MRO).

With images contaminated by background stars removed, the reduced light curve is provided in

Figure 7.9. The complexity of this light curve is clear indication of non-principal axis tumbling.

With P syn

φ̄
unambiguously provided by radar, we would like to estimate the long axis rotation period

Pψ. Fitting the light curve with a fourth order (m = 4) two dimensional Fourier series across a

range of candidate Pψ values, we obtain the best-fitting solution with Pψ = 17.94 min. Interestingly,

this is almost exactly 5 times P syn

φ̄
. Similar to the April 2018 observations, the light curve is much

too complex for uniform rotation. Furthermore, Lomb-Scargle periodogram analysis provided in

Figure 7.10b (used instead of FFT analysis due to observation gaps) showed significant frequencies

at 0.057, 0.34, 0.39, and 0.56 min−1. These would correspond to fψ, fφ̄ + fψ, fφ̄ + 2fψ, and 2fφ̄ ,
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with 2fφ̄ having the highest Lomb-Scargle significance by a factor of two. These harmonics were

commonly observed in the simulated tumbling GOES light curve surveys in Chapter 6 and Benson

et al. [11]. Phase-folding the light curve (Figure 7.9a), we find that it repeats almost exactly on

this candidate Pψ. Folding on Pφ̄ yielded significantly poorer peak alignment. Since GOES 8 is

nearly prolate, if the two fundamental tumbling periods Pφ̄ and Pψ are multiples of each other, the

satellite will periodically return to approximately the same inertial attitude. Closely inspecting the

04:25 UT plot in Figure 7.7, the magnetometer/antenna echoes repeat after five precession periods,

suggesting the satellite has returned to the same inertial attitude. The first appearance is at 260 s

and +5 Hz and they return to the same spot relative to the solar sail echoes at 1340 s and +5 Hz.

Overall, these findings strongly suggest the satellite is in a Pψ/Pφ̄ = 5:1 tumbling resonance with

tumbling periods Pφ̄ ∼3.60 min and Pψ ∼17.94 min.
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Figure 7.9: Feb. 18, 2020 GOES 8 light curve and 2D Fourier series fit (m = 4, P1 = 3.60 min,

P2 = 17.94 min)
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(a) phase-folded light curve (P = 17.92 min)
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Figure 7.10: Feb. 18, 2020 GOES 8 light curve analysis

7.2 GOES 9

GOES 9 was observed on July 4, 2014 at MRTC revealing slow complex rotation with best-fit

phase folded periods of 22.7 min and 9.1 min corresponding to five and two broad peaks respectively

[27]. These data are provided in Figure 7.12. Also, an ensemble of USNO COTS light curves were

collected between late 2014 and early 2018 and did not show evidence for significant changes in

spin rate. Combined with the July 3, 2016 results below, this suggests that GOES 9 remained in

the tumbling regime between 2014 and 2018.

GOES 9 optical photometry was obtained using Lowell Observatory’s 1.1 m Hall telescope on

July 3, 2016. The resulting light curve and Lomb-Scargle periodogram are provided in Figure 7.11.

The lack of clear periodicity in the light curve indicates tumbling. From left to right, the dominant

Lomb-Scargle frequencies are 0.0464, 0.131, 0.215, and 0.422 min−1. From the simulated light curve

trends, the 0.215 min−1 peak likely corresponds to 2fφ̄ or somewhat less likely 4fφ̄ and the 0.422

min−1 peak to 4 or 8fφ̄ respectively. This corresponds to Pφ̄ ∼9.3 min or ∼18.6 min. Assuming

Pφ̄ ∼ 9.3 min, we can consider possible fψ assignments with the two left-most peaks which are not

sub-harmonics of the others. If the left-most peak at 0.0464 min−1 is fψ, then the 0.131 min−1 peak
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would not align with any low order harmonics (e.g. fφ̄ + fψ or fφ̄ − 2fψ). So instead, a plausible

assignment for 0.0464 min−1 is 2fψ (i.e. fψ ∼ 0.0232 min−1). Then the 0.131 min−1 peak would

correspond to fφ̄ + fψ, a harmonic often having the second largest amplitude in simulated light

curve surveys (see Figure 6.4). Overall, these assignments would imply Pφ̄ ∼ 9.3 min and Pψ ∼

43.1 min and Pψ/Pφ̄ ∼ 4.7.
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Figure 7.11: July 3, 2016 GOES 9 light curve and Lomb-Scargle Periodogram

The best-fit phase folded periods from July 4, 2014 are very similar to the likely Pφ̄ ∼ 9.3 min

assignment for the July 3, 2016 light curve where 2fφ̄ would be the dominant frequency and 5Pφ̄/2

∼22.7 min. Furthermore, the final 25 min of the 2014 light curve and the first part of the 2016

light curve closely overlap as shown in Figure 7.12, suggesting very similar tumbling periods. With

pole direction significantly affecting light curve structure, the similarity of the two light curves also

suggests nearly the same pole direction at these two epochs.
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Figure 7.12: July 4, 2014 and July 3, 2016 GOES 9 light curves (black from [27])

7.3 GOES 10

GOES 10 was observed on several ocassions between February and August 2014, revealing a

uniform spin period that decreased from 31.1 s to 26.2 s [27]. Additional observations were obtained

on June 5, 2018 with the USNO 1.3 m telescope. These observations were collected at an 8.6 s

sampling cadence with 5 s exposures and reduced to instrumental magnitudes. A 130 min subset of

the data is provided in Fig. 7.13 phase folded on a period of 25.18 s. The data fold well, indicating

uniform rotation. The outlying points are likely due to background field star contamination and one-

time glints as formal uncertainties on the data were all below 0.05 magnitudes. The corresponding

Lomb-Scargle periodogram is provided in Figure 7.13 with a lone significant peak at 2.381 min−1

(period of ∼25.20 s), further indicating Pφ̄ ∼ 25.2 s.
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Figure 7.13: Phase-Folded June 5, 2018 GOES 10 light curve and Lomb-Scargle Periodogram

In addition, a number of GOES 10 light curves were collected with the USNO COTS array

from late 2014 through mid 2018. While sparsely sampled at a cadence of 37 s with 32 s exposures,

all light curves showed high frequency brightness variations. These findings combined with the

results in Fig. 7.13 suggest that GOES 10 remained in rapid uniform rotation over this roughly

four year span.

