Design of an Autonomous Polarized Raman Lidar for Arctic Observations

Robert Stillwell¹*, Ryan R. Neely III², Jeffrey P. Thayer¹, Michael O’Neill³, Matthew Hayman⁴, Lewis Gillis¹

¹ Aerospace Engineering Sciences Department, University of Colorado at Boulder *Corresponding Author: Robert.Stillwell@Colorado.edu
² University of Leeds, Leeds, England
³ Cooperative Institute for Research in Environmental Science, University of Colorado at Boulder
⁴ Research Aviation Facility, National Center for Atmospheric Research

Introduction
- Understanding microphysical properties of clouds and aerosols is crucial to understanding large-scale weather processes
- A dearth of high vertical and temporal resolution measurements in the Arctic contributes to modeling uncertainty which directly inhibits understanding of cloud radiative and precipitation impacts on the surface environment
- The Summit Polarized Raman (SuPR) lidar will be deployed to Summit, Greenland to measure water vapor, temperature, and polarization profiles
- Calibration will be done with radiosondes and ancillary instrumentation

Objectives
Primary Objectives (10 minute integrations with 7.5 meter resolution)
- Measure temperature with 10% precision to 20 [km]
- Measure depolarization with 5% precision to 30 [km]
- Measure water vapor number density to 10% precision to the tropopause
Secondary Objectives (10 minute integrations with 7.5 meter resolution)
- Measure Mueller matrix properties of clouds to 5% precision to 30 [km]

Theory
- Raman scattering is an inelastic scattering process
- One can use spectroscopic fingerprints to identify species

Design
- Simulations
 - Full Stokes vector treatment (Equation 1) [Hayman]. Note the box color around the figure corresponds to color coding in the equation or equation piece
 - Atmospheric data from MSIS or radiosonde
 - Background counts taken from UV spectrometer at Summit
 - Temperature dependent scattering cross sections (Stokes vectors) [Weitkamp]
 \[\rho = \frac{\text{M}_\text{r}}{\text{M}_\text{r}} \left(\frac{\epsilon(r)}{\sigma} \Delta \text{R} \right) F \text{Atm}(k_r, r) F(k_i, k_r, r) F \text{Atm}(k_r, r) M \text{r}_r S I + S \rho (1) \]
- Simulated Retrievals
 - Using modeled photons, retrieval algorithms can be tested for accuracy
 - Seasonal variations in precision exist due to variations in sunlight and geophysical differences

Calibration
- By taking ratios of different signals, many terms of the lidar equation directly cancel
- An example of one such ratio is given for temperature retrieval (Figure 11)

Expectations
- SuPR will be constructed in Boulder, CO in 2014-2015 for testing
- SuPR will be deployed in 2016 for 3.5 years of atmospheric measurement
- The design is optimized for the weakest signal, water vapor

Acknowledgments
This material is based upon work supported by the National Science Foundation Graduate Research Fellowship grant number 1144938 and National Science Foundation grant number AON 1303864.

References