GOES 10 Doppler echoes were obtained on February 18, 2020. A subset of the data are

provided in Figure 7.14. We see rapid rotation with P syn

φ̄
∼ 30.5 s and Doppler bandwidth exceed-

ing ±150 Hz. Utilizing observations spanning roughly three hours, the four Doppler bandwidth

candidate pole estimates are provided in Figure 7.15 along with the two possible solutions provided

by 2D RPD. Each 2D RPD solution is near a Doppler bandwidth solution, both differing slightly

in longitude. The Doppler bandwidth solutions indicate the pole has either ecliptic longitude and

latitude of ∼45◦ and ∼40◦ or alternatively ∼180◦ and ∼67◦.
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Figure 7.14: Feb. 18, 2020 GOES 10 Doppler echoes. The extracted P syn

φ̄
= 30.5 s.

Figure 7.15: Feb. 18, 2020 GOES 10 Candidate Poles.

7.4 GOES 11

GOES 11 was observed in August 2014 with the light curve showing a best-fit phase folded

period of 20.9 min [27]. The observations folded poorly on this period, suggesting the satellite was

in complex rotation. High fidelity simulated GOES light curve surveys showed that slow uniform

rotation light curves still fold well, indicating the poor GOES 11 light curve folding is likely due to
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complex rotation rather than changing sun-satellite-observer phase angle [11]. Additional GOES 11

observations were collected with the USNO COTS array. These data consist of over 100 light curves

obtained between 2014 and 2018. Each light curve was analyzed with a Lomb-Scargle periodogram

and minimum dispersion phase folding to obtain strong periodicities. The top ten most significant

Lomb-Scargle periods for each light curve are plotted in Figure 7.16. The size of each data point

scales with the period’s significance (i.e. the larger, the more significant). There is clear variation

in these periods with hints of a yearly cycle. The light curves did not show clear periodicity,

suggesting the satellite remained in complex rotation. From the high fidelity GOES light curve

simulations, the top Lomb-Scargle frequencies of 2 or 4fφ̄ suggest precession periods between 5 and

25 min. This suggests that GOES 11 was in relatively slow, complex rotation with a varying spin

rate between 2014 and 2018.
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Figure 7.16: GOES 11 Significant Lomb-Scargle Periods

GOES 11 Doppler echoes obtained on Dec. 6, 2019 are provided in Figure 16. Phase-folding

the echoes indicated P syn

φ̄
= 775 s (12.9 min). Comparing the top and bottom plots in Figure 7.17,

we see a significant decrease in Doppler bandwidth over the three hour observation span. The

small bandwidth of the 11:10 UT plot suggests a near pole-on view. Photometry collected on

Dec. 17, 2019 did not fold cleanly on any candidate rotation period, indicating non-principal axis

rotation. Given only 11 days between collection of the photometry and radar, it is very likely
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that GOES 11 was also tumbling on Dec. 6. Lomb-Scargle analysis of the photometry suggested

P syn

φ̄
∼ 13 min. This value is comparable to that obtained from our radar observations 11 days

prior. Approximating GOES 11 in uniform rotation and computing the Doppler bandwidth and

2D RPD pole estimates, the resulting solutions are provided in Figure 17. The 2D RPD solutions

are in the vicinity of two Doppler bandwidth solutions. These solutions place the pole within ∼45◦

of the sun/anti-sun directions.

Figure 7.17: Dec. 6, 2019 GOES 11 Doppler echoes. The extracted P syn

φ̄
= 775 s (12.9 min).
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Figure 7.18: Dec. 6, 2019 GOES 11 Candidate Poles.

7.5 GOES 12

GOES 12 was observed on three occasions in 2014 with each light curve showing slow, complex

rotation with best-fit phase folded periods between 9.75 and 13.8 min [27]. USNO COTS data for

GOES 12 were also collected between 2014 and 2018, but were too sparse to provide significant

insight about the satellite’s subsequent evolution.

7.5.1 December 2019

GOES 12 was observed with Doppler radar on Dec. 6, 2019 and Feb. 18-20, 2020. The Dec.

6 echoes indicated P syn

φ̄
= 882 s (14.7 min). Calculating the Doppler bandwidth and 2D RPD

pole estimates, the resulting solutions on Dec. 6, 2019 are provided in Figure 7.19. The December

solutions indicate the pole has ecliptic latitude near -45◦.
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Figure 7.19: Dec. 6, 2019 GOES 12 Candidate Poles.

7.5.2 February 2020

The Feb. 18-20 Doppler echoes indicated P syn

φ̄
decreasing from 462 s (7.7 min) to 454 s (7.6

min). Photometry collected from Feb. 18-20 at MRO indicated GOES 12 was in uniform rotation

with a best-fit phase-folded period of P syn

φ̄
= 7.66 min, consistent with the radar findings. These

data are provided in Figure 7.20, showing four peaks per rotation. The right plot shows the clean

folding on the best-fit period. Given the relatively short time span between these observations and

those on Dec. 6, 2019, the satellite was likely uniformly rotating on Dec. 6, 2019 as well.
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Figure 7.20: Sequential and phase-folded Feb. 18, 2020 GOES 12 light curve

Calculating the Doppler bandwidth and 2D RPD pole estimates, the resulting solutions on

Feb. 20, 2020 are provided in Figure 7.21. With the December solutions indicating the pole is below

the ecliptic plane, the closest Feb. 18 solution and therefore most likely, has ecliptic longitude ∼265◦

and latitude ∼-70◦. The two candidate poles on Feb. 18, 2020 were virtually identical to those

from Feb. 20.

Figure 7.21: Feb. 20, 2020 GOES 12 Candidate Poles.
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7.6 Comparisons with Dynamical Modeling

Overall, analysis of light curve and Doppler radar observations of the GOES 8-12 satellites

showed diverse spin states and significant evolution over time. This diversity is illustrated by Ta-

ble 7.1 and Figure 7.23 which summarizes the radar-derived precession periods and pole directions.

Date GOES 8 GOES 10 GOES 11 GOES 12

Dec. 6, 2019 353 s (5.9 min) - 775 s (12.9 min) 882 s (14.7 min)
Feb. 18, 2020 215 s (3.58 min) 30.5 s - 462 s (7.7 min)
Feb. 20, 2020 216 s (3.6 min) 30.5 s - 452 s (7.6 min)

Table 7.1: Summary of radar-derived GOES Pφ̄ Estimates

The evolution of GOES 8’s long axis precession rate fφ̄ = 1/Pφ̄ from 2013 to 2020 is summa-

rized in Figure 7.22. The satellite spun down rapidly in uniform rotation through 2014, reaching

a Pφ̄ of at least 40 min in mid-late 2014. The satellite then transitioned to tumbling and has sub-

sequently spun up again while tumbling. The most recent confirmed Pφ̄ is ∼3.6 min on February

18, 2020. The circled stars in Figure 7.22 denote resonant tumbling states. Also included in Fig-

ure 7.22 are two example GOES 8 runs computed with the non-resonant averaged model accounting

for YORP, energy dissipation, and gravity gradient torques. Numerically averaged lookup tables

were used for the solar torque evaluation. For both runs, the initial precession period was set to

GOES 8’s December 12, 2013 extracted value of Pφ̄ = 16.83 s [27]. The initial value of Id/Is =

1e-8 (SAM+) was assumed. The dissipation parameters were set to J = 0.1 kg·m2 and µ/J = 1e-3

s−1. GOES 8’s January 1, 2017 inclination and right ascension (i = 11.2◦ and Ω = 40.5◦) were

used for the gravity gradient torque evaluation. Simulating 5000 runs with poles randomly drawn

from a uniform distribution, the range of initial values yielding spin down matching the September

2014 periods was limited to α ∼ [260◦, 330◦] and β ∼ [65◦, 110◦]. For all other pole directions, the

satellite did not decelerate sufficiently for tumbling transition until at least mid-late 2015. Two of

the most consistent examples, denoted Run 1 and 2 in Figure 7.22 have initial values of α = 297.8◦,

β = 104.0◦ and α = 317.9◦, β = 98.7◦ respectively. The overwhelming majority of runs matching
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the observed spin down followed the same general behavior as these two runs. In both Runs 1

and 2, the averaged evolution follows the satellite’s observed deceleration, tumbling transition, and

tumbling spin up. From early 2017 onward, the averaged runs evolve near the separatrix and the

extracted precession rates, taking temporary excursions to uniform rotation, most notably for Run

1. During this time, the tumbling period ratios for both runs frequently pass through 5:1. Overall,

GOES 8’s evolution since late 2014 is only loosely constrained. There are many pathways it could

have taken including one or more intervening tumbling cycles. In any case, the averaged model

runs are consistent with the three key aspects of GOES 8’s observed evolution: 1) spin down in

uniform rotation through mid 2014, 2) subsequent transition to tumbling spin up, and 3) eventual

evolution near the separatrix and extracted precession periods.
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Figure 7.22: Evolution of GOES 8’s long axis precession rate fφ̄ = 1/Pφ̄ extracted from observations

from 2013 to 2020 with example YORP + dissipation + gravity gradient averaged model runs.

Circled stars indicate resonant tumbling.

The combined radar and optical data show clear evidence for GOES 8 being captured in a
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Pψ/Pφ̄ = 5:1 tumbling resonance in February 2020 and likely in April 2018 as well. It is currently

unclear whether these 5:1 resonances were LAM or SAM. In full dynamical simulations, the 5:1

SAM resonance was commonly observed when YORP and internal energy dissipation were con-

sidered. The inclusion of gravity gradients further increased the frequency of 5:1 SAM resonance

capture (see Figure 3.7). For YORP-only simulations, the undamped tumbling cycles pushed the

satellite through the narrow Id region containing the 5:1 SAM resonance rapidly and at extreme

β values where capture probability was found to be negligible for the resonance-averaged model

(see Figure 5.26). This suggests that internal energy dissipation for GOES 8 is non-negligible. But

with the December 2019 and February 2020 GOES 8 radar and optical observations showing a

roughly 40% decrease in Pφ̄ and significant change in pole direction relative to the sun line (see

Figure 7.23), the satellite does not appear to have reached a limit cycle. This in turn suggests that

GOES 8’s dissipation rate is not too large. As a result, GOES 8’s dissipation appears large enough

to prevent consistent tumbling cycles while still being low enough to allow significant tumbling spin

state variation and possibly occasional forays into uniform rotation given its uniform spin state

from 2013 through 2014. The GOES satellites were retired in their nominal sun-tracking mode

with approximately zero spin rate. Full dynamics simulations started with zero spin rate showed

tumbling spin up initially, so GOES 8 likely had to escape the tumbling regime at least once prior

to its uniform rotation in 2013 and 2014.

One notable discrepancy between the observed and simulated GOES 8 5:1 resonances is the

pole direction (i.e. β value) at capture. The February 18, 2020 radar observations suggest GOES

8’s pole was within 30◦ of the sun or anti-sun direction (see Figure 7.8), with the tentative 3D

RPD solution indicating the latter solution. The full and averaged model results in Figures 3.7 and

5.26 respectively show that 5:1 SAM resonance capture only occurs near β = 90◦ with dissipation

pushing capture to smaller β values. Analysis indicated 5:1 LAM resonance capture region was also

limited to β < 90◦. In either case, this is inconsistent with the 3D RPD pole solution which has β

near 150◦. On the other hand, these simulated resonance capture regions are more consistent with

the February 18, 2020 pole solution near the sun line. Detailed fitting of the February 18, 2020
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light curve observations is needed to validate this 3D RPD solution. If this pole solution is more

consistent with the light curve than the alternative solution near the sun line, that would suggest

a modeling discrepancy. One possible factor in this case would be thermal lag which is known

to significantly change the pole evolution for asteroids. Thermal lag may shift the 5:1 resonance

capture regions towards β > 90◦.

(a) Dec. 6, 2019

(b) Feb. 18, 2020

Figure 7.23: Radar-derived candidate poles for the GOES satellites in J2000 Ecliptic frame.
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GOES 9 appears to have remained in slow tumbling from 2014 through at least 2018. The

July 4, 2014 and July 3, 2016 light curves have very similar structure and frequency content,

suggesting the satellite’s pole direction and tumbling periods were nearly the same with a long

axis precession period Pφ̄ of roughly 10 min. With the yearly spin state periodicity observed for

the YORP + dissipation + gravity gradient tumbling limit cycles (see Figures 5.27 and 5.28), the

tumbling periods and pole direction would be the same at given time each year. Furthermore, the

period ratio corresponding to the likely July 3, 2016 tumbling periods (∼4.7) places the satellite

near the separatrix where the asymptotically stable YORP + dissipation + gravity gradient limit

cycles were found in simulations (again see Figures 5.27 and 5.28). It is not clear whether GOES

9’s July 2016 tumbling state is LAM or SAM since both are possible for the proposed period ratio.

The former would have continuous rotation of the long axis (i.e. ψ) while to latter would instead

have libration between two fixed values of ψ. The relatively low temporal resolution of the light

curve may prevent disambiguation of these candidate states with high fidelity light curve fitting.

Modeling showed that GOES 9 should be subject to similar, if not larger, YORP-driven

accelerations than GOES 8 (see Figure 5.1). In the full and averaged YORP + dissipation + gravity

gradient simulations, larger spherical slug inertias resulted in faster capture into the tumbling limit

cycles. So, one possible explanation for GOES 9’s less variable spin rate compared to GOES 8 is

that it has higher dissipation. When passivated at end of life, some fuel in valves and plumbing

cannot be purged (Andrew Edwards, Optus, personal comm.). So it is possible that each of the

GOES satellites has a different amount of residual fuel. Slight variations in material properties and

construction of the satellites could account for some dissipation discrepancy as well. Alternatively,

Figure 5.20a shows that the YORP + dissipation equilibria for some values of J are unstable. While

the current fidelity model indicates GOES 8 should have at least one stable equilibrium (i.e. SAM+

and/or SAM-) for a wide range of J values, it is possible that neither equilibrium is stable for the

true satellite. In this case, the satellite would never settle into a tumbling limit cycle. Even for the

same dissipation, the stability of these equilibria also depends on the solar torque strength, which

varies for each satellite given their different end of life configurations. Hopefully higher fidelity
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modeling and additional observations can help determine the underlying reasons for the different

evolutionary histories of these satellites.

GOES 11 also appears to have remained in the tumbling regime since at least 2014. The

significant periods in Figure 7.16 show some evidence for yearly variation which could indicate

capture into a tumbling limit cycle. Additional high quality light curves showing tumbling periods

with yearly periodicity and radar-derived pole estimates remaining in a consistent orbit frame

locations throughout the year would strongly support the hypothesis that GOES 9 and 11 have

reached tumbling limit cycles. If they have, the extracted β values and periods would provide

insight about their dissipation rates.

Of the five GOES 8-12 satellites, GOES 10 is distinct in that light curves and radar ob-

servations show it has remained in fast uniform rotation since at least 2014. Figure 5.1 showed

that YORP-driven ω̇e for GOES 10 was much smaller than for the other satellites. Similarly, Fig-

ure 5.2 showed much lower spin rate variation compared to GOES 8. This is directly attributable

to GOES 10’s end of life solar array angle which nearly minimizes solar torques over all possible

β values. These modeling results are consistent with GOES 10’s relatively constant uniform spin

rate indicated by observations.

For GOES 12, the late 2019 and early 2020 observations indicate it was in uniform rotation

and spinning up. This is notable given that the satellite was tumbling in 2014. While GOES

8’s evolution provided evidence for YORP-driven transition from uniform rotation to tumbling,

GOES 12’s evolution confirmed that these satellites can also escape from the tumbling regime.

Furthermore, GOES 12’s escape suggests that, like GOES 8, its dissipation is not large enough to

have yet forced capture into a tumbling limit cycle or that it does not have stable equilibria for its

given dissipation.

One ubiquitous behavior from dynamical modeling was sun-tracking precession during YORP-

driven tumbling cycles and steady state pole directions in the orbit frame for YORP + dissipation

+ gravity gradient limit cycles. Unfortunately, the ensemble of GOES pole estimates are currently

too sparse to validate these simulated behaviors. While the radar-derived pole estimates for the
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tumbling GOES 8 and 11 satellites in Figure 7.23 are near the sun/anti-sun directions in Feb. 2020

and Dec. 2019 respectively, this is by no means conclusive. Ultimately, more pole solutions are

needed at higher cadences and at different times of year to determine whether the tumbling GOES

satellite poles are systematically tracking the sun.

7.7 Implications

The observed and simulated spin state diversity of the GOES satellites has several notable

implications for GEO debris mitigation. First of all, active debris removal (ADR) and satellite

servicing/recycling efforts will often require detailed spin state knowledge of the target satellite,

ideally well before rendezvous. The GOES spin state diversity illustrates that some satellites will

be easier targets than others as slow uniform rotation greatly simplifies rendezvous and capture

operations, particularly for large, non-cooperative objects. Capture of satellites with fast spin rates

may simply not be feasible due to control limitations or risk of collisions. So ADR and satellite

servicing operators will be forced to weigh a target’s threat to active space assets or service value

against its spin state. For targets like GOES 8 with highly variable spin states, long-term spin

state prediction will be crucial to identify capture windows with favorable spin rates. For example,

this would be when GOES 8 has decelerated to slow uniform rotation just before a transition

to complex rotation or between tumbling cycles. It would advantageous to let YORP decelerate

target satellites as much as possible, saving the ADR/servicing spacecraft fuel and time. With

many potential targets, one might plan to deorbit the slowest spinning targets first, waiting for

windows of predicted slow rotation to deorbit others.

The tumbling resonances observed for GOES 8 have implications for ADR and servicing. In

these resonances, a satellite’s attitude motion is nearly periodic. For general tumbling on the other

hand, the attitude motion does not repeat. ADR/servicing spacecraft would likely have an easier

time grappling a tumbling satellite with periodic motion compared to one without, especially if

aiming for a particular feature on the satellite. For example, Northrop Grumman’s Mission Exten-

sion Vehicle (MEV) docks with the apogee kick motor nozzle and concentric launch adapter ring
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commonly found on GEO satellites [28]. Taken together, the GOES 8 observations and potential

advantage of resonant tumbling over general tumbling for ADR/servicing motivate further dynam-

ical and observational studies to investigate how common these resonances are among the tumbling

defunct satellite population.

The strong dependence of GOES spin state evolution on end of life geometry and internal

energy dissipation has another implication for GEO debris mitigation. Satellite designers and

operators can potentially dictate post-disposal spin state evolution with factors other than the spin

state at shutdown. In addition to deorbit and passivation, the solar arrays and other articulating

appendages of satellites should be set in end of life configurations that minimize major axis solar

torques. Also, building in dissipation with a small nutation damper or other device could yield

asymptotically stable tumbling states/limit cycles with constant pole direction in the sun-satellite

orbit frame (i.e. constant α and β). Ideally, these considerations would reduce maximum spin rates

and spin state variability and make the pole direction more predictable. These behaviors would

greatly facilitate any future capture for ADR and satellite servicing/recycling efforts. Slower spin

rates would also reduce the potential for material shedding that could risk active GEO assets. Much

of the high area-to-mass ratio debris at GEO is thought to be multi-layer insulation from defunct

satellites and upper stages [67]. Finally, these stable tumbling states/limit cycles could potentially

be leveraged for passive attitude control for on-orbit storage [47] or interplanetary cruise. A fixed β

value would provide consistent (albeit not continuous) tumbling-averaged solar array illumination.

Such a trade-off may be sufficient for low power hibernation.



Chapter 8

Application to Other Bodies

8.1 Box-Wing Satellite

Using the averaged models, the dynamics of a box-wing GEO satellite will be investigated.

The 14 facet satellite shape model used in this investigation is provided in Figure 8.1. It is modeled

off the Optus B family of satellites for which significant geometry information is available [62].

These satellites are built from the popular Boeing 601 satellite model [62]. Overall, the Optus

B geometry is relatively generic and representative of most box-wing GEO satellites. The shape

model consists of the main bus, two solar arrays, and a pair of antennas mounted on the east

and west (±b̂1) faces of the bus, tilted ∼15◦ towards the +b̂2 direction. The satellite’s overall

wingspan is 20.6 m. The optical properties for the bus and solar arrays are assumed to be the

same as those for the GOES model in Table 2.2. The antenna reflections are assumed to be diffuse

(i.e. si = 0). End of life properties for several retired Optus B satellites were generously provided

by Andrew Edwards of Optus Australia (via personal communication). For this study, the mass

properties for the Optus B3 satellite are used. The satellite had an end of life mass of 1320 kg and

principal inertias of Il = 1704 kg·m2, Ii = 5718 kg·m2, and Is = 6143 kg·m2. Rotation of the solar

arrays around the b̂3 over a range of reasonable solar array masses did not change the b̂1 and b̂2

directions by more than a few degrees. Also, Andrew Edwards stated that the off-axis inertias were

negligible. So the principal axes are assumed to correspond to the b̂1, b̂2, and b̂3 axes in Figure 8.1.

The solar arrays will not generally be oriented with the sun/anti-sun side normal along b̂2 as shown

in Figure 8.1 since satellites are often shut down at times other than local midnight/noon. For
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example, the end of life array angles θsa for Optus B1 and B3 provided by Andrew Edwards were

239◦ and 256◦ (with θsa = 0◦ at local midnight), corresponding to shutdown in the late afternoon.

Figure 8.1: Box-wing satellite shape model with principal axes

Analytical tumbling-averaged quantities for the box-wing model are provided in Figure 8.2.

Here, θsa is set to 45◦ (measured positive about −b̂3). The center of mass is assumed to be 10 cm

along +b̂3 from the center of the bus (i.e. rc = [0, 0, 10]T cm). For the İd contour in Figure 8.2d,

ωe = 2π is arbitrarily assumed. A shaded plane intersects the contours at zero to better illustrate

the sign changes. These contours have the same general structure as those for GOES 8 with θsa =

70◦ in Figure 5.9. Mx is positive for SAMs and negative for LAMs, Mz changes sign near the

separatrix (dashed line) and β ≈ 90◦, and İd changes sign at β ≈ 90◦. So as in Figure 5.9, the

satellite will tend to evolve clockwise in (β, Id) space. Varying θsa and the b̂3 center of mass offset

changes the magnitudes of the quantities while preserving the structure. Similarly, for shifts along

all principal directions (e.g. rc = [5, 10, 10]T), the general Figure 8.2 structure was retained. On

the other hand, center of mass offsets in only the b̂1 and/or b̂2 directions result in Mx = Mz = İd =

0 across all SAM states for all β values. For this box-wing satellite model, tumbling cycle behavior

only requires an offset in the b̂3 direction. This is due in part to the satellite having three distinct

principal inertias which results in asymmetric sampling of the satellite geometry over the tumbling

motion. Making the satellite prolate (i.e. Ii = Is), resulted in Mx = Mz = 0 across all β given

the symmetric sampling of the satellite geometry. For satellites with observed uniform spin rate

variation, this variation could be achieved with just a b̂3 offset. So there is a strong possibility that

such satellites would exhibit tumbling cycle behavior if they spin down sufficiently.



162

(a) Mx (b) My

(c) Mz (d) İd

Figure 8.2: Box-wing satellite analytical tumbling-averaged YORP quantities (θsa = 45◦, center of

mass shifted 10 cm along +b̂3 axis from center of bus, SAM+/LAM+)

Example semi-analytical model evolution assuming only YORP is provided in Figure 8.3.

The initial spin state is α = 0◦, β = 165◦, Pe = 2π/ωe = 5 min, and Id/Is = 1 − 10−6. Center of

mass offsets of 5 and 10 cm along +b̂3 from the center of the bus are considered. In both cases, the

satellite undergoes a yearly uniform spin rate variation with a secular decrease. Once the satellite

spin rate has decreased sufficiently, it enters a tumbling cycle with the pole precessing around the
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sun-line (α circulation) and slowly moving from the anti-sun to sun direction (decreasing β). Given

the larger associated torques, the satellite evolves more rapidly with the 10 cm offset. Nevertheless,

Mx, My, and Mz in Figure 8.2 are roughly an order of magnitude smaller than the values for GOES

8 in Figure 4.5. Combined with its larger inertias, the box-wing satellite evolves more slowly than

GOES 8. For example, comparing the 10 cm offset box-wing uniform spin down in Figure 8.3 to

that for GOES 8 in Figure 5.3, GOES 8 decelerated in uniform rotation roughly 20 times faster

than the box-wing.
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Figure 8.3: Box-wing satellite semi-analytical tumbling-averaged YORP evolution for different

centers of mass (SAM+/LAM+)
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Example averaged model evolution for the box-wing model considering YORP and internal

energy dissipation is provided in Figure 8.4. The initial spin state is α = 0◦, β = 165◦, Pe = 2π/ωe =

20 min, and Id/Is = 0.98 with J = 2 kg·m2 and µ/J = 1e-3 s−1. Similar to the behavior observed

for GOES for sufficiently large dissipation rates, the satellite asymptotically approaches a stable

tumbling equilibrium on the SAM side of the separatrix with an effective spin period Pe ≈ 56 min.
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Figure 8.4: Box-wing satellite nuemrical tumbling-averaged YORP + dissipation evolution (rc =

[0, 0, 10]T cm, J = 2 kg·m2, µ/J = 1e-3 s−1, SAM+/LAM+)



165

8.2 Meter-Sized Asteroids

Meter-sized asteroids are generally monolithic rocks and are assumed to have negligible dissi-

pation. Angular accelerations due to solar gravity gradient torques are independent of asteroid size

D while YORP accelerations are proportional to 1/D2. So for meter-sized asteroids, gravity gra-

dient accelerations will be many orders of magnitude smaller than YORP. Therefore, only YORP

is considered in the current investigation. Here, we take models of observed asteroids and scale

them down to smaller sizes. Reflections are assumed to be purely diffuse (i.e. si = 0). So given

the assumption of instant thermal re-emission, the solar torques are independent of the asteroid

reflectivity ρi. Circular heliocentric orbits are assumed with a semi-major axis of 1 AU.

8.2.1 Pseudo-Itokawa

The near-earth asteroid Itokawa has dimensions of 535×294×209 m [42]. Figure 8.5 shows

example averaged model spin state evolution for a 1/400 scale (∼1.3 m) Itokawa model with the

initial state α = 0◦, β = 15◦, Pe = 12 hr, and Id/Is = 0.995. Starting in slow tumbling near uniform

rotation, the asteroid undergoes three tumbling cycles over roughly two years with rapid α circula-

tion, β increasing over each tumbling cycle, and brief returns to near-uniform rotation. Figure 8.6

shows the signs of the analytically averaged parameter derivative contours with the Figure 8.5 evo-

lution overlaid. The satellite evolves in the counter-clockwise direction in (β, Id) space, alternately

spinning up and down. The contours and pseduo-Itokawa’s non-resonant tumbling-averaged YORP

evolution largely echo that for GOES and the box-wing satellite.
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Figure 8.5: Analytically averaged evolution of 1.3 m pseudo-Itokawa.
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Figure 8.6: 1.4 m pseudo-Itokawa averaged parameter derivative signs (SAM+/LAM+) with Fig-

ure 8.5 evolution. Black and white denote negative and positive values respectively.

Figure 8.7a shows the corresponding Figure 8.5 evolution of H in the orbit frame over the

first tumbling cycle (∼1 year). Here, the asteroid exhibits sun-tracking precession. Plotting the

asteroid obliquity (the angle between H and X̂) over this two year simulation, it averages to ∼90◦.
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(a) H over first tumbling cycle
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Figure 8.7: Evolution of 1.3 m pseudo-Itokawa pole direction for Figure 8.5 example.

8.2.2 Pseudo-Apophis

The full-scale Apophis shape model investigated here has dimensions of 410×350×320 m.

Figure 8.8 shows the averaged quantity contours and example evolution for a 1/400 scale (∼1 m)

version with the initial state α = 0◦, β = 165◦, Pe = 12 hr, and Id/Is = 0.8. Starting in the

tumbling regime with the pole near the anti-sun direction, the satellite initially proceeds clock-wise

in (β, Id) space. Given the patchwork structure of the contours, it then switches sense and evolves

counter-clockwise, alternating between spin up and spin down. Over the three year evolution, the

asteroid’s obliquity averages approximately 90◦ as shown in Figure 8.8d due to extended phases of

sun-tracking precession.
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Figure 8.8: 1 m pseudo-Apophis averaged parameter derivative signs (SAM+/LAM+) with example

evolution overlaid and corresponding obliquity.

8.2.3 Prevalence of Sun-Tracking Precession

Using the analytically averaged model, we will investigate the prevalence of sun-tracking

precession for meter-sized asteroids. Figure 8.9 shows plots of My/|M | vs. Id and β for the

asteroids Itokawa, Apophis, Toutatis, and 1998 ML14 along with their shape models. For Itokawa,

Apophis, and Toutatis, My/|M | is very close to ±1 over the most of the (β, Id) space. This
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indicates that the majority of the solar torque is along the ±ŷ direction (i.e. perpendicular to both

H and the sun line Ẑ). So for meter-sized versions of these three asteroids undergoing slow rotation,

pole motion will generally be dominated by precession about the sun/anti-sun line. Of the roughly

10 asteroids investigated, this My/|M | structure was found for all asteroids with at least some

elongation. So even in the absence of clean tumbling cycles, like those observed for pseudo-Itokawa

above, pole motion for many meter-sized asteroids undergoing slow rotation should be dominated

by sun-tracking precession. For the roughly spherical 1998 ML14, the relative strength of My is

generally not as large, indicating somewhat weaker tendency for sun-tracking precession. Similar

results were observed for the roughly spherical 1998 KY26.
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Figure 8.9: My/|M | for several asteroids (SAM+/LAM+)

The dependence of the sun-tracking parameter δ/n on asteroid and orbital parameters will
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now be investigated. As a reminder, for δ/n >> 1, pole motion will be dominated by sun-tracking

precession. For δ/n << 1, the pole will remain nearly inertially fixed (refer to Figure 5.6 and the

associated discussion). Since δ = M/H, it is proportional to 1/D2 and 1/ωe. Figure 8.10a shows

how δ/n for pseduo-Itokawa changes with asteroid diameter D (i.e. largest actual dimension) and

effective spin period Pe = 2π/ωe assuming a semi-major axis of 1 AU. Here δ was calculated

assuming Id/Is = 0.4. For diameters of roughly one meter, one could expect significant spin-orbit

coupling for Pe < 20 min. As the diameter shrinks, δ/n grows rapidly. Considering the asteroid

orbit, solar radiation pressure and therefore δ are proportional to 1/a2, where a is the heliocentric

semi-major axis. Furthermore, the mean motion n goes as 1/
√
a3, so δ/n is proportional to 1/

√
a.

Figure 8.10b illustrates this dependence. For the main belt, δ/n will be roughly 55-70% of the

value at 1 AU.
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Figure 8.10: Dependence of sun-tracking parameter δ/n on size D, effective spin period Pe and

semi-major axis

Overall, the prevalence of sun-tracking precession for slowly tumbling meter-sized asteroids

observed with the analytically averaged YORP model has implications for the Yarkovsky effect.

Semi-major axis drift due to the Yarkovsky effect is proportional to the cosine of the asteroid
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obliquity [111]. So for obliquities of 90◦, the diurnal Yarkovsky effect will be zero. The diur-

nal Yarkovsky effect generally dominates the seasonal component, and analysis indicates that the

Yarkovsky effect still persists for tumbling asteroids [111]. Figure 8.7 shows that during tumbling

cycles, pseudo-Itokawa’s obliquity averages to roughly 90◦. This suggests that sun-tracking preces-

sion may shut off the Yarkovsky effect. Such a tendency would reduce the semi-major axis drift of

tumbling meter-sized asteroids and their corresponding escapes rates from the main asteroid belt

through resonances. This would in turn affect the near-earth and main belt populations of these

bodies. These population sizes have implications for crater formation rates on the Moon, larger

asteroids, and other airless solar system bodies. Crater counts are used to estimate the geologic

ages of surfaces [90]. On the other hand, any cases with fast rotation would cut off sun-tracking.

It is also important to note that bare meter-sized rocks likely have non-negligible thermal con-

ductivity [112], so YORP models incorporating thermal lag are needed to determine whether this

sun-tracking behavior still persists. If it does, a focused study of the Yarkovsky effect for tumbling

meter-sized asteroids would be valuable to further explore the impact of sun-tracking precession

on drift rates. With YORP accelerations proportional to 1/D2, very small asteroids could rapidly

reach fast spin rates and break apart. Rubincam [93] and Breiter et al. [20] hypothesized that

these asteroid might be captured in tumbling states with alternating spin up and spin down which

would prevent this disruption. The tumbling cycles observed here support this hypothesis.
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Conclusions and Future Work

Overall, this work developed dynamical models and observation analysis techniques that

increased understanding of long-term general rotational dynamics of defunct satellites. The full

and tumbling-averaged dynamical models uncovered rich dynamical structure for satellites subject

to solar radiation torques, gravity gradients, and internal energy dissipation. Notable behaviors

included repeated transitions between uniform and non-principal axis tumbling, spin-orbit coupling

in the form of angular momentum sun-tracking precession, capture into fundamental tumbling

period resonances, and stable tumbling states/limit cycles. Non-intuitively, these dynamical models

showed that the tumbling cycles proposed by Albuja et al. [2] do not require internal energy

dissipation as they hypothesized. Instead, these repeated transitions between uniform rotation and

tumbling can be driven by YORP alone. The dynamical modeling also indicates that sufficiently

high dissipation rates balance the YORP effect, preventing these tumbling cycles and resulting in

stable tumbling states/limit cycles.

Methods were developed to extract fundamental tumbling periods and pole directions from

optical light curves and Doppler radar observations. These two data types complement each other

with light curves providing rich harmonic information and Doppler providing unambiguous preces-

sion periods and greatly narrowing possible poles directions. Spin state time histories of the GOES

8-12 satellites extracted from light curve and Doppler radar observations showed consistency with

their simulated behavior, most notably spin state diversity, tumbling cycles, tumbling resonances,

and stable tumbling states/limit cycles. These simulated and observed behaviors have significant
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implications for active debris removal, satellite servicing, and satellite decommission procedures.

Operators may be able to dictate the post-disposal spin state evolution of a satellite by properly

setting its end of life configuration which would aid active debris removal and servicing efforts. The

averaged solar torque, gravity gradient, and energy dissipation models allow for broad, rapid stud-

ies of long-term dynamics. Also, the averaging framework is readily extendable to higher fidelity

ray-traced solar torque models and other perturbations (e.g. magnetic and eddy current torques).

These averaged models could facilitate trade studies for the impact of end of life configurations and

spin states on a satellite’s long-term post-disposal spin state evolution.

Simulations showed that the behaviors observed for the GOES satellites apply to more general

box-wing satellites. Similar behavior was also observed for meter-sized asteroids, with YORP-

driven tumbling cycles and sun-tracking potentially shutting off Yarkovsky drift, reducing escape

rates from the main asteroid belt, and preventing spin-driven disintegration.

Future Work

There are several notable areas for future work. These include:

� Broad dynamics model exploration for a wide array of bodies and end of life configurations.

� Higher fidelity solar torque modeling accounting for thermal lag.

� A higher order resonance-averaged model to investigate dynamics in the vicinity of tumbling

equilibria and resonances.

� A complementary tumbling-averaged solar radiation pressure model for orbital dynamics.

� Extension of the averaged models to other orbital regimes (e.g. low earth orbit, lunar orbit)

and perturbations (e.g. magnetic and eddy current torques, atmospheric drag).

� Continued satellite observation analysis to gain insight and validate modeling.

Areas for future work are discussed in more detail below.
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While the modeling in this work uncovered rich dynamical structure that is largely consistent

with observed evolution, detailed investigations were limited to a small number of bodies. As a

result, further model exploration (both full and averaged) is needed to assess the prevalence of

these behaviors in the general populations earth-orbiting satellites. This includes investigating a

broad array of satellite shapes including rocket bodies as well as different configurations (dissipation

rates, center of mass offsets, optical properties, array angles, and antenna configurations). It will

be valuable to determine what behaviors persist and whether new ones emerge. For example, it is

commonly assumed that internal energy dissipation will always result in defunct satellites and rocket

bodies spinning about their maximum inertia axis. The asymptotically stable tumbling equilibria

and limit cycles observed in this work due to the combined influence of YORP, dissipation, and

gravity gradients would break this assumption. In brief, it is possible that tumbling satellites may

not consistently return to uniform rotation. This would have significant implications for active

debris removal and satellite servicing. Therefore the prevalence of stable tumbling states/limit

cycles across a wide range of bodies and configurations should be studied.

The fidelity of the solar torque and dissipation models in this work was limited. So another

area for future work is the development of higher fidelity models for these perturbations. For

example, delayed thermal re-emission, which was neglected in this work, is known to significantly

affect the long-term pole evolution of asteroids [23]. As a result, it would be valuable to determine

how this thermal lag impacts the behaviors identified in this work. Unlike the current model which

assumes the solar torques only depended on the instantaneous attitude, thermal lag would make

the torques a function of the recent illumination history. This time dependence makes thermal

lag challenging to incorporate in a tumbling-averaged sense given the presence of two fundamental

periods. Higher fidelity modeling of reflections on the other hand can be readily incorporated in

the current numerically averaged solar torque model. Detailed self-shadowing and multi-bounce

effects incorporated through ray tracing may impact the simulated behaviors. Considerations for

more realistic glossy reflections rather than just specular and diffuse could have an impact as

well. In the averaged model, the averaged torques for a given body are only functions of two



176

parameters: the dynamic moment of inertia Id and coning angle β in the non-resonant case, or

γ and β in the resonant case. So a formulation could be developed where the averaged torques

are expressed as an arbitrary order two-dimensional Fourier series. This way, the solar torque

structure could be captured in a discrete set of Fourier coefficients rather than using the limited

fidelity semi-analytical model or lookup tables. This could improve classification of different bodies

in terms of their Fourier coefficients and allow for coefficient estimation. Finally, the spherical fuel

slug dissipation model applied in this work may not accurately represent the dissipation behavior

for many satellites, particularly those that have been completely passivated of fuel. So it would

be valuable to explore alternative dissipation models that consider energy lost through flexure of

satellite components. Angular momentum transferred to and from a satellite’s reaction wheels may

affect long-term dynamics.

It would also be valuable to further explore dynamics in the vicinity of tumbling YORP

resonances and stable tumbling states. For GOES, the mutual proximity of higher order reso-

nances and equilibria seemed to affect the probability of escape to uniform rotation, especially for

low dissipation rates. As a result, interaction between tumbling resonances and equilibria could

have a significant impact on long-term evolution. For the current averaged models, there is a dis-

continuous jump between non-resonant and resonant motion. So development of a higher order

resonance-averaged model accounting for deviation from a resonance could be valuable to explore

these dynamically complex, potentially chaotic regions.

A natural extension of the averaged models developed in this work is to attitude-dependent

solar radiation pressure (SRP) modeling. Attitude-dependent SRP models employed for low area-

to-mass ratio debris objects generally assume that an object is uniformly rotating or randomly

tumbling. Complementary tumbling averaged SRP force models could be developed based off the

approach in this work to explore coupled attitude and orbital dynamics for these objects.

Another area of future work is extending this averaging approach to different regimes such

as low earth orbit (LEO) and low lunar orbit where the relative magnitudes of the attitude pertur-

bations change significantly and different effects are introduced. It would be interesting to explore
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whether representative averaged dynamics can accurately capture the full dynamics in these envi-

ronments. In LEO and low lunar orbit, gravity gradient torque magnitudes increase significantly,

eclipse durations are longer and more frequent, and re-radiation from the earth/moon surface may

become non-negligible. In LEO, magnetic and eddy current torques also grow considerably and

there is atmospheric drag at lower altitudes. With the debris and active satellite populations in

LEO continuing to grow, accurate long-term attitude prediction for active debris removal (ADR)

and conjunction-driven drag estimation will be very important.

Finally continued analysis of satellite observations, both past and future, is needed to gain

insight about ongoing spin state evolution and to refine dynamical models. This applies to GOES

8-12 as well as other satellites to determine how prevalent tumbling cycles, sun-tracking, tumbling

resonances, and stable tumbling are among the general defunct satellite population.
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Appendix A

Averaged Quantities

From Ref. [22], we can obtain the following elliptic function averages,
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where E is the complete elliptic integral of the second kind [85] and k′2 = 1− k2.

A.1 Long Axis Modes

After averaging over φ, we follow Ref. [26] and write all averaged expressions in terms of az1,

az2, and az3 because they are independent of φ. Following the notation of Eq. 4.8, for LAMs we

have the following expressions with (1, 2, 3) subscripts denoting the B frame vector components

and using f as a placeholder for d and r.
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A.2 Short Axis Modes

The following averaged expressions hold for SAMs,
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Appendix B

Expressions for ϕ̈ and τ̈r

From Eq. 2.31, for both LAMs and SAMs,
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Taking the time derivative of Eq. B.1, we have,
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Evaluating the cascading terms using the solutions provided in Ref. [22], we find,
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where E = E(k) is the complete elliptic integral of the second kind and k′2 = 1− k2 [22, 85].

Then for LAM rotation states we have,
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Similarly for SAMs,
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Ḣc+H

(
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Appendix C

Expressions for Averaged Steady State Dissipation Coefficients
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